Quarterly Ambient Air Quality Monitoring Report for the Durham York Energy Centre – January to March 2017

Durham York Energy Centre

Prepared for: The Regional Municipality of Durham 605 Rossland Rd Whitby, ON L1N 6A3

Prepared by: Stantec Consulting Ltd. 300W-675 Cochrane Dr., Markham, ON L3R 0B8

Project No.: 160950528

May 9, 2017

Sign-off Sheet

Kimberly Ireland, P.Eng.

This document entitled Quarterly Ambient Air Quality Monitoring Report for the Durham York Energy Centre – January to March 2017 was prepared by Stantec Consulting Ltd. for the account of The Regional Municipality of Durham. The material in it reflects Stantec's best judgment considering the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec Consulting Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Timothy Hy
Prepared by
(signature)
Timothy Hung, B.A.Sc.
Reviewed by
(signature)
Gregory Crooks, M.Eng., P.Eng.
Approved by(signature)
(signature)

Table of Contents

Exec	cutive Summary	i\
Abbr	reviations	vi
1.0	Introduction	1.1
1.1	BACKGROUND AND OBJECTIVES	1.1
1.2	LOCATIONS OF AMBIENT AIR QUALITY MONITORING STATIONS	1.2
2.0	Key Components Assessed	2.1
2.1	METEOROLOGY	
2.2	AIR QUALITY CONTAMINANTS OF CONCERN	2.1
2.3	AIR QUALITY CRITERIA	2.3
3.0	Instrumentation Summary and Field Conditions	3.1
3.1	INSTRUMENTATION	
3.2	INSTRUMENTATION ISSUES	3.3
3.3	INSTRUMENTATION RECOVERY RATES	3.6
3.4	CONTINUOUS MONITOR INTERNAL CALIBRATIONS	3.7
3.5	FIELD CONDITION OBSERVATIONS	3.7
4.0	Summary of Ambient Measurements	4.1
4.1	METEOROLOGICAL DATA	
4.2	CAC AMBIENT AIR QUALITY MEASUREMENTS	4.3
	4.2.1 Sulphur Dioxide (SO ₂)	4.8
	4.2.2 Nitrogen Dioxide (NO ₂)	
	4.2.3 Nitrogen Oxides (NO _x)	
	4.2.4 Particulate Matter Smaller than 2.5 Microns (PM _{2.5})	
4.3	AMBIENT TSP / METALS CONCENTRATIONS	
4.4	AMBIENT PAH CONCENTRATIONS	
4.5	AMBIENT DIOXINS AND FURANS CONCENTRATIONS	
4.6	REVIEW OF MTO MONITORING FOR THE PREVIOUS QUARTER	4.25
5.0	Conclusions	5.1
6.0	References	6.1

LIST OF TABLES

Table 2-1	Summary of Meteorological Parameters Measured at Each Station	2.1
Table 2-2	Summary of Air Quality Criteria for CACs	2.4
Table 2-3	Summary of Air Quality Criteria for Metals	2.4
Table 2-4	Summary of Air Quality Criteria for PAHs and D/Fs	2.6
Table 3-1	Summary of Continuous Ambient Air Quality Monitors	3.1
Table 3-2	Summary of Non-Continuous Ambient Air Quality Monitors	3.2
Table 3-3	Summary of Meteorological Equipment	3.3
Table 3-4	Summary of Instrument Issues at the Courtice WPCP Station	
	(Predominately Upwind)	3.4
Table 3-5	Summary of Instrument Issues at the Rundle Road Station	
	(Predominately Downwind)	
Table 3-6	Summary of Instrument Issues at the Fence Line Station	3.6
Table 3-7	Summary of Data Recovery Rates for the Courtice WPCP Station	
	(Predominately Upwind) – January to March 2017	3.6
Table 3-8	Summary of Data Recovery Rates for the Rundle Road Station	
	(Predominately Downwind) – January to March 2017	3.6
Table 3-9	Summary of Data Recovery Rates for the Fence Line Station –	
	January to March 2017	3.7
Table 4-1	Summary of Hourly Meteorological Measurements – January to	
	March 2017	4.1
Table 4-2	Summary of Ambient CAC Monitoring Data – January to March	
	2017	
Table 4-3	Summary of Measured Ambient TSP/Metals Concentrations	
Table 4-4	Summary of Measured Ambient PAH Concentrations	
Table 4-5	Source Contribution Analysis – Quarter 1 2017 B(a)P Exceedances	
Table 4-6	Summary of Measured Ambient Dioxins and Furans Concentrations	4.24
LIST OF FIGU	JRES	
Figure 1-1	Durham York Energy Centre Site Location Plan	1.4
Figure 1-2	Locations of Ambient Air Quality Monitoring Stations	1.5
Figure 1-3	View of the Rundle Road Ambient Air Quality Monitoring Station	1.6
Figure 1-4	View of the Courtice WPCP Ambient Air Quality Monitoring Station	1.6
Figure 1-5	View of the Fence Line Ambient Air Quality Monitoring Station	1.7
Figure 3-1	View of South Service Road Realignment Construction (Looking	
	East along the Existing South Service Road)	3.8
Figure 3-2	View Looking Southwest from Baseline Road at the Highway 418	
	Construction Activities North of Highway 401	3.9
Figure 3-3	View Looking North from Baseline Road at the Highway 418	
	Construction Area	
Figure 4-1	Wind Roses for January to March 2017	4.3
Figure 4-2	Comparison of NO ₂ / NO _X and SO ₂ Ambient Air Quality Monitoring	
	Data to Applicable Criteria	4.8
Figure 4-3	Pollution Roses of Measured Hourly Average SO ₂ Concentrations –	
	January to March 2017	4.10

Figure 4-4	Pollution Roses of Measured Hourly Average NO ₂ Concentrations – January to March 2017	4.12
Figure 4-5	Pollution Roses of Measured Hourly Average NO _x Concentrations – January to March 2017	
Figure 4-6	Pollution Roses of Measured 24-Hour Average PM _{2.5} Concentrations – January to March 2017	4.16
LIST OF APPEN	NDICES	
APPENDIX A	SO ₂ AND NO _X INSTRUMENT DAILY INTERNAL ZERO CALIBRATION	Λ 1
	SUMMARIES	A. I
APPENDIX B	SO ₂ DATA SUMMARIES AND TIME HISTORY PLOTS	B.1
APPENDIX C	NO ₂ DATA SUMMARIES AND TIME HISTORY PLOTS	C.1
APPENDIX D	NO _X DATA SUMMARIES AND TIME HISTORY PLOTS	D.1
APPENDIX E	PM _{2.5} DATA SUMMARIES AND TIME HISTORY PLOTS	E.1
APPENDIX F	CONTINUOUS PARAMETER EDIT LOGS	F.1
APPENDIX G	METALS DATA SUMMARY	G.1
APPENDIX H	PAHS DATA SUMMARY	H.1
APPENDIX I	DIOXINS AND FURANS DATA SUMMARY	l.1

Executive Summary

The Regional Municipalities of Durham and York constructed the Durham York Energy Centre (DYEC) which is an Energy-from-Waste (EFW) Facility intended to provide a long-term, sustainable solution to manage the remaining municipal solid waste after waste diversion from the Regions. The facility commenced commercial operation on February 1, 2016.

The Ambient Air Quality Monitoring Plan - Durham York Residual Waste Study (Stantec, 2012), was developed based on the Regional Council's mandate to provide ambient air quality monitoring in the area of the DYEC for a three-year period. An ambient air quality monitoring and reporting program was also a requirement laid out in the Provincial Minister's Notice of Approval to Proceed with the Undertaking, detailed in Condition 11 of the Notice of Approval (MOECC, 2010). The air monitoring plan was also developed to satisfy the conditions of the Environmental Compliance Approval and the environmental mitigation and commitments set out in the Environmental Assessment (Jacques Whitford, 2009). The predominantly downwind station is located along Rundle Road, south of Baseline Road. The predominantly upwind station is sited at the Courtice Water Pollution Control Plant (WPCP). Since May 2013, measurements of the following air contaminants have been made at the two stations:

- Continuously monitored
 - Sulphur Dioxide (SO₂)
 - Nitrogen Oxides (NOx), and
 - Particulate Matter smaller than 2.5 microns (PM_{2.5}).
- Non-continuously monitored
 - Metals in Total Suspended Particulate (TSP) matter
 - Polycyclic Aromatic Hydrocarbons (PAHs), and
 - Dioxins and Furans.

Operation of the non-continuous monitors was temporarily discontinued from June 28, 2014 (after completion of the background air quality data collection period) onwards through the rest of construction and commissioning, as per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012). The EFW facility became fully operational on February 1, 2016, and monitoring of non-continuous air quality parameters resumed.

A third Fence Line Station, which measures non-continuous parameters (metals and total particulate matter), was installed prior to full operation of the DYEC. As per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012), the Fence Line station, which collects non-continuous parameters began operation on February 1, 2016 upon start of commercial operations. The Fence Line Station was scheduled to run for a one-year period but this period has been extended by one year for a total of two years at the request of the Regional Municipality of Durham.

Meteorological data is also measured at the Courtice WPCP and Rundle Road stations. The predominantly downwind Rundle Road station measures horizontal wind speed, wind direction, atmospheric temperature, relative humidity, and rainfall. The predominantly upwind Courtice WPCP Station measures atmospheric temperature, relative humidity, rainfall, and barometric pressure. Wind speed and wind direction data at the predominantly upwind location are measured and provided by the Courtice Water Pollution Control Plant.

This quarterly report provides a summary of the ambient air quality data collected at the three stations for the period January to March (Calendar Quarter 1). Some operational issues at the sites were encountered this quarter including: SO₂ monitor power cable issues at both stations, and a lost sample due to a power outage at the Rundle Road Station. Data recovery rates for all measured air quality parameters for this quarter were acceptable. Additional details on instrumentation issues are presented in Section 3.2 of this report.

Site personnel noted ongoing Highway 418 construction on the north and south sides of Highway 401 between Courtice and Crago Roads during Quarter 1 2017.

The following observations and conclusions were made from a review of the measured ambient air quality monitoring data:

- Measured concentrations of NO₂, SO₂, and PM_{2.5} were below the applicable O. Reg. 419/05 Standards or human health risk assessment (HHRA) health-based criteria presented in Table 2-2 of this report.
- 2. Since the Canadian Ambient Air Quality Standard (CAAQS) for PM_{2.5} is based on a 98th percentile level over 3 years, whereas the PM_{2.5} measurement period at both stations for this quarterly report was three months, there is insufficient data collected to determine with any certainty if exceedances of the CAAQS would occur. Therefore, no comparison of the measured PM_{2.5} data during this quarter to the CAAQS was conducted for this report, as it would not be scientifically accurate or representative.
- 3. The maximum measured concentrations of TSP and all metals with Ministry of Environment and Climate Change (MOECC) air quality Standards, were well below their applicable Standards (as presented in **Table 2-3** in this report).
- 4. The maximum measured concentrations of PAHs with MOECC air quality Standards were well below their applicable criteria shown in Table 2-4, with the exception of 24-hour benzo(a)pyrene (B(a)P) concentrations in two samples measured at the Courtice WPCP Station and five samples at the Rundle Road Station, which exceeded the applicable Ontario Ambient Air Quality Criteria (AAQC) by between 7% to 216%. The current Ontario 24-hour B(a)P AAQC was introduced in 2011 and levels above this AAQC are commonly measured throughout Ontario. The measurements were however, well below the MOECC Schedule 6 Upper Risk Threshold, the MOECC O. Reg. 419/05 24-hour average guideline, and the HHRA health based criterion.

Stantec

5. The maximum measured toxic equivalent dioxin and furan concentration was below the applicable Standard presented in **Table 2-4**

In summary, the measured concentrations of the air contaminants monitored were below their applicable MOECC Standards during the monitoring period between January to March 2017, with the exception of benzo(a)pyrene. Furthermore, all measured levels of the monitored contaminants were below their applicable HHRA health-based criteria.

Abbreviations

AAQC Ambient Air Quality Criteria

ACB List Air Contaminants Benchmark List: Standards, Guidelines and Screening

Levels for Assessing Point of Impingement Concentrations of Air

Contaminants

CAAQS Canadian Ambient Air Quality Standards

CAC Criteria Air Contaminants

CDD Chlorinated Dibenzo-p-dioxins
CDF Chlorinated Dibenzo-p-furans

D/Fs Dioxins and Furans

DYEC Durham York Energy Centre

EFW Energy from Waste

MOECC Ontario Ministry of the Environment and Climate Change

SO₂ Sulphur Dioxide NO_x Nitrogen Oxides

PAH Polycyclic Aromatic Hydrocarbons

Particulate A particle of a solid or liquid that is suspended in air.

PCB Polychlorinated biphenyl

PCDD/PCDF Polychlorinated dibenzo-p-dioxins and dibenzofurans

PM Particulate Matter

PM_{2.5} Particulate Matter smaller than 2.5 microns

TEQ Toxic Equivalent Quotient

TEQs Toxic Equivalents

TSP Total Suspended Particulate
WPCP Water Pollution Control Plant

ElementsCadmiumHgMercuryPbLeadAlAluminumAsArsenicBeBeryllium

Cr Chromium
Cu Copper
Mn Manganese
Ni Nickel
Ag Silver
Tl Thallium
Sn Tin

V Vanadium

Zn Zinc

Miscellaneous

°C Temperature in degrees Celsius

N/A Not Available

% Percent

ppm Parts per million ppb Parts per billion

ppbv Parts per billion by volume

ppt Parts per trillion

min Minimum
max Maximum
mm Millimetre
m Metre

km/hr Kilometres per hour

mg/m³ Milligrams per cubic metre

µg/m³ Microgram per cubic metre

ng/m³ Nanograms per cubic metre

pg/m³ Picograms per cubic metre

pg TEQ/m³ Picograms of toxic exposure equivalents per cubic metre

Introduction May 9, 2017

1.0 INTRODUCTION

1.1 BACKGROUND AND OBJECTIVES

The Regional Municipalities of Durham and York constructed the Durham York Energy Centre (DYEC) which is an Energy-from-Waste (EFW) Facility intended to provide a long-term, sustainable solution to manage municipal solid waste remaining after diversion from the Regions. The site location of the DYEC is shown in **Figure 1-1**. The facility commenced commercial operation on February 1, 2016.

An Ambient Air Quality Monitoring Plan – Durham York Residual Waste Study (Ambient Monitoring Plan) was developed and included two monitoring stations referred to as the Courtice Water Pollution Control Plant (WPCP) Station and the Rundle Road Station (as well as a temporary Fence Line Station). The plan developed for these stations was based on the Regional Council's mandate to provide ambient air quality monitoring in the area of the DYEC for a three-year period.

The purposes of the ambient air quality monitoring program are to:

- Quantify any measurable ground level concentrations resulting from emissions from the DYEC cumulative to local air quality, including validating the predicted concentrations from the dispersion modelling conducted in the Environmental Assessment (Jacques Whitford, 2009);
- 2. Monitor concentration levels of EFW-related air contaminants in nearby residential areas; and
- 3. Quantify background ambient levels of air contaminants in the area.

Two monitoring stations (Courtice WPCP and Rundle Road Stations) in the vicinity of the DYEC were set up in April 2013. Since May 2013, the two stations have measured the following air contaminants:

- Continuously monitored criteria air contaminants (CACs)
 - Sulphur Dioxide (SO₂)
 - Nitrogen Oxides (NOx), and
 - Particulate Matter smaller than 2.5 microns (PM_{2.5}).
- Non-continuously monitored
 - Metals in Total Suspended Particulate (TSP) matter
 - Polycyclic Aromatic Hydrocarbons (PAHs), and
 - Dioxins and Furans.

Introduction May 9, 2017

Operation of the non-continuous monitors was temporarily discontinued from June 28, 2014 (after completion of the background air quality data collection period) onwards through the rest of construction and commissioning, as per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012). The EFW facility became fully operational starting February 1, 2016, and non-continuous monitoring resumed (as specified in the Ambient Monitoring Plan).

A third Fence Line Station, which measures non-continuous parameters (metals and total particulate matter), was installed prior to full operation of the DYEC. As per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012), the Fence Line station, which collects non-continuous parameters began operation on February 1, 2016 upon start of commercial operations. The Fence Line Station was scheduled to run for a one-year period but this period has been extended by one year for a total of two years at the request of the Regional Municipality of Durham.

This quarterly report provides a summary of the ambient air quality data collected at the three stations for the period January to March 2017 (Q1).

1.2 LOCATIONS OF AMBIENT AIR QUALITY MONITORING STATIONS

The selection of sites for the monitoring stations was accomplished in consultation with the Ontario Ministry of Environment and Climate Change (MOECC) and Regional Municipality of Durham and York representatives based on the results of air quality modelling done in support of the environmental assessment for the project, the locations of nearby sensitive receptors, and general MOECC siting criteria. Two monitoring stations (one predominantly downwind and one predominantly upwind) were chosen for the ambient air quality program. The final locations of the monitoring stations were influenced by the availability of electrical power, accessibility of each location and security. Details of the siting requirements are provided in the Ambient Monitoring Plan.

The Rundle Road Station is sited northeast of the DYEC in the vicinity of residential receptors predominantly downwind of the DYEC, and within the area where maximum annual concentrations are predicted to occur. This predominantly downwind station is located along Rundle Road, south of Baseline Road. Its location is shown in **Figure 1-2** and **Figure 1-3**. The monitoring station measures all the air contaminants listed in Section1.1 and meteorological data.

The predominately upwind Courtice WPCP Station is located at the Courtice Water Pollution Control Plant (WPCP) to the southwest of the DYEC with the objective of measuring background air quality in a predominantly upwind location. The location is presented in **Figure 1-2** and **Figure 1-4**. This monitoring station measures the air contaminants presented in Section 1.1, as well as meteorological data, with the exception of wind speed and wind direction, which are measured and provided by the Courtice Water Pollution Control Plant.

Stantec

Introduction May 9, 2017

A third Fence Line Station, which measures non-continuous parameters (metals and total particulate matter), was installed prior to full operation of the DYEC. As per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012), the Fence Line Station, which collects non-continuous parameters began operation after the Facility's commissioning period was completed. The Fence Line Station was scheduled to run for a one-year period but this period has been extended by one year for a total of two years. The location is presented in **Figure 1-2** and **Figure 1-5**.

Introduction May 9, 2017

Figure 1-3 View of the Rundle Road Ambient Air Quality Monitoring Station

Figure 1-4 View of the Courtice WPCP Ambient Air Quality Monitoring Station

Introduction May 9, 2017

Figure 1-5 View of the Fence Line Ambient Air Quality Monitoring Station

Key Components Assessed May 9, 2017

2.0 KEY COMPONENTS ASSESSED

2.1 METEOROLOGY

The following meteorological parameters are measured at the Rundle Road and Courtice WPCP Stations.

Table 2-1 Summary of Meteorological Parameters Measured at Each Station

Courtice WPCP (Predominately Upwind) Ambient Air Quality Monitoring Station	Rundle Road (Predominately Downwind) Ambient Air Quality Monitoring Station
Wind Speed and Direction @ 20 m	Wind Speed and Direction @10 m
Ambient Temperature @ 2 m	Ambient Temperature @ 2 m
Relative Humidity	Relative Humidity
Rainfall	Rainfall
Barometric Pressure	

2.2 AIR QUALITY CONTAMINANTS OF CONCERN

The ambient air quality monitoring program for the DYEC includes the following contaminants specified in the Ambient Monitoring Plan (Stantec, 2012):

- Continuously monitored criteria air contaminants (CACs)
 - Sulphur Dioxide (SO₂)
 - Nitrogen Oxides (NOx), and
 - Particulate Matter smaller than 2.5 microns (PM_{2.5}).
- Non-continuously monitored
 - Metals in Total Suspended Particulate (TSP) matter
 - Polycyclic Aromatic Hydrocarbons (PAHs), and
 - Dioxins and Furans.

Operation of the non-continuous monitors was temporarily discontinued between June 28, 2014 and January 31, 2016 as per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012). The EFW facility started full commercial operation on February 1, 2016, and monitoring of non-continuous monitors resumed, as specified in the Ambient Monitoring Plan (Stantec, 2012).

The following are lists of the specific metals, PAHs, and dioxins and furans being measured. Rationales for the choice of contaminants being monitored are provided in the Ambient Monitoring Plan (Stantec, 2012).

Key Components Assessed May 9, 2017

Metals:

- Aluminum (Al)
- Antimony (Sb)
- Arsenic (As)
- Barium (Ba)
- Beryllium (Be)
- Bismuth (Bi)
- Boron (B)
- Cadmium (Cd)
- Cobalt (Co)
- Copper (Cu)
- Chromium (Cr) (Total)

- Iron (Fe)
- Lead (Pb)
- Magnesium (Mg)
- Manganese (Mn)
- Mercury (Hg)
- Molybdenum (Mo)
- Nickel (Ni)
- Phosphorus (Ph)
- Selenium (Se)
- Silver (Ag)
- Strontium (Sr)

- Thallium (TI)
- Tin (Sn)
- Titanium (Ti)
- Uranium (U)
- Vanadium (V)
- Zinc (Zn)
- Zirconium (Zr)

Polycyclic Aromatic Hydrocarbons:

- 1-Methylnaphthalene
- 2-Methylnaphthalene
- Acenaphthene
- Acenaphthylene
- Anthracene
- Benzo(a)anthracene
- Benzo(a)fluorene
- Benzo(a)pyrene
- Benzo(b)fluorene

- Benzo(b)fluoranthene
- Benzo(e)pyrene
- Benzo(g,h,i)perylene
- Benzo(k)fluoranthene
- Biphenol
- Chrysene
- Dibenz(a,h)anthracene
- Dibenz(a,c)anthracene
- Fluoranthene

- Indeno(1,2,3-cd)pyrene
- Naphthalene
- Perylene
- Phenanthrene
- Pyrene
- Tetralin
- o-Terphenyl
- Total PAHs

Dioxins and Furans:

- 2.3.7.8-Tetra CDD
- 1,2,3,7,8-Penta CDD
- 1,2,3,4,7,8-Hexa CDD
- 1,2,3,6,7,8-Hexa CDD
- 1,2,3,7,8,9-Hexa CDD
- 1,2,3,4,6,7,8-Hepta CDD
- Octa CDD
- Total Tetra CDD
- Total Penta CDD
- Total Hexa CDD

- Total Hepta CDD
- 2,3,7,8-Tetra CDF
- 1,2,3,7,8-Penta CDF
- 2,3,4,7,8-Penta CDF
- 1,2,3,4,7,8-Hexa CDF
- 1,2,3,6,7,8-Hexa CDF
- 2,3,4,6,7,8-Hexa CDF
- 1,2,3,7,8,9-Hexa CDF
- 1,2,3,4,6,7,8-Hepta CDF
- 1,2,3,4,7,8,9-Hepta CDF

- Octa CDF
- Total Tetra CDF
- Total Penta CDF
- Total Hexa CDF
- Total Hepta CDF
- Total toxic equivalency (I-TEQ)

Key Components Assessed May 9, 2017

2.3 AIR QUALITY CRITERIA

Two sets of criteria were used for comparison to the air quality data as specified in the Ambient Air Monitoring Plan (Stantec, 2012). The first set of criteria was the Standards reported in O. Reg. 419/05 (Schedules 3 and 6). These are compliance based Standards used throughout the province of Ontario. These criteria, along with O. Reg. 419/05 guidelines and Jurisdictional Screening Levels are unchanged but were consolidated in December 2016 into a new format known as the "Air Contaminants Benchmark List: Standards, Guidelines and Screening Levels for Assessing Point of Impingement Concentrations of Air Contaminants" (MOECC, 2016). However, not all chemicals have O. Reg. 419/05 Standards, or in some instances updated health-based criteria were used in the human health risk assessment (HHRA) conducted in support of the Environmental Assessment (July 31, 2009 - December 10, 2009). These health-based values, which were reported in Table 7-2 (Summary of Inhalation TRVs and Inhalation Benchmarks for Selected COPCs) of the HHRA (Stantec, 2009) were used as the second set of criteria.

The previously applicable 24-hour Canada-Wide Standard (CWS) for PM $_{2.5}$ of 30 μ g/m 3 (98th percentile averaged over 3 consecutive years) has been superseded by the new Canadian Ambient Air Quality Standard (CAAQS) of 28 μ g/m 3 (98th percentile averaged over 3 consecutive years) and the annual objective of 10 μ g/m 3 as noted in **Table 2-2**. The proposed CAAQS 24-hour objective for 2020 is 27 μ g/m 3 .

Summaries of the relevant air quality criteria for the contaminants monitored in Q1 2017 are presented in **Table 2-2** to **Table 2-4**.

Stantec

Key Components Assessed May 9, 2017

Table 2-2 Summary of Air Quality Criteria for CACs

		_	419/05 - Sch ndards /AA0		HHRA Health-Based Criteria			
Contaminant	CAS	1-Hour (ppb / μg/m³)	24-Hour (ppb / μg/m³)	Annual (ppb / μg/m³)	1-Hour (ppb / μg/m³)	24-Hour (ppb / μg/m³)	Annual (ppb / µg/m³)	
Sulphur dioxide	7446095	250 /690	100 / 275	20 / 55	250 / 690	100 / 275	11 / 29	
Nitrogen oxides ^A	10102-44-0	200 /400	100 / 200	-	200 / 400	100 / 200	30 / 60	
	CAS	Canadian Ambient Air Quality Standards (CAAQS)			HHRA Health-Based Criteria			
Contaminant		1-Hour (µg/m³)	24-Hour (µg/m³)	Annual (µg/m³)	1-Hour (μg/m³)	24-Hour (μg/m³)	Other time Period (µg/m³)	
PM _{2.5}	N/A	-	28 ^B	10 ^C	-	30 ^D	-	

Notes:

- A. The Schedule 3 Standard for NO_X is based on health effects of NO₂, as NO₂ has adverse health effects at much lower concentrations than NO. Therefore, the Standard was compared to NO₂ in this report. However, as per the current (December 2016) version of the Air Contaminants Benchmark List: Standards, Guidelines and Screening Levels for Assessing Point of Impingement Concentrations of Air Contaminants, the Standard was also compared to the monitored NO_X.
- B. Canadian Ambient Air Quality Standards (CAAQS) for Respirable Particulate Matter and Ozone, effective by 2015 (CCME, 2012). The Respirable Particulate Matter Objective is referenced to the 98th percentile daily average concentration averaged over 3 consecutive years.
- C. Annual Canadian Ambient Air Quality Standard for Respirable Particulate Matter, effective by 2015. The Respirable Particulate Matter Objective is referenced to the 3-year average of the annual average concentrations.
- D. HHRA Health-Based criterion for PM_{2.5} was selected referencing CCME (2006).

Table 2-3 Summary of Air Quality Criteria for Metals

			. Reg. 419/09 edule 3 Stand		HHRA Health-Based Criteria		
Contaminant	CAS	1-Hour (µg/m³)	24-Hour (µg/m³)	Other time Period (µg/m³)	1-Hour (μg/m³)	24-Hour (μg/m³)	Annual (µg/m³)
Total Particulate	NA	-	120	-	-	120	60
Aluminum	7429-90-5	-	4.8	-	-	-	-
Antimony	7440-36-0	-	25	-	5	25	0.2
Arsenic	7440-38-2	-	0.3	-	0.2	0.3	0.015 A 0.0043 B
Barium	7440-39-3	-	10	-	5	10	1
Beryllium	7440-41-7	-	0.01	-	0.02	0.01	0.007 A 0.0024 B
Bismuth	7440-69-9			-			
Boron	7440-42-8	-	120	-	50	-	5

Key Components Assessed May 9, 2017

 Table 2-3
 Summary of Air Quality Criteria for Metals

			. Reg. 419/0! edule 3 Stand		HHRA Health-Based Criteria		
Contaminant	CAS	1-Hour (μg/m³)	24-Hour (μg/m³)	Other time Period (µg/m³)	1-Hour (μg/m³)	24-Hour (μg/m³)	Annual (μg/m³)
Cadmium	7440-43-9	-	0.025	0.005; annual	0.1	0.025	0.005 A 0.0098 ^B
Chromium (Total)	7440-47-3	-	0.5	-	1	-	60
Cobalt	7440-48-4	-	0.1	-	0.2	0.1	0.1
Copper	8440-50-8	-	50	-	-	-	-
Iron	15438-31-0	-	4	-	-	-	-
Lead	7439-92-1	-	0.5	0.2; 30-day	1.5	0.5	0.5
Magnesium	7439-95-4			-			
Manganese	7439-96-5	-	0.4	-	-	-	-
Mercury	7439-97-6	-	2	-	0.6	2	0.3
Molybdenum	7439-87-7	-	120	-	-	-	-
Nickel	7440-02-0	-	0.2	0.04; annual	6	-	0.05
Phosphorus	7723-14-0	-	-	-	-	-	6.4 x 10 ⁷
Selenium	7782-49-2	-	10	-	2	10	0.2
Silver	7440-22-4	-	1	-	0.1	1	0.01
Strontium	7440-24-6	-	120	-	-	-	-
Thallium	7440-28-0	-	-	-	1	-	0.1
Tin	7440-31-5	-	10	-	20	10	2
Titanium	7440-32-6	-	120	-	-	-	-
Vanadium	7440-62-2	-	2	-	0.5	1	1
Uranium	7440-61-1	-	1.5	0.03; annual	-	-	-
Zinc	7440-66-6	-	120	-	50	-	5
Zirconium	7440-67-7	-	20	-	-	-	-

Notes:

- A. Annual Average
- B. Carcinogenic Annual Average

Key Components Assessed May 9, 2017

Table 2-4 Summary of Air Quality Criteria for PAHs and D/Fs

		O. Reg. 419/05 - Schedule 3 Standards			HHRA Health-Based Criteria			
Contaminant	CAS	1-Hour (ng/m³)	24-Hour (ng/m³)	Other time Period (ng/m³)	1-Hour (ng/m³)	24-Hour (ng/m³)	Annual (ng/m³)	Toxic Equivalency Factor Annual ^{A, G} (ng/m³)-1
1-Methylnaphthalene	90-12-0	-	12,000	-	-	-	3,000	-
2-Methylnaphthalene	91-57-6	-	10,000	-	-	-	3,000	-
Acenaphthene	83-32-9	-	-	-	1,000	-	-	1
Acenaphthylene	208-96-8	-	3,500	-	1,000	-	-	10
Anthracene	120-12-7	-	200	-	500	-	50	-
Benzo(a)anthracene	56-55-3	-	-	-	500	-	-	100
Benzo(b)fluoranthene	205-99-2	-	-	-	500	-	-	100
Benzo(k)fluoranthene	207 -08-9	-	-	-	500	-	-	100
Benzo(a)fluorene	238-84-6	-	-	-	500	-	50	-
Benzo(b)fluorene	243-17-4	-	-	-	500	-	50	-
Benzo (g,h,i) perylene	191-24-2	-	-	-	500	-	-	100
Benzo(a)pyrene	50-32-8	-	0.05 ^B 5 ^C 1.1 ^D	0.01; annual	-	1	87 ^A	-
Benzo(e)pyrene	192-97-2	-	-	-	500	-	-	10
Biphenyl	92-52-4	-	-	-	-	-	224,000	-
Chrysene	218-01-9			-	-			-
Dibenzo(a,c)anthracene	215-58-7	-	-	-	-	-	-	100
Dibenzo(a,h)anthracene	53-70-3	-	-	-	500	-	-	1,000
Fluoranthene	206-44-0	-	-	-	500	-	-	1
Indeno(1,2,3-cd)pyrene	193-39-5	-	-	-	500	-	-	100
Naphthalene	91-20-3	-	22,500	-	-	22,500	3,000	-
o-Terphenyl	84-15-1	-	-	-	50,000	-	5,000	-

Key Components Assessed May 9, 2017

Table 2-4 Summary of Air Quality Criteria for PAHs and D/Fs

		O. Reg. 419/05 - Schedule 3 Standards			HHRA Health-Based Criteria			
Contaminant	CAS	1-Hour (ng/m³)	24-Hour (ng/m³)	Other time Period (ng/m³)	1-Hour (ng/m³)	24-Hour (ng/m³)	Annual (ng/m³)	Toxic Equivalency Factor Annual ^{A, G} (ng/m³)-1
Perylene	198-55-0	-	-	-	500	-	-	1
Phenanthrene	85-01-8	-	-	-	500	-	-	1
Pyrene	129-00-0	-	-	-	500	-	-	1
Tetralin	119-64-2				-	•		-
Dioxins and Furans Total Toxic Equivalency ^E	NA	-	0.1 (pg TEQ/m³) F 1 (pg TEQ/m³)	-	-	-	-	-

Notes:

- A. Carcinogenic Annual Average. Units in (ng/m³)-1.
- B. Ontario Ambient Air Quality Criteria The standard for benzo(a)pyrene (B(a)P) is for B(a)P as a surrogate for PAHs
- C. O. Reg. 419/05 Schedule 6 Upper Risk Thresholds
- D. O. Reg. 419/05 24 Hour Guideline
- E. Application of the air standard for dioxins, furans, and dioxin-like PCBs requires the calculation of the total toxicity equivalent (TEQ) concentration contributed by all dioxin-like compounds in the mixture. TEQ is calculated using the methodology as per the O. Reg. 419/05 Summary of Standards and Guidelines, and the corresponding WHO₂₀₀₅ toxic equivalency factors (i-TEFs).
- F. O. Reg. 419/05 Schedule 3 Standard phased in after July 1, 2016
- G. Toxic Equivalency Factors (TEFs) are shown as benzo(a)pyrene equivalents.

Instrumentation Summary and Field Conditions May 9, 2017

3.0 INSTRUMENTATION SUMMARY AND FIELD CONDITIONS

3.1 INSTRUMENTATION

The measurement program at the monitoring stations includes both continuous and non-continuous monitors to sample air contaminant concentrations.

Monitoring for respirable particulate matter ($PM_{2.5}$), nitrogen oxides (NO_X) and sulphur dioxide (SO_2) are conducted on a continuous basis. A summary of the continuous monitors and a brief description of their principle of operation are provided in **Table 3-1** below.

Table 3-1 Summary of Continuous Ambient Air Quality Monitors

Contaminant	Monitor	Principle of Operation	Range	Time Interval
PM _{2.5}	Thermo Sharp 5030 Synchronized Hybrid Ambient Real-time Particulate Monitor	Light Scattering Photometry / Beta Attenuation - Consists of a carbon14 source, detector and light scattering Nephelometer in a rack-mountable enclosure. The Thermo Sharp utilizes a continuous (non-step wise) hybrid mass measurement and a combination of beta attenuation and light scattering technology. The unit's filter tape is automatically advanced based upon a user defined frequency or particulate loading.	0 -10 mg/m ³	1 minute
NO, NO ₂ , NO _X	Teledyne API Model 200E Chemiluminescence Analyzer	Chemiluminescence - Uses a chemiluminescence detection principle and microprocessor technology for ambient continuous emissions monitoring (CEM). Measurements are automatically compensated for temperature and pressure changes.	0 – 1000 ppb	1 second
SO ₂	Teledyne API Model T100	Pulsed Florescence - SO ₂ levels are measured based on the principle that SO ₂ has a strong ultraviolet (UV) absorption at a wavelength between 200 and 240 nanometres (nm). The absorption of photons at these wavelengths results in the emission of fluorescence photons at a higher wavelength. The amount of fluorescence measured is directly proportional to the concentration of SO ₂ .	0 – 1000 ppb	1 second

Instrumentation Summary and Field Conditions May 9, 2017

Two manually operated, hi-volume air samplers are installed at both the Courtice WPCP (predominantly upwind) and Rundle Road (predominantly downwind) Stations to collect metals in total suspended particulate (TSP), polycyclic aromatic hydrocarbons (PAHs), and dioxins and furans. Sampling for these contaminants is conducted following the methodology and analyses described in the Ambient Monitoring Plan (Stantec, 2012), as presented in **Table 3-2**. Monitoring for metals in TSP is also conducted at the Fence Line Station. The samples were submitted to Maxxam Analytics Inc., a Canadian Association for Laboratory Accreditation Inc. (CALA) / Standards Council of Canada (SCC) accredited laboratory, for analysis.

Table 3-2 Summary of Non-Continuous Ambient Air Quality Monitors

Contaminant	Sampler	Filter Media	Lab Analysis	Sampling Schedule
TSP and metals	Tisch Environmental TE- 5170 mass-flow high volume sampler	Pre-weighed, conditioned Teflon coated glass fibre filters	Weighed for particulate loading and analysed using the Atomic Emission Spectroscopy / Inductively Coupled Plasma (AES/ICP) technique to determine metals content	24 hour sample taken every 6 days
PAHs	Tisch Environmental TE-			24 hour sample taken every 12 days
Dioxins and Furans	1000 mass-flow high volume air sampler	with a Teflon- coated glass fibre filter and a Poly-Urethane Foam (PUF) cartridge	(GC/MS)	24 hour sample taken every 24 days.

Instrumentation Summary and Field Conditions May 9, 2017

Horizontal wind speed, wind direction, atmospheric temperature, relative humidity, and rainfall are measured at the predominantly downwind Rundle Road Station. The meteorological sensors at the Rundle Road Station are mounted on an external 10 m aluminum tower. Atmospheric temperature, relative humidity, rainfall, and barometric pressure are measured at the predominantly upwind Courtice WPCP Station. Wind speed and wind direction data at the predominantly upwind location are measured on a 20 m tower and are provided by the Courtice Water Pollution Control Plant.

The meteorological equipment is summarized in **Table 3-3**.

Table 3-3 Summary of Meteorological Equipment

Parameter	Equipment
Wind Speed/Wind Direction	Met One Instruments Inc. Model 034B
Temperature/Relative Humidity	Campbell Scientific Model HMP60
Atmospheric Pressure	Campbell Scientific Model CS106
Rainfall	Texas Electronic TE525M

A Campbell Scientific CRX1000 data acquisition system (DAS) is used to collect continuous instrument monitoring data and status codes from the continuous ambient air quality monitors. Continuous station data is maintained in the data loggers, and data is viewed locally using a laptop and the relevant DAS software applications. Remote data transmission is accomplished by the periodic transmission of collected station air quality data via cellular phone.

3.2 INSTRUMENTATION ISSUES

Some operational issues at the sites were encountered this quarter including SO₂ monitor power cable issues at both stations and a lost sample due to a ground fault interrupter (GFI) trip resulting in a power outage to the Rundle Road Station PAH/D/F Hi-vol. A summary of operational issues for each measurement parameter during the monitoring period is presented in **Table 3-4** to **Table 3-6**.

Instrumentation Summary and Field Conditions May 9, 2017

Table 3-4 Summary of Instrument Issues at the Courtice WPCP Station (Predominately Upwind)

Parameter	Issues	Time Frame	Remedial Action
SO ₂	UV Lamp Warning	20-Jan-17, 22-Feb-17	Lamp re-calibrated. All data intact.
	Equipment supplier identified potential internal power cable issue.	14-Mar-17	Supplier provided a new power cable under warranty, which was installed by VES. All data intact.
	Internal clock not synchronized with actual time	27-Feb-17	Adjusted internal clock. All data intact.
NOx	Equipment supplier identified potential internal power cable issue.	14-Mar-17	Supplier provided a new power cable under warranty, which was installed by VES. All data intact.
	NO, NOx, NO ₂ measurements inconsistent	Noted 15-Mar-17 Addressed 20-Mar-17	Adjusted analogue voltages. Data downloaded directly from monitor. All data intact.
PM _{2.5}	None		
TSP/Metals Hi-Vol	Mass flow controller (MFC) unable to maintain consistent flow	Noted: 2-Feb-17	Chart recorder for the 31-Jan-17 run showed a consistent flowrate through the sample and the sample results were comparable to other stations. The data was deemed valid.
			The MFC was sent for repair and a spare immediately installed. The original MFC was re-installed after repair
PAH/ D/F Hi- Vol	None		

Instrumentation Summary and Field Conditions May 9, 2017

Table 3-5 Summary of Instrument Issues at the Rundle Road Station (Predominately Downwind)

Parameter	Issues	Time Frame	Remedial Action
SO ₂	Lamp voltage drift greater than acceptable levels identified.	Noted 23-Feb-17 Addressed 14-Mar-17	The equipment manufacturer was contacted and they identified a systemic issue with the internal power cables of all monitors of the same vintage as the DYEC equipment. Replacement power cables were provided (under warranty) and installed by VES. All data intact.
	Internal clock not synchronized with actual time	23-Feb-17	Adjusted internal clock. All data intact.
NOx	Evidence of brief power outage	6-Jan-17	Reviewed and invalidated 2 minutes of data
	Internal clock not synchronized with actual time	2-Feb-17 and 16-Mar-17	Adjusted internal clock. All data intact.
	Equipment supplier identified potential internal power cable issue.	14-Mar-17	Supplier provided a new power cable under warranty, which was installed by VES. All data intact.
	NO, NOx, NO ₂ measurements inconsistent	Noted 15-Mar-17 Addressed 20-Mar-17	Adjusted analogue voltages. Data downloaded directly from monitor. All data intact.
PM _{2.5}	Negative internal humidity reading	Noted 3-Mar-17 Addressed 20-Mar-17	Recalibrated relative humidity sensor as per manufacturer's recommendation. No effect on data.
TSP/Metals Hi-Vol	None		
PAH/ D/F Hi- Vol	GFI tripped during sample run.	24-Feb-17	24-Feb-17 PAH / D/F sample invalidated. Reset GFI. Additional sealing applied to electrical connections and secured connections under sampler housing for additional shielding from precipitation.
Other	Wind sensor frozen	7-Feb-17	Invalidated 12 hours of data

Instrumentation Summary and Field Conditions May 9, 2017

Table 3-6 Summary of Instrument Issues at the Fence Line Station

Parameter	Issues	Time Frame	Remedial Action
TSP/Metals Hi-Vol	None		

3.3 INSTRUMENTATION RECOVERY RATES

Data recovery rates for each continuous monitor at the three monitoring stations during Quarter 1 (January to March 2017) are presented in **Table 3-7** to **Table 3-9**.

Table 3-7 Summary of Data Recovery Rates for the Courtice WPCP Station (Predominately Upwind) – January to March 2017

Parameter	Valid Measurement Hours	Data Recovery Rate (%)
SO ₂	2144	99.3% A
NOx	2147	99.4% ^A
PM _{2.5}	2153	99.7% ^A
Temperature	2160	100% ^A
Rainfall	2160	100% ^A
Relative Humidity	2160	100% ^A
Pressure	2160	100% ^A
Wind Speed/Direction	2160	100% ^A
TSP/Metals	15 ^B	100%
PAHs	7 В	100%
Dioxins and Furans	4 B	100%

Notes:

Table 3-8 Summary of Data Recovery Rates for the Rundle Road Station (Predominately Downwind) – January to March 2017

Parameter	Valid Measurement Hours	Data Recovery Rate (%)
SO ₂	2148	99.4% ^A
NO _X	2150	99.5% ^A
PM _{2.5}	2147	99.4% A
Temperature	2160	100% ^A
Rainfall	2160	100% A

A. Includes instrumentation issues summarized in Table 3-4, quarterly MOECC audit and monthly calibrations.

B. Number of filters/24-hour average samples.

Instrumentation Summary and Field Conditions May 9, 2017

Table 3-8 Summary of Data Recovery Rates for the Rundle Road Station (Predominately Downwind) – January to March 2017

Parameter	Valid Measurement Hours	Data Recovery Rate (%)
Relative Humidity	2160	100% ^A
Wind Speed/Direction	2148	99.4% ^A
TSP/Metals	15 ^B	100%
PAHs	6 B	86% ^A
Dioxins and Furans	3 B	75%

Notes:

- A. Includes instrumentation issues summarized in Table 3-5, quarterly MOECC audit, and monthly calibrations.
- B. Number of filters/24-hour average samples.

Table 3-9 Summary of Data Recovery Rates for the Fence Line Station – January to March 2017

Parameter	Valid Measurements ^B	Data Recovery Rate (%)
TSP/Metals ^A	15	100%

Notes:

- A. Includes instrumentation issues summarized in Table 3-6.
- B. Number of filters/24-hour average samples.

3.4 CONTINUOUS MONITOR INTERNAL CALIBRATIONS

Summaries of the Courtice WPCP and Rundle Road Station SO₂ and NO_x monitor daily internal zero checks for Q1 2017 are presented in **Appendix A**. Daily internal zero checks are informal checks of an analyzer's response intended as a quick, convenient way to check for possible analyzer malfunction or calibration drift. They are not recommended as a basis for analyzer zero or span adjustments, calibration updates, or adjustment of ambient data (Environment Canada, 1995).

All internal zero calibrations of the SO_2 and NO_x analyzers at the Courtice WPCP and Rundle Road Stations were less than 5 ppb throughout Q1.

3.5 FIELD CONDITION OBSERVATIONS

During Q1 2017 activities in the vicinity of the ambient air monitoring stations were observed that had the potential to be affecting air quality levels during the period. These observations were noted by Stantec and Valley Environmental Services personnel during field visits.

Instrumentation Summary and Field Conditions May 9, 2017

Construction of Highway 418, which will connect with Highway 401 between Courtice Road and Crago Road was ongoing during this quarter. Highway 418 will provide a north-south link between Highway 401 and the Phase 2 expansion of Highway 407. The Highway 401/418 interchange will be located almost directly north of the DYEC. Throughout the quarter, hydro crews were observed working in a large area immediately north of the DYEC between Energy Drive and Hwy 401 for the relocation/re-alignment of South Service Road. The new South Service Road will be located immediately south of the existing South Service Road and run between Courtice Road and Crago Road. A photograph of South Service Road realignment construction is shown in **Figure 3-1**.

On the north side of Highway 401, the highway construction contractor has located a construction camp along Baseline Road about 1.5 km west of the Rundle Road Station. A photograph of construction activities during Q1 2017 just north of Highway 401 and about 1.5 km west of the Rundle Road Station is presented in **Figure 3-2**. A photograph of the construction area continuing north of Baseline Road is presented in **Figure 3-3**.

Other activities in the vicinity of the monitoring stations that had the potential to affect local air quality included:

• Trucks idling while loading and unloading supplies at the WPCP Chemical Building about 50 m north of the Courtice WPCP Station.

During Q1, 2017 Boiler #1 at the DYEC was offline from February 6 to March 22, 2017 while Boiler #2 was offline from January 28 to March 17, 2017.

Figure 3-1 View of South Service Road Realignment Construction (Looking East along the Existing South Service Road)

Instrumentation Summary and Field Conditions May 9, 2017

Figure 3-2 View Looking Southwest from Baseline Road at the Highway 418 Construction Activities North of Highway 401

Instrumentation Summary and Field Conditions May 9, 2017

Figure 3-3 View Looking North from Baseline Road at the Highway 418 Construction Area

Summary of Ambient Measurements May 9, 2017

4.0 SUMMARY OF AMBIENT MEASUREMENTS

The following sections provide summaries of the validated data and the validation done on each parameter.

4.1 METEOROLOGICAL DATA

A summary of the maximum, minimum, arithmetic mean, and standard deviation of the hourly average meteorological parameters measured at the two monitoring stations for the January to March 2017 period are presented in **Table 4-1**.

Table 4-1 Summary of Hourly Meteorological Measurements – January to March 2017

Parameter		Courtice WPCP Station (Predominately Upwind)	Rundle Road Station (Predominately Downwind)	Units
	Maximum	12.9	13.7	°C
	Minimum	-14.3	-16.2	°C
	Mean (January)	-1.2	-1.7	°C
Temperature	Mean (February)	-0.4	-1.0	°C
	Mean (March)	-1.2	-1.5	°C
	Mean (Period)	-1.0	-1.4	0C
	Standard Deviation	5.4	5.5	0C
	Maximum	8.4	8.2	mm
	Minimum	0.0	0.0	mm
	Mean (January)	0.09	0.10	mm
Rainfall	Mean (February)	0.06	0.07	mm
	Mean (March)	0.09	0.10	mm
	Mean (Period)	0.08	0.09	mm
	Standard Deviation	0.43	0.50	mm
	Maximum	95.7	99.6	%
	Minimum	22.8	25.4	%
	Mean (January)	73.5	78.8	%
Relative Humidity	Mean (February)	69.6	74.6	%
	Mean (March)	65.2	69.3	%
	Mean (Period)	69.5	74.2	%
	Standard Deviation	15.2	16.0	%

Summary of Ambient Measurements May 9, 2017

Table 4-1 Summary of Hourly Meteorological Measurements – January to March 2017

Parameter		Courtice WPCP Station (Predominately Upwind)	Rundle Road Station (Predominately Downwind)	Units
	Maximum	30.5	-	in Hg
	Minimum	28.9	-	in Hg
	Mean (January)	29.6	-	in Hg
Pressure ^A	Mean (February)	29.6	-	in Hg
	Mean (March)	29.8	-	in Hg
	Mean (Period)	29.7	-	in Hg
	Standard Deviation	0.3	-	in Hg
	Maximum	55.9	43.6	km/hr
	Minimum	0.1	0.0	km/hr
	Mean (January)	14.1	12.9	km/hr
Wind Speed B	Mean (February)	13.6	12.8	km/hr
	Mean (March)	16.6	13.6	km/hr
	Mean (Period)	14.8	13.1	km/hr
	Standard Deviation	7.8	7.4	km/hr

Notes:

- A. Pressure is not measured at the Rundle Road Station.
- B. Wind speed at Courtice WPCP Station measured at 20 m and at Rundle Road Station at 10 m.

Wind roses showing the directionality and speed at each location are presented in **Figure 4-1**. The length of the radial barbs gives the total percent frequency of winds from the indicated direction, while portions of the barbs of different widths indicate the frequency associated with each wind speed category.

Winds over the three-month period at the Courtice WPCP Station occurred predominantly from westerly directions. Wind contribution from the south was low. Higher wind speeds occurred from northwesterly and easterly directions.

At the Rundle Road Station, the wind rose over the three-month period shows winds predominantly occurring from westerly directions. Higher wind speeds occurred from the west relative to other directions.

Stantec

Summary of Ambient Measurements May 9, 2017

Figure 4-1 Wind Roses for January to March 2017

4.2 CAC AMBIENT AIR QUALITY MEASUREMENTS

A summary of the maximum, minimum, arithmetic mean, and standard deviation of the CAC pollutant concentrations measured at each station are presented in **Table 4-2**. Also presented in this table are the number of exceedances (if any occurred), of the relevant O. Reg. 419/05 Schedule 3 Standards, Ontario Ambient Air Quality Criteria (AAQC) or health-based criteria for each contaminant. All monitored contaminants were below their applicable criteria during the period January to March 2017.

Nitric oxide (NO) has no regulatory criteria as discussed in Section 4.2.2 below. There are both hourly and daily AAQCs as well as O. Reg. 419/05 Schedule 3 Standards for NO_X which are based on health effects of NO₂, therefore the AAQC were compared to measured NO₂ concentrations in this report. As per the current (December 2016) version of the Air Contaminants Benchmark List: Standards, Guidelines and Screening Levels for Assessing Point of Impingement Concentrations of Air Contaminants (MOECC, 2016), the Schedule 3 Standard for NO_X was also compared to the monitored NO_X levels.

A comparison of the maximum measured data to their respective air quality criteria is presented graphically in **Figure 4-2**.

Stantec

Summary of Ambient Measurements May 9, 2017

Table 4-2 Summary of Ambient CAC Monitoring Data – January to March 2017

Pollutant	Averaging		chedule 3 / HHRA Based Criteria			PCP Station tely Upwind)	Rundle Ro (Predominate	
rollutarit	Period	ppb	μg/m³		Concentration (ppbv)	Concentration (µg/m³)	Concentration (ppbv)	Concentration (µg/m³)
				Maximum	39.4	111.5	3.9	11.6
				Minimum	0.0	0.0	0.0	0.0
				Mean (January)	1.2	3.5	0.5	1.3
	1	250	/00	Mean (February)	2.1	6.0	0.5	1.4
	I	250	690	Mean (March)	1.4	4.0	0.3	0.7
				Mean (Period)	1.6	4.4	0.4	1.1
				Standard Deviation	2.7	7.6	0.4	1.3
502				# of Exceedances	0	0	0	0
SO2				Maximum	12.7	35.8	1.7	5.0
				Minimum	0.0	0.0	0.0	0.0
				Mean (January)	1.2	3.5	0.5	1.3
	24	100	275	Mean (February)	2.1	5.9	0.5	1.4
	24	100	2/5	Mean (March)	1.4	3.9	0.3	0.7
				Mean (Period)	1.5	4.4	0.4	1.1
				Standard Deviation	1.6	4.5	0.4	1.0
				# of Exceedances	0	0	0	0

Summary of Ambient Measurements May 9, 2017

Table 4-2 Summary of Ambient CAC Monitoring Data – January to March 2017

Pollutant	Averaging		chedule 3 / HHRA Based Criteria			/PCP Station tely Upwind)	Rundle Ro (Predominate	ad Station ly Downwind)
rollutarit	Period	ppb	μg/m³		Concentration (ppbv)	Concentration (µg/m³)	Concentration (ppbv)	Concentration (µg/m³)
				Maximum	-	27.7	-	35.8
				Minimum	-	0.4	-	0.2
				Mean (January)	-	7.1	-	9.8
DN 40 F	2.4	NI/A	20.4	Mean (February)	-	6.9	-	9.3
PM2.5	24	N/A	28 ^A	Mean (March)	-	5.2	-	6.0
				Mean (Period)	-	6.4	-	8.3
				Standard Deviation	-	4.5	-	6.5
				# of Exceedances	-	N/A	-	N/A
				Maximum	42.8	89.4	33.3	70.4
				Minimum	0.2	0.4	0.0	0.0
				Mean (January)	8.8	18.1	7.4	15.1
	1	200 ^B	400 B	Mean (February)	8.2	16.7	6.0	12.1
	1	200 5	400 8	Mean (March)	5.5	11.3	3.6	7.3
NOO				Mean (Period)	7.5	15.3	5.6	11.5
NO2				Standard Deviation	7.0	14.3	5.6	11.5
				# of Exceedances	0	0	0	0
				Maximum	25.1	52.0	22.9	47.3
	24	100 B	200 B	Minimum	1.1	2.3	0.1	0.2
	24	100 ^B	200 ^B	Mean (January)	8.7	17.9	7.4	15.1
				Mean (February)	8.2	16.7	5.9	12.0

Summary of Ambient Measurements May 9, 2017

Table 4-2 Summary of Ambient CAC Monitoring Data – January to March 2017

Pollutant	Averaging		chedule 3 / HHRA Based Criteria			/PCP Station tely Upwind)	Rundle Ro (Predominate	
Pollutarit	Period	ppb	μg/m³		Concentration (ppbv)	Concentration (µg/m³)	Concentration (ppbv)	Concentration (µg/m³)
				Mean (March)	5.5	11.3	3.7	7.5
				Mean (Period)	7.5	15.3	5.6	11.5
				Standard Deviation	4.5	9.1	4.0	8.1
				# of Exceedances	0	0	0	0
				Maximum	67.2	90.5	88.5	121.3
				Minimum	0.0	0.0	0.0	0.0
				Mean (January)	2.6	3.5	1.7	2.2
	1	N/A	N/A	Mean (February)	3.4	4.6	1.1	1.5
	Į.	IN/A	IN/A	Mean (March)	1.8	2.5	1.1	1.5
				Mean (Period)	2.6	3.5	1.3	1.7
				Standard Deviation	4.7	6.3	3.1	4.2
NO C				# of Exceedances	N/A	N/A	N/A	N/A
NO G				Maximum	19.6	26.5	7.9	10.8
				Minimum	0.3	0.4	0.0	0.0
				Mean (January)	2.6	3.5	1.7	2.2
	24	N/A	N/A	Mean (February)	3.4	4.6	1.1	1.5
	24	IWA	IN/A	Mean (March)	1.8	2.5	1.2	1.6
				Mean (Period)	2.6	3.5	1.3	1.8
				Standard Deviation	2.5	3.4	1.2	1.7
				# of Exceedances	N/A	N/A	N/A	N/A

Summary of Ambient Measurements May 9, 2017

Table 4-2 Summary of Ambient CAC Monitoring Data – January to March 2017

Pollutant	Averaging		chedule 3 / HHRA Based Criteria			/PCP Station tely Upwind)	Rundle Ro (Predominate	
Poliularii	Period	ppb	μg/m³		Concentration (ppbv)	Concentration (µg/m³)	Concentration (ppbv)	Concentration (µg/m³)
				Maximum	106.9	223.5	89.3	187.7
				Minimum	0.0	0.0	0.0	0.0
				Mean (January)	11.5	23.6	8.9	18.3
	1	200 ^B	400 ^B	Mean (February)	11.4	23.3	6.9	14.0
	I	2005	400 5	Mean (March)	7.2	14.8	4.7	9.5
				Mean (Period)	10.0	20.5	6.8	13.9
				Standard Deviation	10.6	21.9	7.5	15.3
NOX				# of Exceedances	0	0	0	0
NOX				Maximum	45.0	93.1	30.7	63.6
				Minimum	1.4	2.9	0.0	0.1
				Mean (January)	11.4	23.4	9.0	18.4
	24	100 B	200 ^B	Mean (February)	11.4	23.3	6.8	13.9
	24	1005	200 5	Mean (March)	7.2	14.9	4.8	9.7
				Mean (Period)	10.0	20.4	6.9	14.0
				Standard Deviation	6.6	13.6	4.9	9.9
				# of Exceedances	0	0	0	0

Notes:

C. NO has no regulatory criteria.

A. Canadian Ambient Air Quality Standard for Respirable Particulate Matter. The Respirable Particulate Matter Objective is referenced to the 98th percentile over 3 consecutive years.

B. As per current version (December 2016) of Air Contaminants Benchmark List: Standards, Guidelines and Screening Levels for Assessing Point of Impingement Concentrations of Air Contaminants, the air standard for NO_X is compared to a monitored NO_X concentration, although the O. Reg. 419/05 Schedule 3 Standard for NO_X is based on health effects of NO₂.

Summary of Ambient Measurements May 9, 2017

300 250 AAQC / HHRA Health-Based Standards Concentration (ppb) 200 ■ Maximum Measured 150 Concentration at Courtice WPCP Station 100 ■ Maximum Measured Concentration at Rundle Station 50 0 Hourly SO₂ 24-Hour SO₂ Hourly NO₂ 24-Hour NO₂ Hourly NO_x 24-Hour NO_x

Figure 4-2 Comparison of NO₂ / NO_x and SO₂ Ambient Air Quality Monitoring Data to Applicable Criteria

Detailed discussion for each measured contaminant is presented in the following sections.

4.2.1 Sulphur Dioxide (SO₂)

Data summaries are presented in **Appendix B** for sulphur dioxide for each station and month as well as time history plots of the hourly and 24-hour average SO_2 concentrations. For the hourly and 24-hour averages, the Ontario AAQCs of 250 ppb and 100 ppb (690 μ g/m³ and 275 μ g/m³) are shown with blue lines in the respective plot. As shown in these figures, measured ambient SO_2 concentrations at both stations were well below the Ontario AAQCs.

The maximum hourly and 24-hour average SO_2 concentrations measured at the Courtice WPCP Station during January to March 2017 were 39.4 and 12.7 ppb (111.5 and 35.8 μ g/m³) respectively, which are 15.8% and 12.7% of the applicable 1-hour and 24-hour Ontario AAQCs.

The maximum hourly and 24-hour average SO_2 concentrations measured at the Rundle Road Station during this quarter were 3.9 and 1.7 ppb (11.6 and 5 μ g/m³) respectively, which are 1.6% and 1.7% of the applicable 1-hour and 24-hour Ontario AAQCs.

Pollution roses of hourly average SO_2 concentrations measured at the Courtice WPCP Station and Rundle Road Station are presented in **Figure 4-3**. The pollution rose plots present measured hourly average contaminant concentrations versus measured wind direction (over 10° wind sectors). Concentrations less than $5 \mu g/m^3$, which account for 78% of the measurements at the Courtice WPCP and 97% at the Rundle Road Station, have been removed from the plot to allow the distribution of maximum levels to be more clearly shown in the figure. For the Courtice WPCP

Stantec

Summary of Ambient Measurements May 9, 2017

Station, higher hourly concentrations were measured when winds were blowing from easterly directions. For the Rundle Road Station, higher hourly concentrations occurred for northnorthwesterly winds.

The maximum hourly SO_2 concentrations measured at the Courtice WPCP and Rundle Road Stations occurred on February 7, 2017 at 11:00 and March 15, 2017 at 4:00 measuring 39.4 and 3.9 ppb (111.5 and 11.6 μ g/m³), respectively. The highest measured concentration at the Courtice WPCP Station occurred for winds blowing from the east-northeast, for which the Courtice WPCP, a CN railroad and the St. Mary's Cement plant were upwind. The maximum measured concentration at the Rundle Road Station occurred for a north-northwesterly wind for which agricultural activities and local roads were upwind.

The maximum 24-hour average SO_2 concentrations at the Courtice WPCP and Rundle Road Stations were 12.7 and 1.7 ppb (35.8 and 5 μ g/m³) and occurred on February 8, 2017 and March 15, 2017 respectively. The wind directions during the measurements at the Courtice WPCP and Rundle Road Stations were from the east-northeast and north-northwest respectively. The Courtice WPCP, a CN railroad and the St. Mary's Cement plant were upwind of the Courtice WPCP Station, while for the Rundle Road Station measurement, agricultural areas and local roads were generally upwind of the station for this wind direction.

Project No.: 160950528

4.9

Summary of Ambient Measurements May 9, 2017

Figure 4-3 Pollution Roses of Measured Hourly Average SO₂ Concentrations – January to March 2017

4.2.2 Nitrogen Dioxide (NO₂)

Nitrogen oxides (NO_x) are almost entirely made up of nitric oxide (NO) and nitrogen dioxide (NO₂). Together, they are often referred to as NO_x. Most NO₂ in the atmosphere is formed by the oxidation of NO, which is emitted directly by combustion processes, particularly those at high temperature and pressure. Exposure to both NO and NO₂ can result in adverse health effects to an exposed population. NO₂ is the regulated form of NO_x. Similar to other jurisdictions (e.g., Alberta Environment, World Health Organization), the O. Reg. 419/05 Schedule 3 Standards for NO_x are based on health effects of NO₂, as health effects are seen at much lower concentrations of NO₂ than NO. In this report, because NO₂ is the regulated form of NO_x, the AAQC were compared to measured NO₂ concentrations. However, as per the current (December 2016) version of the Air Contaminants Benchmark List: Standards, Guidelines and Screening Levels for Assessing Point of Impingement Concentrations of Air Contaminants, the Schedule 3 NO_x criteria were also compared to the monitored NO_x concentrations (see Section 4.2.3 below).

Summary of Ambient Measurements May 9, 2017

Data summaries are presented in **Appendix C** for nitrogen dioxide for each station and month as well as time history plots of the hourly and 24-hour average NO_2 concentrations. For the hourly and 24-hour averages, the Ontario AAQCs of 200 ppb and 100 ppb (400 μ g/m³ and 200 μ g/m³) are shown with blue lines on the respective plot. As shown in these figures, measured ambient NO_2 concentrations at both stations were well below the Ontario AAQCs.

The maximum hourly and 24-hour average NO_2 concentrations measured at the Courtice WPCP Station during this quarter were 42.8 and 25.1 ppb (89.4 and 52 μ g/m³) respectively, which are 21.4% and 25.1% of the applicable 1-hour and 24-hour Ontario AAQCs. At the Rundle Road Station, the maximum measured hourly and 24-hour average concentrations were 33.3 and 22.9 ppb (70.4 and 47.3 μ g/m³), which are 16.7% and 22.9% of the applicable 1-hour and 24-hour Ontario AAQCs.

Pollution roses of measured hourly average NO_2 concentrations are presented in **Figure 4-4**. To more clearly show the distribution of maximum levels in the figures, concentrations less than $20 \, \mu g/m^3$, which account for 76% of the measurements at the Courtice WPCP Station and 81% at the Rundle Road Station, have been removed from the plots.

The measured hourly average concentrations at the Courtice WPCP Station were higher for winds from westerly and east-northeasterly directions. For the Rundle Road Station, higher measured hourly average concentrations occurred for winds blowing from the west.

The maximum measured hourly average NO_2 concentration at the Courtice WPCP was 42.8 ppb (89.4 μ g/m³) on February 13, 2017 at 20:00. During this hour, the wind at the Courtice WPCP Station was blowing from the northwest, for which Highway 401 and the CN Railroad were upwind. The measured hourly NO_2 concentration at the MOECC Oshawa Station in the same hour was 9 ppb which is lower than that at the Courtice WPCP Station, suggesting the elevated hourly concentration was due to local emissions sources.

The maximum measured hourly average NO₂ concentration at the Rundle Road Station was 33.3 ppb (70.4 µg/m³) on January 15, 2017 at 0:00, at which time winds were blowing from the west. Local roads, commercial facilities along Baseline Road and Highway 418 construction areas were upwind of the Rundle Road Station for this direction. At the same time, the measured NO₂ concentrations at the MOECC Oshawa Station and the Courtice WPCP Stations were 31 ppb and 31.8 ppb respectively, which is comparable to that at the Rundle Station, suggesting that the elevated Rundle Road Station measurement was due to elevated regional NO₂ levels.

The maximum measured hourly average NO_2 concentration at the MOECC Oshawa Station during Q1 was 41 ppb which is comparable to the maximum Courtice WPCP Station measurement during the quarter.

The maximum measured 24-hour average NO₂ concentrations at the Courtice WPCP and Rundle Road Stations both occurred on January 17, 2017 and were 25.1 and 22.9 ppb (52 and 47.3 µg/m³), respectively. The wind direction at the Courtice WPCP Station during this

Summary of Ambient Measurements May 9, 2017

measurement was from the west-northwest for which agricultural lands are upwind. At the Rundle Road Station, winds were from the northwest for which local roads and agricultural lands are upwind. The maximum measured 24-hour average NO₂ concentration (32 ppb) at the MOECC Oshawa Station during this quarter was also measured on January 17, 2017, suggesting that the measurements were due to elevated regional NO₂ levels.

Figure 4-4 Pollution Roses of Measured Hourly Average NO₂ Concentrations – January to March 2017

4.2.3 Nitrogen Oxides (NO_X)

Data summaries are presented in **Appendix D** for nitrogen oxides for each station and month as well as time history plots of the hourly and 24-hour average NOx concentrations. For the hourly and 24-hour averages, the O. Reg. 419/05 Schedule 3 Standards of 200 ppb and 100 ppb (400 μ g/m³ and 200 μ g/m³) are shown with blue lines on the respective plot. As shown in these figures, the maximum measured ambient hourly and 24-hour average NOx concentrations at the

Summary of Ambient Measurements May 9, 2017

Courtice WPCP Station were below the Ontario AAQCs during this quarter. The measured concentrations at the Rundle Road Station were also well below the Ontario AAQCs.

As shown in **Table 4-2**, the maximum hourly average NO_x concentration measured at the Courtice WPCP Station was 106.9 ppb (223.5 μ g/m³), which is 53.4% of the 1-hour Ontario AAQCs. The 24-hour average NO_x concentration measured at this station was 45 ppb (93.1 μ g/m³), which is 45% of the applicable 24-hour Ontario AAQCs. At the Rundle Road Station, the maximum hourly and 24-hour average concentrations measured during this quarter were 89.3 and 30.7 ppb (187.7 and 63.6 μ g/m³), which are 44.6% and 30.7% of the Ontario AAQCs.

Pollution roses of measured hourly average NO_x concentrations for the Courtice WPCP Station and the Rundle Road Station are presented in **Figure 4-5**. Concentrations less than 25 μ g/m³, which account for 76% and 83% of the measurements at the Courtice WPCP and Rundle Road Stations, respectively, have been removed from the plots to allow the distribution of maximum levels to be more clearly shown in the figures.

In **Figure 4-5**, higher measured hourly average NO_x concentrations at the Courtice WPCP Station occurred for winds blowing from west-northwesterly direction. At the Rundle Road Station, higher measured hourly average concentrations occurred for westerly wind directions.

The maximum measured hourly average NOx concentrations at the Courtice WPCP and Rundle Road Stations were 106.9 and 89.3 ppb (223.5 and 187.7 μ g/m³) measured on February 13 at 20:00 and March 15, 2017 at 8:00 respectively. Winds at the Courtice WPCP Station during the measurement were blowing from the northwest for which agricultural lands, a CN railroad and Highway 401 were upwind. Winds at the Rundle Road Station were from the northwest for which local roads and agricultural areas were upwind.

The maximum measured 24-hour average NOx concentrations at the Courtice WPCP and Rundle Road Stations of 45 and 30.7 ppb (93.1 and 63.6 µg/m³) were both observed on January 17, 2017. Wind directions at both stations were from the northwest during the period. Agricultural lands, a CN railroad and Highway 401 were upwind of the Courtice WPCP Station, while local roads and agricultural areas were upwind of the Rundle Road Station during this period.

Summary of Ambient Measurements May 9, 2017

Figure 4-5 Pollution Roses of Measured Hourly Average NO_x Concentrations – January to March 2017

4.2.4 Particulate Matter Smaller than 2.5 Microns (PM_{2.5})

Data summaries and time history plots of measured 24-hour average concentrations are presented in **Appendix E** for PM_{2.5} for the Courtice WPCP and Rundle Road Stations. The maximum measured 24-hour average PM_{2.5} concentrations at the Courtice WPCP and the Rundle Road Stations were 27.7 μ g/m³ and 35.8 μ g/m³ during this quarter. It should be noted that since an exceedance of the criteria for PM_{2.5} requires the average of the 98th percentile levels in each of three consecutive calendar years to be greater than 28 μ g/m³ (CAAQS) or 30 μ g/m³ (HHRA criteria) whereas the PM_{2.5} measurement period at both stations in the report was three months, there is insufficient data in a quarter to determine with any certainty if exceedances of the CAAQS/HHRA criteria would occur. Discussion of PM_{2.5} measurements with respect to the CAAQS/HHRA criteria will be provided in the 2017 annual report, at which time sufficient data will have been collected to make comparisons.

Summary of Ambient Measurements May 9, 2017

Pollution roses showing the measured 24-hour average ambient $PM_{2.5}$ concentrations versus direction are shown in **Figure 4-6** for both monitoring stations. Concentrations less than 10 μ g/m³, which account for 85% of the measurements at the Courtice WPCP and 71% at the Rundle Road Station, have been removed from the plot to allow the distribution of maximum levels to be more clearly shown in the figure.

Higher measured 24-hour average concentrations occurred for west-northwesterly and east-northeasterly winds for the Courtice WPCP Station. For the Rundle Road Station, higher measured 24-hour average concentrations occurred for westerly to west-northwesterly winds.

The maximum measured 24-hour average PM $_{2.5}$ concentrations at the Courtice WPCP and Rundle Road Stations both occurred on January 17, 2017 and were 27.7 and 35.8 μ g/m 3 respectively. The maximum measured concentration at the Courtice WPCP Station occurred when winds were blowing from the west-northwest for which agricultural lands are upwind. The maximum measured concentration at the Rundle Road Station occurred when winds were from the north-northwest for which local roads and agricultural areas are upwind. On the same day, the MOECC Oshawa Station measured 23.8 μ g/m 3 , which is similar to the Courtice WPCP measurement and suggests all three stations were largely influenced by regional sources.

The maximum measured 24-hour average $PM_{2.5}$ concentration at the MOECC Oshawa Station during Q1 was 23.8 μ g/m³, which is comparable to the maximum Courtice WPCP Station measurement during this quarter.

Summary of Ambient Measurements May 9, 2017

Figure 4-6 Pollution Roses of Measured 24-Hour Average PM_{2.5} Concentrations – January to March 2017

4.3 AMBIENT TSP / METALS CONCENTRATIONS

A summary of the maximum and minimum ambient TSP and metals concentrations (for a daily averaging period) are presented in **Table 4-3**. A detailed summary of the concentrations measured for each sample is presented in **Appendix G**.

The maximum measured concentrations of TSP and all metals with MOECC air quality criteria were well below their applicable 24-hour criteria (shown in **Table 4-3** below) at all three stations.

Summary of Ambient Measurements May 9, 2017

Summary of Measured Ambient TSP/Metals Concentrations Table 4-3

				Courtice \	WPCP (Predomina	ately Upwind)	Rundle Roa	ad (Predominately	Downwind)		Fence Line	
Contaminant	Units	MOECC Standard	HHRA Health Based Criteria	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances
Particulate	μg/m³	120	120	45	10	0	62	11	0	72	15	0
Total Mercury (Hg)	μg/m³	2	2	1.41E-05	6.48E-06 A	0	1.29E-05	6.53E-06 A	0	1.36E-05	6.39E-06 A	0
Aluminum (Al)	μg/m³	4.8	-	3.18E-01	1.69E-02 A	0	2.66E-01	1.66E-02 A	0	3.06E-01	1.66E-02 A	0
Antimony (Sb)	μg/m³	25	25	3.57E-03 A	3.24E-03 A	0	3.57E-03 A	3.23E-03 A	0	3.48E-03 A	3.19E-03 A	0
Arsenic (As)	μg/m³	0.3	0.3	2.14E-03 A	1.94E-03 A	0	2.14E-03 A	1.94E-03 A	0	2.09E-03 A	1.92E-03 A	0
Barium (Ba)	μg/m³	10	10	1.41E-02	3.49E-03	0	1.20E-02	3.45E-03	0	1.33E-02	3.48E-03	0
Beryllium (Be)	μg/m³	0.01	0.01	3.57E-04 A	3.24E-04 A	0	3.57E-04 A	3.23E-04 A	0	3.48E-04 A	3.19E-04 A	0
Bismuth (Bi)	μg/m³	-	-	2.14E-03 A	1.94E-03 A	-	2.14E-03 A	1.94E-03 A	-	2.09E-03 A	1.92E-03 A	-
Boron (B)	μg/m³	120	-	2.14E-03 A	1.94E-03 A	0	2.14E-03 A	1.94E-03 A	0	2.09E-03 A	1.92E-03 A	0
Cadmium (Cd)	μg/m³	0.025	0.025	7.13E-04 A	6.48E-04 A	0	7.13E-04 A	6.47E-04 A	0	2.69E-03	6.39E-04 A	0
Chromium (Cr)	μg/m³	0.5	-	4.64E-03	1.62E-03 A	0	3.49E-03	1.63E-03 A	0	6.14E-03	1.60E-03 A	0
Cobalt (Co)	μg/m³	0.1	0.1	7.13E-04 A	6.48E-04 A	0	7.13E-04 A	6.47E-04 A	0	6.97E-04 A	6.39E-04 A	0
Copper (Cu)	μg/m³	50	-	3.91E-02	1.20E-02	0	1.28E-01	1.81E-02	0	3.81E-02	1.55E-02	0
Iron (Fe)	μg/m³	4	-	5.88E-01	1.18E-01	0	6.07E-01	1.29E-01	0	6.10E-01	1.21E-01	0
Lead (Pb)	μg/m³	0.5	0.5	4.02E-03	9.72E-04 A	0	4.58E-03	9.98E-04 A	0	1.04E-02	9.63E-04 A	0
Magnesium (Mg)	μg/m³	-	-	3.13E-01	3.85E-02	-	3.83E-01	5.15E-02	-	4.15E-01	3.99E-02	-
Manganese (Mn)	μg/m³	0.4	-	1.89E-02	3.14E-03	0	2.21E-02	3.31E-03	0	3.21E-02	3.54E-03	0
Molybdenum (Mo)	μg/m³	120	-	1.07E-03 A	9.72E-04 A	0	4.58E-03	9.79E-04 A	0	3.17E-03	9.58E-04 A	0
Nickel (Ni)	μg/m³	0.2	-	3.95E-03	9.72E-04 A	0	3.62E-03	9.79E-04 A	0	1.24E-02	9.58E-04 A	0
Phosphorus (P)	μg/m³	-	-	3.42E-02	8.10E-03 A	-	4.40E-02	8.16E-03 A	-	3.87E-02	7.98E-03 A	-
Selenium (Se)	μg/m³	10	10	3.57E-03 A	3.24E-03 A	0	3.57E-03 A	3.23E-03 A	0	3.48E-03 A	3.19E-03 A	0
Silver (Ag)	μg/m³	1	1	1.78E-03 A	1.62E-03 A	0	1.78E-03 A	1.62E-03 A	0	1.74E-03 A	1.60E-03 A	0
Strontium (Sr)	μg/m³	120	-	1.25E-02	1.21E-03	0	1.04E-02	1.34E-03	0	1.33E-02	9.97E-04	0
Thallium (TI)	μg/m³	-	-	3.57E-03 A	3.24E-03 A	-	3.57E-03 A	3.23E-03 A	-	3.48E-03 A	3.19E-03 A	-
Tin (Sn)	μg/m³	10	10	3.57E-03 A	3.24E-03 A	0	3.57E-03 A	3.23E-03 A	0	3.48E-03 A	3.19E-03 A	0
Titanium (Ti)	μg/m³	120	-	1.83E-02	3.24E-03 A	0	1.58E-02	3.26E-03 A	0	1.77E-02	3.19E-03 A	0
Vanadium (V)	μg/m³	2	1	1.78E-03 A	1.62E-03 A	0	1.78E-03 A	1.62E-03 A	0	1.74E-03 A	1.60E-03 A	0
Zinc (Zn)	μg/m³	120	-	5.03E-02	9.23E-03	0	8.48E-02	1.09E-02	0	6.24E-02	1.37E-02	0
Zirconium (Zr)	μg/m³	20	-	1.78E-03 A	1.62E-03 A	0	1.78E-03 A	1.62E-03 A	0	1.74E-03 A	1.60E-03 A	0
Total Uranium (U)	μg/m³	1.5	-	1.60E-04 A	1.46E-04 A	0	1.60E-04 A	1.46E-04 A	0	1.57E-04 A	1.44E-04 A	0

Note: A. Measured concentration was less than the laboratory method detection limit.

4.17 Project No.: 160950528

Summary of Ambient Measurements May 9, 2017

4.4 AMBIENT PAH CONCENTRATIONS

A summary of the maximum and minimum ambient PAH concentrations (for a daily averaging period) are presented in **Table 4-4**. In this summary, both individual PAHs as well as a total PAH concentration are reported. A detailed summary of the concentrations measured for each sample is presented in **Appendix H**.

The maximum measured concentrations of the PAHs with MOECC AAQCs were below their applicable 24-hour criteria, with the exception of the benzo(a)pyrene (B(a)P) measurements collected at the Courtice WPCP Station on January 7 and March 20, 2017 and at the Rundle Road Station on January 7, 19, 31, February 12, and March 20, 2017.

The current Ontario 24-hour B(a)P AAQC was introduced in 2011 and levels above this recently enacted AAQC are commonly measured throughout Ontario. B(a)P measurement data available from the National Air Pollutant Surveillance (NAPS) network for Ontario in 2013 (for Simcoe, Toronto, and Hamilton), all had maximum levels above the AAQC (varying between 136% - 6,220% of the criteria). Available NAPS data for Ontario in 2012 (for Windsor, Toronto, and Hamilton) showed maximum B(a)P levels at these stations that varied between 716% - 2,920% of the Ontario AAQCs. In 2011, NAPS data available for seven Ontario stations (Windsor, Toronto, Etobicoke, Hamilton, Simcoe, Pt. Petrie, and Burnt Island) showed exceedances at six of the seven stations, with only the remote Burnt Island Ontario station reporting a maximum level below the MOECC AAQC. In 2010, all of these stations, including the Burnt Island station, measured B(a)P levels above the AAQC.

Benzo(a)pyrene (B(a)P) is a byproduct of a wide variety of natural and man-made combustion processes (including motor vehicles, natural gas, wood, refuse, oil, forest fires, etc.) and is widely present in the environment (including being present in soil and water).

The B(a)P samples collected at the Courtice WPCP Station on January 7 and March 20, 2017 exceeded the Ontario AAQC by 77% and 38%, respectively while at the Rundle Road Station, the criterion was exceeded by between 7% to 216%. The B(a)P samples were however, well below the MOECC Schedule 6 Upper Risk Threshold, the MOECC O. Reg. 419/05 24-hour average guideline, and the HHRA health based criterion. Summaries of the wind direction and potential source contributions for these measurements are presented in **Table 4-5**.

Based on the air quality assessments completed during the Environmental Assessment Study and the Environmental Compliance Approval application for the DYEC, the facility will not be a significant contributor of B(a)P. Therefore, ambient B(a)P levels are not expected to be substantially impacted by the operation of the DYEC.

Summary of Ambient Measurements May 9, 2017

 Table 4-4
 Summary of Measured Ambient PAH Concentrations

			HHRA	Courtice WP	CP (Predomin	ately Upwind)	Rundle Roa	ad (Predominat	ely Downwind)
Contaminant	Units	MOECC Standards	Health Based Criteria	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances
		0.05 A		8.84E-02	1.50E-02	2	1.58E-01	4.82E-02	5
Benzo(a)pyrene	ng/m³	5 ^B	1			0			0
		1.1 ^C				0			0
1-Methylnaphthalene	ng/m³	12,000	-	5.62E+00	1.64E+00	0	9.67E+00	3.18E+00	0
2-Methylnaphthalene	ng/m³	10,000	-	9.17E+00	2.55E+00	0	1.75E+01	5.59E+00	0
Acenaphthene	ng/m³	-	-	2.22E+00	2.70E-01	-	5.98E+00	8.35E-01	-
Acenaphthylene	ng/m³	3,500	-	2.90E-01	6.72E-02 F	0	3.05E-01	7.17E-02 ^F	0
Anthracene	ng/m³	200	-	1.08E-01 ^F	6.72E-02 ^F	0	1.33E-01 ^F	7.05E-02 ^F	0
Benzo(a)anthracene	ng/m³	-	-	1.08E-01 ^F	6.72E-02 ^F	-	1.33E-01 ^F	7.05E-02 ^F	-
Benzo(a)fluorene	ng/m³	-	-	2.16E-01 ^F	1.34E-01 ^F	-	2.66E-01 F	1.41E-01 ^F	-
Benzo(b)fluoranthene	ng/m³	-	-	1.08E-01 ^F	6.72E-02 ^F	-	2.43E-01	7.17E-02 ^F	-
Benzo(b)fluorene	ng/m³	-	-	2.16E-01 ^F	1.34E-01 ^F	-	2.66E-01 F	1.41E-01 ^F	-
Benzo(e)pyrene	ng/m³	-	-	2.16E-01 ^F	1.34E-01 ^F	-	2.66E-01 F	1.41E-01 ^F	-
Benzo(g,h,i)perylene	ng/m³	-	-	1.08E-01 ^F	6.72E-02 ^F	-	1.33E-01 ^F	7.05E-02 ^F	-
Benzo(k)fluoranthene	ng/m³	-	-	1.08E-01 ^F	6.72E-02 ^F	-	1.33E-01 ^F	7.05E-02 ^F	-
Biphenyl	ng/m³	-	-	2.63E+00	7.18E-01	-	4.32E+00	1.32E+00	-
Chrysene	ng/m³	-	-	1.08E-01 ^F	6.72E-02 ^F	-	1.33E-01 ^F	7.05E-02 ^F	-
Dibenz(a,h)anthracene D	ng/m³	-	-	1.08E-01 ^F	6.72E-02 F	-	1.33E-01 ^F	7.05E-02 ^F	-
Dibenzo(a,c) anthracene + Picene ^D	ng/m³	-	-	2.16E-01 ^F	1.34E-01 ^F	-	2.66E-01 ^F	1.41E-01 ^F	-
Fluoranthene	ng/m³	-	-	7.45E-01	3.10E-01	-	1.20E+00	7.44E-01	-

Summary of Ambient Measurements May 9, 2017

Table 4-4 Summary of Measured Ambient PAH Concentrations

			HHRA	Courtice WP	CP (Predomina	ately Upwind)	Rundle Roa	nd (Predomina	tely Downwind)
Contaminant	Units	MOECC Standards	Health Based Criteria	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances
Indeno (1,2,3-cd)pyrene	ng/m³	-	-	1.08E-01 ^F	6.72E-02 ^F	-	1.33E-01 ^F	7.05E-02 ^F	-
Naphthalene	ng/m³	22,500	22,500	3.56E+01	1.03E+01	0	5.28E+01	1.39E+01	0
o-Terphenyl	ng/m³	-	-	2.16E-01 ^F	1.34E-01 ^F	-	2.66E-01 ^F	1.41E-01 ^F	-
Perylene	ng/m³	-	-	2.16E-01 ^F	1.34E-01 ^F	-	2.66E-01 ^F	1.41E-01 ^F	-
Phenanthrene	ng/m³	-	-	3.46E+00	7.23E-01	-	5.91E+00	2.68E+00	-
Pyrene	ng/m³	-	-	5.34E-01	1.72E-01	-	6.72E-01	4.02E-01	-
Tetralin	ng/m³	-	-	3.01E+00	1.32E+00	-	3.01E+00	1.18E+00	-
Total PAH ^E	ng/m³	-	-	5.95E+01	2.06E+01	-	1.04E+02	3.40E+01	-

Notes:

- A. Ontario Ambient Air Quality Criteria. The standard for benzo(a)pyrene (B(a)P) is for B(a)P as a surrogate for PAHs.
- B. O. Reg. 419/05 Schedule 6 Upper Risk Thresholds.
- C. O. Reg. 419/05 24 Hour Guideline.
- D. Based on laboratory analyses, dibenzo(a,c)anthracene co-elutes with dibenz(a,h)anthracene. Picene elutes after dibenz(a,h)anthracene.
- E. The reported total PAH is the sum of all analyzed PAH species.
- F. Measured concentration was less than the laboratory method detection limit.

Stantec

Summary of Ambient Measurements May 9, 2017

Table 4-5 Source Contribution Analysis – Quarter 1 2017 B(a)P Exceedances

Date	Station	% above the MOECC B(a)P Criterion	Wind Direction (blowing from)	Potential Source Contributions
	Courtice WPCP	77%	West-Northwest	Highway 401, local roads and the CN railroad are located upwind of the Courtice WPCP Station. Potential sources could be vehicle or locomotive exhaust emissions.
7-Jan-17	Rundle Road	216%	Northwest	Land use in this direction is mainly agricultural with some residences. Highway 418 construction activities were observed upwind of the Rundle Road Station during this quarter. Potential sources could be agricultural activities, a residence with a poorly controlled combustion source operating, construction vehicle exhaust, or Highway 418 construction activities.
19-Jan-17	Rundle Road	17%	West	Land use in this direction is a mix of agricultural and commercial. Highway 418 construction activities were observed upwind of the Rundle Road Station during this quarter. Potential sources could be a nearby business with a poorly controlled combustion source operating, construction vehicle exhaust, or Highway 418 construction activities.
31-Jan-17	Rundle Road	50%	East-Northeast	Land use in this direction is mainly agricultural with some residences and a CP railroad. Potential sources could be agricultural activities, a residence with a poorly controlled combustion source operating or locomotive exhaust emissions.
12-Feb-17	Rundle Road	7%	North-Northeast	Land use in this direction is mainly agricultural with some residences. Potential sources could be agricultural activities or a residence with a poorly controlled combustion source operating.

Summary of Ambient Measurements May 9, 2017

 Table 4-5
 Source Contribution Analysis – Quarter 1 2017 B(a)P Exceedances

Date	Station	% above the MOECC B(a)P Criterion	Wind Direction (blowing from)	Potential Source Contributions
	Courtice WPCP	38%	West-Southwest	Land use in this direction is primarily agricultural. Potential sources could be agricultural activities.
20-Mar-17	Rundle Road	36%	West	Land use in this direction is a mix of agricultural and commercial. Highway 418 construction activities were observed upwind of the Rundle Road Station during this quarter. Potential sources could be a nearby business with a poorly controlled combustion source operating, construction vehicle exhaust, or Highway 418 construction activities.

Summary of Ambient Measurements May 9, 2017

AMBIENT DIOXINS AND FURANS CONCENTRATIONS 4.5

A summary of the maximum and minimum ambient dioxins and furans concentrations (for a daily averaging period) are presented in Table 4-6. In this summary, both individual dioxins and furans concentrations (pg/m³) as well as the total toxic equivalency concentration (TEQ) are reported. A detailed summary of the concentrations measured for each sample is presented in Appendix I.

The maximum measured toxic equivalent dioxins and furans concentrations at both stations were below the applicable 24-hour AAQC of 0.1 pg TEQ/m³ (as shown in Table 4-6).

4.23 Project No.: 160950528

Summary of Ambient Measurements May 9, 2017

 Table 4-6
 Summary of Measured Ambient Dioxins and Furans Concentrations

01	11-24-	MOECC	HHRA Health	Courtic	e WPCP (Predom	inately Upwind)	Rundle	Road (Predomina	ately Downwind)
Contaminant	Units	Standards	Based Criteria	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances
2,3,7,8-Tetra CDD *	pg/m³			5.51E-03 A	4.10E-03 A		6.55E-03 A	4.54E-03 A	
1,2,3,7,8-Penta CDD	pg/m³			5.31E-03 A	3.97E-03 A		6.91E-03 A	4.58E-03 A	
1,2,3,4,7,8-Hexa CDD	pg/m³			5.16E-03 A	4.10E-03 A		8.48E-03	4.58E-03 A	
1,2,3,6,7,8-Hexa CDD	pg/m³			1.32E-02	4.36E-03 A		1.70E-02	4.87E-03 A	
1,2,3,7,8,9-Hexa CDD	pg/m³			2.15E-02	4.18E-03 A		2.67E-02	4.28E-03 A	
1,2,3,4,6,7,8-Hepta CDD	pg/m³			1.49E-01	4.47E-02		1.87E-01	9.77E-02	
Octa CDD	pg/m³			3.39E-01	1.50E-01		3.85E-01	2.77E-01	
Total Tetra CDD	pg/m³			5.51E-03 A	4.10E-03 A		6.55E-03 A	4.54E-03 A	
Total Penta CDD	pg/m³			1.55E-02	3.97E-03 A		2.15E-02	4.58E-03 A	
Total Hexa CDD	pg/m³			1.46E-01	9.52E-03		1.79E-01	2.51E-02	
Total Hepta CDD	pg/m³			3.44E-01	1.03E-01		4.15E-01	1.96E-01	
2,3,7,8-Tetra CDF **	pg/m³			1.35E-02	4.33E-03 A		1.27E-02	4.58E-03 A	
1,2,3,7,8-Penta CDF	pg/m³	-	_	5.82E-03 A	4.02E-03 A	N/A	7.26E-03 A	4.39E-03 A	N/A
2,3,4,7,8-Penta CDF	pg/m³			5.95E-03 A	4.16E-03 A		7.26E-03 A	4.54E-03 A	
1,2,3,4,7,8-Hexa CDF	pg/m³			4.94E-03 A	3.57E-03 A		5.31E-03 A	3.84E-03 A	
1,2,3,6,7,8-Hexa CDF	pg/m³			4.94E-03 A	3.57E-03 A		5.31E-03 A	3.84E-03 A	
2,3,4,6,7,8-Hexa CDF	pg/m³			5.08E-03 A	3.83E-03 A		5.49E-03 A	4.13E-03 A	
1,2,3,7,8,9-Hexa CDF	pg/m³			5.37E-03 A	4.10E-03 A		5.67E-03 A	4.43E-03 A	
1,2,3,4,6,7,8-Hepta CDF	pg/m³			1.55E-02	4.33E-03 A		1.56E-02	8.27E-03	
1,2,3,4,7,8,9-Hepta CDF	pg/m³			5.37E-03 A	4.36E-03 A		6.73E-03 A	4.58E-03 A	
Octa CDF	pg/m³			2.15E-02	5.34E-03 A	-	1.64E-02	3.99E-03 A	
Total Tetra CDF	pg/m³			1.35E-02	4.33E-03 A	-	1.31E-02	4.58E-03 A	
Total Penta CDF	pg/m³			1.05E-02	4.16E-03 A	1	1.24E-02	5.17E-03 A	
Total Hexa CDF	pg/m³			9.18E-03	3.83E-03 A	-	5.49E-03 A	4.13E-03 A	-
Total Hepta CDF	pg/m³			2.38E-02	4.62E-03 A	-	1.56E-02	8.27E-03	-
TOTAL TOXIC EQUIVALENCY B	pg TEQ/m³	0.1 1 ^C	-	2.05E-02	1.46E-02	0	2.27E-02	1.58E-02	0

Notes:

- A. Measured concentration was less than the laboratory method detection limit.
- B. Total Toxicity Equivalent (TEQ) concentration contributed by all dioxins, furans and dioxin-like PCBs calculated as per O. Reg. 419/05 methodology using corresponding WHO₂₀₀₅ toxic equivalency factors (TEFs) and a value of half the minimum detection limit (MDL) substituted for concentrations less than the MDL.
- C. O. Reg. 419/05 Schedule 6 Upper Risk Thresholds.
- * CDD Chloro Dibenzo-p-Dioxin, ** CDF Chloro Dibenzo-p-Furan.

Summary of Ambient Measurements May 9, 2017

4.6 REVIEW OF MTO MONITORING FOR THE PREVIOUS OUARTER

The Ministry of Transportation Ontario (MTO) installed an ambient air monitoring station at 1939 Highway 2, Courtice, Ontario that has been operating since March 4, 2016. This sampling is being conducted as a condition of the EA notice of approval for the Highway 407 East Phase 2 construction project. The MTO Station is located approximately 3.5 km north-northwest of the Rundle Road Station and 4.4 km north of the DYEC. The station measures PM₁₀, PM_{2.5} and NOx. NOx is measured using a chemiluminescence monitor which uses a similar principle of operation to the DYEC monitors, while PM₁₀ and PM_{2.5} are measured using Beta Attenuation Monitors (BAMs). The DYEC stations measure PM_{2.5} with monitors based on light scattering photometry with beta attenuation, which is believed to more accurately measure the aerosol fraction of PM_{2.5} relative to a BAM (which typically underestimates the aerosol fraction).

The DYEC monitoring stations, as discussed in the Ambient Monitoring Plan (Stantec, 2012), are located to capture neighbourhood scales of representativeness (100's of metres to about 4 km). Given the distance between the MTO Station and the DYEC, the DYEC monitors would not generally be expected to be representative of ambient air quality levels in the vicinity of the MTO Station – the DYEC monitoring stations are influenced by local sources including Highway 401, St. Mary's Cement, the Courtice WPCP and CN/CP rail lines, as well as the DYEC. The MTO station is more distant from these sources and therefore is influenced less from these sources than the DYEC monitoring stations. The MTO quarterly reports issued for the monitoring (RWDI, 2016a, b; RWDI, 2017) do not discuss the scale of representativeness that the MTO Station was situated for, but it is expected to be similar or less than that of the DYEC stations - therefore the MTO Station measurements would not typically be representative of air quality near the DYEC.

At the time of preparation of this quarterly report, the most recent MTO Station data available was for October to December 2016 (Q4 2016). The following discussion compares the MTO Q4 2016 data (RWDI, 2017) to the measurements at the Courtice WPCP and Rundle Road Stations for the same period:

- The maximum measured 1-hour and 24-hour NO₂ concentrations at the MTO station in Q4 2016 were 30 ppb and 18 ppb, respectively. The maximum measured hourly and daily average NO₂ concentrations at the Courtice WPCP and Rundle Road Stations in Q4 were similar to the MTO Station (maximum hourly average NO₂ Concentration of 35.5 and 31.0 ppb and maximum daily average concentrations of 18.8 and 21.5 ppb respectively).
- The maximum 24-hour average PM_{2.5} concentration measured at the MTO Station in Q4 2016 was 22 μg/m³ while those at the Courtice WPCP and Rundle Road Stations were 24.0 and 41.8 μg/m³.
- The maximum measured 24-hour average PM_{10} concentration at the MTO station in Q4 2016 was 30 $\mu g/m^3$. The DYEC stations do not measure PM_{10} and the MTO measurements are not comparable to the DYEC monitoring data.

Stantec

Summary of Ambient Measurements May 9, 2017

The ability to compare and draw conclusions between the DYEC and MTO Station data is limited since the MTO reports do not include information on the timing and type of construction occurring in proximity to the MTO Station, which would likely have influenced measured concentrations differently relative to the construction activities observed near the DYEC. Construction sources such as a contractor's camp located approximately 1 km to the west (upwind) of the Rundle Road Station would have a larger influence on this station than the MTO Station which is situated approximately 3.5 km north-northwest of the same contractor's camp.

Conclusions May 9, 2017

5.0 CONCLUSIONS

This quarterly report provides a summary of the ambient air quality data collected at the three monitoring stations located predominantly upwind and downwind in the vicinity of the DYEC for the period January to March 2017.

The following observations and conclusions were made from a review of the measured ambient air quality monitoring data:

- Measured concentrations of NO₂, SO₂ and PM_{2.5} were below the applicable O. Reg. 419/05 Standards or human health risk assessment (HHRA) health-based criteria presented in Table 2-2 of this report.
- 2. Since the Canadian Ambient Air Quality Standard (CAAQS) for PM_{2.5} is based on a 98th percentile level over 3 years, whereas the PM_{2.5} measurement period at both stations for this quarterly report was three months, there is insufficient data collected to determine with any certainty if exceedances of the CAAQS would occur. Therefore, no comparison of the measured PM_{2.5} data during this quarter to the CAAQS was conducted for this report, as it would not be scientifically accurate or representative.
- 3. The maximum measured concentrations of TSP and all metals with MOECC air quality Standards were well below their applicable Standard (as presented in **Table 2-3** in this report).
- 4. The maximum measured concentrations of PAHs with MOECC air quality Standards were well below their applicable criteria shown in Table 2-4, with the exception of 24-hour benzo(a)pyrene (B(a)P) concentrations in two samples measured at the Courtice WPCP Station and five samples at the Rundle Road Station, which exceeded the applicable Ontario Ambient Air Quality Criteria (AAQC) by between 7% to 216%. The current Ontario 24-hour B(a)P AAQC was introduced in 2011 and levels above this AAQC are commonly measured throughout Ontario. The measurements were however, well below the MOECC Schedule 6 Upper Risk Threshold, the MOECC O. Reg. 419/05 24-hour average guideline, and the HHRA health based criterion.
- 5. The maximum measured toxic equivalent dioxin and furan concentration was below the applicable Standard presented in **Table 2-4**

In summary, the measured concentrations of the air contaminants monitored were below their applicable MOECC Standards during the monitoring period between January to March 2017, with the exception of benzo(a)pyrene. Furthermore, all measured levels of the monitored contaminants were below their applicable HHRA health-based criteria.

Stantec

References May 9, 2017

6.0 REFERENCES

- Canadian Council of Ministers of the Environment (CCME), (2007). Guidance Document on Achievement Determination. Canada-Wide Standards for Particulate Matter and Ozone. Revised (PN1391) (978-1-896997-74-2 PDF).
- Canadian Council of Ministers of the Environment (CCME), (2012). Guidance Document on Achievement Determination. Canadian Ambient Air Quality Standards for Fine Particulate Matter and Ozone (PN 1483) (978-1-896997-91-9 PDF).
- Environment Canada, Environment Protection Service, Environmental Technology Advancement Directorate, Pollution Measurement Division, Environmental Technology Centre. (Originally published in 1995). National Air Pollution Surveillance Network Quality Assurance and Quality Control Guidelines (AAQD 2004-1), (Originally published in December 1995 as PMD 95-8
- Jacques Whitford, (2009). Final Environmental Assessment, December 4, 2009.
- Ontario Minister of the Environment and Climate Change(MOECC), (2010). Environmental Assessment Act, Section 9. Notice of Approval to Proceed with the Undertaking. Re: The Amended Environmental Assessment for Durham and York Residual Waste Study (EA File No: 04-EA-02-08).
- Ontario Ministry of the Environment and Climate Change (MOECC), (2012a). Standards

 Development Branch, Ontario's Ambient Air Quality Criteria, April 2012. (PIBs 6570e01).
- Ontario Ministry of the Environment and Climate Change (MOECC), (2012b). Standards Development Branch, Summary of Standards and Guidelines to support Ontario Regulation 419/05 Air Pollution Local Air Quality (including Schedule 6 of O. Reg. 419/05 on Upper Risk Thresholds), April 2012 (PIBs 6569e01).
- Ontario Ministry of the Environment and Climate Change (MOECC), (2016). Air Contaminants Benchmarks List: Standards, Guidelines and Screening Levels for Assessing Point of Impingement Concentrations of Air Contaminants (ACB List), December 2016.
- Rowan Williams Davies and Irwin Inc. (RWDI), (2016a). Air Quality Monitoring Report Highway 2 Monitoring Site First Quarter, August 22, 2016.
- Rowan Williams Davies and Irwin Inc. (RWDI), (2016b). Air Quality Monitoring Report Highway 2 Monitoring Site Second Quarter, October 25, 2016.
- Rowan Williams Davies and Irwin Inc. (RWDI), (2017). Air Quality Monitoring Report Highway 2 Monitoring Site Third Quarter, January 25, 2017.

Stantec

References May 9, 2017

Stantec Consulting Limited, (2009). Final Environmental Assessment, Appendix C12: Site Specific Human Health and Ecological Risk Assessment Technical Study Report, December 4, 2009.

Stantec Consulting Limited, (2012). Ambient Air Quality Monitoring Plan – Durham York Residual Waste Study, May 8, 2012.

Appendix A SO2 and NOx Instrument Daily Internal Zero Calibration Summaries May 9, 2017

Appendix A SO₂ AND NO_X INSTRUMENT DAILY INTERNAL ZERO CALIBRATION SUMMARIES

Figure A-1 Daily NOx/ NO₂/ NO Internal Zero Calibrations – Courtice WPCP Station

- Auto-calibrations occur every 25 hours
- 23-Feb-17: MOECC audit. Internal zero calibration unavailable

Figure A-2 Daily SO₂ Internal Zero Calibrations – Courtice WPCP Station

Auto-calibrations occur every 25 hours.

23-Feb-17: MOECC audit. Internal zero calibration unavailable

15-Mar-17 - Monthly calibration occurred at the same time as the scheduled internal zero calibration. Internal zero calibration for this day unavailable.

Figure A-3 Daily NOx/ NO₂/ NO Internal Zero Calibrations –Rundle Road Station

- Auto-calibrations occur every 25 hours

Figure A-4 Daily SO₂ Internal Zero Calibrations –Rundle Road Station

Auto-calibrations occur every 25 hours

15-Mar-17 - Monthly calibration occurred at the same time as the scheduled internal zero calibration. Internal zero calibration for this day unavailable.

Appendix B SO2 Data Summaries and Time History Plots May 9, 2017

Appendix B SO₂ DATA SUMMARIES AND TIME HISTORY PLOTS

											anuary	URTICE 2017																		
H	our																													
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>250	Days>100
1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	1.4	1.4	0.9	0.9	1.1	0.9	0.7	0.7	1.3	10.3	24	10.3	0.1	0.9	0	0
2	12.5	6.3	6.1	4.3	1.8	0.9	1.1	0.9	0.3	0.7	5.8	3.5	1.4	10.2	11.1	8.5	11.3	8.4	3.4	0.8	0.6	0.4	0.4	0.3	24	12.5	0.3	4.2	0	0
3	0.4	0.3	0.3	4.0	7.1	2.7	2.0	0.8	0.6	0.6	0.6	0.5	0.6	0.6	2.1	2.8	2.6	1.1	1.4	1.2	0.7	0.9	1.2	8.4	24	8.4	0.3	1.8	0	0
4	4.3	1.0 0.2	0.8 0.1	0.7 0.1	0.6 0.1	0.6	0.6 0.1	0.6	0.4	0.4	0.3 0.1	0.5	0.4	0.3 0.1	0.4 0.1	0.3	0.2	0.3 0.1	0.3	0.3 0.0	0.3	0.2 0.0	0.3 0.1	0.2	24	4.3 0.2	0.2 0.0	0.6	0	0
5	0.2 0.0	0.2	0.1	0.1	0.0	0.1 0.1	0.0	0.2 0.3	0.2	0.1 0.3	0.1	0.1 0.2	0.1 0.5	0.1	0.1	0.1	0.1 0.1	0.0	0.1 0.0	0.0	0.0 0.0	0.0	0.1	0.0	24 24	0.2	0.0	0.1	0	0
7	0.0	0.0	0.0	1.8	1.0	1.7	0.1	0.4	0.0	0.1	0.0	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.3	0.3	24	1.8	0.0	0.3	0	0
8	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.3	0.7	0.5	0.1	0.1	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	24	0.7	0.0	0.1	o	0
9	0.0	0.0	0.0	0.2	0.4	0.3	0.4	0.3	0.0	0.0	0.0	0.0	0.2	0.2	0.6	0.6	0.6	0.6	0.8	0.7	0.4	0.5	0.8	0.8	24	0.8	0.0	0.3	О	0
10	0.8	0.8	0.8	0.7	0.7	0.8	0.7	0.8	0.7	0.9	0.6	0.6	0.5	0.4	0.4	0.3	0.3	0.3	0.4	0.4	0.4	0.5	0.3	0.4	24	0.9	0.3	0.6	0	0
11	0.3	0.3	0.3	0.3	0.2	0.1	0.1	0.1	0.1	0.3	0.5	0.3	0.4	0.2	0.1	0.2	4.8	2.8	0.4	0.7	0.3	0.4	0.5	0.5	24	4.8	0.1	0.6	0	0
12	0.4	1.3	0.8	1.7	0.6	0.6	0.5	0.4	0.3	0.3	0.3	0.3	0.2	0.2	0.3	0.3	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.1	24	1.7	0.1	0.4	0	0
13	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.8	0.5	0.4	2.6	24	2.6	0.0	0.2	0	0
14	3.9	0.1	0.0	0.0	0.2	0.4	0.5	0.1	0.2	0.3	4.6	7.1	2.2	0.8	2.3	0.3	0.6	1.1	1.3	0.4	1.8	0.2	0.2	0.2	24	7.1	0.0	1.2	0	0
15	0.0	0.3	0.3	0.3	0.3	0.6	0.3	0.3	0.4	0.7	3.3	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	17.5	1.9	24	17.5	0.0	1.2	0	0
16	0.9	5.1	19.4 10.9	15.5 8.4	1.9	3.3 1.4	6.0 2.4	9.3 8.1	1.6 8.5	1.4	1.3 16.6	1.3	2.1	2.0 8.0	1.5	1.7	1.7	1.3 5.0	1.1	1.1	3.1 0.9	8.1 2.2	13.9 6.5	3.6	24 24	19.4	0.9	4.5 6.5	0	0
17	13.8 1.1	10.3 0.9	0.8	0.6	2.0 0.6	0.6	0.6	0.5	0.6	15.2 0.6	0.6	7.3 0.5	2.5 0.5	0.4	6.1 0.4	6.1 0.4	10.0 0.3	0.3	1.2 0.3	1.0 0.3	0.9	0.3	0.3	1.9 0.4	24	16.6 1.1	0.9 0.3	0.5	0	0
19	0.3	0.4	0.3	0.5	0.7	0.3	0.3	0.5	0.3	0.3	0.4	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	24	0.7	0.3	0.3	0	0
20	0.3	0.5	0.4	0.3	0.3	0.5	0.3	0.3	0.3	0.3	0.5	C	C	C	C	2.1	5.6	13.0	10.4	5.0	3.0	2.9	3.2	2.4	20	13.0	0.3	2.6	0	0
21	1.9	2.0	1.6	1.6	1.4	1.7	1.9	1.8	1.8	1.7	2.0	2.2	1.8	2.1	1.8	1.3	1.2	1.2	1.1	2.0	2.0	1.6	1.9	3.5	24	3.5	1.1	1.8	О	0
22	5.4	3.7	1.4	1.2	1.5	1.4	1.1	1.0	0.9	1.0	1.1	1.0	1.0	0.9	0.9	1.0	0.9	1.6	0.7	0.6	0.6	0.6	0.6	0.6	24	5.4	0.6	1.3	0	0
23	0.6	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.5	0.4	0.4	2.2	4.5	7.5	8.2	5.6	1.0	0.7	0.6	0.5	0.4	0.5	0.4	0.5	24	8.2	0.4	1.6	0	0
24	0.7	0.7	1.2	3.6	3.6	2.9	5.6	4.1	2.1	1.1	1.8	2.2	0.6	0.5	0.6	0.7	0.6	0.6	0.6	0.5	0.6	0.6	0.5	0.6	24	5.6	0.5	1.5	0	0
25	0.5	0.5	0.5	0.6	0.7	1.1	1.4	1.1	1.1	0.6	0.5	0.7	8.0	0.6	0.6	0.9	0.8	0.8	0.9	0.8	0.6	0.7	1.3	1.9	24	1.9	0.5	0.8	0	0
26	4.0	1.7	0.9	0.9	0.8	1.0	1.0	0.9	0.9	0.8	0.8	0.8	0.9	1.2	1.2	2.4	0.9	1.0	1.1	0.8	0.6	0.6	0.6	0.6	24	4.0	0.6	1.1	0	0
27	0.5	0.4	0.4	0.4	0.3	0.7	0.6	0.5	0.6	0.6	0.6	0.4	0.5	0.4	0.5	0.4	0.4	0.6	0.9	0.7	0.4	0.6	0.5	0.5	24	0.9	0.3	0.5	0	0
28	0.7	0.6	0.6	0.5	0.3	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.9	0.8	0.6	0.8	24	0.9	0.3	0.6	0	0
29	0.6 2.0	0.7 2.1	0.5 1.7	0.4 1.2	0.3 1.3	0.3 0.3	0.3 0.3	0.4 0.5	0.3	0.3 0.4	0.3 0.6	0.3 0.5	0.3 0.5	0.3 0.4	0.3 0.4	0.3 0.5	0.3 0.3	0.3 1.1	0.3 1.3	0.3 1.8	0.3 2.7	0.2 4.1	1.4 2.5	3.0 1.1	24 24	3.0 4.1	0.2 0.3	0.5 1.2	0	0
31	0.5	0.5	1.7	2.4	0.7	1.4	0.3	0.5	0.6	0.4	1.1	0.5	0.5	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.5	0.5	24	2.4	0.3	0.7	0	0
Count	31	31	31	31	31	31	31	31	31	31	31	30	30	30	30	31	31	31	31	31	31	31	31	31	740	۷.٦	0.1	5.7		
Maximum	13.8	10.3	19.4	15.5	7.1	3.3	6.0	9.3	8.5	15.2	16.6	7.3	4.5	10.2	11.1	8.5	11.3	13.0	10.4	5.0	3.1	8.1	17.5	10.3	24					
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20					
Average	1.8	1.4	1.7	1.7	1.0	0.9	1.0	1.2	0.8	1.0	1.5	1.2	0.8	1.3	1.4	1.3	1.5	1.4	1.0	0.7	0.8	1.0	1.9	1.6						
Percentiles		10		20		30		40	•	50		60		70		80		90		95		99		100				um Hourly		19.4
Data		0.0		0.2		0.3		0.4		0.5		0.6		0.9		1.3		2.6		5.8		12.8		19.4				mum Daily ly Average		6.5 1.2
Notes	С	- Calibratio	n / Span Cy	cle NA	A - No Data	Available	T -	Test	A-	MOE Audit	M ·	Equipment M	lalfunction /	Down																

											bruary	URTICE 2017																		
H	our										<u> </u>																			
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>250	Days>100
1	0.7	1.3	2.7	4.0	8.7	5.0	1.0	0.7	0.6	0.7	0.8	0.6	Т	Т	0.9	0.9	8.0	1.1	1.1	0.9	1.1	1.0	0.8	0.8	22	8.7	0.6	1.6	0	0
2	0.7	0.7	0.6	0.5	0.6	0.5	0.6	0.5	0.6	0.5	0.5	0.4	0.4	0.4	0.6	0.4	0.2	0.5	0.7	0.5	0.4	0.4	0.3	0.3	24	0.7	0.2	0.5	0	0
3	0.3	0.3	0.5	0.5	0.4	0.3	0.5	0.5	0.6	0.6	0.4	0.3	0.3	0.3	0.4	0.3	0.3	0.3	0.3	0.5	0.5	0.5	0.4	0.5	24	0.6	0.3	0.4	0	0
4	0.6	0.6	0.5	0.7	0.8	0.4	0.3	0.3	0.3	0.4	0.5	0.4	0.4	0.3	0.3	0.4	0.4	0.5	0.8	0.8	0.6	0.7	1.3	1.4	24	1.4	0.3	0.6	0	0
5	1.2	0.9	0.8	1.1	1.1	1.4	1.6	1.4	1.3	1.3	1.3	1.1	1.2	1.2	1.1	1.0	0.9	0.8	0.6	0.4	0.3	0.4	0.3	0.8	24	1.6	0.3	1.0	0	0
6	1.4	1.1	1.2	1.6	3.2	4.3	3.2	2.5	1.8	2.9	2.2	1.1	1.4	1.8	0.7	0.7	1.5	3.7	6.9	4.7	3.9	2.2	1.2	1.2	24	6.9	0.7	2.3	0	0
,	1.1 1.9	0.9 1.9	0.8 1.7	1.1 1.5	18.1 1.3	20.1 1.3	24.1 1.2	10.7 1.0	1.5 0.8	6.8 0.7	22.9 0.7	39.4 0.6	30.6 0.6	26.4 0.6	13.3 0.6	10.8 0.6	4.5 0.7	4.6 0.7	8.3 0.7	24.3 0.5	19.0 0.5	6.8 0.5	3.0 0.6	2.7 0.6	24 24	39.4 1.9	0.8 0.5	12.6 0.9	0	0
9	1.0	1.4	3.3	3.2	2.8	0.8	0.5	1.0	1.5	1.2	0.7	0.5	0.6	0.8	1.0	0.0	0.7	1.0	0.7	0.3	0.3	0.3	0.4	0.4	24	3.3	0.3	1.1	0	0
10	0.4	0.5	0.4	0.4	1.5	1.4	0.6	0.5	1.3	1.3	1.0	1.0	1.2	0.8	0.7	0.5	0.6	0.6	0.5	0.4	0.4	0.4	0.4	1.1	24	1.5	0.4	0.8	0	<u>0</u>
11	1.1	1.4	2.0	1.7	2.0	1.9	2.6	2.8	1.7	1.5	1.4	1.2	1.1	1.1	1.1	1.0	0.9	2.8	5.4	4.4	1.1	1.0	1.1	1.1	24	5.4	0.9	1.8	0	0
12	0.9	0.8	3.0	4.8	2.1	1.0	1.0	1.0	1.1	1.1	2.2	2.4	1.6	2.7	1.3	1.1	1.1	1.1	1.4	2.4	1.4	1.2	1.1	1.0	24	4.8	0.8	1.6	0	0
13	1.0	1.3	2.3	1.7	2.4	1.9	0.9	0.8	2.7	4.6	4.0	1.4	1.0	0.8	0.8	0.7	0.7	0.7	2.4	10.0	14.5	11.5	3.4	1.7	24	14.5	0.7	3.0	0	0
14	6.0	7.3	4.7	4.3	8.6	2.7	1.5	1.5	1.4	1.3	1.7	2.1	1.7	1.6	1.7	1.8	1.7	1.5	1.5	1.5	1.6	2.3	1.8	1.7	24	8.6	1.3	2.6	О	0
15	1.5	1.6	1.7	1.6	3.3	3.6	1.6	2.3	1.8	1.7	1.4	1.5	1.3	1.3	1.6	1.5	2.1	2.2	2.6	1.9	1.3	1.7	1.7	1.2	24	3.6	1.2	1.8	0	0
16	1.1	1.1	1.0	1.0	1.0	1.0	0.9	1.0	0.9	0.9	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.2	1.4	2.0	2.6	1.8	1.4	1.6	24	2.6	0.9	1.2	0	0
17	1.3	1.2	1.1	1.1	1.0	1.1	1.1	1.0	1.1	1.3	1.1	1.1	1.1	1.1	1.1	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.6	1.6	24	1.6	1.0	1.2	0	0
18	4.8	3.2	1.8	1.5	1.9	3.6	3.0	3.7	2.9	3.0	2.8	2.3	2.4	2.7	2.2	1.9	2.1	2.0	1.9	1.9	1.8	1.8	1.6	3.6	24	4.8	1.5	2.5	0	0
19	5.0	4.6	2.5	2.3	1.8	2.0	1.7	1.6	1.8	1.6	1.7	1.7	1.6	1.5	1.5	1.4	1.6	1.9	1.8	1.6	1.3	1.2	1.3	1.4	24	5.0	1.2	1.9	0	0
20	1.2	1.7	1.7	1.4	1.8	5.9	6.8	1.6	2.0	1.5	1.0	1.2	1.2	1.0	1.1	1.1	1.1	1.1	1.1	3.0	1.5	1.7	1.2	1.3	24	6.8	1.0	1.8	0	0
21	1.2	1.3	1.2	1.3	1.2	1.2	1.3	1.3	1.4	1.4	1.5	1.5	1.6	1.6	1.5	1.8	1.9	2.1	3.8	3.9	2.9	3.3	3.3	3.0	24	3.9	1.2	1.9	0	0
22	7.3	2.4	6.9	6.6	3.7	3.6	5.9	4.1	2.9	C	C	2.3	2.6	2.7	2.6	2.7	2.7	2.6	2.6	3.8	3.6	2.9	2.6	2.6	22	7.3	2.3	3.6	0	0
23	2.7	3.0	2.4	3.2	2.6	2.3	2.3	2.2	2.1	2.1	Α	Α	Α	Α	2.9	2.8	2.4	2.3	2.3	2.1	2.1	2.0	3.6	6.7	20	6.7	2.0	2.7	0	0
24	6.4	6.8	7.9	4.2	4.8	2.6	2.3	2.3	2.1	2.0	2.0	2.0	2.1	1.9	1.8	1.4	1.8	1.8	1.9	1.9	1.9	1.8	1.8	1.8	24	7.9	1.4	2.8	0	0
25	1.8	1.9	3.3	2.6	2.0	1.8	1.9	1.9	1.8	1.7	1.6	1.7	1.6	1.6	1.6	1.6	1.4	1.3	1.3	1.2	1.3	1.2	1.1	1.1	24	3.3	1.1	1.7	0	0
26	1.1	1.1	1.1	1.0 1.3	1.0	1.0 1.5	1.0 1.7	1.1 1.7	1.1 1.5	1.0	1.1	1.0	0.9	1.1 2.0	1.1 2.0	1.6	1.3	1.4 3.5	1.3	1.3	1.2 2.6	1.1 3.7	1.2 4.0	1.3 2.6	24	1.6	0.9	1.1	0	0
28	1.5 2.0	1.3 1.2	1.2 1.2	1.5	1.5 2.5	1.3	1.7	1.7	1.4	2.3 1.5	2.3 1.5	1.8 1.6	1.7 1.6	2.0	1.7	1.6 1.6	1.5 1.7	3.5 1.7	3.4 1.7	5.1 1.8	2.6	2.8	2.1	3.7	24 24	5.1 3.7	1.2 1.2	2.2 1.8	0	0
29 30 31	2.0	1.2	1.2	1.5	2.3	1.5	1.5	1.5	1.4	1.3	1.5	1.0	1.0	2.1	1.7	1.0	1.7	1.7	1.7	1.0	2.0	2.0	2.1	3.7	24	3.7	1.2	1.6		O
Count	28	28	28	28	28	28	28	28	28	27	26	27	26	26	28	28	28	28	28	28	28	28	28	28	664					
Maximum	7.3	7.3	7.9	6.6	18.1	20.1	24.1	10.7	2.9	6.8	22.9	39.4	30.6	26.4	13.3	10.8	4.5	4.6	8.3	24.3	19.0	11.5	4.0	6.7	24					
Minimum	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.4	0.3	0.4	0.3	0.3	20					
Average	2.0	1.9	2.1	2.1	3.0	2.7	2.6	1.9	1.5	1.7	2.3	2.7	2.4	2.3	1.7	1.6	1.4	1.7	2.1	3.0	2.6	2.1	1.6	1.7						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Max	num Hourly imum Daily		39.4 12.6
Data		0.5		0.8		1.1		1.2		1.4		1.6		1.9		2.4		3.6		5.4		19.4		39.4			Month	nly Average		2.1
Notes	С	- Calibratio	n / Span Cy	rcle NA	A - No Data	Available	T -	Test	A-	MOE Audit	M -	Equipment M	alfunction /	Down	•															

SO ₂ - COURTICE March 2017 (ppb)																															
н	our																														
Day	0)	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>250	Days>100
1	2.4	1	1.8	2.0	1.9	1.7	1.6	2.0	1.5	1.5	1.5	1.4	1.6	1.5	1.5	1.4	1.5	1.4	1.4	1.4	1.4	1.4	1.3	1.3	1.2	24	2.4	1.2	1.6	0	0
2	1.2	2	1.0	0.9	1.0	0.9	0.9	0.9	0.9	1.5	3.2	2.5	1.8	1.9	2.2	2.8	3.1	1.8	1.1	0.8	0.7	0.6	0.7	0.7	0.7	24	3.2	0.6	1.4	0	0
3	1.4	1	1.7	3.2	4.7	0.9	1.0	1.8	С	С	0.3	Α	0.7	0.8	0.8	8.0	8.0	8.0	0.9	0.8	0.7	0.6	0.7	2.3	2.8	21	4.7	0.3	1.4	0	0
4	3.4		3.6	2.1	1.9	0.7	0.9	1.3	1.2	0.8	8.0	0.9	0.8	0.7	0.7	0.5	0.6	0.5	0.4	0.5	0.5	0.8	0.7	0.7	1.6	24	3.6	0.4	1.1	0	0
5	2.4		2.7	2.4	0.6	0.9	0.6	0.6	0.6	0.6	0.6	0.5	0.6	0.5	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	24	2.7	0.5	0.9	0	0
6	0.8		0.8	0.8	0.8	0.9	0.9	0.8	0.8	0.8	0.9	0.8	0.9	1.0	1.0	1.0	1.0	1.1	1.0	1.0	1.1	1.1	1.1	1.1	1.1	24	1.1	0.8	0.9	0	0
7	1.1		1.1	1.1	1.1	1.1	1.1	1.1	1.0	1.1	1.1	1.1	1.0	1.1	0.9	0.9	0.8	0.9	0.9	1.0	0.9	0.9	0.9	0.9	1.0	24	1.1	0.8	1.0	0	0
8	0.9		0.8	0.9 0.7	0.9	0.9 0.7	1.0 0.7	1.0 0.8	1.2	1.2 0.8	1.1	1.1 0.7	1.1	1.1	1.1 0.8	1.0 0.7	1.0 0.7	0.9	0.8	0.8	0.8	0.8 0.8	0.8	0.9	0.8	24	1.2	0.8	1.0 0.8	0	0
10	0.9		0.8	0.7	0.8	0.7	0.7	0.8	0.8	0.8	0.7	0.7	0.6	0.7	0.8	0.7	0.7	0.7	0.7	0.7	0.8	0.8	0.8	0.9	1.0	24	0.9 1.0	0.6	0.8	0	0
11	1.1		0.8	0.8	1.6	0.8	1.0	1.5	1.9	2.5	2.5	1.9	3.8	4.1	2.1	1.3	1.1	1.3	0.8	0.8	0.8	0.7	0.8	0.8	1.0	24	4.1	0.7	1.5	0	n
12	0.9		1.5	1.9	0.9	0.7	0.7	0.8	0.8	0.7	0.8	0.8	0.8	0.8	0.8	1.0	2.5	2.1	0.9	0.8	0.7	0.7	0.8	1.3	1.7	24	2.5	0.7	1.1	0	0
13	2.1		1.6	2.6	4.4	2.6	0.9	0.8	0.9	0.8	3.4	4.5	1.7	2.7	3.4	1.8	1.0	1.2	1.1	0.9	0.9	0.9	0.9	1.1	1.3	24	4.5	0.8	1.8	0	0
14	1.1		1.2	1.2	1.5	2.6	2.5	2.0	2.2	2.7	2.7	2.3	2.2	1.8	1.2	0.5	0.4	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	24	2.7	0.0	1.2	0	0
15	0.1	L	0.1	0.1	0.1	0.2	0.3	0.1	0.2	С	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.3	2.3	1.5	1.2	1.2	1.2	1.4	1.4	23	2.3	0.1	0.8	0	0
16	1.4	1	1.5	1.2	1.0	1.1	1.0	1.0	1.2	1.4	1.1	1.2	1.1	1.2	0.9	0.8	1.0	0.9	1.0	0.8	0.8	0.8	0.8	0.8	0.8	24	1.5	0.8	1.0	0	0
17	0.8	3	0.7	3.1	4.3	0.9	2.8	5.9	2.5	1.2	1.2	1.0	1.0	1.1	0.9	1.2	1.0	1.0	1.0	0.9	2.0	2.5	0.8	0.7	0.8	24	5.9	0.7	1.6	0	0
18	0.8	3	1.3	2.1	7.2	11.1	5.5	8.5	13.1	19.1	11.0	2.0	3.8	5.4	1.3	1.0	1.2	1.0	0.9	0.8	1.1	1.0	2.8	0.9	0.9	24	19.1	0.8	4.3	0	0
19	0.8		1.1	1.0	1.3	3.0	2.4	1.9	2.5	2.3	1.8	0.8	0.8	0.8	0.8	0.8	8.0	0.8	0.8	0.8	0.9	3.6	6.0	4.8	1.2	24	6.0	0.8	1.7	0	0
20	1.3		1.5	1.1	1.8	4.2	5.0	4.5	1.0	8.0	0.8	1.0	1.3	0.9	1.1	0.2	0.2	0.1	0.0	0.2	0.0	0.1	0.0	0.1	0.2	24	5.0	0.0	1.1	0	0
21	0.8		3.9	0.5	0.5	0.7	0.3	0.3	0.6	0.6	0.3	0.2	0.4	0.4	1.2	0.5	0.1	0.1	0.0	0.0	0.0	0.3	0.2	0.0	0.0	24	3.9	0.0	0.5	0	0
22	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
23	0.0		0.0	0.4	0.0	1.7	0.5	1.8 0.0	0.4 0.0	0.2	0.0	0.0	0.0	0.0	0.2	0.4 0.2	0.5 0.1	0.4	0.4 0.8	0.1	0.0	0.0	0.0 1.7	0.3	0.0	24	1.8	0.0 0.0	0.3	0	0
25	0.3 0.7		0.1 0.6	0.2 0.2	0.3 0.2	0.4 0.1	0.2 0.0	0.0	0.0	0.0	0.1 0.1	0.1 0.0	0.1 0.0	0.1 0.0	0.2 0.0	0.2	0.1	0.1 0.0	0.0	1.1 0.0	1.1 0.0	0.9 0.0	0.0	1.7 1.0	0.5 1.1	24 24	1.7 1.1	0.0	0.4 0.2	0	0
26	2.5		3.0	4.8	1.3	0.1	0.0	6.2	3.2	5.9	4.5	3.4	2.7	3.6	9.8	25.1	17.2	17.9	19.8	10.3	7.4	11.6	9.3	2.0	0.8	24	25.1	0.0	7.2	0	0
27	0.5		0.5	0.8	2.3	0.6	0.4	0.4	0.3	0.3	0.3	0.2	0.2	0.2	0.3	0.2	0.3	0.6	0.5	0.6	0.3	8.6	2.6	0.6	0.5	24	8.6	0.2	0.9	0	0
28	0.6	_	0.8	0.4	0.3	0.2	0.2	0.1	0.0	0.0	0.0	0.3	0.1	0.4	0.0	0.3	0.4	0.3	0.0	0.1	0.0	0.0	0.0	0.0	0.0	24	0.8	0.0	0.2	0	0
29	0.1		0.4	0.3	1.6	2.3	2.8	2.9	2.0	0.8	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.3	4.9	3.1	2.0	0.0	24	4.9	0.0	1.0	o	0
30	0.2		1.0	4.8	1.5	0.0	0.1	0.7	1.5	2.7	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.3	0.0	0.0	0.2	0.0	6.1	0.9	3.5	24	6.1	0.0	1.0	0	0
31	2.6	5	9.3	3.1	0.8	1.1	1.6	1.1	4.1	10.0	2.9	9.0	10.4	12.5	13.3	9.7	6.5	1.1	0.6	0.5	0.3	0.4	0.3	0.5	0.8	24	13.3	0.3	4.3	0	0
Count	31	L	31	31	31	31	31	31	30	29	31	30	31	31	31	31	31	31	31	31	31	31	31	31	31	740					
Maximum	3.4	1	9.3	4.8	7.2	11.1	5.5	8.5	13.1	19.1	11.0	9.0	10.4	12.5	13.3	25.1	17.2	17.9	19.8	10.3	7.4	11.6	9.3	4.8	3.5	24					
Minimum	0.0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21					
Average	1.1	L	1.5	1.5	1.5	1.4	1.2	1.7	1.6	2.1	1.5	1.3	1.3	1.5	1.6	1.8	1.5	1.3	1.3	0.9	0.9	1.5	1.5	1.0	0.9						
Percentiles			10		20		30		40		50		60		70		80		90		95		99		100				um Hourly mum Daily		25.1 7.2
Data			0.0		0.2		0.6		0.8		0.8		1.0		1.1		1.5		2.7		4.5		12.1		25.1				ly Average		1.4
Notes	C - Calibration / Span Cycle NA - No Data Available					T -	Test	A-	MOE Audit	M -	Equipment M	alfunction /	Down																		

											anuary	ndle Road 2017																		
F	our																													
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>250	Days>100
1	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.5	0.5	0.5	1.1	1.5	1.0	0.9	1.2	1.1	0.8	0.6	0.6	0.5	24	1.5	0.5	0.7	0	0
2	0.5	0.5	0.5	0.6	1.0	0.8	0.6	0.5	0.6	0.8	0.7	0.8	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.5	24	1.0	0.5	0.6	0	0
3	0.5	0.5	0.5	0.5	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.8	0.7	0.7	0.7	24	0.8	0.4	0.6	0	0
4	0.7	0.8	0.7 0.6	0.7	0.8	0.8	0.8	0.8 0.7	0.8	0.8	0.9 0.5	0.8	0.8	0.8	0.8	0.8 0.5	0.8	0.8	0.6	0.6	0.8	0.7	0.6	0.6	24	0.9	0.6	0.8	0	0
5	0.6 0.9	0.6 0.5	0.6	0.6 0.5	0.5 0.5	0.5 0.5	0.6 0.4	0.7	0.6	0.5 0.5	0.5	0.5 0.7	0.6 0.6	0.5 0.6	0.6 0.6	0.3	0.5 0.4	0.5 0.3	0.5 0.2	0.5 0.3	0.5 0.3	0.5 0.3	0.5 0.3	0.5 0.3	24 24	0.7 0.9	0.5 0.2	0.5 0.5	0	0
7	0.3	0.2	0.3	0.2	0.3	0.3	0.4	0.4	0.3	0.3	0.3	0.7	0.4	0.4	0.4	0.5	0.4	0.3	0.3	0.3	0.3	0.3	0.4	0.5	24	0.5	0.2	0.3	0	0
8	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.7	0.7	0.3	0.3	0.3	0.4	0.5	0.5	0.3	0.2	0.0	0.2	0.3	0.2	0.1	0.2	24	0.7	0.0	0.3	o	0
9	0.0	0.2	0.2	0.3	0.5	0.3	0.4	0.5	0.5	0.3	0.3	0.3	0.3	0.6	0.7	0.7	0.8	0.8	0.8	0.7	0.8	0.8	0.8	0.9	24	0.9	0.0	0.5	О	0
10	1.1	1.1	1.1	1.1	1.1	0.9	0.9	0.8	0.9	0.9	1.0	1.1	0.8	0.7	0.6	0.6	0.6	0.6	0.7	0.6	0.6	0.6	0.6	0.8	24	1.1	0.6	0.8	0	0
11	0.8	0.8	0.9	0.8	0.7	0.6	0.7	0.5	0.5	0.6	0.8	0.7	0.7	0.5	0.5	0.6	0.6	0.5	0.5	0.6	0.7	0.8	0.9	0.9	24	0.9	0.5	0.7	0	0
12	0.7	0.7	8.0	0.7	0.8	8.0	0.8	0.6	0.6	0.6	0.4	0.6	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.4	0.5	0.4	0.4	0.5	24	0.8	0.4	0.6	0	0
13	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.2	0.2	0.1	0.2	0.0	0.2	0.1	0.2	0.1	0.1	0.2	0.1	24	0.4	0.0	0.2	0	0
14	0.1	0.0	0.2	0.1	0.2	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.5	0.4	0.6	0.3	0.2	0.3	0.4	0.3	0.3	0.3	0.5	24	0.6	0.0	0.3	0	0
15	0.7	0.5	0.6	0.7	0.5	0.3	0.3	0.4	0.4	0.2	0.4	0.3	0.4	0.3	0.3	0.3	0.2	0.2	0.3	0.3	0.3	0.3	0.2	0.2	24	0.7	0.2	0.4	0	0
16	0.6	0.4 0.8	0.1 0.8	0.3 0.7	0.4	0.4	0.4 1.0	0.6 0.9	0.6	1.0	1.0 0.9	1.1	1.5	1.7	1.3 0.8	1.5 0.8	1.6	1.3 0.6	1.1	1.1 0.6	0.6	0.4 0.4	0.7 0.6	0.7	24 24	1.7	0.1 0.4	0.8	0	0
17	0.7 0.6	0.6	0.6	0.7	0.8 0.6	1.0 0.6	0.5	0.5	1.1 0.5	0.8 0.5	0.5	1.0 0.5	0.9 0.5	0.9 0.3	0.8	0.8	0.7 0.5	0.5	0.5 0.5	0.5	0.6 0.5	0.4	0.5	0.5 0.6	24	1.1 0.6	0.4	0.5	0	0
19	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.7	0.6	0.5	0.5	0.5	0.6	0.4	0.5	0.5	0.5	0.4	0.5	0.5	0.6	0.6	0.6	24	0.0	0.4	0.5	0	0
20	0.6	0.7	0.5	0.6	0.6	0.8	0.6	0.6	0.7	0.6	0.6	0.7	0.8	0.6	0.6	0.7	0.6	0.3	0.6	0.6	0.6	0.6	0.6	0.6	24	0.8	0.3	0.6	0	0
21	0.6	0.7	0.6	0.7	0.8	0.8	0.9	0.9	1.0	0.9	0.6	0.7	0.8	0.9	1.0	0.8	0.8	0.7	0.7	0.5	0.4	0.7	0.6	0.6	24	1.0	0.4	0.7	О	0
22	0.6	0.7	0.6	0.7	0.7	0.7	0.7	0.7	0.8	0.6	0.7	0.7	0.6	0.7	0.6	0.6	0.7	0.7	0.6	0.6	0.6	0.6	0.7	0.6	24	0.8	0.6	0.7	0	0
23	0.6	0.6	0.6	0.6	0.5	0.5	0.7	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.4	0.6	0.5	0.6	0.6	24	0.7	0.4	0.6	0	0
24	0.5	0.6	0.6	0.6	0.7	0.6	0.5	0.3	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.6	0.7	0.6	0.7	0.6	0.6	24	0.7	0.3	0.6	0	0
25	0.6	0.6	0.6	0.6	0.7	0.7	1.0	0.9	1.1	1.0	1.2	0.9	0.9	0.8	С	С	С	0.7	0.1	0.2	0.2	0.1	0.0	0.0	21	1.2	0.0	0.6	0	0
26	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.3	0.4	1.1	0.3	0.2	0.3	0.0	0.0	0.0	0.0	0.0	24	1.1	0.0	0.1	0	0
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
29	0.0 0.1	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	24 24	0.0 0.1	0.0 0.0	0.0	0	0						
31	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.1	0.0	0.0	0	0
Count	31	31	31	31	31	31	31	31	31	31	31	31	31	31	30	30	30	31	31	31	31	31	31	31	741	0.0	0.0	0.0		
Maximum	1.1	1.1	1.1	1.1	1.1	1.0	1.0	0.9	1.1	1.0	1.2	1.1	1.5	1.7	1.3	1.5	1.6	1.3	1.2	1.1	0.8	0.8	0.9	0.9	24					
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21					
Average	0.5	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4						
Percentiles	_	10		20	_	30	_	40	_	50		60		70		80	_	90	_	95	_	99	_	100				um Hourly num Daily		1.7
Data		0.0		0.1		0.3		0.5		0.5		0.6		0.6		0.7		0.8		0.9		1.2		1.7				ly Average		0.8 0.5
Notes	С	- Calibratio	n / Span Cyc	cle NA	A - No Data	Available	T -	Test	A-	MOE Audit	М -	Equipment M	lalfunction /	Down	R ·	- Rate of Ch	ange													

											bruary	ındle Road 2017																		
Н	our																													
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>250	Days>100
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Т	0.3	0.5	0.5	0.5	0.3	0.5	0.3	0.3	0.3	23	0.5	0.0	0.1	0	0
2	0.2	0.3	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	24	0.3	0.0	0.2	0	0
3	0.0	0.0	0.2	0.1	0.1	0.2	0.1	0.2	0.1	0.3	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	24	0.3	0.0	0.1	0	0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.1	0.2	0.4	0.2	0.2	0.4	0.7	24	0.7	0.0	0.1	0	0'
5	0.6	0.4	0.3	0.5	0.5	0.7	0.9	0.8	0.5	0.4	0.5	0.5	0.6	0.6	0.7	0.5	0.3	0.3	0.3	0.3	0.1	0.0	0.1	0.4	24	0.9	0.0	0.5	0	0
6	0.7	0.6	0.4	0.5	0.6	0.4	0.3	0.4	0.3	0.3	0.2	0.3	0.4	0.4	0.2	0.2	0.8	0.8	0.5	0.5	0.5	0.6	0.4	0.3	24	0.8	0.2	0.4	0	0
7	0.3	0.3	0.3	0.3	0.2	0.4	0.3	0.3	0.3	0.3	0.4	0.4	0.3	0.5	0.5	0.4	0.5	0.7	0.5	0.5	0.4	0.5	0.5	0.4	24	0.7	0.2	0.4	0	0
8	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.3	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	24	0.5	0.1	0.2	0	0
10	0.1	0.4	0.8	0.6	0.3	0.1	0.2	0.0	0.0	0.1	0.0	0.0	0.1 1.9	0.2	0.4	0.5	0.5	0.6	0.2	0.0	0.1	0.0	0.0	0.0	24	0.8	0.0	0.2	0	
11	0.0	0.0	1.0	0.0	0.0	0.5	0.9	0.6	0.0	0.7	0.0	0.4	0.6	0.3	0.2	0.4	0.1	0.1	0.1	0.1	0.2	0.0	0.2	0.3	24	1.0	0.0	0.2	0	0
12	0.4	0.4	0.2	0.0	0.4	0.1	0.2	0.2	0.2	0.1	0.2	0.2	0.0	0.7	0.3	0.4	0.4	0.2	0.2	0.2	0.4	0.5	0.5	0.1	24	0.5	0.0	0.3	0	0
13	0.2	0.2	0.5	0.8	0.9	0.7	0.4	0.3	1.2	2.0	2.2	0.9	0.5	0.3	0.3	0.2	0.1	0.0	0.1	0.0	0.1	0.0	0.1	0.0	24	2.2	0.0	0.5	0	0
14	0.0	0.1	0.1	0.0	0.0	0.4	0.2	0.3	0.4	0.2	0.5	0.9	0.8	0.8	0.6	0.8	0.7	0.5	0.5	0.4	0.5	0.6	0.6	0.7	24	0.9	0.0	0.4	0	0
15	0.6	0.5	0.4	0.5	0.3	0.4	0.4	0.6	0.7	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.6	0.8	0.8	0.5	0.4	0.5	0.6	0.3	24	0.8	0.3	0.5	0	0
16	0.2	0.3	0.3	0.3	0.2	0.2	0.0	0.1	0.1	0.2	0.2	0.2	0.4	1.1	1.1	1.4	1.3	1.4	1.4	1.5	1.8	1.4	1.4	1.2	24	1.8	0.0	0.7	0	0
17	1.3	1.3	1.2	1.2	1.2	1.3	1.3	1.1	1.1	1.2	1.2	1.2	1.2	1.3	1.3	1.3	1.3	1.2	1.3	1.3	1.3	1.3	1.4	1.3	24	1.4	1.1	1.3	0	0
18	1.3	1.3	1.3	1.4	1.3	1.3	1.3	0.9	1.3	1.7	1.8	1.4	2.0	2.3	2.2	2.0	1.9	1.7	1.5	1.4	1.5	1.5	1.5	1.3	24	2.3	0.9	1.6	0	0
19	1.3	1.4	1.3	1.3	1.2	1.2	1.3	1.2	1.5	1.5	1.5	1.5	1.5	1.4	1.4	1.3	1.5	1.7	1.5	1.4	1.3	1.2	1.1	1.1	24	1.7	1.1	1.4	0	0
20	1.1	1.2	1.1	1.1	1.0	1.1	1.0	0.9	1.1	1.1	1.1	1.0	1.1	1.1	1.1	1.1	1.1	1.0	1.1	1.1	1.1	1.1	1.0	1.0	24	1.2	0.9	1.1	0	0
21	1.1	1.2	1.1	1.1	1.2	1.1	1.6	1.1	1.2	1.2	1.2	0.9	1.3	1.4	1.3	1.3	1.3	1.3	1.3	1.2	1.2	1.3	1.2	1.2	24	1.6	0.9	1.2	0	0
22	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.4	1.5	1.4	1.4	1.6	С	С	0.5	0.6	0.5	0.6	0.6	0.5	0.5	0.6	0.5	22	1.6	0.5	1.0	0	0
23	0.5	0.4	0.4	0.5	0.6	0.5	0.4	0.5	0.4	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.4	0.3	0.2	0.1	0.1	0.1	0.1	0.2	24	0.6	0.1	0.4	0	0
24	0.1	0.1	0.0	0.1	0.1	0.1	0.0	0.1	0.2	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.0	0.1	0.0	0.0	24	0.2	0.0	0.1	0	0
25	0.2	0.2	0.1	0.1	0.2	0.2	0.3	0.2	0.2	0.3	0.3	0.3	0.2	0.2	0.1	0.3	0.2	0.2	0.1	0.1	0.0	0.0	0.1	0.0	24	0.3	0.0	0.2	0	0
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.8	0.0	0.0	0.0 0.6	0.0 0.9	0.0 0.6	0.1	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	24	0.1	0.0 0.0	0.0	0	0
28	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.1 0.0	0.1 0.0	0.1 0.0	0.2 0.0	0.2	0.6 0.0	0.0	0.6 0.0	0.4 0.0	0.8	0.9	0.0	0.3 0.0	0.0 0.3	0.0	0.0	0.0 0.1	0.0 0.0	0.0 0.0	0.0	24 24	0.9 0.3	0.0	0.2 0.1	0	0
29 30 31																								-		0.3	0.0	0.1		
Count	28	28	28	28	28	28	28	28	28	28	28	28	28	27	26	28	28	28	28	28	28	28	28	28	669					
Maximum	1.3	1.4	1.3	1.4	1.3	1.3	1.6	1.3	1.5	2.0	2.2	1.5	2.0	2.3	2.2	2.0	1.9	1.7	1.5	1.5	1.8	1.5	1.5	1.3	24					
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22					
Average	0.4	0.4	0.5	0.5	0.4	0.5	0.5	0.4	0.5	0.5	0.6	0.5	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.4						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly mum Daily		2.3
Data		0.0		0.1		0.1		0.2		0.3		0.5		0.6		1.1		1.3		1.4		1.9		2.3				lly Average		0.5
Notes	С	- Calibratio	n / Span Cy	cle NA	A - No Data	Available	T -	Test	A-	MOE Audit	М	- Equipment M	alfunction /	Down	R -	Rate of Ch	ange							Į.				ı		

												March	undle Road 2017																		
ŀ	our																													17	
Day	0		100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>250	Days>100
1	0.1		0.1	0.1	0.0	0.3	0.3	0.2	0.3	0.3	0.2	0.6	0.4	0.4	0.3	0.4	0.4	0.5	0.4	0.5	0.4	0.4	0.4	0.4	0.2	24	0.6	0.0	0.3	0	0
2	0.2		0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.3	2.0	2.0	1.5	1.2	1.1	2.2	2.8	1.9	0.7	0.2	0.0	0.0	0.0	0.0	0.0	24	2.8	0.0	0.7	0	0
3	0.0		0.0	0.0	0.0	0.0	0.0	С	0.0	0.0	0.0	0.0	Α	Α	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21	0.1	0.0	0.0	0	0
4	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
5	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
6	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
7	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.1	0.2	0.1	0.1	24	0.2	0.0	0.0	0	0
8	0.1		0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.3	0.3	0.3	0.3	0.2	0.0	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1	24	0.3	0.0	0.1	0	0
9	0.0		0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.1	0.0	0.0	0	0
10	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
11	0.0		0.0	0.0	0.0	0.0	0.0	0.6	1.0	1.8	1.5	1.1	3.1	2.7	1.3	0.7	0.4	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	3.1	0.0	0.6	0	0
12	0.0		0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	2.0	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	2.0	0.0	0.1	0	0
13	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
14	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	М	0.0	0.6	0.8	1.1	1.3	1.4	1.8	2.1	2.4	2.7	23	2.7	0.0	0.6	0	0
15	3.0		3.2	3.4	3.6	3.9	С	С	1.2	1.2	1.0	0.4	0.3	0.1	0.0	0.0	0.0	0.0	1.0	0.2	0.0	0.0	0.0	0.0	0.0	22	3.9	0.0	1.0	0	0
16	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.2	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	24	0.3	0.0	0.0	0	0
17	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
18	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
19	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	1.1	0.0	0.0	0	0
20	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.5	0.6	0.8	1.0	1.1	0.7	0.5	0.6	0.4	0.4	0.4	0.4	0.4	0.4	0.4	24	1.1	0.0	0.4	0	0
21	0.4		0.4	0.4	0.5	0.4	0.4	0.5	0.9	0.7	0.7	0.8	0.9	8.0	1.4	1.2	0.6	0.6	0.6	0.4	0.5	0.5	0.5	0.4	0.3	24	1.4	0.3	0.6	0	0
22	0.3		0.4	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.2	0.3	0.1	0.1	0.1	0.2	24	0.4	0.0	0.1	0	0
23	0.2		0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.2	0.1	0.1	0.2	0.4	0.5	0.6	0.6	0.5	0.3	0.4	0.5	0.4	0.7	0.4	24	0.7	0.0	0.3	0	0
24	0.6		0.4	0.6	0.5	0.3	0.2	0.2	0.3	0.3	0.3	0.4	0.4	0.4	0.6	0.7	0.8	0.6	0.4	0.4	0.3	0.3	0.3	0.2	0.3	24	0.8	0.2	0.4	0	0
25	0.2		0.1	0.2	0.2	0.0	0.2	0.2	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.4	0.2	0.5	0.1	0.1	0.1	0.2	0.1	0.2	24	0.5	0.0	0.2	0	0
26	0.1		0.3	0.2	0.2	0.2	0.2	0.1	0.3	0.3	0.4	0.4	0.3	0.3	0.4	0.3	0.2	0.2	0.2	0.2	0.4	0.3	0.3	0.4	0.5	24	0.5	0.1	0.3	0	0
27	0.4		0.4	0.4	0.4	0.4	0.5	0.3	0.5	0.5	0.5	0.4	0.4	8.0	1.0	8.0	1.0	1.0	0.7	0.6	0.6	0.6	0.7	0.7	0.6	24	1.0	0.3	0.6	0	0
28	0.6		0.4	0.5	0.5	0.5	0.5	0.5	0.4	0.3	0.4	0.4	0.4	0.5	0.4	0.5	0.4	0.2	0.3	0.3	0.3	0.3	0.3	0.2	0.2	24	0.6	0.2	0.4	0	0
29	0.3		0.2	0.2	0.3	0.2	0.1	0.2	0.3	0.2	0.2	0.2	0.3	0.2	0.2	0.3	0.0	0.1	0.2	0.2	0.1	0.2	0.0	0.1	0.2	24	0.3	0.0	0.2	0	0
30	0.1		0.0	0.1	0.1	0.1	0.0	0.1	0.2	0.3	0.2	0.3	0.4	1.1	2.6	0.6	0.3	0.3	0.4	0.3	0.2	0.3	0.4	0.4	0.5	24	2.6	0.0	0.4	0	0
31	0.5		0.5	0.3	0.5	0.4	0.4	0.4	0.5	0.4	0.4	0.5	0.4	0.4	0.5	0.5	0.4	0.4	0.4	0.5	0.4	0.3	0.3	0.3	0.4	24	0.5	0.3	0.4	0	0
Count	31		31	31	31	31	30	29	31	31	31	31	30	30	30	31	31	31	31	31	31	31	31	31	31	738					
Maximum	3.0		3.2	3.4	3.6	3.9	0.5	0.6	1.2	1.8	2.0	2.0	3.1	2.7	2.6	2.2	2.8	1.9	1.1	1.3	1.4	1.8	2.1	2.4	2.7	24					
Minimum	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21					
Average	0.2		0.2	0.2	0.2	0.2	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.3	0.4	0.3	0.4	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2						
Percentiles			10		20		30		40		50		60		70		80		90		95		99		100				num Hourly		3.9 1.0
Data			0.0		0.0		0.0		0.0		0.1		0.2		0.3		0.4		0.6		1.0		2.7		3.9				nly Average		0.3
Notes	(C - Ca	alibration	/ Span Cyc	tle NA	- No Data	Available	Т-	Test	A-	MOE Audit	М	- Equipment M	alfunction /	Down	R -	Rate of Ch	ange													

Figure B-1 Time History Plots of Measured Hourly Average and 24 Hour Average SO₂
Concentrations – Courtice (WPCP) Station

Figure B-2 Time History Plots of Measured Hourly Average and 24 Hour Average SO₂ Concentrations – Rundle Road Station

Appendix C NO2 Data Summaries and Time History Plots May 9, 2017

Appendix C NO₂ DATA SUMMARIES AND TIME HISTORY PLOTS

Project No.: 160950528 C.1

											anuary	OURTICE 2017																		
Н	our																													
Day	0	100 4.2	200 2.4	300 3.4	400 4.8	500	600	700	800	900	1000 4.3	1100	1200 1.7	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300 10.8	Count	Maximum	Minimum	Average	Hrs>200	Days>10
1	4.2 13.0	4.2 9.4	2.4 10.0	3.4 10.5	4.8 10.5	6.0 7.9	5.7 9.1	4.8 8.5	4.4 5.6	3.7 6.0	4.3 13.3	3.0 6.8	1.7 4.8	1.3 18.4	1.5 19.6	2.1 16.1	2.2 19.5	2.9 16.7	2.8 11.1	1.9 5.6	1.2 5.8	1.5 4.2	4.6 4.1	3.1	24 24	10.8 19.6	1.2 3.1	3.6 10.0	0	, ;
3	6.1	2.9	2.4	12.5	22.4	10.0	7.4	3.8	3.1	3.6	4.9	4.5	6.6	5.6	12.7	14.4	13.3	11.6	15.1	9.6	9.5	9.7	7.5	8.6	24	22.4	2.4	8.6	0	ا ا
4	6.1	9.9	10.4	10.5	15.2	14.8	11.2	4.0	6.4	6.4	3.3	2.8	2.8	3.5	2.9	2.0	2.8	2.9	2.4	2.7	2.6	2.5	2.2	1.7	24	15.2	1.7	5.5	0	ن ار
5	1.8	1.5	1.6	1.6	1.3	1.6	1.8	3.9	5.1	5.0	4.8	5.4	4.3	3.9	5.1	5.1	4.6	7.9	9.2	8.9	7.7	8.0	5.4	10.3	24	10.3	1.3	4.8	0	,
6	10.5	8.4	8.4	8.2	10.7	10.5	12.6	15.1	17.3	15.4	9.4	6.8	8.8	8.2	8.2	10.5	11.4	11.6	8.1	9.7	12.2	12.9	19.7	18.6	24	19.7	6.8	11.4	0	, ,
7	16.7	25.8	21.5	26.2	21.3	23.1	19.4	19.0	12.7	10.0	13.9	17.5	5.0	5.0	3.9	6.8	9.4	5.5	4.5	6.3	9.4	7.0	6.6	9.2	24	26.2	3.9	12.7	0	
8	11.7	11.6	12.4	10.8	5.8	4.0	3.8	5.2	3.7	1.5	1.7	0.9	1.3	0.9	1.2	1.7	1.7	6.2	10.4	20.8	27.9	15.7	14.0	18.4	24	27.9	0.9	8.1	0	
9	21.3	16.2	15.9	17.4	18.9	16.7	11.8	0.9	0.6	1.0	1.7	1.7	1.7	1.6	2.7	4.3	4.9	5.8	12.4	24.2	26.6	29.5	21.3	3.7	24	29.5	0.6	11.0	0	(
10	3.7	4.3	5.1	5.1	5.3	3.7	3.2	2.9	2.9	3.2	2.5	2.2	2.3	1.9	2.2	2.0	2.2	2.1	2.3	3.1	2.7	6.3	3.0	1.6	24	6.3	1.6	3.2	0'	(
11	1.5	1.4	2.7	2.4	2.5	2.9	3.1	4.9	5.6	4.6	2.9	1.9	1.7	1.8	1.9	2.6	15.6	25.9	13.6	14.7	11.3	6.1	3.7	8.0	24	25.9	1.4	6.0	0	,
12	4.5	9.8	12.0	15.3	3.7	2.1	9.6	12.1	8.1	7.7	5.6 3.0	5.8	7.7	7.6	9.0	6.5	5.1	4.5	5.9	4.8	6.7	7.2	6.8	4.6	24	15.3	2.1	7.2 3.4	0] ;
14	3.3 3.9	5.0 2.8	1.5 2.3	1.7 2.6	1.8 3.9	5.4 3.2	5.0 3.6	5.0 4.8	5.1 3.7	4.6 4.4	10.8	2.5 7.3	2.0 6.3	2.5 3.3	2.2 6.2	2.3 2.7	3.0 4.2	7.2 9.2	5.1 14.5	3.3 21.6	3.9 24.0	2.2 26.9	2.2 28.6	2.4 31.5	24 24	7.2 31.5	1.5 2.3	9.7	0	, ;
15	31.8	24.3	26.9	31.0	29.3	28.3	28.7	30.0	27.4	18.0	3.4	1.8	2.4	1.3	1.9	3.8	3.3	3.3	4.0	4.9	17.6	16.0	34.9	9.9	24	34.9	1.3	16.0	0	ن ار
16	3.7	26.7	28.9	29.1	31.1	31.4	30.8	32.4	30.4	28.4	18.7	11.9	15.2	16.1	15.5	17.4	20.1	17.0	16.3	17.5	29.8	34.6	36.4	29.8	24	36.4	3.7	23.7	0	ن ار
17	31.1	30.8	29.6	30.4	30.3	20.4	21.1	24.8	23.0	24.6	27.6	15.3	12.4	22.5	18.0	19.0	25.1	15.5	10.3	9.5	8.9	8.8	11.0	10.3	24	31.1	8.8	20.0	0	آ ار
18	18.7	17.2	26.9	19.2	22.0	22.3	18.8	20.9	22.3	18.8	13.1	6.8	6.7	7.6	5.9	7.0	7.6	11.5	5.7	6.1	5.5	4.2	5.4	7.3	24	26.9	4.2	12.8	0	, ,
19	6.2	8.9	6.7	9.2	11.4	17.0	14.0	12.1	11.5	18.4	17.4	12.2	8.3	4.5	5.1	7.7	11.9	8.5	10.2	7.2	3.5	3.4	3.3	3.0	24	18.4	3.0	9.2	0	, c
20	2.5	3.0	3.1	2.6	5.0	4.4	2.6	4.3	3.1	5.1	4.6	С	С	С	С	С	13.0	20.9	18.7	12.7	12.6	14.1	12.7	11.6	19	20.9	2.5	8.2	0	C
21	9.6	8.4	11.5	15.6	11.4	9.8	12.7	10.6	9.6	7.3	6.6	9.3	10.7	11.1	8.4	8.9	9.3	10.9	11.0	8.6	9.9	8.1	7.8	11.5	24	15.6	6.6	9.9	0'	(
22	9.9	9.4	6.2	6.8	6.0	6.8	5.0	3.6	4.7	5.1	6.9	4.3	3.1	4.2	5.4	6.8	5.3	8.6	5.1	3.7	3.9	3.2	4.7	3.5	24	9.9	3.1	5.5	0,	
23	3.7	3.7	3.1	3.3	4.3	4.7	4.2	6.1	4.7	5.9	6.1	8.0	9.6	9.4	10.9	9.0	5.0	7.0	6.5	5.7	6.0	5.7	5.3	4.7	24	10.9	3.1	6.0	0,	
24	5.1	5.4	4.9	4.5	5.3	6.2	6.6	6.7 13.1	7.1 16.8	5.5	7.0	5.2	4.5	4.4	4.6	6.6 5.6	9.2	11.2	12.0	9.8 3.5	14.1	20.3	19.3 12.5	23.2 17.0	24	23.2	4.4	8.7 8.6	0	, ,
25	18.7 17.5	6.7 11.9	5.2 9.8	8.4 9.6	9.9 14.2	11.5 23.8	9.7 24.0	22.5	14.3	10.3 8.3	15.0 11.2	8.8 7.3	6.8 6.7	4.5 6.0	3.7 4.7	4.6	5.0 5.6	4.3 8.0	3.9 7.1	3.5 7.3	2.8 6.4	3.1 4.4	3.5	4.0	24 24	18.7 24.0	2.8 3.5	10.1	0	, ;
27	3.8	2.9	3.3	3.7	5.0	5.3	6.2	6.4	7.7	7.0	5.6	2.8	3.2	2.6	2.9	3.0	3.7	4.9	5.2	5.8	5.9	6.4	6.2	4.5	24	7.7	2.6	4.8	0	ن ار
28	5.9	5.0	5.4	5.8	4.9	5.4	6.0	6.0	3.5	3.9	4.1	4.8	4.4	3.8	4.6	5.7	4.0	4.1	4.4	4.4	4.7	4.2	5.4	8.3	24	8.3	3.5	4.9	0	ن ار
29	9.1	8.3	5.6	5.0	3.7	3.2	4.5	4.8	4.9	2.7	2.7	2.5	2.5	2.0	1.9	2.9	3.2	3.8	4.0	5.6	4.4	4.3	5.1	3.2	24	9.1	1.9	4.2	0	آ ار
30	4.1	2.4	2.8	2.8	2.9	3.8	5.2	8.6	5.0	2.6	2.5	2.4	2.6	3.2	3.6	5.9	7.4	7.4	8.6	12.5	13.7	14.3	12.7	12.5	24	14.3	2.4	6.2	0	, (
31	14.7	20.3	12.4	11.4	7.9	8.9	7.7	8.0	7.9	8.1	6.3	3.4	7.0	9.9	8.8	7.8	8.4	9.3	9.4	8.9	8.4	9.5	9.7	8.4	24	20.3	3.4	9.3	0	, (
Count	31	31	31	31	31	31	31	31	31	31	31	30	30	30	30	30	31	31	31	31	31	31	31	31	739					
Maximum	31.8	30.8	29.6	31.0	31.1	31.4	30.8	32.4	30.4	28.4	27.6	17.5	15.2	22.5	19.6	19.0	25.1	25.9	18.7	24.2	29.8	34.6	36.4	31.5	24					
Minimum	1.5	1.4	1.5	1.6	1.3	1.6	1.8	0.9	0.6	1.0	1.7	0.9	1.3	0.9	1.2	1.7	1.7	2.1	2.3	1.9	1.2	1.5	2.2	1.6	19					
Average	9.8	10.0	9.7	10.5	10.7	10.5	10.2	10.2	9.3	8.3	7.8	5.9	5.4	5.9	6.2	6.7	8.0	8.9	8.4	8.7	10.0	9.8	10.5	9.8						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly		36.4
Data		2.5		3.3		4.3		5.1		6.2		8.0		9.9		12.7		19.1		25.9		31.1		36.4				mum Daily ly Average		23. 8.
Notes	C -	- Calibratior	n / Span Cy	rcle N	A - No Data	Available	Т-	- Test	A-	MOE Audit	M	- Equipment M	alfunction ,	/ Down																

											bruary	URTICE 2017																		
-	lour									(PP	~,													T						
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>10
1	9.6	10.1	8.4	18.4	29.6	32.6	18.4	8.8	9.2	8.1	6.8	5.5	4.7	2.9	4.8	3.8	4.4	7.5	9.1	8.0	5.7	12.2	9.4	5.6	24	32.6	2.9	10.1	0	/
2	4.0	4.6	3.2	4.4	5.1	7.4	10.9	14.3	11.3	7.5	4.6	3.8	2.7	2.7	2.7	2.4	2.7	4.2	4.2	4.5	4.0	3.7	2.8	2.7	24	14.3	2.4	5.0	0	1
3	2.6	2.7	3.0	4.3	3.9	4.5	7.4	8.3	12.5	14.6	8.6	4.9	3.4	2.9	2.9	2.9	3.6	4.3	5.1	7.4	9.0	10.5	11.2	13.1	24	14.6	2.6	6.4	0	1 '
4	11.7	10.7	9.4	8.2	8.1	4.9	2.2	2.2	2.9	3.5	2.3	3.5	5.3	4.1	3.4	3.9	5.2	5.3	4.3	5.0	3.4	5.1	7.2	5.5	24	11.7	2.2	5.3	0	1 '
5	3.1	2.7	2.6	2.8	3.0	3.1	3.6	3.8	6.0	5.0	5.3	5.6	6.7	7.1	7.1	8.1	7.3	7.2	5.4	3.8	3.0	3.4	3.2	3.1	24	8.1	2.6	4.7	0	1
6	4.2	2.6	2.2	2.5	5.3	8.6	7.6	7.7	13.7	21.5	21.9	12.8	12.7	13.6	2.4	2.0	6.7	13.5	22.6	17.9	33.0	27.9	19.1	20.5	24	33.0	2.0	12.6	0	1
7	13.2	8.7	8.2	7.8	24.3	21.5	23.7	15.0	5.7	11.1	17.2	22.0	20.6	16.9	9.5	11.4	12.5	9.7	15.5	26.9	28.9	19.4	15.1	16.9	24	28.9	5.7	15.9	0	1
8	10.3	17.5	11.0	8.5	6.3	5.7	4.7	4.7	3.6	3.5	3.8	3.2	2.6	2.6	3.3	3.4	5.0	4.7	5.1	4.0	3.6	2.9	3.4	2.8	24	17.5	2.6	5.3	0	1
9	2.3	2.5	4.1	3.5	6.1	7.6	8.2	6.2	4.6	3.5	3.1	2.6	2.6	3.2	2.5	3.0	4.5	6.3	5.6	4.4	5.4	4.5	5.9	6.0	24	8.2	2.3	4.5	0	<u> </u>
10	3.2	3.7	5.4	6.1	7.0	7.5	7.5	10.7	7.2	4.3	6.3	6.9	5.2	2.0	1.2	1.2	1.8	2.4	2.2	1.6	1.7	2.2	2.8	3.5	24	10.7	1.2	4.3	0	1 '
11	4.0	3.7	3.5	3.8	15.8	19.0	25.4	26.7	20.9	18.8	16.9	12.9	9.5	5.5	5.4	5.9	7.7	9.5	10.1	11.7	10.2	5.8	4.9	6.9	24	26.7	3.5	11.0	0	1 '
12	3.9	3.8	7.7	12.1	6.7	4.8	5.0	5.2	5.7	6.4	7.6	6.7	5.1	5.5	5.0	7.5	8.7	11.8	14.4	19.3	22.6	9.0	3.4	4.5	24	22.6	3.4	8.0	0	1 '
13	3.6	3.2	2.1	2.2	2.9	4.1	3.1	4.5	4.0	3.6	4.1	3.1	3.3	3.7	3.6	3.5	4.2	5.6	15.5	38.0	42.8	38.6	34.3	32.8	24	42.8	2.1	11.1	0	1 '
14	29.8	29.6	28.6	28.4	28.7	17.1	3.3	3.7	3.9	4.3	3.6	3.8	3.8	3.6	4.0	4.8	6.1	8.2	9.3	6.7	6.4	11.7	18.8	8.6	24	29.8	3.3	11.5	0	1
15	6.0	6.3	18.2	34.2	30.1	27.4	24.4	28.4	27.2	19.5	7.9	4.2	5.0	3.6	3.9	3.5	3.5	3.4	3.9	4.6	4.8	4.3	4.3	3.5	24	34.2	3.4	11.7	0	1
16	3.9	2.8	3.0	2.6	2.4	3.2	3.3	4.0	3.6	3.2	3.6	3.1	3.0	2.8	3.6	3.4	4.7	5.9	5.6	11.5	12.6	9.6	15.6	11.6	24	15.6	2.4	5.4	0	1
17	12.3	11.7	8.2	6.2	4.3	3.6	3.8	9.3	9.1	4.1	4.0	2.1	1.6	1.9	2.1	2.1	2.3	5.5	9.6	15.1	4.3	2.1	2.9	3.0	24	15.1	1.6	5.5	0	1
18	10.4	15.7	11.2	13.4	13.9	14.1	20.1	20.3	15.7	9.8	8.4	4.4	4.6	4.6	4.4	4.2	6.0	6.9	13.6	22.4	22.0	12.8	11.1	13.0	24	22.4	4.2	11.8	0	1 2
19	15.5 5.1	23.5 3.9	16.3 3.2	12.3 3.9	10.3 3.2	6.7 4.2	5.4 5.4	6.5 9.6	9.2 4.6	9.3	7.2 1.4	7.3 1.0	4.8 1.1	2.4 1.0	2.8 1.0	3.1 1.0	3.0 1.0	3.1 1.2	4.9 1.9	9.1 14.5	7.5 21.0	5.1 24.4	5.1 20.9	3.9 9.4	24	23.5 24.4	2.4 1.0	7.7 6.1	0	
20	1.3	3.9 1.9	2.8	2.5	2.4	4.2	3.6	4.0	6.4	4.3	4.7	7.5	5.8	6.3	5.8	10.9	16.8	15.5	28.9	28.8	22.3	24.4	20.9	23.6	24	28.9	1.0	10.6	0	1 7
21	23.8	21.0	21.6	2.3	20.8	19.6	21.0	22.9	21.6	4.3 C	4.7 C	7.5 C	16.1	14.0	13.4	13.4	14.6	14.3	22.0	19.6	29.9	28.2	22.7	18.2	21	29.9	13.4	20.0	0	1 7
22	17.2	24.0	12.6	12.5	19.9	12.7	11.9	11.4	10.4	8.6	A	1.4	1.6	1.7	2.0	2.8	3.3	3.9	5.6	4.8	4.8	4.6	7.7	13.7	23	24.0	13.4	8.7	0	1 7
24	15.7	10.5	12.0	6.8	7.0	7.1	6.5	4.0	2.6	2.4	3.9	5.5	5.2	3.7	4.1	5.3	5.4	4.2	5.0	5.1	5.3	4.0	4.3	3.1	24	15.7	2.4	5.8	0	1 7
25	2.7	7.1	6.6	7.1	4.5	3.7	6.4	4.6	4.3	1.8	4.4	5.8	4.3	2.5	2.0	3.1	1.8	2.4	2.4	2.1	1.8	2.3	1.4	2.3	24	7.1	1.4	3.6	0	1 7
26	1.5	1.8	1.2	1.1	1.4	2.1	2.8	2.3	2.5	1.6	1.7	1.5	0.7	0.9	0.7	0.8	0.4	0.3	0.3	0.4	1.0	0.7	0.7	0.8	24	2.8	0.3	1.2	0	1 7
27	1.0	1.1	1.1	1.2	1.7	1.9	2.2	3.8	3.8	4.7	5.2	3.9	2.8	3.0	3.0	2.7	2.9	5.5	12.9	17.1	15.1	12.9	16.3	12.1	24	17.1	1.0	5.7	0	1 7
28	16.2	15.7	16.4	13.2	11.1	16.7	15.6	14.6	11.7	10.0	6.5	5.6	8.5	7.6	3.9	5.5	4.5	6.7	8.7	8.0	12.2	17.2	15.1	30.0	24	30.0	3.9	11.7	0	1
29 30 31	10.2							14.0	11.7		0.3				3.3		1.5	0.7	0.7	0.0		17.2	13.1			30.0	3.3	11.7	Ü	
Count	28	28	28	28	28	28	28	28	28	27	26	27	28	28	28	28	28	28	28	28	28	28	28	28	668					
Maximum	29.8	29.6	28.6	34.2	30.1	32.6	25.4	28.4	27.2	21.5	21.9	22.0	20.6	16.9	13.4	13.4	16.8	15.5	28.9	38.0	42.8	38.6	34.3	32.8	24					
Minimum	1.0	1.1	1.1	1.1	1.4	1.9	2.2	2.2	2.5	1.6	1.4	1.0	0.7	0.9	0.7	0.8	0.4	0.3	0.3	0.4	1.0	0.7	0.7	0.8	21					
Average	8.5	9.0	8.3	9.0	10.2	9.9	9.4	9.6	8.7	7.3	6.6	5.6	5.5	4.7	3.9	4.5	5.4	6.4	9.1	11.5	12.3	11.0	10.4	10.0						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly mum Daily		42. 20.
Data		2.2		3.0		3.7		4.3		5.3		6.7		9.1		12.9		19.4		23.7		32.6		42.8				ly Average		8.
Notes	С	- Calibratio	n / Span Cy	rcle N	A - No Data	Available	T -	- Test	A-	MOE Audit	M -	Equipment M	alfunction ,	/ Down																

											March	OURTICE 2017																		
Н	our																													
Day	11.7	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
1	11.7 1.5	3.5 1.4	6.5 1.3	5.6 1.0	2.3 1.1	3.4 1.7	6.9 1.7	1.2 2.7	1.0 2.3	2.5 2.2	3.6 2.0	2.8 2.1	0.7 1.7	1.3 1.3	1.6 1.5	2.3	1.7 2.4	1.5 3.0	1.2 3.3	1.5 3.0	2.8 3.3	1.5 2.4	2.0 3.3	2.4 4.8	24 24	11.7 4.8	0.7 1.0	3.0 2.2	0	,
3	5.7	3.8	3.2	4.7	10.9	12.0	14.0	9.1	8.3	2.2	1.3	1.3	1.4	1.5	1.3	2.0	1.7	2.5	4.5	3.5	3.6	3.9	5.8	2.5	24	14.0	1.3	4.6	0	ن ار
4	1.8	3.6	3.2	3.3	2.4	1.6	1.3	1.8	1.7	1.3	1.2	1.0	1.0	0.9	1.1	1.6	1.5	1.7	3.5	6.3	6.2	5.6	4.0	2.2	24	6.3	0.9	2.5	0	ءَ ار
5	2.9	3.2	4.1	4.1	4.2	4.4	3.4	2.7	1.6	1.3	0.8	0.4	0.4	0.3	0.2	0.3	0.4	1.3	2.5	1.2	0.6	0.5	0.4	0.7	24	4.4	0.2	1.7	0	آر ار
6	1.0	1.5	1.7	2.0	2.2	2.0	2.5	2.8	3.3	2.4	2.6	2.4	2.9	3.4	4.9	4.0	5.0	4.0	5.5	6.4	5.5	6.4	4.2	4.0	24	6.4	1.0	3.4	0	, (
7	7.4	2.6	3.3	2.7	2.4	4.4	6.1	4.0	3.2	8.4	17.4	2.5	1.7	1.6	1.4	1.5	1.4	1.6	1.5	1.3	7.8	4.3	6.1	9.0	24	17.4	1.3	4.3	0	,
8	5.5	3.3	2.5	2.3	2.6	1.9	1.3	1.5	1.4	1.3	1.1	0.9	0.7	0.7	0.8	2.2	2.3	3.4	2.2	4.1	4.7	6.2	2.0	1.6	24	6.2	0.7	2.4	0	(
9	2.6	1.6	1.4	1.4	1.5	2.7	5.3	4.2	2.5	1.6	1.5	1.6	1.2	1.0	1.6	2.0	2.2	4.6	4.1	11.4	9.2	12.9	21.0	28.4	24	28.4	1.0	5.3	0	(
10	12.8	5.8	2.9	1.3	2.1	2.1	2.1	2.5	2.3	1.7	2.0	1.6	1.2	1.2	1.2	1.4	1.5	2.0	2.3	2.2	3.0	3.5	2.3	2.3	24	12.8	1.2	2.6	0	(
11	1.5	3.4	4.6	5.0	12.1	7.4	4.4	2.6	1.4	1.0	1.3	0.9	1.1	1.0	1.1	1.3	1.3	1.4	1.6	2.3	1.6	1.6	1.4	1.3	24	12.1	0.9	2.6	0	, .
12	2.2 7.4	1.5 6.3	1.4 2.6	0.6 5.3	2.3 11.6	3.8 7.5	5.7 8.3	4.9 6.0	2.0 4.5	1.4 6.7	1.0 5.5	0.8 1.7	0.8 2.6	1.1 4.2	1.0 3.3	0.9 2.9	1.1	1.9 5.3	3.8 5.0	2.7 5.3	5.8 6.3	2.4 6.2	2.5 4.9	8.7 4.1	24 24	8.7 11.6	0.6 1.7	2.5 5.3	0	, ;
14	2.8	2.2	1.8	1.6	3.3	2.5	3.1	3.0	2.4	1.9	1.6	1.7	1.6	4.2 M	1.2	1.4	4.1 2.1	2.0	2.6	1.9	1.5	1.2	1.6	1.3	23	3.3	1.7	2.0	0	, `
15	0.9	1.3	0.9	0.9	0.9	1.1	2.1	3.0 C	2.4 C	1.5 C	3.0	2.9	2.8	2.6	2.4	2.5	2.5	3.1	3.5	3.4	3.1	3.3	3.7	4.0	21	4.0	0.9	2.4	0	ن ار
16	4.8	4.3	3.3	3.2	4.4	5.6	6.3	8.2	6.2	3.9	2.5	2.7	2.5	2.3	2.2	2.4	2.6	2.8	4.5	4.5	4.9	6.1	7.1	15.7	24	15.7	2.2	4.7	0	آ ار
17	14.2	19.4	12.7	24.8	26.8	10.9	24.3	36.9	34.3	11.9	4.5	8.7	6.9	6.9	3.8	3.4	2.0	1.9	2.4	3.1	19.6	36.9	25.3	17.7	24	36.9	1.9	15.0	0	,
18	17.1	10.6	8.8	7.1	15.4	18.5	9.0	12.2	12.7	20.6	16.9	5.7	7.6	11.6	5.3	5.3	5.5	5.2	5.1	5.0	4.6	3.7	6.5	4.3	24	20.6	3.7	9.3	0	, (
19	5.9	4.4	3.5	7.1	3.8	3.4	4.7	4.4	4.0	7.1	4.9	3.5	2.8	1.8	1.7	1.9	1.7	1.6	1.5	1.8	2.3	19.0	31.6	27.8	24	31.6	1.5	6.3	0	C
20	9.1	3.1	5.0	7.5	22.6	27.0	24.1	23.7	3.7	4.3	4.5	6.6	4.8	2.8	3.6	3.6	3.4	3.8	4.2	4.0	3.4	3.2	3.0	3.3	24	27.0	2.8	7.7	0	C
21	4.2	20.8	15.5	23.4	24.4	23.1	24.7	21.1	16.2	11.4	10.1	8.1	7.3	6.7	4.8	3.5	3.7	3.4	4.2	3.8	3.2	3.1	2.3	2.6	24	24.7	2.3	10.5	0	C
22	2.2	1.9	1.9	1.8	2.9	4.2	3.7	2.8	2.9	3.0	2.2	1.9	2.1	2.1	2.4	2.1	3.1	3.4	5.4	4.5	5.3	4.8	4.4	5.3	24	5.4	1.8	3.2	0	
23	8.9	7.6	15.7	21.0 2.7	32.5	31.3 7.3	28.7	22.6	19.7	2.9	1.6 2.7	1.3	1.3	1.3 2.5	2.0	1.7 3.8	1.9	3.0	3.1	3.6	2.6	1.5 7.9	1.9 8.0	1.6 6.4	24 24	32.5	1.3 2.3	9.1 5.0	0	
25	3.2 7.4	4.0 5.4	2.6 4.9	5.9	14.5 3.7	7.5 5.5	2.4 5.6	2.3 3.8	2.4 4.0	2.4 4.4	4.3	2.5 2.5	2.4 2.7	1.6	3.8 1.3	1.3	2.8 1.3	12.4 1.3	9.0 2.0	6.6 3.2	6.1 2.5	3.3	6.4	7.9	24	14.5 7.9	1.3	3.8	0	, ;
26	15.2	11.1	11.0	4.0	3.2	4.1	14.3	7.0	9.8	7.6	4.0	5.2	7.7	11.4	18.3	21.2	24.0	23.5	17.7	12.5	19.6	21.6	6.2	6.6	24	24.0	3.2	11.9	0	ن ار
27	5.2	7.0	4.6	8.7	3.5	9.1	6.4	6.0	7.5	7.3	4.9	2.8	2.3	2.7	2.5	3.1	4.0	5.7	6.3	4.2	11.8	12.1	3.2	3.6	24	12.1	2.3	5.6	0	آ ار
28	13.5	10.1	4.3	4.2	4.6	6.5	5.8	5.5	3.9	2.9	2.8	2.8	2.6	2.4	3.2	2.8	4.1	4.1	5.8	7.6	9.9	5.6	7.5	6.3	24	13.5	2.4	5.4	0	ر ار
29	3.9	3.7	3.1	5.3	14.1	17.8	15.3	9.9	11.3	5.0	2.0	2.2	1.7	2.1	1.4	1.1	1.1	1.3	7.9	6.9	27.3	25.6	19.7	5.3	24	27.3	1.1	8.1	0	i
30	6.1	8.5	13.6	11.3	6.7	8.8	11.4	12.6	9.6	4.4	3.6	2.0	1.1	1.0	1.1	4.4	3.9	2.1	3.0	8.6	5.8	16.8	3.5	8.2	24	16.8	1.0	6.6	0	(
31	6.6	21.1	8.1	2.3	3.9	4.8	5.1	10.9	17.4	9.2	22.6	22.5	21.6	19.4	15.9	13.5	7.3	6.6	4.6	5.2	4.3	3.9	3.6	3.4	24	22.6	2.3	10.2	0	
Count	31	31	31	31	31	31	31	30	30	30	31	31	31	30	31	31	31	31	31	31	31	31	31	31	740					
Maximum	17.1	21.1	15.7	24.8	32.5	31.3	28.7	36.9	34.3	20.6	22.6	22.5	21.6	19.4	18.3	21.2	24.0	23.5	17.7	12.5	27.3	36.9	31.6	28.4	24					
Minimum	0.9	1.3	0.9	0.6	0.9	1.1	1.3	1.2	1.0	1.0	0.8	0.4	0.4	0.3	0.2	0.3	0.4	1.3	1.2	1.2	0.6	0.5	0.4	0.7	21					
Average	6.3	6.1	5.2	5.9	8.0	8.0	8.4	8.0	6.8	4.8	4.5	3.4	3.2	3.4	3.2	3.3	3.3	3.9	4.3	4.6	6.4	7.6	6.6	6.6						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly		36.9
Data		1.3		1.7		2.3		2.7		3.4		4.2		5.3		7.3		12.6		19.8		28.2		36.9				mum Daily ly Average		15. 5.
Notes	C -	- Calibratior	ı / Span Cy	cle N	A - No Data	Available	T -	- Test	A-	MOE Audit	M	- Equipment M	lalfunction	/ Down																

												nuary	ndle Road 2017																		
	Hour																														
Day	(•	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
	3.2		4.0	5.5	3.1	3.4	4.3	4.8	8.1	8.0	5.1	5.3	4.4	4.5	3.1	2.9	4.7	4.4	5.6	6.2	7.3	3.1	5.8	5.6	6.1	24	8.1	2.9	4.9	0	0
	6.9		7.2	8.3	9.4	10.5	7.8	6.7	6.4	5.1	4.1	4.0	3.0	2.7	3.0	4.2	8.9	5.6	5.1	5.2	4.8	4.8	12.9	4.3	3.5	24	12.9	2.7	6.0	0	0
	3.1		2.8 2.7	2.5 4.2	3.0 7.7	3.8 17.2	5.4 17.8	3.5 13.6	4.2 9.6	2.8 10.9	3.2 10.0	3.4 7.0	2.6 6.4	3.3 5.5	4.5 5.4	4.5 5.4	6.7 4.6	6.3 4.7	5.1 5.5	4.7 4.9	4.2 4.5	8.5 5.6	3.7 5.8	2.7 5.1	2.4 4.6	24 24	8.5 17.8	2.4 2.2	4.0 7.1	0	, 0
	4.0		3.6	3.8	3.5	3.5	3.8	4.4	7.1	9.1	8.6	8.9	8.4	6.9	7.2	5.5	4.0	3.1	3.5	3.5	3.3	3.1	5.1	5.0	6.7	24	9.1	3.1	5.3	0	. 0
	7.7		10.2	8.9	10.2	6.8	7.2	11.5	23.2	22.3	13.4	8.6	8.5	8.2	8.7	9.7	10.4	7.7	5.3	5.3	6.8	5.3	11.6	11.4	7.8	24	23.2	5.3	9.9	0	١
	6.7		7.1	8.0	7.9	9.6	8.9	6.1	6.4	6.0	3.7	6.1	13.5	12.9	6.1	5.5	6.9	8.3	5.6	4.1	6.2	11.5	10.7	10.2	11.9	24	13.5	3.7	7.9	0	o
8	12.7	7	10.6	9.1	8.3	3.8	3.6	2.2	1.8	1.3	0.9	0.9	0.6	0.7	0.7	0.7	0.7	0.8	1.4	2.1	3.3	5.2	14.3	8.9	11.4	24	14.3	0.6	4.4	0	0
9	14.3	3	13.1	12.6	12.4	12.6	9.1	9.6	4.3	5.2	3.1	4.5	4.1	4.6	4.9	6.6	9.8	9.8	10.7	18.4	17.2	14.8	14.4	18.7	8.1	24	18.7	3.1	10.1	0	0
10	6.7		8.8	7.7	7.7	7.8	7.0	7.5	6.5	6.9	7.0	6.3	4.9	5.0	4.8	5.7	6.9	6.5	6.9	7.9	9.2	9.2	9.6	9.4	4.0	24	9.6	4.0	7.1	0	0
1:	3.9		3.0	4.9	5.0	4.7	5.8	7.4	10.1	10.7	9.7	6.6	4.9	6.1	5.4	7.3	9.9	15.6	18.8	21.4	9.4	22.2	16.0	9.8	10.8	24	22.2	3.0	9.6	0	0
12	11.3		7.6	14.5	4.4	9.9	9.9	10.5	7.6	6.4	4.0	3.2	3.5	3.9	3.9	4.5	4.3	2.3	2.6	2.3	2.1	2.1	7.2	7.5	4.1	24	14.5	2.1	5.8	0	0
13	3.8		7.2	1.4	1.1	1.0	1.4	1.5	1.9	4.5	3.0	2.8	1.9	1.4	1.4	0.9	1.0	1.1	0.9	0.8	0.5	0.6	0.5	0.6	0.7	24	7.2	0.5	1.8	0	0
14	0.9		1.6 30.4	3.0 31.5	3.9 32.5	1.5 23.0	1.8 21.1	2.9 26.0	3.2 21.3	3.0 22.4	3.1 12.0	3.2 2.0	4.3 1.3	2.8	4.8 1.5	2.9 1.6	3.3 2.9	2.8 3.1	4.0 6.8	3.3 11.4	6.3 9.4	13.3 6.8	20.1 8.8	24.2 11.0	32.6 11.3	24 24	32.6 33.3	0.9 1.3	6.4 13.9	0	١
16	5.8		15.3	12.4	32.5 11.4	23.0 18.7	20.4	18.8	23.1	22.4	28.0	22.6	1.5	1.3 17.4	22.0	19.6	23.0	27.9	27.7	28.3	26.9	21.4	25.6	25.0	22.5	24	28.3	5.8	20.9	0	1 0
17	20.6		23.3	22.2	17.9	25.2	20.5	20.2	18.1	17.9	12.7	11.8	9.4	9.1	8.9	6.6	7.4	7.7	8.8	5.8	5.1	8.0	5.2	5.1	4.0	24	25.2	4.0	12.6	0	١
18	3.6		6.7	8.9	9.6	8.9	10.1	11.1	15.5	16.0	11.8	6.9	4.6	4.3	5.3	4.8	5.2	7.7	11.8	18.0	16.0	11.9	11.1	12.9	14.1	24	18.0	3.6	9.9	0	ا
19	13.4		11.9	4.2	10.2	13.0	7.9	14.5	26.5	29.0	25.8	12.4	6.0	8.7	14.3	14.0	14.8	22.4	17.2	14.3	21.4	15.3	12.9	13.5	13.4	24	29.0	4.2	14.9	0	0
20	7.9	9	7.3	6.6	7.4	7.9	10.0	7.3	8.9	6.7	3.3	3.2	4.6	4.0	3.3	3.8	4.0	5.1	6.7	9.0	6.3	5.1	6.5	6.4	7.6	24	10.0	3.2	6.2	0	0
2:	9.0)	10.5	8.8	13.2	15.3	13.4	15.2	12.0	11.3	10.6	7.4	10.2	10.3	9.8	10.6	10.6	9.1	10.8	11.0	9.2	8.2	7.5	6.0	5.9	24	15.3	5.9	10.2	0	0
22	5.3		6.6	6.5	5.5	6.8	4.4	4.6	3.0	4.7	3.0	11.0	4.6	4.5	6.0	4.6	7.9	2.6	2.4	2.3	1.8	1.6	1.5	1.5	2.6	24	11.0	1.5	4.4	0	0
23	2.1		3.2	1.5	3.0	1.8	1.9	1.8	5.8	2.7	2.3	3.7	3.5	2.6	2.2	2.4	2.0	1.8	2.5	2.1	2.1	2.1	3.0	2.0	1.9	24	5.8	1.5	2.5	0	0
24	2.1		2.5	1.7	1.7	1.7	1.7	1.7	1.9	1.7	1.9	1.7	1.4	1.4	1.6	1.7	1.8	2.5	2.6	5.5	16.3	19.2	9.4	8.2	7.4	24	19.2	1.4	4.1	0	0
25	5.2		2.1	3.7 10.4	2.5 18.5	2.3 16.9	10.1 22.0	20.7 22.7	18.8	22.2 17.6	18.2 10.4	17.3 9.2	10.4	9.3	8.0	C 1.8	1 7	11.7	14.0	16.0	15.1 5.8	10.7	10.7	8.0	6.9	22 24	22.2 22.7	2.1	11.1	0	١
20	0.9		3.5 0.8	1.0	1.5	2.7	4.9	8.3	21.4 11.8	11.3	9.9	7.1	4.9 2.1	3.9 1.5	2.4 1.2	1.5	1.7 2.1	1.9 2.8	2.1 6.3	6.6 6.9	6.7	2.2 4.3	1.9 8.2	1.4 9.9	1.4 7.0	24	11.8	1.4 0.8	8.1 5.0	0	1 0
28	4.8		3.4	3.2	3.2	3.1	3.4	6.1	5.9	5.5	5.1	5.5	5.8	5.6	5.3	5.6	7.5	5.1	5.2	5.3	5.2	6.1	5.4	6.0	9.6	24	9.6	3.1	5.3	0	ان
29	8.0		7.9	3.3	3.1	1.9	1.6	2.0	5.0	5.2	2.6	1.0	0.9	0.7	0.9	0.8	0.6	0.6	0.7	0.5	1.0	0.8	0.8	0.5	0.3	24	8.0	0.3	2.1	0	o o
30	0.3		0.3	0.3	0.3	0.5	0.6	0.7	1.6	1.2	0.6	0.4	0.4	0.7	1.4	1.8	3.9	4.1	2.2	1.4	1.9	2.4	2.4	1.6	10.2	24	10.2	0.3	1.7	0	0
31	17.5	5	13.7	7.7	4.5	3.8	3.2	5.4	8.3	5.5	3.0	3.5	3.9	4.8	4.3	3.6	3.8	3.8	4.2	3.6	3.0	6.1	5.9	4.8	3.2	24	17.5	3.0	5.5	0	0
Count	31		31	31	31	31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	742					
Maximum	33.3		30.4	31.5	32.5	25.2	22.0	26.0	26.5	29.0	28.0	22.6	15.9	17.4	22.0	19.6	23.0	27.9	27.7	28.3	26.9	22.2	25.6	25.0	32.6	24					
Minimum	0.3		0.3	0.3	0.3	0.5	0.6	0.7	1.6	1.2	0.6	0.4	0.4	0.7	0.7	0.7	0.6	0.6	0.7	0.5	0.5	0.6	0.5	0.5	0.3	22					
Average	7.5	•	7.7	7.4	7.5	8.1	8.1	9.0	10.0	9.9	7.8	6.4	5.2	5.1	5.2	5.0	6.1	6.4	6.9	7.7	7.7	7.8	8.5	8.0	7.9						
Percentile	s		10		20		30		40		50		60		70		80		90		95		99		100			Maxim	um Hourly		33.3
Data			1.6		2.6		3.5		4.6		5.5		6.9		8.8		10.7		16.0		21.4		27.9		33.3				mum Daily ly Average		20.9 7.4
Notes		C - C	Calibration	n / Span Cy		A - No Data		Т-	Test	A	- MOE Audit	M	- Equipment M	alfunction ,	[/] Down	R ·	- Rate of C	hange													

												bruary	ndle Road 2017																		
	Hour																														
Day	_	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
	1 3.:		3.2	2.0	2.8	2.8	9.9	24.9	15.6	13.9	12.6	9.0	4.2	1.7	1.1	3.6	1.4	1.7	9.7	15.8	5.9	12.6	7.4	1.9	0.9	24	24.9	0.9	7.0	0	0
	0.1		0.9	0.9	1.3	1.2	1.7	3.1	5.4	9.9	5.1	4.1	2.9	1.6	1.6	2.1	1.8	1.7	5.5	6.6	7.2	7.4	6.7	5.3	4.9	24	9.9	0.8	3.7	0	0
	4.4		5.3	6.0	5.4	6.6	10.6	13.6	14.6	15.2	15.3	6.6	4.0	2.0	3.0	2.0	2.6	1.8	3.2	4.0	7.3	9.2	9.8	8.0	9.2	24	15.3	1.8	7.1	0	0
	4 10.6 5 5.5		8.3 3.2	6.3 3.0	6.6 5.3	7.1 3.2	8.1 4.8	4.9 4.2	4.0 4.1	5.3 7.2	4.6 6.1	3.1 6.6	4.1 6.8	5.4 8.0	4.5 8.2	3.3 8.2	3.8 10.0	5.4 10.7	7.0 8.5	6.4 2.2	6.7 1.5	6.2 1.4	5.8 1.4	9.5 1.1	7.9 1.0	24 24	10.0 10.7	3.1 1.0	6.0 5.1	0	. 0
	6 0.0		0.4	0.5	0.5	0.5	0.8	1.3	7.1	11.9	13.3	11.5	6.0	5.6	7.7	7.5	6.6	12.2	13.0	10.5	13.9	17.0	26.2	24.4	15.5	24	26.2	0.4	8.9	0	. 0
	7 8.:		4.6	3.4	5.1	6.8	6.7	6.1	4.8	3.1	6.3	5.0	4.3	5.6	7.0	5.2	4.9	5.1	4.8	5.6	7.8	8.9	10.9	13.9	15.8	24	15.8	3.1	6.7	0	, o
	13.		22.9	12.3	7.4	10.9	5.7	1.7	1.9	1.6	1.3	1.2	1.3	0.8	0.8	0.9	0.9	0.8	0.6	0.7	0.6	0.6	0.3	0.3	0.4	24	22.9	0.3	3.7	0	0
	9 0.	5	0.5	0.3	0.6	0.4	0.5	0.8	1.2	1.8	1.1	0.6	0.6	0.7	0.5	1.0	0.6	1.4	2.3	3.2	3.6	2.2	3.2	3.3	1.7	24	3.6	0.3	1.4	0	0
1	3.	5	3.4	1.6	2.8	1.3	1.3	0.7	1.5	2.0	1.6	2.7	8.3	8.8	6.6	4.2	3.8	4.9	4.1	4.3	3.2	6.7	5.0	6.0	7.2	24	8.8	0.7	4.0	0	0
1	1 7.4	4	8.2	9.8	9.3	7.6	13.2	18.0	18.1	24.3	14.3	11.5	9.8	7.6	3.6	3.4	3.3	4.4	4.1	4.3	6.0	9.9	5.2	4.9	4.3	24	24.3	3.3	8.9	0	0
1	2 2.		2.8	5.8	2.9	2.2	2.4	2.5	3.7	4.7	4.9	4.3	3.5	3.4	3.1	3.5	4.3	11.5	16.0	16.7	12.9	16.1	7.6	2.3	2.0	24	16.7	2.0	5.9	0	0
1	3 1.0		1.5	1.2	1.0	1.2	1.2	1.1	1.2	1.2	1.4	0.9	0.9	1.0	1.5	1.1	1.5	1.3	1.3	2.4	4.4	6.3	10.4	13.8	12.9	24	13.8	0.9	3.0	0	0
1	4 6.!		7.1	5.5	9.0	10.8	18.2	17.2	9.4	7.1	6.9	6.2	6.5	7.0	5.4	7.7	7.9	11.3	17.9	20.6	15.6	16.4	17.9	25.9	25.0	24	25.9	5.4	12.0	0	0
1	18.		10.7	16.3	20.5	17.0	5.6	26.0	32.3	26.1	13.4	7.0	2.5	2.0	1.5	1.4	1.4	1.4	1.2	1.2	1.4	1.4	1.3	1.3	0.8	24	32.3	0.8	8.8	0	0
1	6 0.°		0.6	0.8	0.8	0.7	0.6	0.8	0.9	1.0	0.9	0.8	0.9	0.6	0.7	0.9	0.9	1.7	1.9	2.8	3.1	3.1	1.7	2.0	3.5	24	3.5	0.6	1.3	0	0
1	7 7.5 8 9.5		19.4 8.3	11.7 10.7	3.5 17.5	2.2 7.0	6.1 6.2	8.1 6.5	9.5 5.1	8.4 6.5	5.1 10.2	4.7 8.2	2.4 6.0	2.1 6.0	2.0 5.8	5.8 6.3	4.0 7.6	3.6 8.5	3.6 8.7	7.0 8.1	13.9 12.4	14.6 11.7	7.4 9.6	10.7 10.3	7.2 10.5	24 24	19.4 17.5	2.0 5.1	7.1 8.6	0	0
1	9 6.1		10.4	6.1	5.0	8.3	8.6	10.2	13.8	17.6	11.4	3.7	6.4	3.3	1.3	1.3	1.0	0.9	1.2	1.6	2.4	1.8	1.2	1.2	1.3	24	17.5	0.9	5.3	0	. 0
2			1.0	1.0	1.0	1.0	1.1	1.9	3.8	2.6	1.1	1.3	1.5	1.5	2.2	1.3	1.5	1.2	4.0	7.3	4.4	10.1	7.0	8.4	9.7	24	10.1	1.0	3.2	0	0
2	1 4.0		2.0	1.2	3.7	4.2	3.1	5.7	4.0	4.0	4.3	3.0	4.2	6.2	6.9	7.0	9.6	21.5	19.0	12.8	10.6	12.1	8.3	6.5	6.0	24	21.5	1.2	7.1	0	0
2	2 9.:		6.4	5.6	4.9	7.0	8.0	9.6	16.3	15.4	15.5	15.8	13.2	С	С	С	6.2	6.3	8.3	12.8	12.2	12.3	14.7	18.0	14.5	21	18.0	4.9	11.1	0	0
2	3 14.	5	14.3	14.8	14.1	16.3	9.3	14.6	22.9	8.6	4.9	6.6	5.2	4.6	4.6	6.0	4.7	1.9	1.7	1.6	1.5	1.1	0.8	1.1	3.1	24	22.9	0.8	7.5	0	0
2	4 1.:	3	1.9	1.5	3.3	1.8	2.6	1.4	5.8	5.2	3.6	3.5	4.7	2.4	1.6	1.5	1.9	1.8	1.8	1.8	6.6	5.1	4.0	3.0	3.4	24	6.6	1.3	3.0	0	0
2	5 4.0	6	7.3	2.6	5.0	7.0	5.2	4.9	5.3	6.4	3.9	5.8	5.6	6.2	5.2	4.0	2.3	1.4	1.6	1.5	1.4	1.3	1.3	0.6	1.3	24	7.3	0.6	3.8	0	0
2	<mark>6</mark> 1.0	0	0.9	0.3	0.4	0.4	1.1	4.9	4.2	4.5	2.6	2.2	1.9	1.3	1.5	1.5	1.7	2.3	1.7	1.9	2.6	2.2	1.9	2.5	3.9	24	4.9	0.3	2.1	0	0
2	7 2.:		2.3	2.2	4.9	4.1	5.3	5.8	8.7	8.3	7.7	7.9	6.4	4.1	5.6	5.8	5.7	6.4	1.3	1.8	3.3	5.6	3.4	4.4	8.7	24	8.7	1.3	5.1	0	0
2	8 12.°	1	7.6	6.6	6.6	7.9	20.5	18.2	14.4	10.4	11.4	8.5	5.8	7.7	6.8	5.0	4.2	7.3	9.2	9.6	9.3	11.6	16.0	7.9	14.1	24	20.5	4.2	10.0	0	0
3 Count	2	Q.	28	28	28	28	28	28	28	28	28	28	28	27	27	27	28	28	28	28	28	28	28	28	28	669					
Maximun			22.9	16.3	20.5	17.0	20.5	26.0	32.3	26.1	15.5	15.8	13.2	8.8	8.2	8.2	10.0	21.5	19.0	20.6	15.6	17.0	26.2	25.9	25.0	24					
Minimum	0.		0.4	0.3	0.4	0.4	0.5	0.7	0.9	1.0	0.9	0.6	0.6	0.6	0.5	0.9	0.6	0.8	0.6	0.7	0.6	0.6	0.3	0.3	0.4	21					
Average	5.8		5.9	5.0	5.4	5.3	6.0	7.8	8.6	8.4	6.8	5.4	4.6	4.0	3.7	3.8	3.8	5.0	5.8	6.3	6.5	7.7	7.0	7.1	7.0						
Percentile	es		10		20		30		40		50		60		70		80		90		95		99		100			Maxim	um Hourly		32.3
Data			1.0		1.5		2.2		3.5		4.8		6.0		7.1		9.2		13.6		16.3		24.6		32.3				mum Daily ly Average		12.0 6.0
Notes		C - C	Calibration	/ Span Cy	cle N	A - No Data	Available	T -	- Test	A	- MOE Audit	М	- Equipment M	alfunction /	Down	R -	Rate of Ch	nange													

											March	indle Road 2017																		
-	lour																													
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>10
1	18.5	15.4 0.2	13.2 0.7	5.9 0.2	9.6 0.1	8.7 0.0	8.7 0.3	3.9 0.6	4.6 0.6	6.8 0.5	10.3 0.4	7.1 0.5	3.3 0.4	5.0 0.3	6.9 0.3	8.4 0.4	7.5 0.7	4.6 0.6	5.2	5.5 0.5	4.7 0.5	3.6 0.5	2.5 0.2	0.5 0.4	24 24	18.5 0.7	0.5 0.0	7.1 0.4	0	
3	0.2 0.4	0.2	0.7	0.4	5.1	5.6	11.2	3.5	5.7	0.5	0.4	0.5 A	0.4 A	0.5	0.3	0.4	0.7	0.0	0.6 0.2	0.0	0.0	0.0	0.2	0.4	22	11.2	0.0	1.6	r	,
4	0.3	0.2	0.6	0.5	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.4	0.2	0.5	0.3	0.5	24	0.6	0.0	0.2	0	ن ار
5	0.2	1.0	1.8	1.7	1.6	4.8	6.4	2.5	0.8	0.5	0.4	0.2	0.1	0.4	1.7	0.5	0.7	0.5	1.0	1.5	1.8	3.6	1.8	1.0	24	6.4	0.1	1.5	0	, l
6	1.0	1.4	1.7	1.8	1.7	1.6	1.7	2.7	3.7	5.2	2.5	2.3	2.5	2.8	7.7	4.4	4.9	6.8	7.7	14.6	17.7	9.3	13.4	14.7	24	17.7	1.0	5.6	0	, (
7	7.1	5.9	8.7	13.3	7.8	5.8	7.6	16.2	7.5	15.3	21.0	17.7	6.0	6.7	7.0	10.0	8.8	8.7	6.7	6.6	10.4	17.1	18.2	12.9	24	21.0	5.8	10.5	0	, C
8	15.6	11.1	9.9	10.9	10.0	10.9	11.4	6.2	3.2	2.7	5.6	2.3	2.3	2.3	2.9	4.9	2.8	1.5	1.4	1.2	1.5	1.5	1.3	1.2	24	15.6	1.2	5.2	0	/
9	1.5	1.2	0.4	0.3	0.3	0.7	0.9	1.3	1.1	0.9	0.4	0.7	0.4	0.7	0.6	0.7	0.9	1.0	1.4	1.3	0.7	1.5	2.5	5.1	24	5.1	0.3	1.1	0	
10	3.3	1.8	0.6	0.0	0.1	0.1	0.1	0.2	0.1	0.0	0.0	0.2	0.2	0.3	0.3	0.6	0.4	0.1	0.2	0.2	0.1	0.1	0.0	0.1	24	3.3	0.0	0.4	0	, ,
11	0.1 0.0	0.0 0.0	0.1 0.0	0.6 0.0	0.7 0.0	2.5 0.4	0.2 1.6	0.1 2.9	0.1	0.1 0.1	0.1 0.0	0.2 0.0	0.1 0.2	0.2 0.1	0.3 0.2	0.1	0.1 0.0	0.0 0.1	0.1 0.3	0.0 0.2	0.0 0.2	0.0 0.2	0.0 0.0	0.0	24 24	2.5 2.9	0.0 0.0	0.2 0.3	0	, ,
13	0.0	0.0	0.0	0.0	0.0	3.5	6.8	2.9	1.7	1.3	1.2	0.0	0.2	0.1	2.1	1.5	1.1	0.1	0.3	0.2	4.5	0.2	0.5	0.0	24	6.8	0.0	1.4	r) (
14	0.3	0.3	0.2	0.3	0.6	0.9	1.2	1.3	1.0	0.4	0.3	0.4	0.3	0.3	M	0.0	0.0	0.1	0.4	0.5	1.3	0.0	0.0	0.0	23	1.3	0.0	0.4	0	ن ار
15	0.0	0.0	0.0	0.0	0.0	С	С	0.6	0.8	0.4	0.3	0.5	0.2	0.0	0.1	0.1	0.0	0.2	0.3	0.2	0.2	0.1	0.2	0.0	22	0.8	0.0	0.2	0	,
16	0.1	0.0	0.0	0.0	0.0	0.0	0.2	0.5	1.6	1.5	0.4	0.0	0.0	0.3	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.4	1.1	3.2	24	3.2	0.0	0.4	0	, (
17	5.1	4.6	1.8	2.0	8.8	1.0	9.5	27.0	29.5	20.5	5.8	0.9	9.5	6.8	7.1	3.9	5.4	2.5	2.9	6.1	12.6	7.9	11.3	12.3	24	29.5	0.9	8.5	0	/ (
18	17.1	13.9	11.3	11.6	8.1	7.0	4.8	2.6	1.8	1.6	2.1	2.9	1.5	1.9	3.8	2.1	4.9	2.2	7.1	2.1	1.9	2.8	2.0	3.6	24	17.1	1.5	5.0	0	/ (
19	1.9	3.0	1.7	1.5	4.4	1.5	1.7	1.1	1.0	1.4	1.8	1.7	1.7	9.9	5.6	1.2	1.6	1.5	2.3	3.8	7.3	11.6	9.1	6.7	24	11.6	1.0	3.5	0	<u></u>
20	7.5	13.2	9.2	8.2	7.1	14.0	10.6	7.0	9.1	8.3	7.2	9.4	7.4	5.4	4.4	5.4	6.1	7.0	11.2	15.1	19.0	16.1	15.3	9.1	24	19.0	4.4	9.7	0	
21	8.0 0.0	6.6 0.0	8.1 0.0	15.0 0.0	18.3 0.0	16.2 0.0	15.2 0.1	25.9 0.2	15.7 0.1	6.6 0.1	12.8 0.0	11.0 0.0	9.6 0.0	7.4 0.0	6.9 0.1	1.4 0.0	1.2 0.0	1.1 0.1	0.8 0.4	0.9 0.7	0.7 0.0	0.8 0.0	0.2 0.0	0.0	24 24	25.9 0.7	0.0 0.0	7.9 0.1	C	
23	0.0	18.4	7.3	18.5	8.1	9.9	11.7	15.3	12.3	4.8	2.7	1.4	1.9	1.3	2.4	2.1	4.8	6.6	8.8	10.7	9.8	6.4	5.2	3.1	24	18.5	0.0	7.2	0	
24	5.4	2.0	5.5	2.6	14.3	15.4	8.6	6.1	7.6	8.8	8.2	8.2	8.2	8.2	12.5	14.7	19.3	13.9	4.4	3.2	3.1	2.0	2.4	2.3	24	19.3	2.0	7.8	0	آ ار
25	2.1	1.9	2.8	2.7	0.9	2.5	1.1	0.9	1.1	2.7	1.2	0.5	0.5	1.1	1.6	2.2	0.8	3.1	1.0	0.8	1.1	2.0	3.0	2.3	24	3.1	0.5	1.7	0	,
26	2.2	3.5	2.1	1.9	2.4	0.9	1.3	1.5	1.6	2.0	1.6	1.4	1.3	2.3	1.5	1.7	2.2	2.2	4.0	5.4	4.5	3.0	5.3	2.9	24	5.4	0.9	2.4	0	, (
27	3.4	3.2	3.9	3.4	4.1	4.8	7.0	18.8	16.3	12.7	11.6	6.5	10.3	12.6	12.3	11.9	14.4	13.0	8.1	22.7	14.7	14.2	24.9	13.6	24	24.9	3.2	11.2	0	, C
28	11.6	6.5	1.4	1.3	1.0	0.9	0.8	1.1	0.7	0.5	0.5	0.6	0.3	0.2	0.1	0.2	0.2	0.2	0.5	0.4	0.3	0.3	0.4	0.3	24	11.6	0.1	1.3	0	· (
29	0.1	0.0	0.0	0.0	1.5	2.0	2.1	3.5	4.3	4.3	1.8	2.1	2.8	2.1	2.1	1.7	1.9	4.4	8.1	6.6	3.9	4.8	3.0	3.4	24	8.1	0.0	2.8	0	
30	0.9	0.6	3.1	1.4	1.8	1.7	2.3	2.4	4.3	3.1	1.8	2.1	5.3	11.0	2.1	0.9	1.0	2.6	2.5	3.4	1.3	3.0	2.1 0.7	4.0 0.7	24 24	11.0	0.6	2.7 2.5	0	
Count	2.1 31	4.2 31	0.8	1.3 31	1.1 31	1.3 30	1.6 30	2.7 31	2.0 31	2.3	4.2 31	3.1	4.4 30	5.2 31	5.6 30	5.4 31	3.5	2.4 31	1.4 31	1.8 31	1.4 31	1.2 31	31	31	739	5.6	0.7	2.5		Ι
Maximum	18.5	18.4	13.2	18.5	18.3	16.2	15.2	27.0	29.5	20.5	21.0	17.7	10.3	12.6	12.5	14.7	19.3	13.9	11.2	22.7	19.0	17.1	24.9	14.7	24					
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	22					
Average	3.7	3.9	3.1	3.5	3.9	4.2	4.6	5.2	4.5	3.7	3.4	2.8	2.7	3.1	3.3	2.8	3.1	2.8	2.9	3.8	4.1	3.7	4.1	3.4						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly mum Daily		29.! 11.:
Data		0.0		0.2		0.5		0.9		1.6		2.3		3.9		6.7		10.7		14.4		19.2		29.5			Month	ly Average		3.
Notes	С	- Calibratio	n / Span Cy	/cle NA	A - No Data	Available	Τ-	- Test	A-	MOE Audit	М	- Equipment M	lalfunction	/ Down	R ·	- Rate of Ch	nange							'				•		

Figure C-1 Time History Plots of Measured Hourly Average and 24 Hour Average NO₂ Concentrations – Courtice (WPCP) Station

Figure C-2 Time History Plots of Measured Hourly Average and 24 Hour Average NO₂ Concentrations – Rundle Road Station

Appendix D NOX Data Summaries and Time History Plots May 9, 2017

Appendix D NO_X DATA SUMMARIES AND TIME HISTORY PLOTS

Project No.: 160950528 D.1

												NOx CO	URTICE																		
												nuary	2017																		
	Hou	ır									(pp	<u></u>																			
Day		0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
	1	4.7 18.4	4.7 10.5	3.0 10.9	3.8 11.3	5.5 11.4	6.7 8.9	6.4 9.9	5.4 10.8	5.2	5.0	6.3 22.1	5.0 10.3	3.0 7.1	2.3 29.3	2.6 27.3	3.0 21.5	2.8 26.5	3.5 21.2	3.4 14.3	2.3 7.2	1.7 7.3	2.0 5.0	5.1 5.0	12.0 3.7	24 24	12.0 29.3	1.7 3.7	4.4	0	0
	3	7.9	3.6	3.1	14.9	31.8	12.3	9.9 8.7	5.4	6.8 3.8	8.8 4.5	6.6	6.1	8.6	7.9	15.0	16.8	15.4	14.1	17.6	10.8	10.3	11.6	8.5	9.6	24	31.8	3.1	13.1 10.6	0	i o
	4	6.9	10.6	11.2	11.2	15.9	15.5	12.0	4.5	7.0	7.8	4.5	3.7	3.6	4.4	3.9	2.8	3.5	3.5	3.0	3.2	3.1	3.0	2.8	2.2	24	15.9	2.2	6.2	0	0
	5	2.4	2.1	2.0	2.1	1.8	1.9	2.2	4.5	6.0	6.4	6.6	7.9	6.1	5.4	6.4	6.2	5.4	8.5	9.9	9.6	8.5	8.6	6.0	11.0	24	11.0	1.8	5.7	0	0
	6	11.2	9.2	9.2	8.9	11.4	11.2	13.4	15.8	20.0	21.8	14.5	11.1	14.5	13.1	11.3	11.9	12.4	12.3	8.8	10.4	12.9	13.6	20.8	19.6	24	21.8	8.8	13.3	0	0
	7	17.6 12.4	27.9 12.3	23.2 13.2	31.0 11.4	29.6 6.5	30.5 4.6	24.8 4.7	25.8 6.2	15.7 4.8	14.8 2.7	19.4 3.3	21.3 2.0	6.3 2.5	6.7 1.8	5.1 2.0	7.9 2.5	10.2 2.2	6.4 7.2	5.1 12.3	6.9 22.1	10.1 39.6	7.8 16.7	7.3 14.9	10.0 19.6	24 24	31.0 39.6	5.1 1.8	15.5 9.5	0	1
	9	22.5	17.2	16.8	18.4	19.9	17.7	12.6	1.4	1.2	1.6	2.4	2.5	2.7	2.3	3.6	5.4	5.7	6.5	13.4	26.0	29.5	33.8	27.8	4.3	24	33.8	1.2	12.3	0	0
	10	4.3	4.9	5.8	5.8	5.9	4.3	3.8	3.5	3.8	3.9	3.3	3.0	3.1	2.6	3.1	2.6	2.6	2.7	2.9	3.6	3.3	9.1	3.9	2.1	24	9.1	2.1	3.9	0	0
	11	1.8	1.9	3.2	2.9	3.1	3.5	3.7	5.5	6.7	6.1	4.6	3.1	2.7	2.7	2.6	3.3	21.4	35.0	15.6	19.7	13.8	7.0	4.4	10.2	24	35.0	1.8	7.7	0	0
	12	5.2	12.4	13.0	17.6 2.3	4.3	2.5	10.3	14.3 5.6	9.4	10.2	8.0 4.2	7.7 3.7	9.4	9.7 2.6	11.7	8.2	6.4	5.3 10.6	6.9	5.5	7.4	7.9	7.5	5.3 3.0	24	17.6	2.5	8.6 4.5	0	0
	14	3.9 5.2	5.7 3.6	1.8 2.9	3.2	2.3 5.5	6.0 4.0	5.7 4.3	6.7	6.1 4.7	5.9 6.7	16.8	10.3	3.0 8.8	3.6 4.4	3.1 8.6	3.3 3.6	4.1 5.3	10.6	8.2 16.6	4.6 28.1	5.6 29.3	3.2 31.7	3.2 37.5	45.3	24 24	10.6 45.3	1.8 2.9	12.6	0	i
	15	45.7	26.2	32.4	41.0	37.6	33.7	38.3	34.2	33.1	26.8	4.6	2.6	3.4	1.9	2.7	4.6	4.0	4.0	4.6	5.5	18.7	18.8	52.5	14.7	24	52.5	1.9	20.5	0	0
	16	4.1	31.8	45.4	41.1	41.0	51.7	54.8	75.2	54.6	54.1	31.1	18.4	23.7	23.7	20.6	21.3	23.0	17.8	17.1	18.2	54.5	75.5	104.0	82.5	24	104.0	4.1	41.1	0	0
	17	65.4	50.5	47.5	52.6	41.8	21.8	23.0	32.2	29.4	37.7	46.3	23.4	15.5	29.2	23.9	24.9	35.5	19.5	12.3	10.9	10.1	9.7	12.6	11.1	24	65.4	9.7	28.6	0	0
	18	20.5 6.8	18.3 9.5	31.5 7.3	20.5 9.8	23.6 12.1	23.7 17.8	19.7 14.7	22.1 12.9	28.2 12.4	24.5 21.0	17.3 22.6	8.6 16.2	8.2 11.0	9.1 5.5	7.2 6.0	8.0 8.7	8.3 12.8	12.3 9.1	6.3 11.0	6.7 7.8	6.1 4.2	4.9 3.9	6.1 3.9	8.0 3.5	24 24	31.5 22.6	4.9 3.5	14.6 10.4	0	1 0
	20	3.0	3.9	3.8	3.1	5.6	5.0	3.2	5.1	4.1	6.8	6.1	C	C	C	C 0.0	C C	18.7	32.7	30.4	16.0	16.3	17.2	16.0	14.5	19	32.7	3.0	11.1	0	0
	21	13.5	10.6	15.2	18.5	13.5	11.6	15.1	12.6	12.4	10.5	10.2	15.9	19.4	19.9	13.2	12.3	12.3	16.0	16.6	11.2	12.4	10.3	10.1	17.9	24	19.9	10.1	13.8	0	0
	22	15.3	18.7	8.1	9.0	7.7	9.6	9.9	5.9	8.0	8.4	11.5	8.0	6.1	7.2	9.3	10.0	7.8	12.5	7.8	6.1	6.3	5.5	8.1	5.9	24	18.7	5.5	8.9	0	0
	23	6.4	6.2	5.7	5.6	7.5	7.5	6.5	9.5	8.0	10.1	10.2	14.7	17.2	18.9	21.5	18.0	8.9	11.8	9.8	8.5	9.5	9.7	9.1	7.5	24	21.5	5.6	10.3	0	0
	25	8.0 20.6	8.0 6.9	7.7 5.4	7.1 8.7	8.5 10.3	9.5 12.0	9.5 10.0	10.4 13.7	10.0 21.0	9.0 13.1	11.4 27.9	8.6 13.6	8.0 9.8	7.4 6.0	7.4 4.7	7.3 6.3	10.2 5.2	11.6 4.3	12.4 4.1	10.1 3.5	14.7 2.9	21.8 3.1	20.3 13.5	26.4 18.5	24 24	26.4 27.9	7.1 2.9	11.1 10.2	0	l o
	26	20.5	12.7	10.3	9.9	15.3	33.4	32.0	27.8	18.2	9.6	13.9	10.9	9.9	8.4	5.8	5.6	6.3	8.6	7.6	7.8	7.0	4.7	4.0	4.5	24	33.4	4.0	12.3	0	0
	27	4.3	3.3	3.8	4.1	5.6	5.8	6.7	7.0	9.0	9.7	7.9	3.9	4.5	3.7	3.9	3.7	4.4	5.4	5.7	6.4	6.5	7.0	6.6	4.8	24	9.7	3.3	5.6	0	0
	28	6.5	5.6	5.9	6.6	5.4	5.9	6.5	6.7	4.1	4.7	4.8	6.0	5.5	5.0	5.6	6.9	4.7	4.8	4.8	4.9	5.2	4.7	5.8	8.9	24	8.9	4.1	5.7	0	0
	29	9.7 6.1	9.0 3.2	6.4 3.9	5.8 4.2	4.4 3.9	3.9 5.1	5.3 6.7	5.7 13.0	6.1 7.2	3.9 4.1	3.8 4.1	3.4 3.8	3.5 4.2	3.0 5.0	2.9 5.6	3.9 8.7	4.1 9.5	4.8 9.1	5.0 11.0	7.0 15.3	5.3 15.6	5.3 17.0	6.4 16.3	4.4 14.8	24 24	9.7 17.0	2.9 3.2	5.1 8.2	0	0
	31	18.3	22.4	14.2	13.1	9.7	10.7	8.7	9.7	9.9	10.1	9.4	4.7	8.6	12.1	11.0	9.6	10.4	10.8	11.0	10.7	9.5	10.6	11.4	9.9	24	22.4	4.7	11.1	0	i o
Coun		31	31	31	31	31	31	31	31	31	31	31	30	30	30	30	30	31	31	31	31	31	31	31	31	739				- 1	
Maxi	num	65.4	50.5	47.5	52.6	41.8	51.7	54.8	75.2	54.6	54.1	46.3	23.4	23.7	29.3	27.3	24.9	35.5	35.0	30.4	28.1	54.5	75.5	104.0	82.5	24					
Minii		1.8	1.9	1.8	2.1	1.8	1.9	2.2	1.4	1.2	1.6	2.4	2.0	2.5	1.8	2.0	2.5	2.2	2.7	2.9	2.3	1.7	2.0	2.8	2.1	19					
Avera	ge	12.9	12.0	12.1	13.1	13.2	12.9	12.7	13.5	12.2	11.9	11.8	8.7	8.0	8.7	8.6	8.6	10.0	11.0	10.2	10.2	12.5	12.6	14.9	13.4						
Perce	ntiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximi	um Hourly		104.0
Data			3.2		4.3		5.4		6.5		8.1		9.9		12.1		16.1		23.2		32.0		54.3		104.0				mum Daily ly Average		41.1 11.5
Note		C -	- Calibratio	n / Span Cv		A - No Data		T -	Test	A-	- MOE Audit	M -	Equipment M	alfunction							-2.0				_55				,		

													URTICE																		
											Fe (pp		2017																		
	Hour										(PP																				
Day	_	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
		.1.5 5.1	11.4 6.0	9.5 4.2	20.1 5.4	34.2 6.3	48.6 8.6	22.7 12.3	9.9 16.1	11.5 13.9	12.3 10.0	11.1 7.0	7.7 5.7	6.6 4.0	4.3 4.1	6.8 4.4	5.3 3.7	5.7 3.9	8.9 5.3	10.2 5.5	9.1 5.8	6.5 5.1	13.3 4.8	10.4 3.8	6.8 3.6	24 24	48.6 16.1	4.3 3.6	12.7 6.4	0	0
		3.7	3.7	4.2	5.2	5.0	5.6	8.5	9.5	15.5	20.7	13.0	7.9	5.3	4.1	4.4	4.5	5.0	5.4	6.1	8.8	10.4	11.8	12.5	14.5	24	20.7	3.7	8.1	0	i o
		.3.1	12.1	10.7	9.4	9.4	6.1	3.2	3.3	4.1	5.0	3.9	5.7	8.1	6.2	5.0	5.6	6.7	6.4	5.3	6.2	4.8	6.2	8.4	6.5	24	13.1	3.2	6.7	0	0
	5	4.2	3.7	3.5	3.9	4.0	4.1	4.5	4.7	7.1	6.1	7.1	7.6	9.1	9.7	9.9	10.0	9.0	8.8	7.2	5.6	4.7	5.6	5.1	4.9	24	10.0	3.5	6.2	0	0
		6.8	4.4	4.0	4.5	8.4	10.6	9.8	9.9	18.2	29.9	32.1	20.2	18.9	20.0	4.6	4.0	9.1	16.9	26.1	23.3	43.6	32.1	26.7	23.7	24	43.6	4.0	17.0	0	0
		.6.2 .2.5	10.9 19.7	10.2 13.1	9.9 10.6	32.6 8.2	27.3 7.8	31.1 7.1	19.5 6.8	8.6 5.6	15.6 5.7	25.2 6.5	34.4 5.7	30.8 5.2	24.1 5.2	13.7 6.1	16.3 5.8	17.5 8.4	13.6 7.8	23.0 8.7	42.0 7.3	43.1 6.2	23.9 5.2	19.0 5.9	22.6 5.1	24 24	43.1 19.7	8.6 5.1	22.1 7.8	0	1 0
		4.5	4.7	7.1	5.6	8.4	10.3	10.7	9.9	7.4	6.6	6.2	5.4	5.5	6.6	4.9	5.5	7.2	7.8 8.5	7.7	6.4	7.4	6.6	7.9	8.1	24	10.7	4.5	7.0	0	i 0
1		5.2	6.0	7.6	8.2	9.1	9.8	10.1	14.6	11.9	7.6	11.5	12.7	9.0	4.3	3.2	2.9	3.7	4.4	4.3	3.5	3.7	4.1	4.9	5.5	24	14.6	2.9	7.0	0	0
1		5.9	5.8	5.8	6.0	19.9	22.1	28.2	34.2	27.2	26.9	26.4	19.8	16.7	8.4	8.3	8.4	10.6	11.9	12.4	14.5	13.3	8.1	7.4	11.7	24	34.2	5.8	15.0	0	0
1		6.3	6.7	10.6	17.4	9.7	7.4	8.2	7.9	8.4	9.0	12.3	11.1	7.9	8.8	8.3	11.0	11.5	14.6	17.5	29.1	26.0	11.6	5.6	6.6	24	29.1	5.6	11.4	0	0
1		5.7 7.3	5.4 50.3	4.1 41.0	4.4 42.3	5.5 39.4	6.5 24.4	5.2 5.4	7.5 5.9	6.9 6.5	6.6 7.2	7.5 6.9	5.8 7.6	6.0 7.7	6.5 7.0	6.5 7.0	6.3 7.6	6.9 8.7	8.0 10.5	19.3 11.5	64.9 8.9	106.9 8.6	72.6 14.2	47.8 22.2	52.5 10.9	24 24	106.9 50.3	4.1 5.4	19.8 17.0	0	l o
1		7.9	8.2	20.8	49.5	40.2	37.3	27.6	37.1	45.7	32.9	13.9	7.0	8.1	6.5	6.7	6.4	6.1	5.9	6.5	7.0	7.0	6.6	6.6	5.8	24	49.5	5.8	17.0	0	ı ö
1		7.3	5.0	5.2	4.7	4.7	5.5	5.6	7.2	7.0	7.0	7.7	6.7	6.4	5.8	7.4	6.6	7.8	8.3	7.9	14.0	15.0	12.0	18.7	14.0	24	18.7	4.7	8.2	0	0
1		.4.5	14.1	10.3	8.4	6.5	5.7	5.8	12.0	12.7	7.0	7.1	4.6	4.0	4.4	4.7	4.5	4.5	8.3	13.2	19.1	6.4	4.1	5.0	5.1	24	19.1	4.0	8.0	0	0
1		2.8	18.2	13.6	17.1	17.4	16.6	24.3	29.6	31.6	18.4	16.2	8.4	8.3	8.0	7.5	6.9	8.5	9.0	16.0	24.7	24.5	15.0	13.3	15.6	24	31.6	6.9	15.9	0	0
		.8.0 7.8	36.5 6.7	18.8 5.7	14.6 6.3	12.5 5.3	9.0 6.4	7.5 7.6	8.8 14.2	13.1 7.2	14.6 5.3	12.9 3.5	13.4 3.3	3.2	4.7 2.8	5.2 2.8	5.4 2.8	5.3 2.9	5.2 3.1	7.2 3.9	22.2	9.8 26.4	7.3 27.5	7.3 23.9	6.0 12.4	24	36.5 27.5	4.7 2.8	11.0 8.9	0	0
		3.2	4.3	5.1	4.6	4.5	7.2	6.0	6.6	10.2	7.3	8.4	11.4	9.3	9.7	8.6	13.8	20.7	18.4	38.2	45.0	30.0	28.5	29.6	41.9	24	45.0	3.2	15.5	0	i o
2	2 4	0.7	33.8	37.6	40.1	33.1	33.1	35.1	46.4	37.9	С	С	С	17.4	15.3	14.3	14.2	15.3	15.1	23.7	20.5	31.9	30.2	23.6	19.1	21	46.4	14.2	27.5	0	0
2		.8.1	25.5	13.2	13.1	21.3	13.3	12.6	12.0	11.0	9.1	Α	1.7	1.9	2.2	2.6	3.3	3.8	4.6	6.5	5.8	6.9	5.2	9.8	22.4	23	25.5	1.7	9.8	0	0
3		1.5	14.9	16.9	8.5	11.7	9.1	7.9	5.6	3.2	2.7	4.7	6.9	6.9	5.6	5.1	8.2	6.9	5.4	5.8	5.5	5.8	5.6	6.4	3.8	24	51.5	2.7	8.9	0	0
		3.0 1.6	8.2 2.0	7.2 1.4	7.7 1.2	5.9 1.5	4.1 2.2	9.3 2.9	6.2 2.6	5.2 3.0	2.0 2.3	5.0 2.9	6.6 2.3	5.2 1.1	3.3 1.5	2.2 1.2	3.6 1.2	2.1 0.5	2.7 0.4	2.7 0.5	2.4 0.4	1.9 1.0	2.6 0.8	1.5 0.8	2.2 0.8	24 24	9.3 3.0	1.5 0.4	4.3 1.5	0	ı o
		1.1	1.1	1.3	1.2	1.7	2.0	2.3	4.2	5.0	7.3	8.6	6.4	4.4	4.5	4.4	3.5	3.5	6.2	14.3	19.0	15.9	15.2	17.7	13.0	24	19.0	1.1	6.8	0	ı o
2		7.4	17.9	16.9	14.1	12.0	19.4	18.0	17.4	14.5	12.8	8.8	7.0	11.0	9.6	5.0	6.7	5.3	8.0	10.7	9.3	13.4	18.1	17.1	35.7	24	35.7	5.0	13.6	0	0
2	.9																														1
3	1																														1
Count	•	28	28	28	28	28	28	28	28	28	27	26	27	28	28	28	28	28	28	28	28	28	28	28	28	668					
Maximur		1.5	50.3	41.0	49.5	40.2	48.6	35.1	46.4	45.7	32.9	32.1	34.4	30.8	24.1	14.3	16.3	20.7	18.4	38.2	64.9	106.9	72.6	47.8	52.5	24					
Minimun		1.1	1.1	1.3	1.2	1.5	2.0	2.3	2.6	3.0	2.0	2.9	1.7	1.1	1.5	1.2	1.2	0.5	0.4	0.5	0.4	1.0	0.8	0.8	0.8	21					
Average	1	.2.6	12.4	11.1	12.3	13.5	13.2	12.1	13.2	12.9	11.0	10.6	9.0	8.5	7.3	6.1	6.6	7.4	8.3	11.5	15.8	17.4	14.2	13.2	13.6						
Percentil	es		10		20		30		40		50		60		70		80		90		95		99		100			Maxim	um Hourly		106.9
																													num Daily		27.5
Data			3.5		4.9		5.7		6.6		7.6		9.0		11.9		15.8		24.4		34.1		48.9		106.9			Month	ly Average		11.5
Notes		C -	Calibration	n / Span Cy	cle N	A - No Data	Available	Т-	Test	Α	- MOE Audit	M -	Equipment M	alfunction ,	/ Down														1		

													JRTICE																		
											N (ppl		2017																		
	Hou	,									(ррі	<u> </u>																	T		
Day		0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
	1	13.9 1.6	3.6 1.6	7.1 1.5	5.9 1.2	2.5 1.4	3.7 2.0	7.1 2.1	1.3 3.3	1.0 2.9	2.8 2.6	4.7 2.7	3.5 2.9	1.0 2.4	1.5 1.8	1.7 2.1	2.6 2.7	2.0 2.8	1.6 3.3	1.3 3.8	1.6 3.4	3.1 3.6	1.5 2.9	2.2 3.7	2.6 5.6	24 24	13.9 5.6	1.0 1.2	3.3 2.7	0	0
	3	7.0	4.6	3.6	5.1	11.4	12.7	15.7	12.0	10.2	2.9	2.7	1.9	2.4	2.5	1.9	2.7	2.1	3.0	5.6	4.0	3.8	4.6	7.7	2.7	24	15.7	1.9	5.5	0	i o
	4	2.1	4.6	3.4	3.5	2.7	1.7	1.4	2.5	2.6	2.0	2.0	1.4	1.3	1.1	1.4	2.0	1.8	1.9	4.6	10.3	7.0	6.3	5.0	2.6	24	10.3	1.1	3.1	0	0
	5	3.7	3.6	4.5	4.5	5.7	5.4	3.6	3.3	2.1	2.0	1.2	0.8	0.7	0.5	0.3	0.4	0.8	1.7	3.2	1.5	0.8	0.6	0.5	0.7	24	5.7	0.3	2.2	0	0
	6	1.3	1.8	2.1	2.3	2.7	2.4	3.1	3.6	4.3	2.9	3.5	3.3	4.4	4.6	6.5	5.0	6.1	4.7	6.6	7.3	6.2	7.5	4.5	4.2	24	7.5	1.3	4.2	0	0
	8	9.3 5.8	3.1 3.4	3.8 2.9	3.0 2.5	2.7 2.8	5.2 2.0	7.8 1.4	5.1 1.7	3.6 1.8	10.2 2.0	25.0 1.7	2.9 1.3	1.9 1.1	1.6 1.0	1.6 1.1	1.6 2.5	1.5 2.7	1.7 3.6	1.5 2.3	1.4 4.4	8.0 5.0	4.4 6.4	6.2 2.1	9.3 1.7	24 24	25.0 6.4	1.4 1.0	5.1 2.6	0	1 0
	9	2.7	1.8	1.5	1.7	1.7	3.1	5.6	4.9	3.1	2.0	1.8	2.0	1.7	1.4	2.1	2.5	2.5	5.3	4.3	14.4	9.8	13.6	22.3	31.7	24	31.7	1.4	6.0	0	0
	10	14.4	6.2	3.4	1.6	2.5	2.5	2.5	3.2	3.4	2.4	2.9	2.1	1.7	1.8	1.7	1.9	2.0	2.6	2.8	2.5	3.4	4.1	2.9	2.9	24	14.4	1.6	3.2	0	0
	11	1.6	4.5	5.1	5.4	13.0	8.3	5.2	3.4	2.0	1.5	2.0	1.3	1.6	1.4	1.4	1.9	1.6	1.9	1.8	2.6	1.8	1.9	1.8	1.4	24	13.0	1.3	3.1	0	0
	13	3.3 8.0	2.1 6.7	2.1 3.2	0.9 6.9	3.2 13.3	4.2 8.1	6.3 10.3	6.2 6.9	2.9 5.5	2.2 10.0	1.4 8.8	1.2 2.5	1.0 4.1	1.5 6.5	1.4 4.6	1.3 3.7	1.5 5.3	2.3 6.5	4.9 5.7	3.0 6.6	7.5 7.4	2.9 7.4	2.7 6.4	10.1 5.4	24 24	10.1 13.3	0.9 2.5	3.2 6.7	0	i o
	14	3.3	2.6	2.4	1.9	4.5	2.9	3.9	4.3	3.4	2.6	2.6	2.8	2.3	М	0.0	10.5	12.8	12.2	13.0	11.7	11.3	11.0	11.5	11.3	23	13.0	0.0	6.3	0	0
	15	10.5	11.4	10.7	10.5	10.4	10.7	12.3	С	С	С	4.1	3.8	3.9	3.5	3.0	3.0	3.0	3.6	4.1	3.7	3.4	3.5	3.9	4.3	21	12.3	3.0	6.1	0	0
	16	5.1	4.6	3.4	3.1	4.6	6.0	6.6	8.8	6.9	4.7	3.3	3.4	3.1	2.8	2.6	2.8	3.1	3.0	5.2	4.8	5.2	6.2	7.2	15.9	24	15.9	2.6	5.1	0	0
	17	14.5 19.6	21.0 10.9	13.1 9.3	27.7 7.3	30.5 16.1	11.3 19.6	36.9 10.0	100.5 14.7	86.6 14.3	17.7 26.0	6.2 20.8	14.1 6.9	10.9 10.2	10.7 14.3	5.4 7.0	4.5 6.2	2.4 6.8	2.1 5.8	2.6 5.6	3.3 5.8	21.9 4.7	43.7 3.7	27.8 6.7	18.3 4.3	24 24	100.5 26.0	2.1 3.7	22.2 10.7	0	l o
	19	6.3	5.4	3.6	7.3	3.9	3.4	5.4	4.5	4.2	9.2	5.9	4.0	3.3	2.0	1.8	2.0	1.8	1.7	1.5	1.9	2.5	20.3	33.2	30.2	24	33.2	1.5	6.9	0	i o
	20	9.5	3.2	5.0	7.6	31.3	48.2	57.4	59.6	4.0	4.6	4.8	7.6	5.3	3.5	4.3	4.0	3.6	4.0	4.5	4.3	3.8	3.3	3.2	3.8	24	59.6	3.2	12.1	0	0
	21	4.8	26.5	17.3	35.6	40.8	31.1	32.0	33.9	26.7	18.5	16.4	12.7	10.8	9.2	6.4	3.8	4.2	3.7	4.4	4.1	3.5	3.4	2.5	3.0	24	40.8	2.5	14.8	0	0
	22	2.4 9.4	2.0 7.9	2.2 16.5	1.9 25.4	3.3 51.6	4.9 57.6	4.6 66.1	3.3 41.0	3.7 37.5	4.2 4.3	3.0 2.2	2.3 1.6	2.8 1.6	2.8 1.5	3.1 2.7	2.8 2.1	4.2 2.4	4.0 3.2	6.3 3.3	4.9 3.9	5.8 2.7	5.3 1.7	4.9 1.8	5.7 1.6	24 24	6.3 66.1	1.9 1.5	3.8 14.6	0	l o
	24	3.3	4.4	2.7	2.9	18.2	7.8	2.5	2.3	2.4	2.5	3.0	2.8	2.8	3.1	4.2	4.1	3.0	13.6	10.2	7.3	6.2	8.7	8.1	6.9	24	18.2	2.3	5.5	0	i o
	25	7.8	5.5	5.1	6.0	4.1	5.7	7.1	4.0	4.9	5.3	5.3	2.9	3.2	1.7	1.3	1.3	1.4	1.3	2.5	3.3	2.8	3.9	7.2	8.6	24	8.6	1.3	4.3	0	0
	26	16.6	12.6	12.3	4.3	3.5	4.7	18.1	9.2	14.2	12.3	6.1	7.6	11.2	20.4	31.0	33.6	35.5	33.2	23.6	15.0	24.6	25.3	7.2	7.9	24	35.5	3.5	16.3	0	0
	27	6.2 14.9	9.7 11.8	4.8 4.6	9.2 4.5	3.8 5.1	11.8 7.7	7.3 7.0	6.7 6.3	8.8 5.1	8.6 3.8	5.8 4.1	3.5 4.2	2.7 3.6	3.7 3.1	2.8 4.3	3.6 3.5	4.4 5.3	6.2 5.0	6.6 7.2	4.4 7.9	16.6 10.4	17.7 6.2	3.5 8.0	3.7 7.4	24 24	17.7 14.9	2.7 3.1	6.7 6.3	0	I 0
	29	4.2	4.3	3.3	5.9	15.1	19.2	19.0	11.7	15.6	6.3	2.7	3.2	2.3	2.7	1.7	1.3	1.1	1.3	11.1	7.4	36.9	28.0	22.4	5.9	24	36.9	1.1	9.7	0	0
	30	6.5	9.0	14.4	12.2	7.0	9.8	12.7	15.3	12.6	5.8	4.7	2.4	1.2	1.1	1.2	5.4	4.7	2.2	3.3	8.8	6.0	22.4	4.0	9.5	24	22.4	1.1	7.6	0	0
_	31	8.1	27.5	9.2	2.5	4.3	5.7	5.8	12.6	22.9	11.6	32.0	33.6	31.5	27.5	21.5	17.2	8.9	7.2	5.7	5.5	4.7	4.0	3.7	3.5	24	33.6	2.5	13.2	0	0
Count Maxim	um	31 19.6	31 27.5	31 17.3	31 35.6	31 51.6	31 57.6	31 66.1	30 100.5	30 86.6	30 26.0	31 32.0	31 33.6	31 31.5	30 27.5	31 31.0	31 33.6	31 35.5	31 33.2	31 23.6	31 15.0	31 36.9	31 43.7	31 33.2	31 31.7	740 24					
Minim		1.3	1.6	1.5	0.9	1.4	1.7	1.4	1.3	1.0	1.5	1.2	0.8	0.7	0.5	0.0	0.4	0.8	1.3	1.3	1.4	0.8	0.6	0.5	0.7	21					
Averag	e	7.4	7.4	5.9	7.1	10.4	10.6	12.5	13.2	10.6	6.4	6.2	4.7	4.5	4.7	4.3	4.6	4.6	5.0	5.5	5.5	7.8	9.1	7.6	7.5						
-																													<u> </u>		
Percer	tiles		10		20		30		40		50		60		70		80		90		95		99		100			Maxim	um Hourly		100.5
																													num Daily		22.2
Data			1.6		2.2		2.8		3.4		4.1		5.0		6.5		9.3		15.1		26.0		46.4		100.5			Month	y Average		7.2
Notes		C -	- Calibratio	n / Span Cy	cle N	A - No Data	Available	Т.	- Test	A	- MOE Audit	M -	Equipment M	alfunction ,	/ Down																

											anuary	ndle Road 2017																		
	Hour																													
Day	0				400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
1	3.7	4.4 7.6			3.6 10.9	4.7	5.3	8.4	8.8	6.2	7.8	7.1	7.8	5.1 3.6	4.0	6.4	5.0	6.1	7.1	9.7	3.5	6.3	6.0	6.7	24	9.7	3.4	6.0	0	0
2	7.4 3.5		2.7		4.1	8.2 6.4	7.2 3.8	7.5 5.7	5.8 3.1	5.2 3.7	5.6 3.9	4.1 3.1	3.4 4.0	5.0	4.9 5.2	12.3 7.6	6.1 6.9	5.6 5.6	5.5 5.2	5.1 4.7	5.1 10.6	21.9 4.3	5.1 3.1	3.9 2.9	24 24	21.9 10.6	3.4 2.7	7.1 4.7	0	0
4	2.5				18.5	19.1	14.4	12.0	13.9	12.9	9.6	8.5	6.6	7.1	7.2	6.0	5.7	6.4	5.7	4.7	6.6	6.7	6.2	5.5	24	19.1	2.5	8.4	0	0
5	4.9	4.6			4.2	4.6	5.2	8.5	11.2	11.3	13.6	11.9	9.9	9.8	7.2	6.5	3.8	4.1	4.2	4.0	3.8	5.6	5.7	7.1	24	13.6	3.8	6.7	0	0
6	8.2	11.3	9.5	10.9	7.5	7.9	12.3	25.4	28.6	19.5	13.7	14.1	13.3	13.6	13.8	12.4	8.7	6.2	6.3	7.5	5.9	12.3	11.9	8.3	24	28.6	5.9	12.0	0	0
7	7.1	7.8	8.5	8.2	10.5	9.5	6.9	7.2	7.0	4.9	8.2	16.1	15.0	8.0	7.2	8.4	9.5	6.5	4.6	6.8	12.1	11.3	11.1	12.6	24	16.1	4.6	8.9	0	0
8	13.4	11.4	9.8	8.9	4.1	4.1	2.8	2.1	1.8	1.5	1.5	1.2	1.4	1.1	1.3	1.4	1.0	1.9	2.8	3.9	5.7	14.9	9.6	12.1	24	14.9	1.0	5.0	0	0
9	15.0				13.3	9.9	10.8	5.6	9.7	4.0	5.8	5.6	6.1	7.0	8.7	12.3	11.8	11.6	19.5	18.0	15.5	15.0	19.4	9.2	24	19.5	4.0	11.4	0	0
10	7.6				8.8	8.0	8.5	7.5	8.2	8.4	9.0	6.1	6.2	5.9	8.1	8.1	7.6	7.8	9.1	10.5	10.7	10.3	10.5	5.5	24	11.4	5.5	8.4	0	0
11	5.5				5.3	6.6	8.4	11.8	13.3	13.3	9.6	7.5	9.2	8.4	9.6	11.9	20.5	20.3	22.7	10.0	24.0	18.7	10.3	11.6	24	24.0	3.6	11.4	0	0
12	12.0 4.5		21.2 1.9		11.2 1.4	10.9 1.8	11.6 2.2	8.0 2.4	7.7 5.7	5.0 4.1	4.3 3.9	5.0 2.8	4.8 2.1	5.0 2.0	5.9 1.5	5.6 1.6	3.2 1.7	2.9 1.3	2.6 1.2	2.6 1.1	2.6 0.8	8.0 0.8	8.3 1.0	4.8 1.1	24 24	21.2 7.9	2.6 0.8	6.9 2.4	0	0
14	1.3				1.9	2.3	3.3	3.7	3.7	4.1	6.4	6.8	4.0	8.0	3.9	4.1	3.1	5.0	3.9	6.9	14.2	20.8	25.2	41.4	24	41.4	1.3	7.7	0	0
15	52.2		34.5		24.3	22.5	29.6	22.5	25.7	15.1	2.7	1.8	1.8	2.2	2.0	3.6	3.8	7.2	12.4	10.3	7.5	9.8	12.2	12.1	24	52.2	1.8	16.3	0	0
16	6.5	15.8	13.2	12.1	19.7	21.8	22.3	33.4	35.3	52.1	42.2	24.8	26.9	34.2	26.9	30.8	35.3	32.1	32.1	29.3	23.9	31.7	39.1	34.5	24	52.1	6.5	28.2	0	0
17	27.6	26.9	25.2	19.2	27.8	23.5	21.0	22.6	21.5	13.7	12.8	10.4	13.1	9.7	7.3	7.9	8.2	9.4	6.3	5.5	11.3	5.8	5.6	4.7	24	27.8	4.7	14.5	0	0
18	4.1	7.8	9.5	10.4	9.8	11.0	11.7	18.3	19.1	14.1	8.6	5.7	5.3	6.6	5.9	6.0	8.9	12.9	19.8	16.9	12.9	12.7	14.2	15.8	24	19.8	4.1	11.2	0	0
19	15.3				13.8	8.6	15.7	32.4	38.0	34.5	15.8	7.6	11.3	17.8	16.4	16.7	30.7	19.4	16.2	24.5	16.6	14.6	15.0	14.8	24	38.0	4.9	17.7	0	0
20	9.0	9.4	7.7		9.1	15.2	8.2	10.0	7.8	3.8	4.0	7.7	6.2	4.3	4.9	5.0	5.7	7.4	9.6	7.0	5.6	10.1	7.2	9.3	24	15.2	3.8	7.6	0	0
21	9.7 5.7	11.2 12.6	9.8 9.6		21.0 10.7	15.6 4.9	16.8 9.4	12.9 3.3	14.1 11.3	15.6 3.6	10.0 21.1	14.8 7.1	15.2 6.8	15.3 8.3	15.7 5.8	13.1 9.5	10.2 3.1	11.5 2.9	11.7 2.7	9.7 2.3	8.6 2.0	9.6 1.8	6.8 1.9	6.5 5.2	24 24	21.0 21.1	6.5 1.8	12.5 6.6	0	0
22	3.7	4.8	1.9		2.3	2.3	2.4	3.3 12.1	3.7	3.1	6.3	8.2	3.7	3.5	3.7	2.9	2.6	3.1	2.6	2.5	2.5	4.0	2.5	2.2	24	12.1	1.9	3.8	0	0
24	2.4		1.9		2.1	2.2	2.1	2.9	2.3	2.6	2.6	2.2	2.4	2.3	2.4	2.8	3.5	3.3	6.3	17.5	20.8	10.2	9.0	8.1	24	20.8	1.9	4.9	0	0
25	5.5				2.7	11.5	23.4	22.7	38.2	35.5	39.0	20.7	16.8	13.5	С	С	14.5	16.2	18.3	16.9	18.5	11.3	7.9	6.5	22	39.0	2.4	15.9	0	0
26	3.9	3.2	11.9	27.6	18.0	24.2	34.6	32.0	33.4	13.9	11.5	6.7	5.5	3.2	2.0	2.0	2.1	2.2	6.6	5.5	2.0	1.6	1.0	0.9	24	34.6	0.9	10.6	0	0
27	0.6	0.6	0.4		2.5	4.8	7.9	12.5	13.4	13.6	9.2	2.8	1.8	1.5	1.6	2.5	3.0	6.5	7.0	6.6	4.1	8.1	9.8	6.8	24	13.6	0.4	5.4	0	0
28	4.5	3.3	3.0		2.8	3.2	5.9	5.9	5.8	5.5	6.3	6.9	6.4	6.0	6.2	8.3	5.4	5.2	5.1	5.1	6.2	6.5	5.9	9.6	24	9.6	2.8	5.5	0	0
29	8.1	7.7	3.1		1.6	1.4	1.5	5.0	5.9	3.3	0.9	0.8	0.5	0.8	0.5	0.4	0.5	0.5	0.2	0.7	0.7	0.5	0.3	0.0	24	8.1	0.0	2.0	0	0
30	0.0 18.9		0.0 11.8		0.0 3.6	0.4 3.0	0.4 8.8	1.8 12.6	1.5	0.5 3.3	0.4 4.2	0.5 4.3	0.9 5.2	1.7 4.5	2.5 3.7	5.2 4.3	5.2 3.9	2.0 4.1	1.3 3.3	1.7 2.8	2.4 8.2	2.1 8.9	1.3 5.2	11.1 3.0	24 24	11.1 18.9	0.0 2.8	1.8 6.4	0	0
Count	31	31	31		31	31	31	31	7.1	3.3	31	31	31	31	3.7	30	3.9	31	3.3	31	31	31	31	31	742	10.9	2.0	0.4	U	0
Maximum	52.2		34.5		27.8	24.2	34.6	33.4	38.2	52.1	42.2	24.8	26.9	34.2	26.9	30.8	35.3	32.1	32.1	29.3	24.0	31.7	39.1	41.4	24					
Minimum	0.0		0.0		0.0	0.4	0.4	1.8	1.5	0.5	0.4	0.5	0.5	0.8	0.5	0.4	0.5	0.5	0.2	0.7	0.7	0.5	0.3	0.0	22					
Average	8.8	8.8	8.5	8.5	8.9	9.0	10.5	12.2	13.3	10.9	9.7	7.5	7.2	7.3	6.5	7.5	7.8	7.6	8.4	8.4	8.9	9.9	9.0	9.1						
																												1		
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Mavim	um Hourly		52.2
. ercentiles		10		20		50		40		30		00		,,		00		50		,,,		55		100				mum Daily		28.2
Data		1.9		3.0		4.1		5.6		6.6		8.2		10.0		12.9		19.1		25.4		38.1		52.2				ly Average		9.0
Notes		C - Calibra	ion / Span	Cycle I	NA - No Data	a Available	T -	- Test	A	- MOE Audit	M -	Equipment M	altunction ,	Down	R ·	 Rate of Ch 	nange													

											bruary	ndle Road 2017																		
	Hour																													
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
1	2.7	2.9	1.7	3.0	2.7	12.5	26.5	17.1	18.2	19.7	15.2	6.0	2.0	1.3	5.0	1.6	2.1	9.9	16.1	5.6	12.8	7.6	1.4	0.6	24	26.5	0.6	8.1	0	0
2	0.4 4.6	0.5 5.3	0.6 6.1	1.1 5.7	0.9 6.6	1.4 10.7	3.0 13.9	5.5 15.3	11.7 18.2	6.4 22.1	5.9 9.7	4.1 6.1	1.7 2.5	1.7 4.1	2.8 2.4	1.9 3.3	1.8 1.9	5.8 3.3	6.6 4.1	7.0 7.2	7.4 9.2	6.9 10.0	5.2 8.0	4.9 9.0	24 24	11.7 22.1	0.4 1.9	4.0 7.9	0	0
4	9.8	8.2	6.3	6.5	6.9	8.0	4.7	4.3	6.0	5.2	4.1	5.9	7.5	5.9	3.9	4.4	6.0	7.2	7.0	6.5	6.1	5.8	9.5	7.7	24	9.8	3.9	6.4	0	0
5	6.2	3.0	3.1	7.1	3.1	6.1	4.5	4.1	7.5	6.5	8.0	8.4	9.9	10.8	10.2	11.0	11.2	8.6	1.8	1.3	1.0	1.1	0.9	0.7	24	11.2	0.7	5.7	0	0
6	0.3	0.0	0.2	0.0	0.3	0.5	1.1	7.7	12.7	16.4	14.6	8.4	7.2	10.1	9.8	7.8	13.6	13.5	10.4	13.8	16.9	32.4	28.1	15.6	24	32.4	0.0	10.1	0	0
7	8.9	4.5	3.4	9.0	6.7	6.5	6.0	4.6	3.1	8.2	7.7	4.6	5.7	11.5	7.3	4.9	4.9	4.7	5.4	11.5	8.6	10.7	17.4	16.8	24	17.4	3.1	7.6	0	0
8	14.4	24.5	12.3	7.4	11.1	5.5	1.4	1.7	1.6	1.2	1.1	1.3	0.8	0.8	0.8	1.0	0.6	0.4	0.3	0.3	0.2	0.1	0.1	0.0	24	24.5	0.0	3.7	0	0
9	0.2	0.0	0.0	0.2	0.2	0.3	0.5	1.2	2.3	1.3	0.8	0.9	0.6	0.6	1.6	0.6	1.6	2.0	3.1	3.3	1.9	3.0	3.2	1.4	24	3.3	0.0	1.3	0	0
10	3.7	3.2	1.3	2.6	1.1	1.2	0.4	1.9	2.3	1.9	4.2	13.1	13.4	10.6	5.7	4.2	6.4	4.1	4.3	3.1	8.4	11.5	6.1	7.2	24	13.4	0.4	5.1	0	0
11	7.3	8.2	12.0	9.2	7.8	13.5	18.5	20.3	33.2	18.5	16.2	14.2	11.4	4.0	3.5	3.3	4.4	4.2	3.9	5.9	14.3	4.8	4.7	4.2	24	33.2	3.3	10.3	0	0
12	2.6 1.3	2.5	9.1 0.8	2.8 0.8	2.1 1.0	2.2 0.9	2.4 1.0	5.0 1.1	7.6 1.6	5.8 1 E	5.0 0.9	3.8 0.8	3.8 1.0	3.6 1.5	4.2 1.1	4.7 1.7	13.4	16.8 1.2	16.9 2.3	13.7 4.6	16.4 6.7	7.6 10.7	2.1 14.2	1.7 13.8	24 24	16.9 14.2	1.7 0.8	6.5 3.0	0	0
13	6.4	1.2 8.0	5.3	9.0	11.1	33.8	1.0 17.7	9.6	8.2	1.5 8.8	8.8	10.3	11.4	8.1	1.1	10.0	1.4 13.4	19.6	2.5 22.4	16.9	18.2	19.0	31.7	33.6	24	33.8	5.3	14.7	0	0
15	21.9	11.1	16.1	20.5	17.1	5.5	31.8	46.6	40.3	20.0	11.1	3.2	2.2	1.5	1.4	1.7	1.4	1.1	0.9	1.3	1.1	1.3	1.1	0.4	24	46.6	0.4	10.9	0	0
16	0.4	0.1	0.4	0.5	0.5	0.3	0.9	0.9	1.0	1.3	1.1	1.6	0.6	1.0	1.1	1.0	2.3	1.9	2.7	3.0	3.1	1.4	1.8	3.0	24	3.1	0.1	1.3	0	0
17	7.7	19.6	11.7	3.3	2.0	5.6	8.0	10.3	10.2	6.3	6.4	3.0	3.0	2.8	8.5	5.1	4.1	3.6	6.8	16.7	14.6	8.8	12.8	7.3	24	19.6	2.0	7.8	0	0
18	9.1	8.1	12.9	27.1	6.6	6.2	6.4	5.4	10.3	17.3	13.0	8.9	8.4	7.7	8.1	9.1	9.1	8.7	8.0	12.4	11.8	9.4	10.2	10.4	24	27.1	5.4	10.2	0	0
19	6.5	10.3	5.8	4.8	8.3	8.7	10.3	15.0	23.4	16.3	4.8	9.5	4.4	1.3	1.1	0.9	0.7	1.0	1.2	2.2	1.5	1.0	1.1	0.8	24	23.4	0.7	5.9	0	0
20	0.9	0.4	0.7	0.6	0.6	0.9	1.6	3.7	2.7	1.0	1.1	1.7	1.6	3.4	1.3	1.6	0.8	3.8	7.4	4.4	11.1	6.7	8.2	9.8	24	11.1	0.4	3.2	0	0
21	6.8	2.3	0.9	4.6	5.9	2.7	8.2	5.2	4.0	6.9	3.2	4.8	7.1	8.0	8.4	10.4	23.5	20.0	12.9	10.6	15.3	8.7	6.3	7.5	24	23.5	0.9	8.1	0	0
22	10.9	6.2	5.5	4.4	7.2	9.1	11.3	19.9	20.9	28.8	24.9	18.8	С	C	C	7.4	6.9	8.5	13.1	12.4	13.4	15.6	20.8	17.2	21	28.8	4.4	13.5	0	0
23	14.8 1.9	14.1	17.0 1.3	15.3 3.1	25.3 1.9	9.5 3.0	17.3	30.2 6.2	10.7 8.1	5.8 2.7	8.4 3.9	7.6 10.1	6.6	6.8 2.0	8.5 1.9	6.1 2.5	2.2	1.7 1.8	1.6 1.7	1.3 6.3	0.9 5.2	0.9 4.7	0.8 2.7	8.4 3.3	24 24	30.2	0.8 1.3	9.3 3.6	0	0
24	6.9	1.8 10.9	2.5	5.1	8.9	3.0 8.7	1.4 5.0	5.4	6.8	3.7 3.9	5.9 6.4	6.4	5.2 7.7	6.6	4.5	2.6	2.0 1.5	1.5	1.7	1.2	1.2	1.1	0.4	1.0	24	10.1 10.9	0.4	4.5	0	0
26	0.8	0.8	0.0	0.1	0.3	0.9	4.7	4.2	5.1	3.3	3.3	2.1	1.6	2.1	1.9	1.7	4.5	1.8	2.0	3.3	2.1	1.9	2.4	5.2	24	5.2	0.0	2.3	0	0
27	2.1	2.2	2.1	7.6	4.2	5.4	6.4	10.8	11.8	12.1	12.8	10.5	6.0	8.5	8.1	7.3	7.8	1.4	1.7	3.4	5.7	3.6	4.7	18.8	24	18.8	1.4	6.9	0	0
28	17.9	7.4	6.4	6.4	10.6	36.1	25.8	17.2	12.7	14.1	12.5	7.0	9.0	8.0	9.2	4.5	7.5	11.5	13.8	9.5	11.7	19.7	7.9	16.4	24	36.1	4.5	12.6	0	0
29																														
31																													_	
Count	28	28	28	28	28	28	28	28	28	28	28	28	27	27	27	28	28	28	28	28	28	28	28	28	669					
Maximum	21.9	24.5	17.0	27.1	25.3	36.1	31.8	46.6	40.3	28.8	24.9	18.8	13.4	11.5	12.3	11.0	23.5	20.0	22.4	16.9	18.2	32.4	31.7	33.6	24 21					
Minimum Average	0.2 6.3	0.0 6.0	0.0 5.2	0.0 6.0	0.2 5.7	0.3 7.4	0.4 8.6	0.9 10.0	1.0 10.8	1.0 9.4	0.8 7.7	0.8 6.5	0.6 5.3	0.6 5.0	0.8 5.0	0.6 4.4	0.6 5.6	0.4 6.1	0.3 6.4	0.3 6.7	0.2 8.1	0.1 7.7	0.1 7.6	0.0 8.1	21					
Aveiage	0.5	0.0	ا.2	0.0	3.1	7.4	ა.υ	10.0	10.6	9.4	7.7	0.5	J.3	3.0	3.0	4.4	3.0	0.1	0.4	0.7	0.1	7.7	7.0	0.1						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maxim	num Hourly		46.6
																												mum Daily		14.7
Data		0.9		1.5		2.3		3.9		5.4		6.8		8.4		10.7		15.4		19.3		32.0		46.6			Month	nly Average		6.9
Notes	С	- Calibratio	n / Span Cy	cle N	A - No Data	Available	T -	Test	A	- MOE Audit	M -	Equipment M	alfunction ,	/ Down	R -	- Rate of Ch	ange													

													ndle Road																		
											r (pp		2017																		
	Hour	r									<u> </u>	<u>-, </u>																			
Day	4	10.1	100	200	300	400	500	600	700	800 F 3	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
	2	19.1 0.0	16.8 0.1	14.3 0.7	6.1 0.1	12.7 0.0	8.9 0.0	9.6 0.1	4.2 0.7	5.3 0.6	8.5 0.7	15.7 0.6	8.5 0.8	4.0 0.7	6.1 0.4	8.8 0.5	9.9 0.5	8.5 0.7	4.8 0.5	5.5 0.4	5.9 0.4	5.0 0.5	4.0 0.4	2.5 0.1	0.4 0.2	24 24	19.1 0.8	0.4 0.0	8.1 0.4	0	0
	3	0.2	0.0	0.0	0.4	4.8	5.6	11.7	5.8	8.0	0.8	0.2	А	А	0.9	0.2	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.2	0.4	22	11.7	0.0	1.8	0	0
	4	0.0	0.0	0.4	0.3	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.2	0.1	0.2	24	0.4	0.0	0.1	0	0
	5	0.0	0.9	1.7	1.4	1.6	6.8	11.0	3.6	0.9	0.6	0.1	0.0	0.1	0.8	3.2	0.5	0.6	0.5	0.8	1.3	1.7	5.1	1.8	1.0	24	11.0	0.0	1.9	0	0
	7	0.7 7.2	1.2 7.4	2.3 10.6	1.7 13.7	1.6 7.8	1.4 5.7	1.5 7.5	4.4 20.0	3.7 7.6	7.4 18.2	2.8 25.1	2.8 22.5	3.1 6.5	3.3 8.7	11.5 7.6	4.7 11.2	5.2 10.0	9.1 9.2	7.3 6.8	14.4 7.2	19.0 10.6	9.4 21.4	13.4 20.3	17.6 13.0	24 24	19.0 25.1	0.7 5.7	6.2 11.9	0	0
	8	16.2	11.7	11.6	13.1	10.1	11.4	13.0	7.2	4.1	3.7	11.5	3.1	3.1	2.7	3.4	5.8	3.4	1.4	1.4	1.0	1.3	1.3	1.4	1.0	24	16.2	1.0	6.0	0	0
	9	1.2	0.9	0.2	0.0	0.0	0.7	0.9	1.4	1.3	1.0	0.5	1.0	0.3	0.8	1.1	0.8	0.9	0.9	1.4	1.2	0.7	1.6	2.4	5.2	24	5.2	0.0	1.1	0	0
	10	3.2	1.6	0.4	0.0	0.0	0.0	0.0	0.1	0.2	0.0	0.0	0.3	0.2	0.3	0.2	0.7	0.4	0.0	0.2	0.0	0.1	0.0	0.0	0.0	24	3.2	0.0	0.3	0	0
	11	0.0 0.0	0.0 0.0	0.0 0.0	0.7 0.0	0.3 0.0	2.4 0.2	0.0 1.6	0.0 3.4	0.1 0.6	0.0 0.0	0.0 0.0	0.0 0.0	0.1 0.3	0.0 0.0	0.3 0.1	0.2	0.0 0.0	0.0 0.1	0.0 0.4	0.0 0.1	0.0 0.0	0.0 0.0	0.0 0.0	0.0	24 24	2.4 3.4	0.0 0.0	0.2 0.3	0	0
	13	0.0	0.0	0.0	0.0	0.3	3.6	8.4	2.3	2.0	1.6	1.6	1.0	1.4	0.9	3.3	1.6	1.0	0.5	0.4	0.9	5.2	0.6	0.3	0.2	24	8.4	0.0	1.5	0	0
	14	0.1	0.2	0.0	0.1	0.6	0.9	1.1	1.3	1.0	0.4	0.4	0.6	0.3	0.4	М	0.0	0.0	1.4	2.3	3.4	5.1	1.4	1.2	1.3	23	5.1	0.0	1.0	0	0
	15	1.3	1.2	1.1	1.0	1.1	С	С	54.7	89.3	0.6	0.5	1.5	0.5	0.0	0.1	0.5	0.1	0.2	0.2	0.2	0.1	0.1	0.2	0.0	22	89.3	0.0	7.0	0	0
	16	0.1 5.8	0.0 4.8	0.0 1.8	0.0 2.0	0.0 9.0	0.0 0.9	0.2 10.4	0.6 32.5	1.6 42.3	1.7 32.2	0.7 8.2	0.0 1.9	0.3 15.3	0.5 10.6	0.4 10.9	0.6 5.9	0.2 7.8	0.3 3.2	0.2 3.3	0.1 6.4	0.2 15.2	0.3 8.9	1.1 11.6	3.4 12.4	24 24	3.4 42.3	0.0 0.9	0.5 11.0	0	0
	18	30.1	15.5	11.6	16.7	9.2	7.7	11.1	2.5	1.5	1.7	3.6	3.1	1.7	1.9	5.9	2.5	7.8 7.5	2.5	10.6	2.1	1.8	6.3	2.0	5.7	24	30.1	1.5	6.9	0	0
	19	2.0	2.9	1.8	1.4	4.2	1.6	1.5	1.1	1.0	1.4	2.2	2.0	2.2	16.8	8.0	1.1	1.7	1.6	2.7	4.3	7.4	11.9	9.5	7.0	24	16.8	1.0	4.1	0	0
	20	11.8	13.3	9.3	8.2	7.2	14.6	11.5	7.7	12.4	9.6	8.8	11.7	8.9	7.2	5.5	6.2	6.8	7.4	11.6	16.0	20.2	16.7	16.8	9.3	24	20.2	5.5	10.8	0	0
	21	8.5	6.5	8.6 0.0	15.3	22.3 0.0	19.2 0.0	19.6	50.4	27.3 0.2	9.2	20.5	17.6	15.3	10.8	10.3	1.7 0.4	1.4	1.2	1.0	1.0	0.8	1.0	0.2	0.0	24	50.4	0.0	11.2	0	0
	23	0.2 0.1	0.0 20.0	7.5	0.0 21.4	8.4	11.0	0.2 19.9	0.7 23.0	19.4	0.4 7.8	0.3 6.3	0.1 2.3	0.1 3.2	0.0 1.9	0.4 3.8	3.2	0.2 7.2	0.2 7.3	0.8 9.7	0.9 10.9	0.1 11.5	0.0 6.6	0.0 5.5	0.0 3.4	24 24	0.9 23.0	0.0 0.1	0.2 9.2	0	0
	24	8.0	2.2	10.2	2.8	20.5	16.1	8.8	6.7	8.2	9.8	10.0	10.6	10.4	10.5	15.2	17.0	22.7	17.4	4.6	3.4	3.3	2.3	2.7	2.4	24	22.7	2.2	9.4	0	0
	25	2.2	2.1	3.1	2.9	0.9	2.4	1.2	0.9	1.3	3.3	1.4	0.7	0.7	1.4	2.3	3.0	0.9	3.8	1.3	1.0	1.2	6.4	3.1	2.5	24	6.4	0.7	2.1	0	0
	26	3.2	8.4	5.2	3.7	3.9	1.0	1.4	1.7	2.0	2.5	1.8	1.7	1.6	3.7	1.8	1.9	2.5	2.7	4.2	8.2	5.3	3.1	9.2	3.0	24	9.2	1.0	3.5	0	0
	28	3.5 11.8	3.4 6.8	7.0 1.6	3.6 1.2	4.3 1.3	5.0 1.2	7.1 0.9	26.5 1.7	20.5 1.3	17.0 1.2	16.0 1.2	8.9 1.3	16.6 0.7	20.7 0.3	17.8 0.6	14.4 0.2	15.8 0.3	13.8 0.3	8.4 0.8	27.0 0.6	16.7 0.5	25.9 0.3	37.3 0.7	16.7 0.3	24 24	37.3 11.8	3.4 0.2	14.7 1.5	0	0
	29	0.1	0.0	0.0	0.2	1.7	2.4	2.6	4.5	5.6	6.4	2.6	3.2	5.2	2.7	5.6	2.2	2.5	4.7	8.3	6.9	4.5	5.0	3.2	4.8	24	8.3	0.0	3.5	0	0
	30	1.0	0.5	4.5	1.5	1.9	1.9	2.5	3.1	7.9	4.8	2.4	2.8	12.6	17.8	2.6	1.4	1.2	2.9	2.7	6.6	1.3	2.9	2.4	5.9	24	17.8	0.5	4.0	0	0
	31	3.1	7.5	0.8	5.9	1.2	1.5	1.7	5.2	2.2	2.5	6.3	3.5	4.9	10.6	7.0	5.9	3.6	2.6	1.5	1.8	1.4	1.1	0.8	0.7	24	10.6	0.7	3.5	0	0
Count Maximu	ım	31 30.1	31 20.0	31 14.3	31 21.4	31 22.3	30 19.2	30 19.9	31 54.7	31 89.3	31 32.2	31 25.1	30 22.5	30 16.6	31 20.7	30 17.8	31 17.0	31 22.7	31 17.4	31 11.6	31 27.0	31 20.2	31 25.9	31 37.3	31 17.6	739 24					
Minimu		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22					
Average	!	4.5	4.4	3.8	4.0	4.4	4.5	5.6	9.0	9.0	5.0	4.9	3.8	4.0	4.6	4.6	3.4	3.7	3.3	3.2	4.3	4.5	4.7	4.8	3.8						
Percent	iles		10		20		30		40		50		60		70		80		90		95		99		100				ım Hourly		89.3
Data			0.0		0.2		0.6		1.1		1.7		3.0		5.2		8.2		12.4		17.6		29.0		89.3				num Daily y Average		14.7 4.6
Notes		C -	Calibratio	n / Span Cy	cle N	A - No Data	Available	T -	Test	A-	- MOE Audit	M -	Equipment Ma	alfunction /	Down	R -	Rate of Ch	ange													

Figure D-1 Time History Plots of Measured Hourly Average and 24 Hour Average NO_X
Concentrations – Courtice (WPCP) Station

Figure D-2 Time History Plots of Measured Hourly Average and 24 Hour Average NO_X Concentrations – Rundle Road Station

Appendix E PM2.5 Data Summaries and Time History Plots May 9, 2017

Appendix E PM_{2.5} DATA SUMMARIES AND TIME HISTORY PLOTS

Project No.: 160950528 E.1

										J	PM _{2.5} - CC anuary ;/m³)	OURTICE 2017																	
H	our																												
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	
1	5.9	6.5	4.7	3.6	4.0	4.0	3.8	2.7	1.6	1.1	0.9	0.7	0.7	1.1	2.8	3.7	5.0	7.2	7.5	7.4	10.2	11.4	15.8	17.5	24	17.5	0.7	5.4	
2	21.1 7.0	20.0 8.2	20.9 7.7	20.0 24.5	17.8 27.9	14.9 10.0	14.9 6.8	14.9 3.4	11.1 3.5	8.9 3.2	9.2 2.4	7.7 2.1	7.0 2.0	19.0 1.6	8.4 9.0	7.9 8.5	8.7 7.1	6.9 2.2	6.2 3.6	7.0 2.4	8.1 2.0	8.1 1.6	8.0 1.1	8.1 1.3	24 24	21.1 27.9	6.2 1.1	11.9 6.2	
Δ	1.5	3.6	6.4	6.5	8.6	6.1	1.5	0.3	0.7	1.8	3.9	5.7	4.2	3.3	2.6	2.1	1.9	1.7	1.9	2.4	2.3	2.1	1.1	1.8	24	8.6	0.3	3.1	
5	1.7	1.7	1.6	1.9	1.7	1.4	1.5	1.8	2.2	2.9	3.0	3.3	3.1	3.2	3.8	3.5	3.3	4.0	4.5	4.4	4.1	4.4	4.2	4.5	24	4.5	1.4	3.0	
6	4.1	4.5	4.8	5.1	5.0	5.0	5.9	6.6	8.0	7.6	6.8	5.1	4.7	5.0	5.1	5.3	5.2	5.7	5.2	5.4	5.7	6.7	7.5	8.1	24	8.1	4.1	5.8	
7	9.8	10.3	10.1	10.4	10.6	10.8	11.2	10.7	9.5	7.6	7.6	7.5	4.1	4.2	3.9	5.2	7.6	7.5	8.6	10.2	11.0	9.6	9.9	9.6	24	11.2	3.9	8.6	
8	8.4	7.3	5.6	5.1	4.5	3.6	2.7	2.6	2.6	2.3	2.9	2.7	2.8	2.8	2.5	2.6	2.8	4.3	4.9	7.2	7.0	5.5	5.2	5.0	24	8.4	2.3	4.3	
9	5.8	5.5	5.3	4.9	3.8	2.8	3.1	3.5	3.2	4.5	6.5	5.6	4.7	3.5	4.1	5.7	7.2	8.6	10.4	12.6	13.5	14.6	14.7	9.7	24	14.7	2.8	6.8	
10	7.9	6.3	5.1	5.2	5.1	5.9	5.3	5.2	4.7	4.5	4.3	4.7	5.6	5.5	5.1	5.3	5.4	5.1	4.5	4.3	3.8	3.0	2.7	3.3	24	7.9	2.7	4.9	
11	2.8	2.4	3.9	9.2	12.3	12.5	9.8	9.3	8.4	7.9	10.1	10.3	9.8	8.8	7.5	6.7	8.1	11.6	9.9	9.0	4.2	2.5	2.5	2.9	24	12.5	2.4	7.6	
12	3.7	5.2	6.6	5.8	4.3	1.6	5.1	3.3	6.1	6.0	5.1	3.9	3.7	4.9	4.3	2.4	1.5	1.6	2.2	2.7	2.8	3.2	2.8	1.8	24	6.6	1.5	3.8	
13	1.3	1.4	1.4	1.1	1.4	1.8	1.9	2.1	2.0	1.8	1.8	1.7	1.3	1.3	1.6	1.8	2.9	3.7	3.5	3.1	2.9	2.8	2.8	3.3	24	3.7	1.1	2.1	
14	2.8	2.1	2.2	2.2	2.1	1.9	1.9	2.0	2.6	4.8	7.9	6.6	4.2	3.5	5.5	2.8	4.3	6.3	7.8	15.7	19.9	19.3	19.1	16.4	24	19.9	1.9	6.8	
15	16.0	13.7	13.6	13.7	13.8	12.9	13.1	11.5	10.0	9.7	3.6	3.1	2.4	2.3	2.7	3.2	2.8	2.6	4.0	5.6	7.4	8.7	10.5	8.3	24	16.0	2.3	8.1	
16	12.3	19.0	22.1	23.6	26.4	28.9	30.9	31.7	33.2	32.0	30.2	25.0	25.9	27.2	27.5	26.5	25.9	24.8	25.4	25.0	27.7	29.2	28.2	28.0	24	33.2	12.3	26.5	
17	25.5	27.5	26.7	24.5	21.6	17.4	22.8	25.0	25.6	28.3	27.7	14.7	8.2	14.8	16.1	16.7	18.7	13.2	6.3	4.9	5.5	5.7	4.7	4.2	24	28.3	4.2	16.9	
18	5.8	8.0	8.0	7.9	8.8	10.2	11.1	11.5	13.2	13.2	9.6	3.2	2.9	2.7	2.0	1.8	3.6	5.1	4.2	6.2	10.7	12.8	13.5	14.3	24	14.3	1.8	7.9	
19	13.8 5.8	15.1 5.3	3.8	12.0 4.6	12.3 6.5	11.5 5.7	10.7 3.8	10.3 4.6	3.5	4.0	13.8	11.6	7.1 5.4	7.0	9.0	6.0 7.4	10.7	13.6 17.7	15.0 10.7	9.7	7.3	7.2 13.9	7.1	6.0 17.0	24	15.2 17.7	4.0 3.5	10.3 8.3	
20	18.3	5.5 14.7	12.1	11.3	6.1	10.3	3.8 14.8	13.2	12.5	4.0 11.5	10.1	C 15.9	21.4	20.0	15.2	11.9	7.8	17.7	10.7	11.3	13.3	13.5	13.3	13.2	23 24	21.4	6.1	13.2	
22	12.4	11.8	11.8	12.2	15.6	16.7	12.4	10.5	7.5	8.1	8.7	6.0	2.7	2.1	2.8	3.9	3.8	4.1	3.5	2.5	2.2	2.0	2.1	3.5	24	16.7	2.0	7.0	
23	4.5	6.3	6.3	6.3	5.9	4.9	4.2	4.0	2.7	3.0	3.0	3.0	3.9	3.5	2.1	2.2	2.8	4.2	4.2	3.9	3.9	5.0	5.4	4.7	24	6.3	2.1	4.2	
24	4.2	3.8	3.7	3.5	3.0	2.5	2.7	3.1	4.0	4.6	4.5	3.8	3.7	5.4	3.7	3.2	2.9	3.6	5.4	7.3	8.4	8.0	6.2	5.4	24	8.4	2.5	4.4	
25	4.7	3.6	3.4	3.8	4.4	5.9	5.7	7.4	8.2	9.7	6.4	2.1	3.1	2.2	2.5	3.7	5.5	5.8	5.0	5.4	5.7	6.1	8.8	11.9	24	11.9	2.1	5.5	
26	10.9	11.9	13.3	15.1	19.3	21.3	17.5	15.1	8.7	4.3	4.1	1.8	1.0	1.1	1.3	1.5	0.8	1.3	2.6	1.8	1.0	1.1	1.1	0.9	24	21.3	0.8	6.6	
27	0.8	0.9	0.9	1.2	1.4	1.7	1.3	1.1	1.3	1.6	1.2	0.6	0.6	0.7	0.6	0.6	1.3	2.0	2.6	3.3	2.6	3.8	4.7	3.6	24	4.7	0.6	1.7	
28	3.7	4.6	4.8	4.2	3.4	4.0	4.2	4.4	8.7	14.4	12.9	13.7	12.0	10.4	9.4	9.3	7.1	7.4	9.1	10.5	10.6	11.9	12.7	10.5	24	14.4	3.4	8.5	
29	6.4	2.5	1.3	1.1	1.1	0.9	1.0	1.2	1.2	0.9	1.1	1.0	1.0	0.9	0.9	1.0	1.1	1.3	1.4	1.8	1.4	1.7	2.0	2.0	24	6.4	0.9	1.5	
30	1.7	1.7	1.7	2.0	2.3	2.5	2.3	2.0	3.0	3.0	3.0	2.2	2.2	2.6	2.9	3.8	4.0	5.2	6.6	7.5	7.8	7.9	6.8	6.0	24	7.9	1.7	3.8	
31	6.9	7.6	8.3	9.8	4.1	4.5	3.0	3.0	3.6	3.6	4.9	3.9	4.5	5.3	5.7	5.2	6.2	7.7	7.7	7.8	8.9	8.8	8.7	8.4	24	9.8	3.0	6.2	
Count	31	31	31	31	31	31	31	31	31	31	31	30	31	31	31	31	31	31	31	31	31	31	31	31	743				
Maximum	25.5	27.5	26.7	24.5	27.9	28.9	30.9	31.7	33.2	32.0	30.2	25.0	25.9	27.2	27.5	26.5	25.9	24.8	25.4	25.0	27.7	29.2	28.2	28.0	24				
Minimum	0.8	0.9	0.9	1.1	1.1	0.9	1.0	0.3	0.7	0.9	0.9	0.6	0.6	0.7	0.6	0.6	0.8	1.3	1.4	1.8	1.0	1.1	1.1	0.9	23				
Average	7.7	7.8	7.7	8.5	8.6	7.9	7.6	7.4	7.2	7.5	7.1	6.0	5.4	5.8	5.6	5.5	6.1	6.7	6.6	7.1	7.5	7.8	8.1	7.8					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly mum Daily	33. 26.
Data		1.7		2.5		3.3		4.1		5.1		6.4		8.1		10.7		14.8		20.8		28.3		33.2				ly Average	7.
Notes	C ·	- Calibration	n / Span Cy	cle NA	A - No Data	Available	T -	- Test	A-	MOE Audit	М	- Equipment M	alfunction	/ Down															

										Fe	PM _{2.5} - COI ebruary /m³)	URTICE 2017																		
H	our																													
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average		
1	7.4	7.3	7.8	8.8	11.0	14.8	8.3	5.2	4.1	3.3	2.6	1.7	1.4	1.0	1.4	1.1	1.2	1.9	2.9	2.7	2.2	2.6	1.7	1.3	24	14.8	1.0	4.3		
2	1.9	2.5	2.4	2.4	2.4	2.6	2.8	3.5	2.6	2.5	2.4	2.3	2.3	2.5	2.1	1.7	2.3	3.4	3.6	3.9	3.7	3.9	4.0	4.0	24	4.0	1.7	2.8		
3	3.4	2.8	3.3	3.4	3.3	3.6	4.4	4.7	4.5	3.4	2.6	2.5	2.4	2.4	2.5	2.2	2.8	3.6	3.8	4.4	5.0	5.2	4.9	4.9	24	5.2	2.2	3.6		
4	4.7	4.4	3.6	3.6	3.2	2.5	2.5	2.8	2.8	3.3	3.5	3.6	4.8	5.2	5.1	5.9	6.5	6.8	6.4	6.0	4.5	4.7	5.6	5.5	24	6.8	2.5	4.5		
5	5.5	6.0	5.8	5.9	5.9	6.2	7.2	8.4	12.1	14.2	14.8	15.3	16.1	16.1	15.5	17.2	17.1	13.6	5.8	2.2	1.8	1.8	2.0	2.5	24	17.2	1.8	9.1		
6	2.5	2.7	2.8	2.9	3.0	3.9	4.2	3.8	7.4	9.1	6.9	6.8	5.8	5.0	2.9	3.4	5.2	6.0	8.2	9.8	15.0	12.6	12.1	11.9	24	15.0	2.5	6.4		
7	10.5	9.3	9.3	9.4	10.5	8.3	8.0	9.5	8.9	8.0	9.4	12.7	14.0	12.2	8.2	6.9	4.6	3.0	3.5	3.5	4.0	4.6	6.6	6.9	24	14.0	3.0	8.0		
8	8.8	14.4	7.5	7.4	5.5	1.9	2.0	2.5	1.8	1.7	1.8	1.8	1.6	1.2	1.6	1.7	2.5	2.7	2.5	2.4	2.5	2.3	2.5	3.0	24	14.4	1.2	3.5		
9	2.7	2.5	2.8	2.7	3.4	3.8	3.7	3.4	2.5	1.9	1.7	1.6	1.3	1.1	1.0	0.9	1.4	2.7	2.9	3.0	3.0	2.7	2.5	2.5	24	3.8	0.9	2.4		
10	2.7	2.6	2.5	2.8	2.8	2.9	2.6	2.3	2.3	2.8	2.5	3.1	3.9	3.7	3.4	3.2	4.5	4.6	4.0	3.7	3.9	3.6	3.8	4.1	24	4.6	2.3	3.3		
11	5.4	6.0	6.0	6.4	8.1	9.7	12.0	13.4	16.4	20.1	22.8	24.8	24.2	21.5	21.3	18.3	18.0	20.1	17.5	15.9	14.7	13.6	11.5	12.1	24	24.8	5.4	15.0		
12	8.4	7.0	9.2	9.4	7.8	6.7	6.6	7.9	10.0	11.3	12.2	12.1	11.7	11.7	10.8	11.5	13.7	14.6	12.1	11.3	17.8	4.1	1.3	1.7	24	17.8	1.3	9.6		
13	1.7	1.9	2.5	2.7	2.8	2.3	1.8	1.9	2.2	2.5	2.3	1.9	2.2	2.2	2.1	2.2	1.8	1.8	2.7	4.1	6.4	8.4	7.2	7.0	24	8.4	1.7	3.1		
14	9.3	9.3	9.3	10.8	11.6	9.6	6.0	6.1	5.4	4.8	4.5	4.0	4.7	4.6	5.3	6.3	9.3	14.8	18.6	16.0	15.5	17.6	19.9	18.3	24	19.9	4.0	10.1		
15	10.7	11.6	14.0	14.4	20.2	12.9	10.2	7.3	5.2	3.0	1.4	1.0	1.6	2.2	1.9	2.4	3.8	4.2	4.8	4.9	5.0	4.8	4.7	4.0	24	20.2	1.0	6.5		
16	3.7	3.8	3.8	3.6	3.6	3.6	3.6	3.7	3.9	3.7	4.1	3.5	3.2	3.2	3.5	3.9	3.8	4.4	5.0	6.2	7.2	6.2	6.4	7.1	24	7.2	3.2	4.4		
17	7.2	6.9	5.6	4.7	4.3	4.1	4.0	4.5	3.2	1.7	1.7	1.7	1.7	2.0	2.4	3.3	4.2	7.0	8.8	11.1	8.0	6.6	7.4	8.8	24	11.1	1.7	5.0		
18	13.0	15.1	16.2	16.0	16.6	16.8	16.9	17.2	15.0	13.0	11.5	5.9	5.3	5.3	6.3	7.7	8.9	9.7	10.8	11.7	12.3	11.5	12.0	11.4	24	17.2	5.3	11.9		
19	9.1	8.6	8.4	6.4	6.2	5.6	4.6	4.0	4.2	3.7	3.4	5.8	3.9	1.5	1.4	1.4	1.4	2.1	2.7	3.7	3.5	3.5	3.6	2.9	24	9.1	1.4	4.2		
20	3.9	4.5	4.5	5.9	6.9	6.6	6.0	5.3	2.7	1.6	2.1	2.4	2.4	2.5	2.6	2.8	2.8	2.9	3.7	4.7	7.7	7.2	6.5	3.9	24	7.7	1.6	4.3		
21	2.0	2.9	3.1	3.7	4.3	4.5	3.9	3.9	4.2	3.7	3.1	3.3	3.1	3.1	3.4	4.8	7.6	8.0	10.0	12.1	14.1	13.4	12.3	13.4	24	14.1	2.0	6.2		
22	12.7	11.7	14.3	21.4	31.6	36.0	37.6	38.3	38.7	С	36.6	33.1	27.0	20.1	24.7	23.1	21.9	24.4	22.7	18.7	21.8	20.9	19.4	19.5	23	38.7	11.7	25.1		
23	24.3	29.0	29.2	23.9	21.1	17.8	16.0	14.6	11.8	12.6	Α	Α	Α	Α	21.4	14.4	6.6	1.9	2.4	2.0	2.8	2.6	2.9	4.1	20	29.2	1.9	13.1		
24	6.4	6.5	6.6	8.0	6.9	4.6	4.8	3.7	2.3	2.8	3.8	3.5	3.2	4.1	5.7	6.9	6.3	5.0	6.8	6.5	5.0	5.0	6.1	7.5	24	8.0	2.3	5.3		
25	7.2	7.3	6.5	7.7	8.0	8.2	9.7	10.5	8.3	4.5	11.4	5.6	5.0	1.8	1.8	1.2	0.7	0.8	1.3	1.6	1.9	1.7	1.4	1.7	24	11.4	0.7	4.8		
26	1.9	2.4	2.0	2.0	2.0	2.1	2.1	2.0	2.1	1.7	1.9	2.2	1.8	2.7	3.8	4.2	3.8	5.0	5.6	5.5	5.8	5.4	5.7	5.4	24	5.8	1.7	3.3		
27	4.2	3.5	3.5	3.7	4.1	4.2	4.9	5.0	5.0	6.3	7.6	8.4	8.3	9.1	9.8	9.6	9.2	5.1	5.9	9.1	10.2	10.0	10.0	8.0	24	10.2	3.5	6.9		
28	8.3	8.9	9.2	9.5	9.7	11.2	12.4	12.9	11.6	10.2	8.7	8.8	7.8	6.8	8.2	8.9	8.0	7.9	7.5	7.7	7.1	8.4	10.3	12.6	24	12.9	6.8	9.3		
29 30 31																														
Count	28	28	28	28	28	28	28	28	28	27	27	27	27	27	28	28	28	28	28	28	28	28	28	28	667				1	
Maximum	24.3	29.0	29.2	23.9	31.6	36.0	37.6	38.3	38.7	20.1	36.6	33.1	27.0	21.5	24.7	23.1	21.9	24.4	22.7	18.7	21.8	20.9	19.9	19.5	24					
Minimum	1.7	1.9	2.0	2.0	2.0	1.9	1.8	1.9	1.8	1.6	1.4	1.0	1.3	1.0	1.0	0.9	0.7	0.8	1.3	1.6	1.8	1.7	1.3	1.3	20					
Average	6.8	7.2	7.2	7.5	8.1	7.7	7.4	7.4	7.2	5.8	6.9	6.6	6.3	5.7	6.4	6.3	6.4	6.7	6.9	6.9	7.6	7.0	6.9	7.0						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly mum Daily		38.7 25.1
Data		1.9		2.5		3.2		3.9		4.8		6.2		8.0		10.2		14.7		19.2		30.0		38.7				ly Average		7.0
Notes	C ·	- Calibratio	n / Span Cy	cle NA	A - No Data	Available	T-	Test	A-	MOE Audit	M -	Equipment M	alfunction	/ Down										i i						,

											PM _{2.5} - CC March ;/m³)	OURTICE 2017																	
H	lour																												
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	
1	14.0	9.8	12.6	10.7	4.1	3.7	2.5	1.7	3.8	4.8	5.0	2.4	1.0	1.0	1.2	2.3	2.1	2.7	3.5	4.6	1.8	0.7	1.3	1.8	24	14.0	0.7	4.1	
2	2.0 2.3	2.0 2.0	2.2 1.9	2.7 1.9	2.9 2.0	2.9 2.3	2.9 2.2	2.5 2.2	2.8 2.6	3.1 1.8	2.5 1.8	2.3 1.8	1.7 1.7	1.7 1.8	2.0 1.8	2.8 2.0	2.0 2.2	1.8 2.4	1.9 2.7	1.9 3.1	2.4 2.9	2.2 2.6	2.3 2.7	2.5 2.9	24 24	3.1 3.1	1.7 1.7	2.3	
Δ	2.5	3.5	3.4	3.5	2.7	2.5	2.5	2.2	2.2	2.6	2.2	2.4	2.3	2.1	2.1	2.3	2.2	2.4	2.7	3.1	3.3	3.8	3.5	3.8	24	3.8	2.1	2.7	
5	2.9	2.2	2.4	2.4	2.5	2.2	2.2	2.4	1.8	2.0	1.8	1.7	1.6	1.5	1.8	1.9	1.9	2.0	2.2	2.1	2.0	1.8	1.7	1.8	24	2.9	1.5	2.0	
6	2.7	4.1	4.2	4.3	4.2	4.1	3.7	3.5	3.3	3.0	3.2	3.2	3.5	3.7	4.3	5.0	5.6	6.3	7.2	6.9	6.5	6.7	6.9	7.9	24	7.9	2.7	4.8	
7	10.7	15.0	14.2	8.0	5.3	4.7	4.1	5.7	9.4	9.2	8.3	7.5	8.1	7.9	8.2	7.5	6.6	6.0	5.6	6.5	5.8	6.0	5.3	4.5	24	15.0	4.1	7.5	
8	3.6	3.8	3.4	3.4	3.8	3.8	3.2	2.1	1.7	1.7	1.7	1.5	1.4	1.5	2.0	1.9	2.2	2.9	3.2	3.6	4.2	5.6	5.6	5.4	24	5.6	1.4	3.1	
9	6.1	5.6	5.0	4.7	4.7	4.6	4.4	4.1	3.0	2.4	2.3	2.4	2.1	1.7	1.6	1.8	2.8	4.9	5.2	5.9	5.5	5.4	6.3	6.4	24	6.4	1.6	4.1	
10	5.1	4.1	3.3	2.6	2.7	2.7	2.9	2.8	2.7	2.4	2.6	2.8	2.7	2.7	2.9	3.3	3.7	4.2	4.3	4.4	4.3	4.1	3.5	3.3	24	5.1	2.4	3.3	
11	3.8	4.2	4.5	4.5	4.8	4.1	3.9	3.3	2.4	1.9	2.0	2.3	2.3	2.4	2.2	2.1	2.7	3.8	4.4	5.0	5.0	5.0	5.1	5.2	24	5.2	1.9	3.6	
12	4.4	3.8	4.2	4.6	5.1	5.4	5.8	4.9	3.8	2.7	2.2	1.9	2.1	2.2	2.0	2.0	2.3	2.4	3.3	3.5	3.7	3.2	3.3	3.3	24	5.8	1.9	3.4	
13	4.4	5.1	5.1	4.9	4.2	3.9	3.8	3.5	4.7	8.0	7.9	4.8	4.9	4.3	3.9	4.2	4.5	4.9	4.7	4.8	4.6	4.5	3.9	3.4	24	8.0	3.4	4.7	
14	3.2	3.2	2.9	2.7	2.7	2.6	2.6	2.4	2.8	3.1	2.8	2.7	2.5	2.1	1.9	1.8	1.5	1.4	1.3	1.4	1.4	1.4	1.4	1.7	24	3.2	1.3	2.2	
15	2.1	2.5	2.6	2.8	2.6	2.2	2.3	2.3	1.5	2.1	2.2	1.9	1.5	1.1	1.4	1.9	1.8	1.9	2.3	2.2	1.9	1.8	2.0	2.0	24	2.8	1.1	2.0	
15	2.5 5.8	2.6 4.9	2.3 5.4	2.2 5.3	2.4 3.9	2.7 7.5	3.2 10.0	3.0 8.1	1.9 2.8	1.3 1.4	1.7 3.2	2.0 4.0	1.9 4.9	1.8 4.0	1.7 3.6	1.8 3.0	2.5	3.7 5.4	4.4 7.5	4.1 11.0	4.2 13.9	5.3 14.5	7.9 12.8	7.1 12.6	24 24	7.9 14.5	1.3 1.4	3.1 6.6	
18	10.5	10.1	6.4	17.0	18.5	7.5 9.6	13.6	16.3	18.7	3.1	2.3	9.7	12.8	5.0	4.6	5.2	3.8 6.0	5.9	6.2	6.0	5.7	8.0	4.1	3.7	24	18.7	2.3	8.7	
19	2.9	2.6	2.9	2.7	2.9	3.2	3.1	2.8	3.5	4.6	4.1	4.0	4.1	4.3	5.1	5.7	6.1	6.7	8.2	9.7	14.9	21.1	22.0	23.1	24	23.1	2.6	7.1	
20	19.6	19.6	22.8	27.5	29.8	31.7	29.9	17.3	12.7	12.2	14.5	16.0	16.1	13.5	9.1	10.1	11.1	11.0	12.3	14.0	16.1	16.3	17.3	18.2	24	31.7	9.1	17.4	
21	18.7	23.3	28.9	32.0	33.7	29.9	28.4	28.2	21.2	14.6	15.9	14.6	10.0	5.0	2.7	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.4	24	33.7	0.2	12.9	
22	0.2	0.2	0.3	0.3	0.4	0.5	0.5	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.9	0.9	1.3	1.6	2.1	2.1	2.2	2.7	2.9	2.7	24	2.9	0.2	1.1	
23	3.0	3.3	3.7	4.4	5.8	6.8	7.6	5.1	4.9	2.5	1.9	1.6	1.8	1.7	3.1	2.1	3.8	5.4	7.4	7.6	6.7	3.2	2.9	3.1	24	7.6	1.6	4.1	
24	3.8	3.8	4.5	5.2	6.9	8.2	8.6	8.3	8.0	7.6	7.6	6.3	6.3	6.3	7.5	7.3	8.0	12.1	24.2	21.5	9.6	5.4	3.9	1.4	24	24.2	1.4	8.0	
25	1.8	2.4	2.1	1.4	1.3	2.4	4.7	6.6	6.9	7.0	6.1	3.9	3.3	3.2	3.3	2.7	1.8	1.3	0.9	1.5	1.9	1.9	4.5	4.0	24	7.0	0.9	3.2	
26	3.0	4.1	4.3	4.2	4.1	4.0	8.2	5.8	6.8	5.8	4.9	5.0	5.3	6.4	9.4	8.2	11.0	14.4	11.5	10.4	13.0	14.0	13.4	13.5	24	14.4	3.0	7.9	
27	14.0	14.4	18.9	22.4	11.3	7.7	5.6	3.5	3.2	4.0	5.2	5.2	4.2	8.4	10.9	12.5	10.1	8.9	10.7	5.2	10.7	9.5	11.5	14.1	24	22.4	3.2	9.7	
28	17.2 3.2	5.4 4.4	0.2 4.8	0.8 3.8	2.7 3.7	0.8 3.5	0.9 3.0	1.5 2.3	1.1 3.3	1.4 2.3	1.0 C	0.5 2.4	0.2 2.1	0.6 3.0	0.2 2.8	0.2 2.6	0.4 2.7	2.0 3.0	4.8 4.1	6.8 4.7	8.3 8.3	6.2 9.3	3.9 12.8	3.2 4.4	24 23	17.2 12.8	0.2 2.1	2.9 4.2	
30	3.5	3.4	3.3	2.9	2.4	3.5 2.8	5.0	4.1	2.5	2.5	3.3	3.4	2.1	2.0	2.8	3.0	2.7	3.2	3.5	4.7 5.6	6.5 4.1	9.3 19.3	6.9	7.5	23 24	19.3	2.1	4.2	
31	8.1	18.7	5.3	2.3	3.0	4.0	4.0	9.9	12.7	5.5	12.4	10.5	22.8	31.3	16.1	4.8	0.2	0.3	0.2	0.2	0.2	0.2	0.3	0.2	24	31.3	0.2	7.2	
Count	31	31	31	31	31	31	31	31	31	31	30	31	31	31	31	31	31	31	31	31	31	31	31	31	743	31.3			<u>_</u>
Maximum	19.6	23.3	28.9	32.0	33.7	31.7	29.9	28.2	21.2	14.6	15.9	16.0	22.8	31.3	16.1	12.5	11.1	14.4	24.2	21.5	16.1	21.1	22.0	23.1	24				
Minimum	0.2	0.2	0.2	0.3	0.4	0.5	0.5	0.6	0.7	0.7	0.7	0.5	0.2	0.6	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	23				
Average	6.1	6.3	6.1	6.4	6.0	5.7	6.0	5.5	5.1	4.1	4.4	4.2	4.4	4.4	3.9	3.6	3.7	4.3	5.2	5.5	5.7	6.2	5.9	5.6					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly mum Daily	33. 17.
Data		1.5		2.0		2.4		2.9		3.5		4.2		5.1		6.9		11.4		16.1		28.7		33.7				ly Average	5
Notes	С	- Calibratio	n / Span Cy	cle N	A - No Data	Available	Т-	- Test	A-	MOE Audit	М	- Equipment M	lalfunction	/ Down										I				1	

											J	PM _{2.5} - Ri anuary g/m³)	undle Road 2017																	
	lour	_		200		***		500				4000	4400	4000	4200	4 400	4500	4500	4700	4000	4000	2000	2400		2222					
Day 1	5.2		2.6	2.2	300 1.7	400 1.5	500 1.6	1.4	700 1.4	1.1	900 0.7	0.8	2.8	1200 5.1	7.1	1400 15.3	1500 19.6	1600 13.3	1700 4.3	3.2	1900 3.3	2000 4.6	2100 4.3	2200 4.7	2300 6.5	Count 24	Maximum 19.6	Minimum 0.7	Average 4.8	
2	7.6		7.6	8.3	8.0	7.9	5.0	3.8	3.0	1.6	1.3	4.6	11.9	13.6	13.6	14.2	16.8	13.8	9.2	8.9	10.3	13.3	13.3	13.1	10.2	24	16.8	1.3	9.2	
3	10.3	3 :	11.1	11.5	10.1	8.7	5.7	5.0	5.7	5.4	6.6	7.2	7.0	5.8	4.3	3.4	5.6	6.5	2.6	2.0	1.2	1.2	1.1	1.0	1.0	24	11.5	1.0	5.4	
4	3.2		6.3	8.7	3.3	5.1	8.9	4.1	1.1	2.8	6.7	13.7	15.8	6.3	1.2	0.7	0.5	0.6	0.5	0.4	0.6	0.6	0.5	0.4	0.4	24	15.8	0.4	3.9	
5	0.6		0.4	0.4	0.4	0.4	0.4	0.4	3.3	6.5	8.3	7.1	11.6	14.2	15.1	13.9	9.8	4.4	1.8	3.1	5.7	3.2	1.9	2.0	5.1	24	15.1	0.4	5.0	
7	2.7 9.3		2.6 3.6	2.9 3.9	3.5 3.1	3.5 11.9	3.8 10.0	6.4 2.9	7.0 3.1	6.5 2.9	5.7 3.7	4.8 25.0	4.3 53.6	4.1 49.1	4.4 37.8	4.0 36.4	3.7 46.0	3.2 51.8	3.3 38.5	2.9 38.8	3.0 26.9	3.2 14.1	33.1 9.8	33.9 3.1	15.5 2.4	24 24	33.9 53.6	2.6 2.4	7.0 20.3	
8	6.9		10.9	5.8	6.2	8.9	5.5	2.0	2.4	3.1	3.9	5.3	4.5	2.3	4.4	5.2	5.2	7.2	8.6	7.0	7.5	8.7	3.4	5.4	7.2	24	10.9	2.0	5.7	
9	14.5	5	4.8	14.5	14.2	9.9	6.6	9.6	17.0	16.5	21.4	30.1	24.4	19.3	17.6	23.5	32.9	36.5	41.3	45.4	39.7	32.0	31.7	32.6	20.1	24	45.4	4.8	23.2	
10	19.4		18.6	14.2	12.4	11.8	13.1	12.5	12.0	10.0	8.9	8.7	10.8	14.1	12.8	13.7	14.6	19.8	23.2	19.4	19.7	19.1	19.9	19.1	20.8	24	23.2	8.7	15.4	
11	17.9		12.4	12.0	24.2	24.7	18.5	13.2	8.9	7.4	7.3	11.1	13.2	12.4	11.3	10.3	11.5	13.8	15.7	11.2	4.5	2.5	3.1	4.0	4.5	24	24.7	2.5	11.5	
12	6.7 0.3		8.8 0.4	9.4 0.4	8.5 0.3	10.8 0.3	10.5 0.4	15.6 0.4	9.2 0.6	11.2 0.7	7.9 0.6	3.9 0.6	3.4 0.6	3.9 0.4	2.7 0.9	1.6 0.8	1.6 0.9	0.8 0.8	0.8 0.8	0.9 0.8	0.9 0.6	0.9 0.6	1.3 0.8	1.0 1.0	0.5 1.5	24 24	15.6 1.5	0.5 0.3	5.1 0.7	
14	1.8		1.6	1.9	1.9	1.8	1.6	1.8	2.0	2.7	4.0	7.5	16.8	23.9	36.0	34.6	41.1	81.2	42.5	26.8	23.8	12.3	8.1	15.9	17.6	24	81.2	1.6	17.0	
15	18.9		20.9	26.2	30.2	29.5	26.4	23.0	19.6	20.5	21.3	7.8	8.1	8.0	8.2	8.4	11.0	8.6	7.9	7.3	9.2	8.6	3.5	3.2	5.0	24	30.2	3.2	14.2	
16	4.0	0	6.4	4.5	3.6	4.5	5.0	5.2	6.1	7.2	13.1	43.1	55.1	62.2	68.5	64.9	60.0	56.5	51.8	45.9	39.5	36.2	29.9	22.8	16.2	24	68.5	3.6	29.7	
17	17.9		19.5	19.7	20.4	17.1	12.9	20.4	26.1	26.3	26.1	19.9	15.1	10.3	8.3	9.7	10.7	13.4	14.1	8.9	7.4	8.3	9.0	8.9	6.7	24	26.3	6.7	14.9	
18	7.1 15.2		8.9 18.2	14.1 14.1	11.7 16.0	10.9 18.7	12.0 16.5	14.7 14.0	15.6 11.2	17.6 8.9	19.3 8.1	12.8 11.1	6.7 6.9	7.0 6.3	8.2 7.4	5.9 5.3	4.4 6.2	5.5 9.3	5.1 15.0	4.2 14.5	4.7 8.5	7.5 5.3	11.5 5.6	12.8 5.3	12.9 5.5	24 24	19.3 18.7	4.2 5.3	10.1 10.5	
20	5.9		6.0	4.4	4.4	5.5	6.5	6.1	7.1	7.0	6.3	7.3	10.0	8.5	10.4	10.2	8.3	7.7	5.9	4.9	6.3	6.2	6.0	5.1	6.7	24	10.4	4.4	6.8	
21	11.2		10.2	10.7	11.8	6.3	11.6	15.8	16.4	12.9	13.2	12.4	22.4	24.5	21.4	24.0	13.4	9.3	11.7	13.5	11.7	12.5	11.2	11.2	8.5	24	24.5	6.3	13.7	
22	5.8	8	5.9	8.9	12.1	13.9	12.7	12.0	8.6	6.8	7.1	8.8	8.6	5.9	5.3	5.6	6.3	5.7	5.2	3.8	2.2	1.1	0.6	0.6	0.8	24	13.9	0.6	6.4	
23	1.1	1	1.4	1.4	1.5	1.4	1.2	0.9	0.9	1.1	1.9	3.0	5.5	8.8	10.4	9.8	10.6	13.7	15.8	8.1	4.6	2.8	1.9	1.9	1.7	24	15.8	0.9	4.6	
24	1.5		1.5	1.3	1.2	1.1	1.0	0.9	1.2	1.3	1.8	2.4	5.8	8.4	12.4	11.5	7.8	11.0	9.3	9.1	11.5	11.4	10.8	7.7	5.7	24	12.4	0.9	5.7	
25	2.7 17.4		2.5 19.6	4.2 18.6	7.8 21.6	11.8 29.0	13.7 29.8	18.4 23.8	20.2 18.3	25.6 12.5	35.3 6.7	29.7 4.7	14.5 2.4	19.7 1.2	15.5 1.1	C 1.1	15.3 1.3	21.9 0.4	22.8 0.6	18.0 1.2	14.8 0.6	15.4 0.2	17.6 0.2	20.2 0.2	22.6 0.2	23 24	35.3 29.8	2.5 0.2	17.0 8.9	
27	0.2		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.7	0.2	0.2	0.2	0.2	0.2	0.2	0.4	0.0	0.2	0.3	0.2	0.2	1.2	0.2	24	1.2	0.2	0.3	
28	0.6		0.3	0.3	0.3	0.3	0.3	0.4	0.5	1.7	3.7	3.6	6.0	12.5	10.1	7.9	9.5	9.0	8.2	9.8	9.9	7.8	10.7	18.1	16.2	24	18.1	0.3	6.2	
29	4.6	6	0.8	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	24	4.6	0.2	0.4	
30	0.2		0.2	0.2	0.2	0.3	1.9	2.8	3.7	2.1	1.7	1.8	1.4	1.4	2.2	2.6	4.0	5.0	5.0	2.3	1.3	1.5	1.6	1.0	1.7	24	5.0	0.2	1.9	
Count	9.4		24.7 31	22.3	19.5 31	12.8 31	8.7 31	8.8	9.2	11.3	13.6	24.4	34.4 31	41.2	36.4	33.2 30	27.4 31	25.4 31	26.0 31	22.0	17.8	12.3 31	9.5 31	9.6	9.2	743	41.2	8.7	19.5	
Count Maximum	31 19.4		31 24.7	31 26.2	30.2	29.5	29.8	23.8	26.1	31 26.3	31 35.3	31 43.1	55.1	31 62.2	31 68.5	64.9	60.0	81.2	51.8	31 45.9	31 39.7	36.2	33.1	33.9	22.6	743 24				
Minimum	0.2		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	23				
Average	7.4		7.7	8.0	8.4	8.7	8.1	8.0	7.8	7.8	8.6	10.5	12.4	12.9	12.8	12.6	13.1	14.7	12.8	11.1	9.6	8.2	8.5	8.6	7.5					
Percentiles			10		20		30		40		50		60		70		80		90		95		99		100				ım Hourly	81.:
Data			0.5		1.4		3.1		5.0		7.0		8.9		11.7		15.1		22.4		32.0		52.8		81.2				num Daily y Average	29. 9.
Notes		C - Cal	ibration	/ Span Cyo	cle N	A - No Data	Available	Т -	- Test	A-	MOE Audit	M	- Equipment M	alfunction	/ Down	R	- Rate of Cl	nange												

										Fe	PM _{2.5} - Ru ebruary /m³)	ndle Road 2017																	
_	Hour	400	200	200	***		500				4000	4400	4200	4000	4.000	4500	4500	4700	4000	4000	2000	2400		2222					
Day 1	10.8	100 15.1	200 13.5	300 11.4	400 6.5	500 3.0	4.3	700 9.2	800 15.6	900 19.6	1000 15.8	1100 5.9	1200 2.1	0.2	1400 1.8	1500	1600 0.6	1700 5.6	1800 7.9	1900 3.6	2000 5.1	2100 2.6	0.3	0.2	Count 24	Maximum 19.6	Minimum 0.2	Average 6.7	
2	0.2	0.2	0.2	0.2	0.2	0.5	1.0	2.0	2.5	2.4	2.1	2.0	1.4	2.4	1.4	0.8	1.5	2.6	3.6	4.9	5.1	4.8	5.2	5.1	24	5.2	0.2	2.2	1
3	3.6	1.2	1.2	0.8	0.9	1.6	2.6	2.3	2.5	2.7	2.1	10.3	12.8	15.4	11.9	14.6	13.1	14.8	11.5	5.0	2.7	1.5	1.5	1.5	24	15.4	0.8	5.7	1
4	1.3	1.0	0.8	0.6	0.5	0.5	0.5	0.8	2.7	12.5	19.7	31.0	41.8	31.4	25.9	27.9	25.4	19.6	11.3	8.3	5.1	5.2	9.6	11.4	24	41.8	0.5	12.3	1
5	13.6	17.5	18.2	19.2	17.1	18.1	21.1	23.6	26.8	19.2	20.1	22.8	25.3	26.7	28.2	33.1	27.8	22.0	8.3	0.6	0.2	2.4	3.3	0.2	24	33.1	0.2	17.3	1
6	0.2	0.2	0.2	0.2	0.4	1.4	0.5	0.4	1.8	1.5	2.0	11.4	12.2	20.5	15.1	12.0	24.7	25.8	27.3	31.4	27.1	23.6	19.0	18.7	24	31.4	0.2	11.6	1
7	16.4	15.1	15.2	13.9	16.2	11.8	10.6	12.3	10.4	9.0	8.2	7.3	6.8	7.1	6.9	6.3	5.3	2.9	2.2	2.4	3.2	6.5	12.9	25.0	24	25.0	2.2	9.7	1
8	19.0	31.1	15.1	12.6	11.7	2.5	1.2	1.6	0.6	1.1	0.6	0.6	0.5	0.2	0.2	0.5	0.7	0.3	0.3	0.2	0.2	0.2	0.8	0.9	24	31.1	0.2	4.3	1
10	0.8	0.7	0.2	0.3	0.2	1.9 1.4	0.4	0.6	0.6	0.6	0.4	0.4 13.6	0.2 22.2	0.2 11.4	0.5 7.8	7.3	13.3	0.6 15.7	0.4 12.5	0.5 10.5	0.6 13.6	0.6 15.2	0.3 15.9	0.4 35.3	24	1.9 35.3	0.2	0.6 8.3	
11	20.5	22.9	21.3	24.0	27.5	24.6	22.8	23.0	27.8	35.1	43.6	47.8	51.7	48.6	46.1	40.8	35.2	29.2	22.6	17.5	13.6	11.4	9.3	6.6	24	51.7	6.6	28.1	1
12	2.2	0.9	0.8	0.7	0.7	0.6	0.7	1.0	1.5	1.8	1.9	5.2	11.4	12.5	15.3	22.2	24.3	16.0	14.0	12.6	13.7	4.2	0.3	0.6	24	24.3	0.3	6.9	1
13	0.7	1.2	2.0	1.9	1.6	0.6	0.3	0.4	0.4	0.4	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.4	1.2	0.4	0.7	1.4	1.5	24	2.0	0.2	0.7	1
14	1.8	2.3	1.9	1.9	2.0	2.3	8.4	16.6	34.5	41.5	43.0	43.1	43.1	38.5	39.2	40.4	43.1	52.7	50.2	40.3	36.4	35.2	37.0	31.8	24	52.7	1.8	28.6	1
15	20.0	19.7	19.6	19.2	13.9	1.7	1.9	1.9	1.9	2.1	0.9	0.3	0.6	0.7	0.2	0.5	1.1	0.9	0.8	0.9	0.8	0.4	0.4	0.3	24	20.0	0.2	4.6	1
16	0.3	0.3	0.3	0.3	0.3	0.3	0.6	0.4	0.4	0.4	2.2	12.3	С	С	С	С	4.0	4.8	4.2	15.4	11.5	4.1	30.1	58.2	20	58.2	0.3	7.5	1
17	9.4	2.0	1.6	1.3	1.2	1.2	1.3	1.7	1.5	1.1	1.0	0.8	0.8	0.9	1.1	1.5	2.1	3.3	4.7	8.2	8.2	6.2	5.5	6.5	24	9.4	0.8	3.1	1
18	7.4	7.9	9.7	10.9	11.3	11.4	11.4	12.2	14.8	14.9	10.3	7.2	6.8	6.3	7.1	8.1	8.4	9.5	11.6	13.0	14.7	13.0	10.1	9.2	24	14.9	6.3	10.3	1
20	10.0	10.4 4.9	9.8 5.7	7.4 6.7	5.8 6.8	6.3	5.8 6.5	6.0	6.3 4.1	5.4 2.9	3.4 2.6	5.0 3.5	3.3	3.3	2.1	1.8 2.8	1.9 3.2	3.3	4.3 6.0	5.4 7.1	4.9 14.1	9.6	4.3 8.0	4.5 6.4	24	10.4 14.1	1.8 2.6	5.2 5.5	
21	2.3	2.3	2.6	3.8	4.4	4.4	4.2	4.5	4.9	4.8	4.2	4.1	4.3	4.5	6.2	11.9	11.8	11.9	14.8	14.9	15.1	18.3	17.6	16.4	24	18.3	2.3	8.1	1
22	17.5	17.2	18.6	20.9	32.9	38.2	35.5	31.6	29.2	27.1	21.7	13.4	7.5 C	C	C.E	20.6	19.0	22.2	23.2	17.0	17.9	19.4	17.2	17.1	21	38.2	13.4	22.7	1
23	18.7	23.3	27.1	30.8	29.1	23.4	21.5	23.7	16.1	14.9	16.7	16.8	17.7	19.6	19.7	11.5	4.9	1.0	0.8	0.8	1.5	1.5	1.2	3.1	24	30.8	0.8	14.4	1
24	2.6	5.0	4.2	4.1	3.9	2.7	2.9	3.5	1.8	2.6	3.6	3.3	3.1	4.1	6.7	8.0	7.4	7.4	9.7	9.1	7.4	6.6	7.0	8.1	24	9.7	1.8	5.2	1
25	7.7	5.5	5.2	6.1	7.1	7.9	8.1	9.2	9.1	3.3	12.3	8.7	5.5	1.8	1.6	0.8	0.2	0.5	0.9	0.4	0.3	0.5	3.4	0.2	24	12.3	0.2	4.4	1
26	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.6	0.5	0.4	1.1	2.2	3.1	3.6	3.9	5.2	5.0	6.2	6.0	6.3	6.0	24	6.3	0.2	2.2	1
27	5.8	5.7	5.6	6.1	6.3	6.2	7.0	8.3	7.7	8.1	9.6	10.5	10.8	11.5	11.1	10.2	7.9	4.3	13.3	15.1	21.8	11.5	8.9	10.3	24	21.8	4.3	9.3	1
28 29 30 31	12.4	8.2	8.0	8.4	9.4	12.0	11.9	14.5	14.1	12.4	10.2	9.6	8.9	7.3	9.1	9.6	10.1	7.8	7.7	8.3	7.6	10.7	10.4	12.9	24	14.5	7.3	10.1	
Count	28	28	28	28	28	28	28	28	28	28	28	28	26	26	26	27	28	28	28	28	28	28	28	28	665				
Maximum	20.5	31.1	27.1	30.8	32.9	38.2	35.5	31.6	34.5	41.5	43.6	47.8	51.7	48.6	46.1	40.8	43.1	52.7	50.2	40.3	36.4	35.2	37.0	58.2	24				
Minimum	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.3	0.2	20				
Average	7.5	7.9	7.5	7.7	7.8	6.9	6.9	7.8	8.6	8.9	9.3	10.6	11.4	10.7	10.4	11.0	10.8	10.5	10.0	9.3	9.2	8.1	8.8	10.6					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				num Hourly	58.i 28.i
Data		0.4		0.8		1.8		3.3		5.5		7.9		11.4		15.2		23.1		31.3		44.5		58.2				nly Average	9.
Notes	(C - Calibratio	n / Span Cy	cle NA	A - No Data	Available	Т-	Test	A-	MOE Audit	M -	Equipment M	alfunction ,	/ Down	R ·	- Rate of Ch	nange											J	

												PM _{2.5} - Ru March g/m³)	indle Road 2017																	
	Hour																													
Day	1	0 16.5	100 13.8	200 12.6	300 10.4	400 5.6	3.3	5.3	700 4.6	7.3	900 10.4	1000 9.9	1100 4.6	1200 2.6	1300 2.5	1400 2.8	1500 3.6	1600 3.6	1700 5.0	1800 5.8	1900 6.6	2000 2.5	2100 0.6	2200 0.4	2300 0.4	Count 24	Maximum 16.5	Minimum 0.4	Average 5.9	
2		0.3	0.2	0.2	0.3	0.4	0.7	0.9	0.8	0.5	0.6	0.4	0.5	0.2	0.2	0.2	0.7	0.7	0.7	3.4	1.0	1.5	1.1	1.1	1.3	24	3.4	0.4	0.7	
3		2.2	2.1	1.6	1.8	2.1	1.9	2.8	3.1	2.5	0.9	1.1	A	Α	4.0	3.1	3.1	3.3	3.6	3.6	3.9	4.2	4.8	10.2	6.2	22	10.2	0.9	3.3	
4		7.4	6.5	7.7	5.4	3.0	2.8	2.4	2.6	2.1	1.6	1.5	1.9	1.8	1.8	2.0	1.9	1.8	2.7	3.9	3.9	4.5	5.2	5.7	6.5	24	7.7	1.5	3.6	
5		6.7	8.4	7.6	5.8	5.5	4.7	4.0	4.1	4.0	3.8	3.1	2.6	2.0	1.9	2.5	3.0	2.7	2.3	2.2	2.8	5.0	5.4	4.3	4.4	24	8.4	1.9	4.1	
6		3.9	3.8	3.1	3.2	3.5	3.6	3.6	3.7	3.3	3.4	3.5	4.1	4.2	4.4	5.9	5.8	4.7	4.0	5.3	6.5	6.3	6.2	6.8	7.8	24	7.8	3.1	4.6	
7		11.5	15.6	14.0	8.3	4.6	4.3	3.1	4.1	4.8	6.9	8.3	8.5	10.4	9.5	9.9	9.3	9.9	9.7	8.9	10.3	11.8	8.7	8.5	4.1	24	15.6	3.1	8.5	
8		3.1	3.1	3.4	2.9	2.8	2.8	2.5	2.3	2.0	1.9	1.9	1.9	1.4	1.0	3.2	10.9	14.4	8.5	8.5	10.8	13.4	12.5	12.9	12.0	24	14.4	1.0	5.8	
9		6.2	10.1 5.0	8.3 2.1	6.9 1.7	7.4 1.8	7.7 1.8	7.2 1.9	6.8 2.0	7.5 1.5	3.7 1.2	3.8 1.6	4.0 1.5	3.3 1.6	4.1 1.8	4.9 1.9	2.2	5.6 2.6	4.8 2.8	5.9 2.8	6.2 3.3	5.8 3.5	12.8 3.5	38.0 6.5	6.8 2.8	24	38.0 6.5	3.3 1.2	7.9 2.6	
10		2.2	5.0 1.4	2.1 1.7	2.2	2.5	2.5	2.2	2.0	1.8	1.2	1.8	1.5	1.5	1.8	1.9	1.2	1.3	2.8	3.5	3.3 4.3	3.5 4.9	5.2	5.4	5.4	24	5.4	1.2	2.5	
12		5.1	5.6	6.8	7.0	7.2	7.2	7.2	6.7	4.0	1.9	1.3	1.2	2.2	1.9	1.4	1.5	2.1	1.5	1.9	2.5	3.0	3.4	4.5	7.0	24	7.2	1.1	3.9	
13		3.9	3.9	3.9	3.6	3.8	4.1	2.6	2.8	2.5	2.1	1.6	1.2	1.2	1.3	1.4	2.1	3.0	3.7	4.1	4.6	4.7	4.4	3.6	2.8	24	4.7	1.2	3.0	
14		3.1	3.6	3.3	2.8	3.1	3.2	3.2	2.7	2.4	2.4	2.3	2.2	2.0	1.6	1.4	3.0	2.4	2.7	2.7	2.6	2.2	2.2	2.3	2.9	24	3.6	1.4	2.6	
15		3.4	3.1	3.6	3.9	3.9	С	5.8	7.8	7.8	6.9	6.0	5.6	4.0	2.9	2.9	3.8	3.8	3.4	3.0	2.7	2.7	2.7	2.8	2.8	23	7.8	2.7	4.1	
16		3.4	2.6	2.5	2.6	2.8	2.8	3.2	3.2	2.0	1.4	1.6	1.7	1.7	1.8	1.7	1.5	2.4	3.6	4.7	7.8	29.0	7.4	4.1	5.3	24	29.0	1.4	4.2	
17		7.6	3.4	2.6	2.2	3.3	16.7	33.8	10.6	1.5	8.0	1.4	1.9	2.3	2.2	2.0	1.8	2.5	4.1	6.5	10.4	16.5	15.8	14.7	12.4	24	33.8	0.8	7.4	
18		12.7	10.9	7.9	6.8	5.4	3.9	3.3	3.2	3.5	4.2	4.5	6.5	9.2	8.9	8.6	8.9	8.3	8.4	7.7	8.0	8.2	7.0	5.6	5.0	24	12.7	3.2	6.9	
19 20		4.9 24.8	5.2 30.5	5.5 26.1	5.5 32.7	5.4 28.2	5.1 27.1	5.1 29.5	4.7 C	4.7 16.1	5.2 15.9	5.1 18.1	5.6 18.6	5.6 18.4	5.2 16.5	5.4 10.8	5.8 12.5	13.2	8.1 11.9	10.2	12.6 16.2	15.0 17.0	21.4 17.4	34.1 17.3	23.3 18.2	24	34.1 32.7	4.7 10.8	9.0 19.6	
21		20.0	21.0	27.3	31.9	31.3	29.6	26.6	29.4	22.7	14.4	15.6	16.1	9.4	3.9	3.2	0.8	0.4	0.2	0.2	0.3	0.5	0.7	0.7	0.9	23	31.9	0.2	12.8	
22		0.8	0.8	0.8	0.9	0.9	1.0	1.2	1.4	1.6	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.6	3.3	4.2	7.0	4.6	5.2	5.3	4.4	24	7.0	0.8	2.5	
23		4.9	6.6	6.7	7.7	8.1	7.6	8.9	7.6	4.6	3.9	2.7	2.3	2.3	2.0	2.5	2.1	4.4	5.7	6.7	7.3	7.3	4.2	3.7	3.3	24	8.9	2.0	5.1	
24		5.1	6.1	6.7	6.8	8.0	11.4	12.3	11.5	12.5	13.0	13.5	12.6	11.8	12.5	17.7	19.8	13.5	12.5	21.2	18.9	10.5	6.0	5.8	2.9	24	21.2	2.9	11.4	
25		3.1	3.7	3.6	2.8	2.7	3.6	5.4	6.5	7.5	8.1	7.2	5.3	4.2	4.4	4.7	4.8	3.1	3.5	2.9	3.4	4.2	4.2	4.8	4.1	24	8.1	2.7	4.5	
26		3.1	4.5	4.9	5.3	5.9	5.4	5.5	6.2	4.3	2.6	2.4	2.7	3.3	3.4	3.8	4.1	6.0	7.9	8.6	8.8	9.3	10.9	12.2	14.0	24	14.0	2.4	6.0	
27		15.9	16.1	14.8	13.0	11.2	9.1	7.2	6.8	5.4	4.9	5.9	8.1	10.9	16.1	12.2	12.3	12.0	13.9	15.2	12.8	10.4	14.6	17.1	17.0	24	17.1	4.9	11.8	
28		17.3	6.4	2.0	2.8	2.6	2.5	2.8	2.7	2.8	3.2	2.4	2.1	1.7	1.6	1.3	1.4	1.9	3.8	6.7	8.3	8.7	7.9	5.7	4.3	24	17.3	1.3	4.3	
29		4.1	4.5	4.4 5.5	4.2 4.2	4.6	4.2 3.1	4.1	6.3 3.3	2.9	2.2	1.9	1.3	1.2	1.5 5.4	C 3.8	2.7	3.1	3.4	10.6	8.2	10.6	18.3	11.3	4.6	23	18.3	1.2	5.2	
30		3.7 4.8	3.5 4.0	5.5 4.4	4.2 5.1	3.3 5.0	3.1 4.5	3.4 4.4	3.3 3.7	3.4 3.7	3.9 4.4	4.4 3.5	5.6 3.0	4.9 2.4	2.3	3.8 2.7	4.5 2.7	5.2 2.0	6.3 2.0	6.4 1.8	8.1 1.9	7.0 1.7	6.4 1.5	5.4 1.4	5.4 1.2	24 24	8.1 5.1	3.1 1.2	4.8 3.1	
Count		31	31	31	3.1	3.0	30	31	30	31	31	3.3	30	30	31	30	31	31	31	31	31	31	31	31	31	739	J.1	1.2	5.1	
Maximum		24.8	30.5	27.3	32.7	31.3	29.6	33.8	29.4	22.7	15.9	18.1	18.6	18.4	16.5	17.7	19.8	14.4	13.9	21.2	18.9	29.0	21.4	38.0	23.3	24				
Minimum		0.3	0.2	0.2	0.3	0.4	0.7	0.9	0.8	0.5	0.6	0.4	0.5	0.2	0.2	0.2	0.7	0.4	0.2	0.2	0.3	0.5	0.6	0.4	0.4	22				
Average		7.3	7.0	6.6	6.5	6.0	6.3	6.8	5.4	4.9	4.5	4.5	4.6	4.3	4.2	4.2	4.6	4.8	5.0	6.2	6.8	7.6	7.3	8.5	6.4					
Percentiles			10		20		30		40		50		60		70		80		90		95		99		100				um Hourly num Daily	38.0 19.6
Data			1.5		2.1		2.7		3.3		4.1		4.9		6.2		8.2		12.6		16.8		29.5		38.0				y Average	5.9
Notes		C - (Calibration	ı / Span Cy	cle N	A - No Data	Available	T-	Test	A-	MOE Audit	М	- Equipment M	alfunction	/ Down	R ·	- Rate of Ch	nange							<u> </u>					

Figure E-1 Time History Plot of Measured 24 Hour Average PM_{2.5} Concentrations – Courtice WPCP Station

Figure E-2 Time History Plot of Measured 24 Hour Average PM_{2.5} Concentrations – Rundle Road Station

Appendix F Continuous Parameter Edit Logs May 9, 2017

Appendix F CONTINUOUS PARAMETER EDIT LOGS

Project No.: 160950528 F.1

EDIT LOG TABLE

Project Name	Durham Vork Energ	v Centre Amhient	Air Monitoring Program					
Contact	Greg Crooks / Conr			905-944-7777	E-mail:	1		greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:	N.		Station Name:	Courtice WPCP Station		<u> </u>		Breg. crowsgramee.com, comec.megramee.com, communinggramee.com
Station address:	Courtice Water Pol Plant		Emitter Address:	The Region of Durham,		d, Whitby, ON		
Pollutant or parameter:	SO₂	Instrument make	& model:	Teledyne Monitor Labs	Sulphur Dioxide	Analyzer Model T100	Serial Number:	565
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-17	1			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endin	ıg	Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
1	1-Feb-17	TH	Invalidate	20-Jan-17	11:00	20-Jan-17	14:00	Monthly calibration. Adjusted UV lamp and recalibrated after adjustment.
2	21-Feb-17	TH	Data Review	18-Jan-17	16:00	18-Jan-17	22:00	Instances of repeating 0.3ppb measurements. Data was reviewed - measurements were varying but were rounded to
3	21-Feb-17	TH	Data Review	19-Jan-17	11:00	20-Jan-17	00:00	-0.3ppb
4	21-Feb-17	TH	Data Review	29-Jan-17	08:00	29-Jan-17	20:00	
5	21-Feb-17	TH	Data Review	28-Jan-17	13:00	28-Jan-17	18:00	Instances of repeating 0.6ppb measurements. Data was reviewed - measurements were varying but were rounded to 0.6ppb
6	24-Feb-17	ТН	Data Review	1-Jan-17	23:00	2-Jan-17	02:00	An elevated SO ₂ level of 12.5 ppb was measured at the Courtice WPCP station on January 2 at 00:00 without a corresponding trend at the Rundle Road Station. Slightly elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the north - potential emission sources in this direction include Highway 401, local roads and CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
7	24-Feb-17	ТН	Data Review	2-Jan-17	10:00	2-Jan-17	18:00	An elevated SO ₂ level of 11.3 ppb was measured at the Courtice WPCP station on January 2 at 16:00 without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the east - potential emission sources in this direction include Courtice WPCP, a CN railroad and St Marys Cement. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
8	24-Feb-17	TH	Data Review	3-Jan-17	03:00	3-Jan-17	06:00	An elevated SO ₂ level of 7.1 ppb was measured at the Courtice WPCP station on January 3 at 4:00 without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the east - potential emission sources in this direction include Courtice WPCP, a CN railroad and St Marys Cement. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
9	24-Feb-17	ТН	Data Review	3-Jan-17	23:00	3-Jan-17	23:00	An elevated SO ₂ level of 8.4 ppb was measured at the Courtice WPCP station on January 3 at 23:00 without a corresponding trend at the Rundle Road Station. Winds were from the north - potential emission sources in this direction include Highway 401, local roads and CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
10	24-Feb-17	TH	Data Review	14-Jan-17	10:00	14-Jan-17	14:00	An elevated SO ₂ level of 7.1 ppb was measured at the Courtice WPCP station on January 14 at 11:00 without a corresponding trend at the Rundle Road Station. Slightly elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the east - potential emission sources in this direction include Courtice WPCP, a CN railroad and St Marys Cement. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
11	24-Feb-17	ТН	Data Review	15-Jan-17	22:00	16-Jan-17	07:00	An elevated SO ₂ level of 19.4 ppb was measured at the Courtice WPCP station on January 16 at 2:00 without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the north - potential emission sources in this direction include Highway 401, local roads and CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
12	24-Feb-17	TH	Data Review	16-Jan-17	22:00	17-Jan-17	16:00	An elevated SO ₂ level of 16.6 ppb was measured at the Courtice WPCP station on January 17 at 10:00 without a corresponding trend at the Rundle Road Station. Slightly elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the north and east - potential emission sources in this direction include Courtice WPCP, a CN railroad, St Marys Cement, and Highway 401. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
13	24-Feb-17	TH	Data Review	20-Jan-17	16:00	20-Jan-17	19:00	An elevated SO ₂ level of 13 ppb was measured at the Courtice WPCP station on January 20 at 17:00 without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the east - potential emission sources in this direction include Courtice WPCP, a CN railroad and St Marys Cement. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.

Project Name	Durham York Fner	gy Centre Ambient	Air Monitoring Program					
Contact		nie Lim / Tim Hung		905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:		/A	Station Name:	Courtice WPCP Station				
Station address:	Courtice Water Po		Emitter Address:	The Region of Durham,		d, Whitby, ON		
	Plant							
Pollutant or parameter:	SO ₂	Instrument make	& model:	Teledyne Monitor Labs	Sulphur Dioxide	Analyzer Model T100	Serial Number:	565
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-17	7			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endin		Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)		
14	24-Feb-17	TH	Data Review	23-Jan-17	12:00	23-Jan-17	16:00	An elevated SO₂ level of 8.2 ppb was measured at the Courtice WPCP station on January 23 at 14:00 without a
								corresponding trend at the Rundle Road Station. Winds were from the east-northeast for which the Courtice WPCP, the
								DYEC, a CN railroad and St Marys Cement were upwind. The DYEC continuous emissions monitoring system showed SQ
								Concentrations from both boilers on January 23, 2017 from 12:00 to 16:00 to be 0 mg/Rm3. Minute data was reviewed
								and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
15	10-Mar-17	TH	Invalidate	1-Feb-17	12:00	1-Feb-17	13:00	Check lamp stability, zero and span
16	10-Mar-17	TH	Invalidate	22-Feb-17	09:00	22-Feb-17	10:00	Monthly calibration
17	10-Mar-17	TH	Invalidate	23-Feb-17	10:00	23-Feb-17	13:00	MOECC audit
18	10-Mar-17	TH	Data Review	9-Feb-17	19:00	10-Feb-17	00:00	Instances of repeating 0.4ppb measurements. Data was reviewed - measurements were varying but were rounded to
								0.4ppb
19	10-Mar-17	TH	Data Review	17-Feb-17	15:00	17-Feb-17	21:00	Instances of repeating 1.3ppb measurements. Data was reviewed - measurements were varying but were rounded to
								1.3ррb
								An elevated SO₂ level of 39.4 ppb was measured at the Courtice WPCP station on February 7 at 11:00 without a
								corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion
20	13-Mar-17	TH	Data Review	7-Feb-17	04:00	7-Feb-17	20:00	source. Winds were from the east - potential emission sources in this direction include Courtice WPCP, agricultural fields
								and CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time
								period. Therefore, the data was deemed valid.
								A STATE OF THE STA
								An elevated SO₂ level of 14.5 ppb was measured at the Courtice WPCP station on February 13 at 20:00 without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion
21	13-Mar-17	тн	Data Review	13-Feb-17	19:00	14-Feb-17	04:00	source. Winds were from the northwest - potential emission sources in this direction include Highway 401, local roads or
21	13-10101-17	""	Data Neview	13-160-17	19.00	14-160-17	04.00	the CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period.
								Therefore, the data was deemed valid.
								MOECC audited VES' SO ₂ calibration bottle on March 2, 2017 and found the bottle's concentration read approximately
								5% high. The February 22, 2017 calibration levels were adjusted by 5% to account for this. For the January 20, 2017 calibration, the bottle concentration was assumed to have drifted by 2.5% (bottled was previously calibrated in Dec
22	2-Apr-17	TH/GJC	Slope Correction	22-Feb-17	11:00	3-Mar-17	06:00	2016). Based on these adjustments to the calibration gas concentrations, a span adjustment was required for this time
								period. A correction factor varying linearly from 0.95 on 22-Feb-17 at 11:00 to 1.127 on 3-Mar-17 6:00 was applied.
23	2-Apr-17	TH	Invalidate	3-Mar-17	07:00	3-Mar-17	08:00	Recalibration with re-certified cal gas bottle.
24	2-Apr-17	TH	Invalidate	3-Mar-17	10:00	3-Mar-17	10:00	MOECC SO2 monitor re-audit.
25	2-Apr-17	TH	invalidate	14-Mar-17	12:00	14-Mar-17	13:00	Instrument down during power cable change. Monitor down between 12:47 - 13:10. Invalidated these minute data. Data
26	2-Apr-17	TU	Invalidate	15-Mar-17	07:00	15-Mar-17	07:00	recovery for both hours is still acceptable.
27	2-Apr-17 2-Apr-17	TH TH	Invalidate	15-Mar-17 15-Mar-17	08:00	15-Mar-17 15-Mar-17	08:00	Monthly calibration occurred from 7:45 - 8:35. Invalidated 7:45 - 7:59. Data recovery for 7:00 is still acceptable. Monthly calibration
28	5-Apr-17	TH	Data Review	5-Mar-17		5-Mar-17		Instances of repeating 0.7ppb measurements. Data was reviewed - measurements were varying but were rounded to
20	3 Apr 17		Data Neview	5 Widi 17	18:00	5 Widi 17	23:00	0.7ppb
29	5-Apr-17	TH	Data Review	6-Mar-17		7-Mar-17		Instances of repeating 1.1ppb measurements. Data was reviewed - measurements were varying but were rounded to
	· ·				19:00		06:00	1.1ppb
30	5-Apr-17	TH	Data Review	9-Mar-17	23:00	10-Mar-17	22:00	Instances of repeating 0.8ppb measurements. Data was reviewed - measurements were varying but were rounded to
					23.00		22.00	0.8ppb
31	5-Apr-17	TH	Data Review	14-Mar-17	18:00	14-Mar-17	23:00	Instances of repeating Oppb measurements. Data was reviewed - measurements were varying but were rounded to 0
								ppb
32	5-Apr-17	TH	Data Review	15-Mar-17	10:00	15-Mar-17	15:00	Instances of repeating 1ppb measurements. Data was reviewed - measurements were varying but were rounded to
33	5-Apr-17	TH	Data Review	16-Mar-17	18:00	17-Mar-17		1ppb Instances of repeating 0.8ppb measurements. Data was reviewed - measurements were varying but were rounded to
33	2-Abt-17	In In	Data Review	10-INI91-11	18:00	11-10101-11	00:00	Instances of repeating 0.8ppb measurements. Data was reviewed - measurements were varying but were rounded to 0.8ppb
					ļ			
34	5-Apr-17	TH	Data Review	19-Mar-17	10:00	19-Mar-17	18:00	Instances of repeating 0.8ppb measurements. Data was reviewed - measurements were varying but were rounded to
					10.00			0.8ppb
35	5-Apr-17	TH	Data Review	21-Mar-17		23-Mar-17		Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb or
					22:00		01:00	rounded to 0 ppb. As per the MOECC Ambient Monitoring Guideline, no drift correction was applied.
<u> </u>								

Project Name	Durham York Ener	gy Centre Ambient	Air Monitoring Program					
Contact	Greg Crooks / Con	nie Lim / Tim Hung	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:	N	I/A	Station Name:	Courtice WPCP Station	(Upwind)			
Station address:	Courtice Water Po Plant	llution Control	Emitter Address:	The Region of Durham,	605 Rossland Ro	l, Whitby, ON		
Pollutant or parameter:	SO ₂	Instrument make	& model:	Teledyne Monitor Labs	Sulphur Dioxide	Analyzer Model T100	Serial Number:	565
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-17	'			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endin	g	Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
36	5-Apr-17	ТН	Data Review	25-Mar-17	10:00	25-Mar-17	21:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb or rounded to 0 ppb. As per the MOECC Ambient Monitoring Guideline, no drift correction was applied.
37	5-Apr-17	ТН	Data Review	29-Mar-17	10:00	29-Mar-17	17:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb or rounded to 0 ppb. As per the MOECC Ambient Monitoring Guideline, no drift correction was applied.
38	5-Apr-17	TH	Data Review	18-Mar-17	08:00	18-Mar-17	08:00	An elevated SO ₂ level of 19 ppb was measured at the Courtice WPCP station on March 18 at 8:00 without a corresponding trend at the Rundle Road Station. Slightly elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the east - potential emission sources in this direction include Courtice WPCP, a CN railroad and St. Mary's Cement. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
39	5-Apr-17	TH	Data Review	26-Mar-17	06:00	26-Mar-17		An elevated SO ₂ level of 25.1 ppb was measured at the Courtice WPCP station on March 26 at 14:00 without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustior source. Winds were from the east - potential emission sources in this direction include Courtice WPCP, a CN railroad and St. Mary's Cement. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
40	5-Apr-17	ТН	Data Review	31-Mar-17	07:00	31-Mar-17		An elevated SO ₂ level of 13.3 ppb was measured at the Courtice WPCP station on March 31 at 13:00 without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the east - potential emission sources in this direction include Courtice WPCP, a CN railroad and St. Mary's Cement. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
				1	1			

Examples of Acceptable Edit Actions:

Add offset of

Delete hours Zero Correction

Slope Correction

. Manual data entry for missing, but collected data

Invalidating span & zero check data

Invalidating data due to equipment malfunctions and power failures.

Invalidating data when instrumentation off-line

Marking data as out-of-range

Test

Project Name	Durham York Ener	gy Centre Ambient	Air Monitoring Program					
Contact		nie Lim / Tim Hung		905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:	N	I/A	Station Name:	Courtice WPCP Station	•			
Station address:	Courtice Water Po	Ilution Control	Emitter Address:	The Region of Durham,	605 Rossland Ro	d, Whitby, ON		
	Plant							
Pollutant or parameter:	NOx	Instrument make		API Model 200E Chemi		nalyzer	Serial Number:	675
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-1				Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endi		Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
1	1-Feb-17	ТН	Invalidate	20-Jan-17	11:00	20-Jan-17	15:00	Removed spare unit and reinstalled original unit after annual maintenance completed. Calibrated original unit.
2	21-Feb-17	ТН	Data review	4-Jan-17	17:00	5-Jan-17	00:00	Instances of repeating 0.4ppb measurements. Data was reviewed - measurements were varying but were rounded to 0.4ppb
3	24-Feb-17	тн	Data review	6-Jan-17	22:00	7-Jan-17	09:00	An elevated NOx level of 31 ppb was measured at the Courtice WPCP station on January 7 at 3:00 without a corresponding trend at the Rundle Road Station. Slightly elevated SO ₂ concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north - the elevated measurement may have been due to the CN railroad or Highway 401. The data was deemed valid.
4	24-Feb-17	тн	Data review	16-Jan-17	20:00	17-Jan-17	03:00	An elevated NOx level of 104 ppb was measured at the Courtice WPCP station on January 16 at 22:00 without a corresponding trend at the Rundle Road Station. Elevated SQ, concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north -the elevated measurement may have been due to the CN railroad or Highway 401. The data was deemed valid.
5	10-Mar-17	TH	Invalidate	22-Feb-17	09:00	22-Feb-17	11:00	Monthly calibration.
6	10-Mar-17	TH	Invalidate	23-Feb-17	10:00	23-Feb-17	10:00	MOECC audit
7	10-Mar-17	TH	Data review	3-Feb-17	19:00	4-Feb-17	02:00	Instances of repeating 1.6ppb NO measurements. Data was reviewed - measurements were varying but were rounded to 1.6ppb
8	10-Mar-17	ТН	Data review	10-Feb-17	17:00	11-Feb-17	00:00	Instances of repeating 2.2ppb NO measurements. Data was reviewed - measurements were varying but were rounded to 2.2ppb
9	13-Mar-17	тн	Data review	13-Feb-17	20:00	13-Feb-17	20:00	An elevated NOx level of 107 ppb was measured at the Courtice WPCP station on February 13 at 20:00 without a corresponding trend at the Rundle Road Station. Elevated SQ concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the northwest -the elevated measurement may have been due to Highway 401, local roads or the CN railroad. The data was deemed valid.
10	13-Mar-17	тн	Data review	21-Feb-17	18:00	22-Feb-17	07:00	An elevated NOx level of 46.4 ppb was measured at the Courtice WPCP station on February 22 at 7:00 without a corresponding trend at the Rundle Road Station. For this hour, the measured NO concentration was smaller than NQ which suggests an emission source located relatively far away. Slightly elevated SO ₂ concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north -the elevated measurement may have been due to the CN railroad or Highway 401. The data was deemed valid.
11	13-Mar-17	тн	Data review	24-Feb-17	00:00	24-Feb-17	00:00	An elevated NOx level of 51.6 ppb was measured at the Courtice WPCP station on February 24 at 0:00 without a corresponding trend at the Rundle Road Station. Slightly elevated SO ₂ concentrations at the Courtice WPCP station were also noted in this time period suggesting a combustion source. Winds were blowing from the north-the elevated measurement may have been due to the CN railroad or Highway 401. The data was deemed valid.
12	2-Apr-17	TH	Invalidate	14-Mar-17	13:00	14-Mar-17	13:00	Instrument down during power cable change.
13	2-Apr-17	тн	Replace	14-Mar-17	14:00	20-Mar-17	06:00	Analogue outputs drifted after power cable replacement. Datalogger data replaced with data downloaded directly from the monitor memory.
14	2-Apr-17	ТН	Replace	20-Mar-17	07:00	20-Mar-17	07:00	Adjusted NO, NOx analogue outputs. Datalogger data replaced with data downloaded directly from the monitor memory.

Project Name	Durham Vork Fner	gy Centre Amhient	Air Monitoring Program									
		nie Lim / Tim Hung		905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com				
Station number:		I/A	Station Name:	Courtice WPCP Station (Bregard orange statistical control and a sta				
Station address:		e Water Pollution Control Emitter Address:		The Region of Durham, 605 Rossland Rd, Whitby, ON								
Pollutant or parameter:	SO₂	Instrument make	& model:	Teledyne Monitor Labs 5	Sulphur Dioxide	Analyzer Model T100	Serial Number:	565				
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-17				Time Zone : EST				
Edit #	Edit date Editor's Name Edit Action		Starting		Ending	3	Reason					
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)					
15	2-Apr-17	TH	Invalidate	15-Mar-17	07:00	15-Mar-17	09:00	Monthly calibration				
16	5-Apr-17	ТН	Data review	17-Mar-17	07:00	17-Mar-17		An elevated NOx level of 100.5 ppb was measured at the Courtice WPCP station on March 17 at 7:00 without a corresponding trend at the Rundle Road Station. Winds were blowing from the west-the elevated measurement may have been due to agricultural activities or local roads. The data was deemed valid.				
17	5-Apr-17	тн	Data review	20-Mar-17	05:00	20-Mar-17		An elevated NOx level of 60 ppb was measured at the Courtice WPCP station on March 20 at 7:00 without a corresponding trend at the Rundle Road Station. Slightly elevated SQ, concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the northwest -the elevated measurement may have been due to Highway 401, local roads or the CN railroad. The data was deemed valid.				

Examples of Acceptable Edit Actions:

Add offset of Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range
Test

Project Name	Durham York Ener	gy Centre Ambient	Air Monitoring Program										
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com					
	Connie Lim / Tim												
	Hung												
Station number:	N	I/A	Station Name:	Courtice WPCP Station									
Station address:	Courtice Water Po	Ilution Control	Emitter Address:	The Region of Durham,	605 Rossland Rd	, Whitby, ON							
Pollutant or parameter:	PM _{2.5}	Instrument make		Thermo Sharp 5030 Syn	Thermo Sharp 5030 Synchronized Hybrid Ambient Real-time Serial Number: E-1569								
		& model:		Particulate Monitor									
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-17				Time Zone : EST					
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endin	g	Reason					
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)							
1	1-Feb-17	TH	Invalidate	20-Jan-17	11:00	20-Jan-17	11:00	Monthly calibration					
2	1-Feb-17	TH	Invalidate	20-Jan-17	12:00	20-Jan-17	12:00	Monthly calibration occurred for 3 minutes in this hour. These 3 minutes were invalidated. The hour still has an					
								acceptable rate of recovery					
3	10-Mar-17	TH	Invalidate	22-Feb-17	09:00	22-Feb-17	09:00	Monthly calibration					
4	10-Mar-17	TH	Invalidate	23-Feb-17	10:00	23-Feb-17	13:00	MOECC audit					
5	2-Apr-17	TH	Invalidate	29-Mar-17	10:00	29-Mar-17	10:00	Zero check					
6	2-Apr-17	TH	Invalidate	15-Mar-17	07:00	15-Mar-17	08:00	Calibration from 7:50 - 8:13. Invalidate minute data. Data recovery is still acceptable.					
7	5-Apr-17	TH	Data review	21-Mar-17	15:00	21-Mar-17	21:00	Instances of repeating 0.2μg/m ³ measurements. Data was reviewed - measurements were varying but were rounded to					
								0.2µg/m3					
8	5-Apr-17	TH	Data review	31-Mar-17	18:00	31-Mar-17	23:00	Instances of repeating 0.2μg/m ³ measurements. Data was reviewed - measurements were varying but were rounded to					
								0.2µg/m3					
9	5-Apr-17	TH	Data review	31-Mar-17	11:00	31-Mar-17	13:00						
								Elevated levels of up to 31.3 μg/m³ were measured on March 31 at 13:00 without a corresponding trend at the Rundle of					
								Oshawa Stations. Winds were from the east - potential emission sources in this direction include Courtice WPCP, a CN					
								railroad and St. Mary's Cement. Minute data was reviewed and measurements were reasonably consistent throughout					
								this time period. Therefore, the data was deemed valid.					
1				1				1					

Examples of Acceptable Edit Actions:

Add offset of Delete hours

Zero Correction

Slope Correction

Manual data entry for missing, but collected data

Invalidating span & zero check data

Invalidating data due to equipment malfunctions and power failures.

Invalidating data when instrumentation off-line

Marking data as out-of-range

Test

Project Name	Durham York Energ	gy Centre Ambient	Air Monitoring Program										
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:		greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com						
	Connie Lim / Tim												
	Hung												
Station number:	N	/A	Station Name:	Courtice WPCP Station									
Station address:	Courtice Water Pol	lution Control	Emitter Address:	The Region of Durham,	The Region of Durham, 605 Rossland Rd, Whitby, ON								
Pollutant or parameter:	Temperature	Instrument make	& model:	Campbell Scientific Mod	el HMP60		Serial Number:						
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-17			Time Zone : EST						
Edit #	Edit date	Editor's Name	Edit Action	Starting		Ending	Į.	Reason					
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)						
							•						
							<u> </u>						

EDIT LOG TABLE

Project Name	Durham York Energ	y Centre Ambient	Air Monitoring Program									
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:	greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com						
	Connie Lim / Tim											
	Hung											
Station number:	N,	/A	Station Name:	Courtice WPCP Station								
Station address:	Courtice Water Pol	lution Control	Emitter Address:	The Region of Durham, 6	605 Rossland Ro	, Whitby, ON						
Pollutant or parameter:	Rainfall	Instrument make	& model:	Texas Electronic TE525N	1		Serial Number:					
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-17			Time Zone : EST					
Edit #	Edit date	Editor's Name	Edit Action	Starting		Ending		Reason				
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)					

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line

Marking data as out-of-range

EDIT LOG TABLE													
Project Name	Durham York Energ	gy Centre Ambient /	Air Monitoring Program										
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com					
	Connie Lim / Tim												
	Hung												
Station number:	N,	/A	Station Name:	Courtice WPCP Station									
Station address:	Courtice Water Pol	lution Control	Emitter Address:	The Region of Durham, 6	The Region of Durham, 605 Rossland Rd, Whitby, ON								
Pollutant or parameter:	Relative Humidity	Instrument make	& model:	Campbell Scientific Mod	el HMP60		Serial Number:						
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-17			Time Zone : EST						
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endin	g	Reason					
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)						

EDIT LOG TABLE

EDIT LOG TABLE											
Project Name	Durham York Energ	gy Centre Ambient /	Air Monitoring Program								
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:	greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com					
	Connie Lim / Tim										
	Hung										
Station number:	N	/A	Station Name:	Courtice WPCP Station							
Station address:	Courtice Water Po	llution Control	Emitter Address:	The Region of Durham,	605 Rossland Rd	l, Whitby, ON					
Pollutant or parameter:	Atmospheric	Instrument make	& model:	Campbell Scientific Mod	el CS106		Serial Number:				
	Pressure										
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-17			Time Zone : EST				
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endin	g	Reason			
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)				

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range

LDIT LOG TABLE													
Project Name	Durham York Energ	y Centre Ambient	Air Monitoring Program										
Contact	Lisa Heatherington		Phone:	N/A	E-mail:	Lisa.Hetherington@Di	isa.Hetherington@Durham.ca						
Station number:	N/	'A	Station Name:	Courtice WPCP Station									
Station address:	Courtice Water Pol	lution Control	Emitter Address:	The Region of Durham, 605 Rossland Rd, Whitby, ON									
Pollutant or parameter:	Wind Speed/Wind Instrument make & model:			N/A	Serial Number:								
	direction												
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-17				Time Zone : EST					
Edit #	Edit date	Editor's Name	Edit Action	Starting		Ending		Reason					
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)						
						-							

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range

EDIT LOG TABLE	Don't and Vant. For	C A b	Ala Bassias de Persona					
Project Name			Air Monitoring Program	005 044 7777	E	1		gran grante Getantes com grante lim Octontes com tim hung Octontes com
Contact		nnie Lim / Tim Hung 5200		905-944-7777				greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:			Station Name:	Rundle Road Sta				
Station address:	Rundle Road / Ba		Emitter Address:			ssland Rd, Whitb		
Pollutant or parameter:	SO ₂	Instrument make		Teledyne Monit		r Dioxide	Serial Numbe	
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-1				Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Star			ding	Reason
				Date	Hour (xx:xx)		Hour (xx:xx	
				(dd-mm-yy)		(dd-mm-yy)		
1	1-Feb-17	TH	Invalidate	25-Jan-17	14:00	25-Jan-17	16:00	Monthly calibration
				2-Jan-17	12:00	2-Jan-17	21:00	
2	21-Feb-17	TH	Data review	17-Jan-17	22:00	18-Jan-17	03:00	Instances of repeating 0.5ppb measurements. Data was reviewed - measurements were varying but were rounded to 0.5 ppb
				18-Jan-17	17:00	18-Jan-17	22:00	
				23-Jan-17	20:00	24-Jan-17	01:00	
3	21-Feb-17	TH	Data review	4-Jan-17	07:00	4-Jan-17	12:00	Instances of repeating 0.8ppb measurements. Data was reviewed - measurements were varying but were rounded to 0.8 ppb
				12-Jan-17	19:00	13-Jan-17	00:00	Instances of repeating 0.4ppb measurements. Data was reviewed - measurements were varying but were rounded to 0.4 ppb
4	21-Feb-17	TH	Data review	12 3011 17	15.00	15 3011 17	00.00	matales of repeating of ppp incode matales and another measurement and any migration of the ppp
5	21-Feb-17	TH	Data review	22-Jan-17	09:00	22-Jan-17	23:00	Instances of repeating 0.6ppb measurements. Data was reviewed - measurements were varying but were rounded to 0.6ppb
				26-Jan-17	19:00	1-Feb-17	13:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient Monitoring
6	21-Feb-17	TH	Data review	20 Jan-1/	13.00	1100-17	13.00	instances or repeating zero vaices in tiese unierrames were due to negative instrument zero unit less titali -3 ppb. As per tile MOZCC Ambient Monitoring Guideline, no drift correction was applied
7	10-Mar-17	TH	Invalidate	1-Feb-17	14:00	1-Feb-17	14:00	Check lamp stability, zero and span
8	10-Mar-17	TH	Invalidate	22-Feb-17	13:00	22-Feb-17	14:00	Monthly calibration
			ilivalidate	2-Feb-17	04:00	2-Feb-17	14:00	Northly Calibration
9	10-Mar-17	TH	Data review	12-Feb-17	10:00	12-Feb-17	15:00	Instances of repeating 0.2ppb measurements. Data was reviewed - measurements were varying but were rounded to 0.2 ppb
				2-Feb-17	16:00	2-Feb-17	23:00	
10	10-Mar-17	TH	Data review	8-Feb-17	11:00	9-Feb-17	00:00	Instances of repeating 0.1ppb measurements. Data was reviewed - measurements were varying but were rounded to 0.1ppb
				3-Feb-17	18:00	4-Feb-17	11:00	
				3-1-60-17	18.00	4-1-60-17	11.00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient Monitoring
11	10-Mar-17	TH	Data review	9-Feb-17	21:00	10-Feb-17	10:00	Guideline, no drift correction was applied
				25-Feb-17	23:00	27-Feb-17	03:00	duideline, no drift correction was applied
				15-Feb-17	09:00	15-Feb-17	14:00	Instances of repeating 0.5ppb measurements. Data was reviewed - measurements were varying but were rounded to 0.5ppb
12	10-Mar-17	TH	Data review	15-Feb-17	09.00	15-Feb-17	14.00	instances of repeating 0.5ppb measurements. Data was reviewed - measurements were varying but were rounded to 0.5ppb
13	10-Mar-17	TH	Data review	22-Feb-17	00:00	22-Feb-17	07:00	Instances of repeating 1.3ppb measurements. Data was reviewed - measurements were varying but were rounded to 1.3ppb
13	10 (VIGI 17	***	Data review					
14	2-Apr-17	TH	Invalidate	3-Mar-17	06:00	3-Mar-17	06:00	SO2 re-calibration
				22-Feb-17	15:00	3-Mar-17		MOECC audited VES' SO, calibration bottle on March 2, 2017 and found the bottle's concentration read approximately 5% high. The February 22, 2017
				22-1-60-17	15.00	3-IVId1-17		induce address visa 302 canonatori found on water 22, 2017 and found the obtained approximatery 3 an light internal specified by calibration levels were adjusted by 5% to account for this. For the January 22, 2017 and bilibration, the bottle concentration was assumed to have drifted by
								2.5% (bottled was previously calibrated in Dec 2016). Based on these adjustments to the calibration gas concentrations, a span adjustment was required
							05:00	2.5% (butter was previous) cand acted in Dec. 2015). Based on timese adjustments to the candidation gas contentrations, a spari adjustment was required for this time period. A correction factor varying linearly from 0.95 on 22-jan-17 at 15:50 to 1.129 on 3-Mar-17 5:00 was applied.
15	2-Apr-17	TH	Slope Correction					for this time period. A correction factor varying linearly from 0.95 on 22-3ar-17 at 15.00 to 1.129 on 5-war-17 5.00 was applied.
				1-Jan-17	00:00	25-Jan-17		Based in the calibration adjustments noted above, a span adjustment was required for Jan 1, 2017 and Jan 25, 2017. A correction factor varying linearly
				1 3011 17	00.00	25 3011 17	13:00	from 1.04 on 1-Jan-17 at 0:00 to 1.104 on 25-Jan-17 13:00 was applied.
					1			
16	2-Apr-17	TH	Invalidate	3-Mar-17	11:00	3-Mar-17	12:00	MOECC audit
17	2-Apr-17	TH	Invalidate	14-Mar-17	13:00	14-Mar-17	13:00	SO2 monitor down during power cable replacement.
18	2-Apr-17	TH	Adjust	15-Mar-17	07:00	15-Mar-17	07:00	Invalidate minute data 7:00-7:09 during monthly calibration. Data recovery for this hour is still acceptable.
19	2-Apr-17	TH	Invalidate	15-Mar-17	05:00	15-Mar-17	06:00	Monthly calibration
20	5-Apr-17	TH	Data review	2-Mar-17	19:00	14-Mar-17	12:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient Monitoring
21	5-Apr-17	TH	Data review	15-Mar-17	13:00	20-Mar-17	07:00	Guideline, no drift correction was applied
22	5-Apr-17	TH	Data review	22-Mar-17	02:00	22-Mar-17	17:00	Instances of repeating 0.1ppb measurements. Data was reviewed - measurements were varying but were rounded to 0.1ppb
				+	+	1		
		1		+	1	1		
		1		+	1	1		
				+	+	 		
				+	+	 		
		1		+	1	1		
				+	+	 		
					 			
		1	1		1	1	1	<u> </u>

Examples of Acceptable Edit Actions:

Add offset of

Delete hours

Zero Correction

Slope Correction

Manual data entry for missing, but collected data

Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line

Marking data as out-of-range

Test

Project Name	Durham York Ene	rgy Centre Ambient	: Air Monitoring Program					
Contact	Greg Crooks / Cor	nnie Lim / Tim Hung	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:		5200	Station Name:	Rundle Road St				
Station address:	Rundle Road / Ba	seline Road	Emitter Address:	The Region of D	Ourham, 605 Ro	ssland Rd, Whitb	y, ON	
Pollutant or parameter:	NOx	Instrument make	& model:	API Model 200E Chemilumineso		cence Analyzer	Serial Number:	675
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-1	17			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Star	rting	En	ding	Reason
				Date	Hour (xx:xx)		Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		
1	17-Jan-17	ТН	Invalidate	6-Jan-17	00:00	6-Jan-17	00:00	Suspected power trip - "system reset" error was observed during the 9-Jan-17 site visit. Invalidated 1 minute of data. Data recovery for this hour was still acceptable.
2	17-Jan-17	ТН	Invalidate	6-Jan-17	02:00	6-Jan-17	02:00	Suspected power trip - "system reset" error was observed during the 9-Jan-17 site visit. Invalidated 1 minute of data. Data recovery for this hour was still acceptable.
3	1-Feb-17	TH	Invalidate	25-Jan-17	14:00	25-Jan-17	15:00	Monthly calibration
4	21-Feb-17	TH	Data review	26-Jan-17	19:00	27-Jan-17	06:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient Monitoring
5	21-Feb-17	TH	Data review	27-Jan-17	19:00	28-Jan-17	07:00	Guideline, no drift correction was applied
6	21-Feb-17	TH	Data review	29-Jan-17	01:00	30-Jan-17	06:00	
7	10-Mar-17	TH	Invalidate	22-Feb-17	12:00	22-Feb-17	14:00	Monthly calibration
				1-Feb-17	22:00	2-Feb-17	06:00	
				5-Feb-17	18:00	6-Feb-17	06:00	
				8-Feb-17	16:00	9-Feb-17	06:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient Monitoring
8	10-Mar-17	Mar-17 TH	Data review	10-Feb-17	01:00	10-Feb-17	06:00	Guideline, no drift correction was applied
				12-Feb-17	22:00	13-Feb-17	06:00	Substitute of teach and applied
				15-Feb-17	22:00	16-Feb-17	05:00	
				19-Feb-17	16:00	20-Feb-17	06:00	
9	2-Apr-17	TH	Invalidate	3-Mar-17	11:00	3-Mar-17	12:00	MOECC audit
10	2-Apr-17	TH	Invalidate	14-Mar-17	14:00	14-Mar-17	14:00	NOx monitor down during power cable replacement.
11	2-Apr-17	TH	Invalidate	15-Mar-17	05:00	15-Mar-17	06:00	Monthly calibration
12	2-Apr-17	TH	Replace	14-Mar-17	15:00	20-Mar-17	06:00	Analogue outputs drifted after power cable replacement. Datalogger data replaced with data downloaded directly from the monitor memory.
13	2-Apr-17	TH	Replace	20-Mar-17	07:00	20-Mar-17	07:00	Adjusted NO, NOx analogue outputs. Datalogger data replaced with data downloaded directly from the monitor memory.
				4-Mar-17	05:00	4-Mar-17	18:00	
				10-Mar-17	21:00	11-Mar-17	02:00	
14	5-Apr-17	TH	Data review	11-Mar-17	16:00	12-Mar-17	04:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient Monitoring
14-Mar-17 21:00 15-Mar-17 04:00 Guideline, no drift correction was applied	Guideline, no drift correction was applied							
				19-Mar-17	03:00	19-Mar-17	09:00	
				21-Mar-17	23:00	22-Mar-17	05:00	
15				15-Mar-17	08:00	15-Mar-17	08:00	An elevated NOx level of 89.3ppb was measured on March 15 at 8:00 without a corresponding trend at the Courtice station. For this hour, the measured
	5-Apr-17	TH	Data review					NO concentration was greater than NO ₂ which suggests a nearby emission source. Winds were blowing from the north-northwest - potential emission
	3 Apr 17		Data review					sources in this direction include local roads. Minute data was reviewed and measurements were reasonably consistent throughout this time period.
								Therefore, the data was deemed valid.
		1						

Examples of Acceptable Edit Actions: Add offset of Invalidating span & zero check data Invalidating data due to equipment malfunctions and power failures. Invalidating data when instrumentation off-line Marking data as out-of-range Delete hours Zero Correction Slope Correction Manual data entry for missing, but collected data

EDIT LOG TABLE								
Project Name		rgy Centre Ambient	Air Monitoring Program					
Contact	Greg Crooks / Connie Lim / Tim		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
	Hung							
Station number:		5200	Station Name:	Rundle Road Sta				
Station address:	Rundle Road / Ba	Instrument make	Emitter Address:	The Region of D			Serial Number:	E-1569
Pollutant or parameter:	PM _{2.5}			Thermo Sharp 5	me	ей пурпа	Serial Number.	
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-1				Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Start Date	Hour (xx:xx)	Date	Hour (xx:xx)	Reason
				(dd-mm-yy)	Hour (xx.xx)	(dd-mm-yy)	Hour (xx.xx)	
1	1-Feb-17	TH	Invalidate	25-Jan-17	14:00	25-Jan-17	14:00	Monthly calibration
2	17-Jan-17	TH	Invalidate	25-Jan-17	15:00	25-Jan-17	15:00	Monthly calibration ended at 15:14. Minute data from 15:00-15:14 were invalidated resulting in 75% data recovery. Hour is still valid.
3	21-Feb-17	TH	Data review	5-Jan-17	01:00	5-Jan-17	06:00	Instances of repeating 0.4 μg/m3 measurements. Data was reviewed - measurements were varying but were rounded to 0.4 μg/m3
4				26-Jan-17	20:00	27-Jan-17	07:00	
	21-Feb-17	TH	Data review					Instances of repeating 0.17 µg/m³ measurements in this timeframe was noted. During these periods, low ambient PM _{2.5} levels were also measured at the Courtice and Oshawa Stations. This period is likely due to very low ambient PM _{2.5} concentrations being measured.
5	21-Feb-17	TH	Data review	29-Jan-17	03:00	30-Jan-17	03:00	
6	24-Feb-17	тн	Data review	6-Jan-17	21:00	6-Jan-17	23:00	Elevated levels of up to 34 µg/m³ were measured on January 6 at 22:00 without a corresponding trend at the Courtice or Oshawa stations. Winds were blowing from the north - potential emission sources in this direction include local roads. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
7	24-Feb-17	тн	Data review	7-Jan-17	10:00	7-Jan-17	20:00	Elevated levels of up to 53.6 µg/m³ were measured on January 7 at 10:00 without a corresponding trend at the Courtice or Oshawa Stations. Winds were blowing from the west - potential emission sources in this direction include local roads and businesses. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
8	24-Feb-17	тн	Data review	9-Jan-17	07:00	9-Jan-17	22:00	Elevated levels of up to 45.4 µg/m³ were measured on January 9 at 18:00 without a corresponding trend at the Courtice or Oshawa Stations. Winds were blowing from the west - potential emission sources in this direction include local roads and businesses. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
9	24-Feb-17	тн	Data review	14-Jan-17	12:00	14-Jan-17	18:00	Elevated levels of 81.2 µg/m³ were measured on January 14 at 16:00 without a corresponding trend at the Oshawa or Courtice stations. Winds were generally blowing from the east - potential emission sources in this direction include local roads or the CP railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
10	24-Feb-17	тн	Data review	16-Jan-17	10:00	16-Jan-17	19:00	Elevated levels of 68.5 µg/m³ were measured on January 16 at 13:00 without a corresponding trend at the Courtice station. Elevated concentrations were measured at the Oshawa stations a few hours before these elevated readings. Winds were generally blowing from the east - potential emission sources in this direction include local roads or the CP railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
11	24-Feb-17	тн	Data review	31-Jan-17	09:00	31-Jan-17	19:00	Elevated levels of 41.2 µg/m³ were measured on January 31 at 12:00 without a corresponding trend at the Oshawa or Courtice stations. Winds were generally blowing from the east-northeast - potential emission sources in this direction include local roads or the CP railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
12	10-Mar-17	TH	Invalidate	16-Feb-17	12:00	16-Feb-17	15:00	Sharp calibrated, replaced detector and full recalibration done.
13	10-Mar-17	TH	Invalidate	22-Feb-17	15:00	22-Feb-17	15:00	Monthly calibration ended at 15:14. Minute data from 15:00-15:14 were invalidated resulting in 75% data recovery. Hour is still valid.
14	10-Mar-17	TH	Invalidate	22-Feb-17	12:00	22-Feb-17	14:00	Monthly calibration.
15	10-Mar-17	тн	Data review	1-Feb-17 13-Feb-17	23:00	2-Feb-17 13-Feb-17	04:00 17:00	instances of repeating 0.2 μg/m³ measurements in this timeframe was noted. Data was reviewed - measurements were varying but were rounded to 0.2 μg/m³
				25-Feb-17	23:00	26-Feb-17	09:00	
16	10-Mar-17	TH	Data review	15-Feb-17	23:00	16-Feb-17	05:00	Instances of repeating 0.3 μg/m³ measurements in this timeframe was noted. Data was reviewed - measurements were varying but were rounded to 0.3 μg/m³
17	13-Mar-17	тн	Data review	4-Feb-17	10:00	4-Feb-17	17:00	Elevated levels of up to 41.8 µg/m³ were measured on February 4 at 12:00 without a corresponding trend at the Courtice or Oshawa Stations. Winds were blowing from the west-southwest - potential emission sources in this direction include Highway 418 construction activities, local roads and businesses. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
18	13-Mar-17	тн	Data review	5-Feb-17	12:00	5-Feb-17	15:00	Elevated levels of up to 33.1 µg/m³ were measured on February 5 at 15:00 without a corresponding trend at the Courtice or Oshawa Stations. Winds were blowing from the west-southwest - potential emission sources in this direction include Highway 418 construction activities, local roads and businesses. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
19	13-Mar-17	тн	Data review	6-Feb-17	16:00	6-Feb-17	22:00	Elevated levels of up to 31.4 µg/m³ were measured on February 6 at 19:00 without a corresponding trend at the Courtice or Oshawa stations. Winds were blowing from the north - potential emission sources in this direction include local roads. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
20	13-Mar-17	тн	Data review	11-Feb-17	09:00	11-Feb-17	17:00	Elevated levels of up to 51.7 µg/m³ were measured on February 11 at 12:00 without a corresponding trend at the Courtice or Oshawa Stations. Winds were blowing from the west-southwest - potential emission sources in this direction include Highway 418 construction activities, local roads and businesses. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.

Project Name	Durham York Ener	gy Centre Ambient	Air Monitoring Program					
ontact	Greg Crooks / Connie Lim / Tim Hung		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.llim@stantec.com, tim.hung@stantec.com
tation number:	45	200	Station Name:	Rundle Road Sta				
tation address:	Rundle Road / Bas	eline Road	Emitter Address:	The Region of D	sland Rd, Whitb	y, ON		
ollutant or parameter:	PM _{2.5}	Instrument make	& model:	Thermo Sharp 5030 Synchroni		zed Hybrid Serial Numbe		: E-1569
				Ambient Real-ti	me			
ata edit period	Start date:	1-Jan-17	End date:	31-Mar-1	7			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Start	ting		ding	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		
21	13-Mar-17	тн	Data review	14-Feb-17	08:00	14-Feb-17	23:00	Elevated levels of up to 52.7 µg/m³ were measured on February 14 at 17:00 without a corresponding trend at the Courtice or Oshawa Stations. Winds were blowing from the west-southwest - potential emission sources in this direction include Highway 418 construction activities, local roads and businesses. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed val
22	13-Mar-17	тн	Data review	16-Feb-17	23:00	16-Feb-17	23:00	Elevated levels of up to $58.2 \mu\text{g/m}^3$ were measured on February 16 at 23:00 without a corresponding trend at the Courtice or Oshawa stations. Winds were blowing from the west-northwest - potential emission sources in this direction include local roads. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
23	2-Apr-17	TH	Invalidate	3-Mar-17	11:00	3-Mar-17	12:00	MOECC audit
24	2-Apr-17	TH	Invalidate	15-Mar-17	05:00	15-Mar-17	05:00	Monthly calibration
25	2-Apr-17	TH	Adjust	15-Mar-17	06:00	15-Mar-17	06:00	Invalidate minute 6:00 for monthly calibration. Data recovery for this hour is still acceptable.
26	2-Apr-17	TH	Invalidate	20-Mar-17	07:00	20-Mar-17	07:00	Calibrate unit's internal relative humidity sensor
27	2-Apr-17	TH	Invalidate	29-Mar-17	15:00	29-Mar-17	15:00	Zero check from 15:00-15:11. Invalidate minute data, data recovery for this hour is still acceptable.
28	2-Apr-17	TH	Invalidate	29-Mar-17	14:00	29-Mar-17	14:00	Zero check
29	5-Apr-17	ТН	Data review	22-Mar-17	09:00	22-Mar-17	15:00	Instances of repeating 2 µg/m³ measurements in this timeframe was noted. Data was reviewed - measurements were varying but were rounded to 2 µg/m³
30	5-Apr-17	тн	Data review	9-Mar-17	22:00	9-Mar-17	22:00	Elevated levels of up to 38 µg/m³ were measured on March 9 at 22:00 without a corresponding trend at the Courtice or Oshawa Stations. Winds were blowing from the west-northwest- potential emission sources in this direction include Highway 418 construction activities, local roads and businesses. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
31	5-Apr-17	тн	Data review	16-Mar-17	20:00	16-Mar-17	20:00	Elevated levels of up to 29 µg/m³ were measured on March 16 at 20:00 without a corresponding trend at the Courtice or Oshawa Stations. Winds were blowing from the west-northwest - potential emission sources in this direction include Highway 418 construction activities, local roads and businesses. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
32	5-Apr-17	тн	Data review	17-Mar-17	06:00	17-Mar-17	06:00	Elevated levels of up to 34 µg/m³ were measured on March 17 at 6:00 without a corresponding trend at the Courtice or Oshawa Stations. Winds were blowing from the west - potential emission sources in this direction include Highway 418 construction, local roads and businesses. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
								Townson, consider thoughout the time period. The constant duties and defined value.

Examples of Acceptable Edit Actions: Add offset of Delete hours

Zero Correction

Slope Correction

Manual data entry for missing, but collected data Invalidating span & zero check data

Invalidating data due to equipment malfunctions and power failures.

Invalidating data when instrumentation off-line Marking data as out-of-range

Test

Project Name	Durham York Ener	gy Centre Ambient	Air Monitoring Program					
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
	Connie Lim / Tim							
	Hung							
Station number:	45	200	Station Name:	Rundle Road Sta	ation			
Station address:	Rundle Road / Bas	eline Road	Emitter Address:	The Region of D	urham, 605 Ros	ssland Rd, Whitb	y, ON	
Pollutant or parameter:	Temperature	Instrument make	& model:	Campbell Scient	ific Model HMI	P60	Serial Number:	
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-1	7			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Start	ting	End	ding	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		

EDIT LOG TABLE

EDIT LOG TABLE								
Project Name	Durham York Ener	gy Centre Ambient	Air Monitoring Program					
Contact	Greg Crooks / Connie Lim / Tim		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
	Hung							
Station number:	45	200	Station Name:	Rundle Road Sta	ation			
Station address:	Rundle Road / Bas	eline Road	Emitter Address:	The Region of D	urham, 605 Ros	ssland Rd, Whitb	, ON	
Pollutant or parameter:	Rainfall	Instrument make	& model:	Texas Electronic	TE525M		Serial Number:	
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-1	7			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Star	ting	Enc	ding	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range

EDIT LOG TABLE								
Project Name	Durham York Ener	gy Centre Ambient	Air Monitoring Program					
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
	Connie Lim / Tim							
	Hung							
Station number:	45	200	Station Name:	Rundle Road Sta	tion			
Station address:	Rundle Road / Bas	eline Road	Emitter Address:	The Region of Du	ırham, 605 Ro	ssland Rd, Whitb	y, ON	
Pollutant or parameter:	Relative Humidity	Instrument make	& model:	Campbell Scienti	fic Model HM	P60	Serial Number:	
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-17	'			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Start	ing	En	ding	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		

EDIT LOG TABLE

EDIT LOG TABLE								
Project Name	Durham York Ener	rgy Centre Ambien	t Air Monitoring Program					
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
	Connie Lim / Tim							
	Hung							
Station number:	45	5200	Station Name:	Rundle Road St	ation			
Station address:	Rundle Road / Bas	seline Road	Emitter Address:	The Region of D	urham, 605 Ros	ssland Rd, Whith	y, ON	
Pollutant or parameter:	Wind	Instrument make	& model:	Met One Instru	ments Inc. Mod	lel 034B	Serial Number:	
	Speed/Wind							
	Direction							
Data edit period	Start date:	1-Jan-17	End date:	31-Mar-1	.7			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Star	ting	En	ding	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		
1	13-Mar-17	TH	Invalidate	7-Feb-17	13:00	8-Feb-17	00:00	Wind sensor frozen due to freezing rain.

Examples of Acceptable Edit Actions:

Add offset of Delete hours

Zero Correction

Slope Correction

Manual data entry for missing, but collected data

Invalidating span & zero check data

Invalidating data due to equipment malfunctions and power failures.

Invalidating data when instrumentation off-line Marking data as out-of-range

QUARTERLY AMBIENT AIR QUALITY MONITORING REPORT FOR THE DURHAM YORK ENERGY CENTRE – JANUARY TO MARCH 2017

Appendix G Metals Data Summary May 9, 2017

Appendix G METALS DATA SUMMARY

Project No.: 160950528 G.1

Particulates																															
Location		Co	urtice	Co	urtice	Co	urtice	Cou	ırtice	Cour	tice	Cou	ırtice ^A	Cou	urtice	Cou	rtice	Cou	ırtice	Cou	ırtice	Cou	rtice	Cou	ırtice	Cou	rtice	Cou	rtice	Co	ourtice
Date	dd/mm/yyyy	01/0	1/2017	07/0	1/2017	13/0	1/2017	19/0	1/2017	25/01,	/2017	31/0	1/2017	06/0	2/2017	12/02	/2017	18/02	2/2017	24/02	2/2017	02/03	/2017	08/03	3/2017	14/03	3/2017	20/03	/2017	26/0	03/2017
Start Time	hh:mm		:00	C	0:00	0	0:00		:00	0:0	00	0	:00	0	0:00	0:0	00	0:	00	0:	:00	0:	00	0	:00	0:	00	0:0	00	0	0:00
Sample Duration	Hours	23	3.39	2	4.03	23	3.38		1.53	23.	85	23	3.28	23	3.38	23.	.23	24	.16	23	1.39	23	.68	23	3.49	22	.91	23	.65	2:	23.23
Technician			TH		TH		TH		TH	TH	4		TH		TH	TI	Н		Ή		Ή	T	Ή	1	ſΗ	T	Ή	T	Н		TH
Filter Number			20599		20894		20999		22890	1612		170	11070	170	11073	1701	1824		11828		11842	1701	1846		12350		2354	1701	2368	170	012372
Analytical Report #		B70	3339	B70	06279	B71	12111	B71	4323	B718	943	B72	4014	B72	28799	DXM	1432	B739	9014	B74	0572	B74	7020	B74	9352	B75	4125	B758	3468	B76	63335
Total Volumetric	Am ³ /sample																														
Flow			76.87		58.39		04.96		3.29	1524			55.66		66.82	140			8.85		5.64	143			2.93	141		149.			105.39
Analytical Results	Units	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL
Particulate	mg	19.2	5	64.7	5	34.9	5	25.3	5	23.1	5	25.3	0.02	52.5	0.02	19.6	5	40.6	5	14.8	5	40.4	5	33.5	5	63.1	5	39.3	5	27.2	5
Total Mercury (Hg)	μg	<0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02 97	0.02	<0.02	0.02	<0.02	0.02	<0.02	50	<0.02	0.02	< 0.02	0.02	<0.02	0.02	<0.02	0.02	0.02	0.02	0.02	0.02	<0.02	0.02	< 0.02	0.02
Aluminum (Al)	μg	<50	50	152	50	109 <10	50 10		50 10	146	50 10	84	50	176	50	50	50 10	125	50 10	54 <10	50 10	222 <10	50	310	50 10	451	50	/5	50	125	50 10
Antimony (Sb)	μg	<10 <6.0	10	<10	10	< 10 < 6.0	6.0	<10 <6.0	6.0	<10 <6.0		<10	10	<10	10	<10		<10 <6.0		<10 <6.0	6.0	< 10 < 6.0	10	<10	6.0	<10	6.0	<10	10	<10	6.0
Arsenic (As)	μg	7.0	1.0	<6.0 15.7	6.0		1.0	< 6.0 11.9	1.0		6.0 1.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	20.4	6.0		1.0	< 6.0 7.9	6.0 1.0	<6.0	1.0	<6.0	0.0	<0.0	1.0	<6.0 5.4	1.0
Barium (Ba)	μg	<1.0	1.0	<1.0	1.0 1.0	12.0 <1.0	1.0	<1.0	1.0	9.5 <1.0	1.0	6.1 <1.0	1.0	15.3 <1.0	1.0	4.9 <1.0	1.0	20.4 <1.0	1.0 1.0	6.3 <1.0	1.0	7.9 <1.0	1.0	9.6 <1.0	1.0	7.3 <1.0	1.0	10.7	1.0	<1.0	1.0
Beryllium (Be) Bismuth (Bi)	μg	<6.0	1.0	<6.0	6.0	<6.0	6.0	<1.0 <6.0	6.0	<6.0	6.0	< 1.0 < 6.0	6.0	<6.0	6.0	<1.0 <6.0	6.0	<1.0 <6.0	6.0	< 1.0 < 6.0	6.0	< 1.0 < 6.0	6.0	<1.0 <6.0	6.0	<1.0 <6.0	6.0	<1.0	1.0	<1.0 <6.0	6.0
Boron (B)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Cadmium (Cd)	μg	<2.0	3.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	0.0	<2.0	2.0	<2.0	3.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	3.0	<0.0	3.0	<2.0	2.0
Chromium (Cr)	μg	<5.0	Z.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	2.0	6.8	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<2.0 -E.O	2.0	<5.0	5.0
Cobalt (Co)	μg	<2.0	3.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	3.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	3.0	<3.0	2.0	<2.0	2.0
	μg	19.1	Z.0				5.0	51.7	5.0	54.8		19.1	2.0		5.0	48.5	Z.0			34.3	5.0	33.9				17.0	2.0	CZ.0	Z.0		5.0
Copper (Cu)	μg	213	5.0	46.9	5.0 50	28.6 397	5.0	302	5.0	319	5.0 50	259	5.0	43.7 811	5.0	48.5 165	5.0	56.6 808	5.0 50		5.0 50	603	5.0 50	31.3 608	5.0 50	833	5.0	439	5.0	20.9 304	5.0
Iron (Fe) Lead (Pb)	μg	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	3.3	3.0	<3.0	3.0	4.1	3.0	100	3.0	5.4	3.0	235 <3.0	3.0	3.6	3.0	<3.0	3.0	3.3	50	439	3.0	<3.0	3.0
Magnesium (Mg)	μg	129	5.U E0	456	50	235	50	89	50	149	50	113	5.0	310	50	4.1	50	263	50	81	50	319	50	346	50	316	50	140	5.0	146	50
Manganese (Mn)	μg	10.1	1.0	21.9	1.0	11.4	1.0	8.6	1.0	11.5	1.0	8.0	1.0	19.3	1.0	4.4	1.0	18.9	1.0	5.7	1.0	21.2	1.0	23.9	1.0	26.8	1.0	12.4	1.0	6.9	1.0
Molybdenum (Mo)	μg μg	<3.0	2.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	2.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	2.0	-2.0	3.0	<3.0	3.0
Nickel (Ni)	μg	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	5.8	3.0	3.6	3.0	5.7	3.0	4.1	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Phosphorus (P)	μg	<25	25	<25	25	<25	25	<25	25	<25	25	<25	25	28	25	<25	25	3.7	25	<25	25	42	25	50	25	47	25	< 25	25	32	25
Selenium (Se)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Silver (Ag)	hd	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	<5.0	5.0
Strontium (Sr)	μg	3.0	1.0	18.2	1.0	8.6	1.0	3.1	1.0	5.1	1.0	3.1	1.0	9.8	1.0	1.7	1.0	6.6	1.0	2.6	1.0	9.1	1.0	4.3	1.0	7.5	1.0	2.7	1.0	6.5	1.0
Thallium (TI)	μg	<10	10	<10.2	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Tin (Sn)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Titanium (Ti)	μg	<10	10	11	10	<10	10	<10	10	<10	10	<10	10	11	10	<10	10	11	10	<10	10	15	10	14	10	26	10	<10	10	<10	10
Vanadium (V)	μg	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Zinc (Zn)	hd	36.5	5.0	41.9	5.0	49.1	5.0	31.9	5.0	40.9	5.0	73.2	5.0	48.1	5.0	52.5	5.0	41.6	5.0	13.8	5.0	28.0	5.0	30.3	5.0	47.6	5.0	67.3	5.0	19.7	5.0
Zirconium (Zr)	μg	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Total Uranium (U)	ua	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45

		Quarter 1		Courtice	Courtice	Courtice	Courtice	Courtice	CourticeA	Courtice	Courtice	Courtice	Courtice	Courtice	Courtice	Courtice	Courtice	Courtice
				1	2	3	4	5	6	7	8	9	10	- 11	12	13	14	15
Calculated Concentrations	Units	Maximum	Minimum															
				1/1/2017	1/7/2017	1/13/2017	1/19/2017	1/25/2017	1/31/2017	2/6/2017	2/12/2017	2/18/2017	2/24/2017	3/2/2017	3/8/2017	3/14/2017	3/20/2017	3/26/2017
Particulate	$\mu g/m^3$	44.53	9.90	13.00	44.36	24.84	16.39	15.15	17.38	35.79	13.98	28.02	9.90	28.17	22.90	44.53	26.34	19.35
Total Mercury (Hg)	µg/m³	1.41E-05	6.48E-06	6.77E-06	6.86E-06	7.12E-06	6.48E-06	6.56E-06	6.87E-06	6.82E-06	7.13E-06	6.90E-06	6.69E-06	6.97E-06	1.37E-05	1.41E-05	6.70E-06	7.12E-06
Aluminum (AI)	µg/m³	3.18E-01	1.69E-02	1.69E-02	1.04E-01	7.76E-02	6.29E-02	9.58E-02	5.77E-02	1.20E-01	3.57E-02	8.63E-02	3.61E-02	1.55E-01	2.12E-01	3.18E-01	5.03E-02	8.89E-02
Antimony (Sb)	$\mu g/m^3$	3.57E-03	3.24E-03	3.39E-03	3.43E-03	3.56E-03	3.24E-03	3.28E-03	3.43E-03	3.41E-03	3.57E-03	3.45E-03	3.34E-03	3.49E-03	3.42E-03	3.53E-03	3.35E-03	3.56E-03
Arsenic (As)	$\mu g/m^3$	2.14E-03	1.94E-03	2.03E-03	2.06E-03	2.14E-03	1.94E-03	1.97E-03	2.06E-03	2.05E-03	2.14E-03	2.07E-03	2.01E-03	2.09E-03	2.05E-03	2.12E-03	2.01E-03	2.13E-03
Barium (Ba)	$\mu g/m^3$	1.41E-02	3.49E-03	4.74E-03	1.08E-02	8.54E-03	7.71E-03	6.23E-03	4.19E-03	1.04E-02	3.49E-03	1.41E-02	4.21E-03	5.51E-03	6.56E-03	5.15E-03	7.17E-03	3.84E-03
Beryllium (Be)	µg/m³	3.57E-04	3.24E-04	3.39E-04	3.43E-04	3.56E-04	3.24E-04	3.28E-04	3.43E-04	3.41E-04	3.57E-04	3.45E-04	3.34E-04	3.49E-04	3.42E-04	3.53E-04	3.35E-04	3.56E-04
Bismuth (Bi)	µg/m³	2.14E-03	1.94E-03	2.03E-03	2.06E-03	2.14E-03	1.94E-03	1.97E-03	2.06E-03	2.05E-03	2.14E-03	2.07E-03	2.01E-03	2.09E-03	2.05E-03	2.12E-03	2.01E-03	2.13E-03
Boron (B)	µg/m³	2.14E-03	1.94E-03	2.03E-03	2.06E-03	2.14E-03	1.94E-03	1.97E-03	2.06E-03	2.05E-03	2.14E-03	2.07E-03	2.01E-03	2.09E-03	2.05E-03	2.12E-03	2.01E-03	2.13E-03
Cadmium (Cd)	μg/m³	7.13E-04	6.48E-04	6.77E-04	6.86E-04	7.12E-04	6.48E-04	6.56E-04	6.87E-04	6.82E-04	7.13E-04	6.90E-04	6.69E-04	6.97E-04	6.84E-04	7.06E-04	6.70E-04	7.12E-04
Chromium (Cr)	μg/m³	4.64E-03	1.62E-03	1.69E-03	1.71E-03	1.78E-03	1.62E-03	1.64E-03	1.72E-03	4.64E-03	1.78E-03	1.73E-03	1.67E-03	1.74E-03	1.71E-03	1.76E-03	1.68E-03	1.78E-03
Cobalt (Co)	μg/m ³	7.13E-04	6.48E-04	6.77E-04	6.86E-04	7.12E-04	6.48E-04	6.56E-04	6.87E-04	6.82E-04	7.13E-04	6.90E-04	6.69E-04	6.97E-04	6.84E-04	7.06E-04	6.70E-04	7.12E-04
Copper (Cu)	μg/m³	3.91E-02	1.20E-02	1.29E-02	3.22E-02	2.04E-02	3.35E-02	3.59E-02	1.31E-02	2.98E-02	3.46E-02	3.91E-02	2.29E-02	2.36E-02	2.14E-02	1.20E-02	3.75E-02	1.49E-02
Iron (Fe)	µg/m³	5.88E-01	1.18E-01	1.44E-01	3.89E-01	2.83E-01	1.96E-01	2.09E-01	1.78E-01	5.53E-01	1.18E-01	5.58E-01	1.57E-01	4.21E-01	4.16E-01	5.88E-01	2.94E-01	2.16E-01
Lead (Pb)	µg/m³	4.02E-03	9.72E-04	1.02E-03	1.03E-03	1.07E-03	9.72E-04	2.16E-03	1.03E-03	2.80E-03	2.92E-03	3.73E-03	1.00E-03	2.51E-03	1.03E-03	2.33E-03	4.02E-03	1.07E-03
Magnesium (Mg)	µg/m³	3.13E-01	3.85E-02	8.73E-02	3.13E-01	1.67E-01	5.77E-02	9.77E-02	7.76E-02	2.11E-01	3.85E-02	1.82E-01	5.42E-02	2.22E-01	2.37E-01	2.23E-01	9.99E-02	1.04E-01
Manganese (Mn)	μg/m³	1.89E-02	3.14E-03	6.84E-03	1.50E-02	8.11E-03	5.57E-03	7.54E-03	5.50E-03	1.32E-02	3.14E-03	1.30E-02	3.81E-03	1.48E-02	1.63E-02	1.89E-02	8.31E-03	4.91E-03
Molybdenum (Mo)	µg/m³	1.07E-03	9.72E-04	1.02E-03	1.03E-03	1.07E-03	9.72E-04	9.84E-04	1.03E-03	1.02E-03	1.07E-03	1.04E-03	1.00E-03	1.05E-03	1.03E-03	1.06E-03	1.01E-03	1.07E-03
Nickel (Ni)	µg/m³	3.95E-03	9.72E-04	1.02E-03	1.03E-03	1.07E-03	9.72E-04	9.84E-04	1.03E-03	3.95E-03	2.57E-03	3.93E-03	2.74E-03	1.05E-03	1.03E-03	1.06E-03	1.01E-03	1.07E-03
Phosphorus (P)	µg/m³	3.42E-02	8.10E-03	8.46E-03	8.57E-03	8.90E-03	8.10E-03	8.20E-03	8.59E-03	1.91E-02	8.91E-03	2.21E-02	8.36E-03	2.93E-02	3.42E-02	3.32E-02	8.38E-03	2.28E-02
Selenium (Se)	μg/m³	3.57E-03	3.24E-03	3.39E-03	3.43E-03	3.56E-03	3.24E-03	3.28E-03	3.43E-03	3.41E-03	3.57E-03	3.45E-03	3.34E-03	3.49E-03	3.42E-03	3.53E-03	3.35E-03	3.56E-03
Silver (Aq)	μg/m³	1.78E-03	1.62E-03	1.69E-03	1.71E-03	1.78E-03	1.62E-03	1.64E-03	1.72E-03	1.70E-03	1.78E-03	1.73E-03	1.67E-03	1.74E-03	1.71E-03	1.76E-03	1.68E-03	1.78E-03
Strontium (Sr)	μg/m³	1.25E-02	1.21E-03	2.03E-03	1.25E-02	6.12E-03	2.01E-03	3.34E-03	2.13E-03	6.68E-03	1.21E-03	4.56E-03	1.74E-03	6.35E-03	2.94E-03	5.29E-03	1.81E-03	4.63E-03
Thallium (TI)	μg/m³	3.57E-03	3.24E-03	3.39E-03	3.43E-03	3.56E-03	3.24E-03	3.28E-03	3.43E-03	3.41E-03	3.57E-03	3.45E-03	3.34E-03	3.49E-03	3.42E-03	3.53E-03	3.35E-03	3.56E-03
Tin (Sn)	μg/m³	3.57E-03	3.24E-03	3.39E-03	3.43E-03	3.56E-03	3.24E-03	3.28E-03	3.43E-03	3.41E-03	3.57E-03	3.45E-03	3.34E-03	3.49E-03	3.42E-03	3.53E-03	3.35E-03	3.56E-03
Titanium (Ti)	μg/m³	1.83E-02	3.24E-03	3.39E-03	7.54E-03	3.56E-03	3.24E-03	3.28E-03	3.43E-03	7.50E-03	3.57E-03	7.59E-03	3.34E-03	1.05E-02	9.57E-03	1.83E-02	3.35E-03	3.56E-03
Vanadium (V)	μg/m³	1.78E-03	1.62E-03	1.69E-03	1.71E-03	1.78E-03	1.62E-03	1.64E-03	1.72E-03	1.70E-03	1.78E-03	1.73E-03	1.67E-03	1.74E-03	1.71E-03	1.76E-03	1.68E-03	1.78E-03
Zinc (Zn)	μg/m³	5.03E-02	9.23E-03	2.47E-02	2.87E-02	3.49E-02	2.07E-02	2.68E-02	5.03E-02	3.28E-02	3.74E-02	2.87E-02	9.23E-03	1.95E-02	2.07E-02	3.36E-02	4.51E-02	1.40E-02
Zirconium (Zr)	μg/m ³	1.78E-03	1.62E-03	1.69E-03	1.71E-03	1.78E-03	1.62E-03	1.64E-03	1.72E-03	1.70E-03	1.78E-03	1.73E-03	1.67E-03	1.74E-03	1.71E-03	1.76E-03	1.68E-03	1.78E-03
Total Uranium (U)	µg/m³	1.60E-04	1.46E-04	1.52E-04	1.54E-04	1.60E-04	1.46E-04	1.48E-04	1.55E-04	1.53E-04	1.60E-04	1.55E-04	1.50E-04	1.57E-04	1.54E-04	1.59E-04	1.51E-04	1.60E-04

Notes:

A - Mass flow controller was unable to maintain a consistent flow during filter retrieval. However, the chart recorder indicated consistent flow -40cfm over the sample run. Also, the sample results were comparable to the other stations, therefore the results were considered valid.

Metals and Total	Rundle Road Station																														
Particulates	Rollate Road Station																													4 /	
Location		Ru	ındle	Ru	ındle	Ru	ndle	Rui	ndle	Ru	ndle	Ru	ındle	Rur	ndle	Rui	ndle	Rur	ndle	Ru	ndle	Rui	ndle	Ru	ndle	Rur	ndle	Rur	ndle	Ru	ndle
Date	dd/mm/yyyy		01/2017		1/2017		1/2017	19/01			1/2017		1/2017	06/02			2/2017		2/2017	24/02	2/2017		3/2017		3/2017	14/03		20/03			3/2017
Start Time	hh:mm	(0:00	0	0:00	0	:00	0:	00	0	:00	C	0:00	0:	00	0:	:00	0:	00	0	:00	0:	:00	C	0:00	0:	00	0:	00	0	:00
Sample Duration	Hours		3.44		3.68		3.36		.82	24	1.08	2:	3.33	23	.23	23	3.49	23	.42	23	3.19	23	3.86	2:	3.99	23	.77	23	.43	2.7	3.61
Technician			TH		TH		TH	T	Н	1	ſΗ		TH	T	Ή	1	TΗ	T	Ή	1	ſΗ	T	ſΗ		TH	T	Ή	Т	Ή	7	ſΗ
Filter Number		161	20840	161:	20895	161	21500	1612	2891	1613	22895	170	11071	1701	1074	1701	11825	1701	11829	170	11843	1701	11847	170	12351	1701	2355	1701	12369	1701	12373
Analytical Report #		B7	03339	B70	06279	B71	2111	DU	1754	B71	8943	B72	24014	B72	8799	B73	1642	B739	9014	B74	0572	B74	7020	B74	19352	B75	4125	B758	8468	B76	3335
Total Volumetric	Am ³ /sample																														
Flow	,		50.57		19.51		07.11		3.61		32.31		93.13		2.44		18.54		9.04		9.00		1.27		45.75		9.85		1.92		1.68
Analytical Results	Units	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL																				
Particulate	mg	27.6	5	65.2	5	37.6	5	28.6	5	24	5	25.5	5	86.5	5	23	5	48	5	16.3	5	57.1	5	52	5	48	5	49.3	5	20.2	5
Total Mercury (Hg)	μg	<0.02	0.02	<0.02	0.02	< 0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02	< 0.02	0.02	<0.02	0.02	<0.02	0.02	0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02
Aluminum (Al)	μg	111	50	204	50	130	50	<50	50	93	50	94	50	164	50	53	50	133	50	<50	50	361	50	411	50	353	50	99	50	<50	50
Antimony (Sb)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Arsenic (As)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	< 6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Barium (Ba)	μg	8.9	1.0	16.7	1.0	7.8	1.0	15.5	1.0	16.7	1.0	5.9	1.0	14.4	1.0	4.9	1.0	17.0	1.0	7.1	1.0	8.8	1.0	13.3	1.0	6.5	1.0	11.6	1.0	5.9	1.0
Beryllium (Be)	μg	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0
Bismuth (Bi)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Boron (B)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Cadmium (Cd)	μg	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0 5.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0 5.4	2.0 5.0	<2.0	2.0	<2.0	2.0	<2.0	2.0
Chromium (Cr) Cobalt (Co)	μg	<5.0 <2.0	5.0 2.0	<5.0 <2.0	5.0 2.0	<5.0 <2.0	5.0 2.0	<5.0 <2.0	5.0 2.0	<5.0 <2.0	5.0	<5.0 <2.0	5.0 2.0	<2.0	2.0	<5.0 <2.0	5.0	<5.0 <2.0	5.0 2.0	<5.0 <2.0	5.0 2.0										
	μg										2.0																2.0				
Copper (Cu)	μg	37.4	5.0	103	5.0	28.1	5.0	146	5.0	56.3	5.0	33.5	5.0	61.1	5.0	83.5	5.0	58.6	5.0	27.0	5.0	38.1	5.0	108	5.0	43.0	5.0	187	5.0	26.5	5.0
Iron (Fe)	μg	492	50	651	50	385	50	485	50	373	50	429	50	732	50	183	50	841	50	230	50	707	50	938	50	596	50	515	50	296	50
Lead (Pb)	μg	<3.0	3.0	3.1	3.0	<3.0	3.0	<3.0	3.0	4.5	3.0	<3.0	3.0	<3.0	3.0	3.6	3.0	5.1	3.0	<3.0	3.0	4.1	3.0	3.8	3.0	3.2	3.0	6.7	3.0	<3.0	3.0
Magnesium (Mg)	μg	251	50	543 24.9	50 1.0	298 14.9	50	79	50	136 10.8	50	143 10.9	50 1.0	360	50	73 4.7	50 1.0	293 18.7	50 1.0	102	50 1.0	391 22.9	50	572 34.2	50 1.0	251	50 1.0	197	50	80	50 1.0
Manganese (Mn) Molybdenum (Mo)	μg	18.7	1.0				1.0	8.1	1.0		1.0			21.4	1.0	***			3.0	6.1			1.0			20.3		13.0	1.0	6.0	3.0
Nickel (Ni)	μg	<3.0 <3.0	3.0 3.0	<3.0 <3.0	3.0 3.0	<3.0 3.1	3.0 3.0	<3.0 <3.0	3.0 3.0	<3.0 <3.0	3.0	<3.0 <3.0	3.0	<3.0 3.0	3.0 3.0	<3.0 <3.0	3.0 3.0	<3.0 <3.0	3.0	<3.0 <3.0	3.0 3.0	<3.0 <3.0	3.0 3.0	6.8	3.0 3.0	<3.0 <3.0	3.0	6.7 <3.0	3.0 3.0	<3.0 <3.0	3.0
Phosphorus (P)	μg	<3.0 <25	3.0	<3.0 26	25	<25	3.0 25	<3.0	3.0 25	<25	3.0	<3.0 <25	3.0	3.0	3.0	<3.0 <25	25	<3.0 38	25	<3.0 <25	25	<3.0 67	3.0 25	5.0 66	3.0	43.0	3.0	<3.0 <25	3.0 25	<3.0 <25	25
Selenium (Se)	μg	<10	10	<10	10	<10	10	<25	25 10	<10	10	<10	10	<10	25 10	<25 <10	10	<10	25 10	<10	25 10	<10	10	<10	10	42 <10	25 10	<25 <10	25 10	<10	25 10
Silver (Ag)	μg μg	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Strontium (Sr)	μg	6.7	1.0	14.8	1.0	11.0	1.0	2.4	1.0	3.5	1.0	4.7	1.0	12.5	1.0	1.9	1.0	7.8	1.0	3.4	1.0	12.1	1.0	10.7	1.0	5.4	1.0	4.9	1.0	2.5	1.0
Thallium (TI)		<10	1.0	<10	1.0	<10	1.0	<10	1.0	3.5 <10	1.0	4.7 <10	1.0	<10	1.0	<1.9 <10	1.0	7.8 <10	1.0	<10	1.0	<10.1	1.0	<10.7	1.0	<10	1.0	4.9 <10	1.0	<10	1.0
Tin (Sn)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Titanium (Ti)	hā hā	<10	10	13	10	<10	10	<10	10	<10	10	<10	10	12	10	<10	10	10	10	<10	10	24	10	18	10	22	10	<10	10	<10	10
Vanadium (V)	μg	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Zinc (Zn)	hd hâ	33.2	5.0	31.9	5.0	28.7	5.0	31.3	5.0	47.7	5.0	26.1	5.0	36.8	5.0	27.6	5.0	47.9	5.0	16.0	5.0	89.3	5.0	51.6	5.0	23.9	5.0	124	5.0	19.6	5.0
Zirconium (Zr)	hā hā	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0
Total Uranium (U)	ua pg	<0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	<0.45	0.45
rotal oralioni (o)	μy	(0.43	0.43	(0.43	0.45	(0.43	0.45	(0.43	0.43	(0.43	0.43	(0.43	0.43	(0.45	0.45	(0.43	0.43	V0.45	0.45	(0.43	0.43	VU.45	0.43	VU.43	0.45	V0.43	0.43	V0.45	0.43	NU.45	0.43

		Quarter 1		Rundle														
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Calculated Concentrations	Units	Maximum	Minimum															
				1/1/2017	1/7/2017	1/13/2017	1/19/2017	1/25/2017	1/31/2017	2/6/2017	2/12/2017	2/18/2017	2/24/2017	3/2/2017	3/8/2017	3/14/2017	3/20/2017	3/26/2017
Particulate	μg/m³	61.68	11.10	19.03	45.93	26.72	19.02	15.66	17.08	61.68	16.21	33.83	11.10	37.53	33.64	33.57	33.72	13.82
Total Mercury (Hg)	µg/m³	1.29E-05	6.53E-06	6.89E-06	7.04E-06	7.11E-06	6.65E-06	6.53E-06	6.70E-06	7.13E-06	7.05E-06	7.05E-06	6.81E-06	6.57E-06	1.29E-05	6.99E-06	6.84E-06	6.84E-06
Aluminum (Al)	µg/m³	2.66E-01	1.66E-02	7.65E-02	1.44E-01	9.24E-02	1.66E-02	6.07E-02	6.30E-02	1.17E-01	3.74E-02	9.37E-02	1.70E-02	2.37E-01	2.66E-01	2.47E-01	6.77E-02	1.71E-02
Antimony (Sb)	μg/m³	3.57E-03	3.23E-03	3.45E-03	3.52E-03	3.55E-03	3.33E-03	3.26E-03	3.35E-03	3.57E-03	3.52E-03	3.52E-03	3.40E-03	3.29E-03	3.23E-03	3.50E-03	3.42E-03	3.42E-03
Arsenic (As)	µg/m³	2.14E-03	1.94E-03	2.07E-03	2.11E-03	2.13E-03	2.00E-03	1.96E-03	2.01E-03	2.14E-03	2.11E-03	2.11E-03	2.04E-03	1.97E-03	1.94E-03	2.10E-03	2.05E-03	2.05E-03
Barium (Ba)	µg/m³	1.20E-02	3.45E-03	6.14E-03	1.18E-02	5.54E-03	1.03E-02	1.09E-02	3.95E-03	1.03E-02	3.45E-03	1.20E-02	4.83E-03	5.78E-03	8.60E-03	4.55E-03	7.93E-03	4.04E-03
Beryllium (Be)	µg/m³	3.57E-04	3.23E-04	3.45E-04	3.52E-04	3.55E-04	3.33E-04	3.26E-04	3.35E-04	3.57E-04	3.52E-04	3.52E-04	3.40E-04	3.29E-04	3.23E-04	3.50E-04	3.42E-04	3.42E-04
Bismuth (Bi)	µg/m³	2.14E-03	1.94E-03	2.07E-03	2.11E-03	2.13E-03	2.00E-03	1.96E-03	2.01E-03	2.14E-03	2.11E-03	2.11E-03	2.04E-03	1.97E-03	1.94E-03	2.10E-03	2.05E-03	2.05E-03
Boron (B)	µg/m³	2.14E-03	1.94E-03	2.07E-03	2.11E-03	2.13E-03	2.00E-03	1.96E-03	2.01E-03	2.14E-03	2.11E-03	2.11E-03	2.04E-03	1.97E-03	1.94E-03	2.10E-03	2.05E-03	2.05E-03
Cadmium (Cd)	µg/m³	7.13E-04	6.47E-04	6.89E-04	7.04E-04	7.11E-04	6.65E-04	6.53E-04	6.70E-04	7.13E-04	7.05E-04	7.05E-04	6.81E-04	6.57E-04	6.47E-04	6.99E-04	6.84E-04	6.84E-04
Chromium (Cr)	µg/m³	3.49E-03	1.63E-03	1.72E-03	1.76E-03	1.78E-03	1.66E-03	1.63E-03	1.67E-03	1.78E-03	1.76E-03	1.76E-03	1.70E-03	1.64E-03	3.49E-03	1.75E-03	1.71E-03	1.71E-03
Cobalt (Co)	μg/m ³	7.13E-04	6.47E-04	6.89E-04	7.04E-04	7.11E-04	6.65E-04	6.53E-04	6.70E-04	7.13E-04	7.05E-04	7.05E-04	6.81E-04	6.57E-04	6.47E-04	6.99E-04	6.84E-04	6.84E-04
Copper (Cu)	μg/m³	1.28E-01	1.81E-02	2.58E-02	7.26E-02	2.00E-02	9.71E-02	3.67E-02	2.24E-02	4.36E-02	5.89E-02	4.13E-02	1.84E-02	2.50E-02	6.99E-02	3.01E-02	1.28E-01	1.81E-02
Iron (Fe)	µg/m³	6.07E-01	1.29E-01	3.39E-01	4.59E-01	2.74E-01	3.23E-01	2.43E-01	2.87E-01	5.22E-01	1.29E-01	5.93E-01	1.57E-01	4.65E-01	6.07E-01	4.17E-01	3.52E-01	2.03E-01
Lead (Pb)	μg/m³	4.58E-03	9.98E-04	1.03E-03	2.18E-03	1.07E-03	9.98E-04	2.94E-03	1.00E-03	1.07E-03	2.54E-03	3.59E-03	1.02E-03	2.70E-03	2.46E-03	2.24E-03	4.58E-03	1.03E-03
Magnesium (Mg)	μg/m³	3.83E-01	5.15E-02	1.73E-01	3.83E-01	2.12E-01	5.25E-02	8.88E-02	9.58E-02	2.57E-01	5.15E-02	2.06E-01	6.94E-02	2.57E-01	3.70E-01 2.21E-02	1.76E-01 1.42E-02	1.35E-01	5.47E-02
Manganese (Mn)	μg/m³	2.21E-02	3.31E-03	1.29E-02	1.75E-02	1.06E-02	5.39E-03	7.05E-03	7.30E-03	1.53E-02	3.31E-03	1.32E-02	4.15E-03	1.51E-02			8.89E-03	4.10E-03
Molybdenum (Mo)	μg/m³	4.58E-03	9.79E-04	1.03E-03	1.06E-03	1.07E-03	9.98E-04	9.79E-04	1.00E-03	1.07E-03	1.06E-03	1.06E-03	1.02E-03	9.86E-04	4.40E-03	1.05E-03	4.58E-03	1.03E-03
Nickel (Ni)	µg/m³	3.62E-03	9.79E-04	1.03E-03	1.06E-03	2.20E-03	9.98E-04	9.79E-04	1.00E-03	2.14E-03	1.06E-03	1.06E-03	1.02E-03	9.86E-04	3.62E-03	1.05E-03	1.03E-03	1.03E-03
Phosphorus (P)	µg/m³	4.40E-02	8.16E-03	8.62E-03	1.83E-02	8.88E-03	8.31E-03	8.16E-03	8.37E-03	1.78E-02	8.81E-03	2.68E-02	8.51E-03	4.40E-02	4.27E-02	2.94E-02	8.55E-03	8.55E-03
Selenium (Se)	µg/m³	3.57E-03	3.23E-03	3.45E-03	3.52E-03	3.55E-03	3.33E-03	3.26E-03	3.35E-03	3.57E-03	3.52E-03	3.52E-03	3.40E-03	3.29E-03	3.23E-03	3.50E-03	3.42E-03	3.42E-03
Silver (Ag)	μg/m³	1.78E-03	1.62E-03	1.72E-03	1.76E-03	1.78E-03	1.66E-03	1.63E-03	1.67E-03	1.78E-03	1.76E-03	1.76E-03	1.70E-03	1.64E-03	1.62E-03	1.75E-03	1.71E-03	1.71E-03
Strontium (Sr)	µg/m³	1.04E-02	1.34E-03	4.62E-03	1.04E-02	7.82E-03	1.60E-03	2.28E-03	3.15E-03	8.91E-03	1.34E-03	5.50E-03	2.31E-03	7.95E-03	6.92E-03	3.78E-03	3.35E-03	1.71E-03
Thallium (TI)	µg/m³	3.57E-03	3.23E-03	3.45E-03	3.52E-03	3.55E-03	3.33E-03	3.26E-03	3.35E-03	3.57E-03	3.52E-03	3.52E-03	3.40E-03	3.29E-03	3.23E-03	3.50E-03	3.42E-03	3.42E-03
Tin (Sn)	μg/m³	3.57E-03	3.23E-03	3.45E-03	3.52E-03	3.55E-03	3.33E-03	3.26E-03	3.35E-03	3.57E-03	3.52E-03	3.52E-03	3.40E-03	3.29E-03	3.23E-03	3.50E-03	3.42E-03	3.42E-03
Titanium (Ti)	µg/m³	1.58E-02	3.26E-03	3.45E-03	9.16E-03	3.55E-03	3.33E-03	3.26E-03	3.35E-03	8.56E-03	3.52E-03	7.05E-03	3.40E-03	1.58E-02	1.16E-02	1.54E-02	3.42E-03	3.42E-03
Vanadium (V)	µg/m³	1.78E-03	1.62E-03	1.72E-03	1.76E-03	1.78E-03	1.66E-03	1.63E-03	1.67E-03	1.78E-03	1.76E-03	1.76E-03	1.70E-03	1.64E-03	1.62E-03	1.75E-03	1.71E-03	1.71E-03
Zinc (Zn)	μg/m³	8.48E-02	1.09E-02	2.29E-02	2.25E-02	2.04E-02	2.08E-02	3.11E-02	1.75E-02	2.62E-02	1.95E-02	3.38E-02	1.09E-02	5.87E-02	3.34E-02	1.67E-02	8.48E-02	1.34E-02
Zirconium (Zr) Fotal Uranium (U)	µg/m³ ua/m³	1.78E-03 1.60E-04	1.62E-03 1.46F-04	1.72E-03 1.55E-04	1.76E-03 1.59E-04	1.78E-03 1.60F-04	1.66E-03 1.50F-04	1.63E-03 1.47F-04	1.67E-03 1.51E-04	1.78E-03 1.60F-04	1.76E-03 1.59E-04	1.76E-03 1.59E-04	1.70E-03 1.53E-04	1.64E-03 1.48F-04	1.62E-03 1.46F-04	1.75E-03 1.57E-04	1.71E-03 1.54F-04	1.71E-03 1.54E-04

Metals and Total	Fenceline Station																														
Particulates																															
Location			nceline		celine		eline		celine		celine		celine		celine		eline		eline		celine ¹		celine								
Date	dd/mm/yyyy		01/2017		1/2017		1/2017		1/2017		1/2017		1/2017		2/2017		2/2017		2/2017		2/2017		3/2017		3/2017		3/2017		3/2017		3/2017
Start Time	hh:mm		0:00		0:00		0:00		:00		0:00		0:00		:00		:00		0:00		:00		00:		:00		00		0:00		:00
Sample Duration	Hours	-	24.99		3.31		3.86		3.94		3.14		3.54		1.11		4.76		3.26		4.11		3.61		1.52		.76		23.4		4.69
Technician			TH		TH		TH		ΓH		TH		TH		Ή		TH		TH		TH		TH		Ή		Ή		TH		TH
Filter Number			120841		20896		21501		22892		22896		11072		11300		11826		11830		11844		11848		12352	1701			12370		12374
Analytical Report #		B	703339	B70	06279	B7	12111	B71	4323	B7	18943	B7:	24014	B72	8799	DXI	M434	B73	39014	B74	10572	B/4	17020	B/4	9352	B75	4125	B75	58468	B76	3335
Total Volumetric	Am ³ /sample	11	566.01	1.4	35.08	1.4	80.43	150	04.18	1.4	77.33	1.4	80.49	144	0.70	155	53.24	1/4	67.48	15	32.35	14/	47.76	1//5	3.21	147	0.61	14	73.78	15	57.49
Analytical Results	Units	Value		Value	RDL	Value		Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL														
Particulate	mg	23.7	5	43.1	5	46.1	5	22.5	5	24.4	5	37.2	5	104	5	35.4	5	51.1	5	24.5	5	68.6	5.0	42.2	5	85.9	5	52	5	36.4	5
Total Mercury (Hg)	μg	< 0.02	0.02	<0.02	0.02	< 0.02	0.02	<0.02	0.02	< 0.02	0.02	< 0.02	0.02	<0.02	0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	<0.02	0.02	0.02	0.02	< 0.02	0.02	<0.02	0.02
Aluminum (Al)	μg	76	50	115	50	166	50	<50	50	114	50	103	50	198	50	101	50	123	50	93	50	342	50	323	50	450	50	153	50	184	50
Antimony (Sb)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Arsenic (As)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	< 6.0	6.0	<6.0	6.0	<6.0	6.0	< 6.0	6.0	<6.0	6.0	<6.0	6.0	< 6.0	6.0	<6.0	6.0	< 6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Barium (Ba)	μg	7.6	1.0	15.5	1.0	14.0	1.0	13.3	1.0	9.0	1.0	7.2	1.0	19.1	1.0	5.4	1.0	17.6	1.0	8.3	1.0	11.2	1.0	11.2	1.0	8.3	1.0	15.7	1.0	7.4	1.0
Beryllium (Be)	μg	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0
Bismuth (Bi)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	< 6.0	6.0	<6.0	6.0	<6.0	6.0	< 6.0	6.0	<6.0	6.0	< 6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Boron (B)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	< 6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Cadmium (Cd)	μg	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	< 2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	3.9	2.0	<2.0	2.0	2.1	2.0	<2.0	2.0	<2.0	2.0
Chromium (Cr)	μg	<5.0	5.0	<5.0	5.0	5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	5.6	5.0	<5.0	5.0	7.4	5.0	< 5.0	5.0	8.8	5.0	9.1	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Cobalt (Co)	μg	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	< 2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0
Copper (Cu)	μg	41.1	5.0	33.8	5.0	26.6	5.0	53.8	5.0	35.8	5.0	45.8	5.0	41.0	5.0	53.4	5.0	55.7	5.0	57.7	5.0	22.5	5.0	32.3	5.0	23.3	5.0	56.1	5.0	55.6	5.0
Iron (Fe)	μg	313	50	513	50	611	50	379	50	277	50	302	50	764	50	188	50	794	50	345	50	883	50	697	50	758	50	665	50	385	50
Lead (Pb)	μg	3.2	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	4.2	3.0	4.1	3.0	4.9	3.0	3.0	3.0	5.5	3.0	5.8	3.0	3.3	3.0	15.3	3.0	<3.0	3.0
Magnesium (Mg)	μg	210	50	381	50	545	50	60	50	127	50	179	50	557	50	105	50	287	50	207	50	601	50	450	50	319	50	274	50	235	50
Manganese (Mn)	μg	14.5	1.0	15.3	1.0	21.5	1.0	7.8	1.0	10.2	1.0	10.8	1.0	23.7	1.0	5.5	1.0	20.7	1.0	12.8	1.0	46.5	1.0	26.9	1.0	25.6	1.0	18.1	1.0	11.9	1.0
Molybdenum (Mo)	μg	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	< 3.0	3.0	<3.0	3.0	4.5	3.0	<3.0	3.0	<3.0	3.0	4.7	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Nickel (Ni)	μg	<3.0	3.0	<3.0	3.0	< 3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	4.1	3.0	17.4	3.0	<3.0	3.0	<3.0	3.0	18.4	3.0	< 3.0	3.0	3.4	3.0	<3.0	3.0
Phosphorus (P)	μg	<25	25	<25	25	<25	25	<25	25	<25	25	<25	25	26	25	<25	25	26	25	<25	25	56	25	57	25	47	25	43	25	53	25
Selenium (Se)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Silver (Ag)	μg	< 5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	<5.0	5.0	< 5.0	5.0	< 5.0	5.0	<5.0	5.0	< 5.0	5.0
Strontium (Sr)	μg	5.9	1.0	8.2	1.0	15.4	1.0	1.5	1.0	4.1	1.0	5.3	1.0	19.1	1.0	4.7	1.0	7.8	1.0	7.8	1.0	16.9	1.0	7.2	1.0	7.6	1.0	7.9	1.0	9.9	1.0
Thallium (TI)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Tin (Sn)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Titanium (Ti)	μg	<10	10	<10	10	13	10	<10	10	<10	10	<10	10	14	10	<10	10	<10	10	<10	10	21	10	16	10	26	10	12	10	12	10
Vanadium (V)	μg	<5.0	5.0	< 5.0	5.0	<5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Zinc (Zn)	μg	36.1	5.0	35.4	5.0	50.9	5.0	30.1	5.0	39.3	5.0	20.3	5.0	46.3	5.0	33.1	5.0	45.7	5.0	21.0	5.0	33.6	5.0	36.0	5.0	22.7	5.0	92.0	5.0	26.8	5.0
Zirconium (Zr)	μg	< 5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	<5.0	5.0	< 5.0	5.0	< 5.0	5.0	<5.0	5.0	< 5.0	5.0
Total Uranium (U)	μq	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45

Notes:

Tear in filter during retreival. Concentrations comparable to other stations on the same day. Data considered valid.

		Quarter 1		Fenceline	Fenceline1	Fenceline												
				1	2	3	4	5	6	7	8	9	10	- 11	12	13	14	15
Calculated Concentrations	Units	Maximum	Minimum															
				1/1/2017	1/7/2017	1/13/2017	1/19/2017	1/25/2017	1/31/2017	2/6/2017	2/12/2017	2/18/2017	2/24/2017	3/2/2017	3/8/2017	3/14/2017	3/20/2017	3/26/2017
Particulate	µg/m³	72.19	14.96	15.13	30.03	31.14	14.96	16.52	25.13	72.19	22.79	34.82	15.99	47.38	28.45	58.41	35.28	23.37
Total Mercury (Hg)	μg/m³	1.36E-05	6.39E-06	6.39E-06	6.97E-06	6.75E-06	6.65E-06	6.77E-06	6.75E-06	6.94E-06	6.44E-06	6.81E-06	6.53E-06	6.91E-06	6.74E-06	1.36E-05	6.79E-06	6.42E-06
Aluminum (Al)	µg/m³	3.06E-01	1.66E-02	4.85E-02	8.01E-02	1.12E-01	1.66E-02	7.72E-02	6.96E-02	1.37E-01	6.50E-02	8.38E-02	6.07E-02	2.36E-01	2.18E-01	3.06E-01	1.04E-01	1.18E-01
Antimony (Sb)	µg/m³	3.48E-03	3.19E-03	3.19E-03	3.48E-03	3.38E-03	3.32E-03	3.38E-03	3.38E-03	3.47E-03	3.22E-03	3.41E-03	3.26E-03	3.45E-03	3.37E-03	3.40E-03	3.39E-03	3.21E-03
Arsenic (As)	µg/m³	2.09E-03	1.92E-03	1.92E-03	2.09E-03	2.03E-03	1.99E-03	2.03E-03	2.03E-03	2.08E-03	1.93E-03	2.04E-03	1.96E-03	2.07E-03	2.02E-03	2.04E-03	2.04E-03	1.93E-03
Barium (Ba)	µg/m³	1.33E-02	3.48E-03	4.85E-03	1.08E-02	9.46E-03	8.84E-03	6.09E-03	4.86E-03	1.33E-02	3.48E-03	1.20E-02	5.42E-03	7.74E-03	7.55E-03	5.64E-03	1.07E-02	4.75E-03
Beryllium (Be)	µg/m³	3.48E-04	3.19E-04	3.19E-04	3.48E-04	3.38E-04	3.32E-04	3.38E-04	3.38E-04	3.47E-04	3.22E-04	3.41E-04	3.26E-04	3.45E-04	3.37E-04	3.40E-04	3.39E-04	3.21E-04
Bismuth (Bi)	µg/m³	2.09E-03	1.92E-03	1.92E-03	2.09E-03	2.03E-03	1.99E-03	2.03E-03	2.03E-03	2.08E-03	1.93E-03	2.04E-03	1.96E-03	2.07E-03	2.02E-03	2.04E-03	2.04E-03	1.93E-03
Boron (B)	µg/m³	2.09E-03	1.92E-03	1.92E-03	2.09E-03	2.03E-03	1.99E-03	2.03E-03	2.03E-03	2.08E-03	1.93E-03	2.04E-03	1.96E-03	2.07E-03	2.02E-03	2.04E-03	2.04E-03	1.93E-03
Cadmium (Cd)	µg/m³	2.69E-03	6.39E-04	6.39E-04	6.97E-04	6.75E-04	6.65E-04	6.77E-04	6.75E-04	6.94E-04	6.44E-04	6.81E-04	6.53E-04	2.69E-03	6.74E-04	1.43E-03	6.79E-04	6.42E-04
Chromium (Cr)	µg/m³	6.14E-03	1.60E-03	1.60E-03	1.74E-03	3.38E-03	1.66E-03	1.69E-03	1.69E-03	3.89E-03	1.61E-03	5.04E-03	1.63E-03	6.08E-03	6.14E-03	1.70E-03	1.70E-03	1.61E-03
Cobalt (Co)	µg/m³	6.97E-04	6.39E-04	6.39E-04	6.97E-04	6.75E-04	6.65E-04	6.77E-04	6.75E-04	6.94E-04	6.44E-04	6.81E-04	6.53E-04	6.91E-04	6.74E-04	6.80E-04	6.79E-04	6.42E-04
Copper (Cu)	μg/m³	3.81E-02	1.55E-02	2.62E-02	2.36E-02	1.80E-02	3.58E-02	2.42E-02	3.09E-02	2.85E-02	3.44E-02	3.80E-02	3.77E-02	1.55E-02	2.18E-02	1.58E-02	3.81E-02	3.57E-02
Iron (Fe)	µg/m³	6.10E-01	1.21E-01	2.00E-01	3.57E-01	4.13E-01	2.52E-01	1.88E-01	2.04E-01	5.30E-01	1.21E-01	5.41E-01	2.25E-01	6.10E-01	4.70E-01	5.15E-01	4.51E-01	2.47E-01
Lead (Pb)	µg/m³	1.04E-02	9.63E-04	2.04E-03	1.05E-03	1.01E-03	9.97E-04	1.02E-03	1.01E-03	2.92E-03	2.64E-03	3.34E-03	1.96E-03	3.80E-03	3.91E-03	2.24E-03	1.04E-02	9.63E-04
Magnesium (Mg)	µg/m³	4.15E-01	3.99E-02	1.34E-01	2.65E-01	3.68E-01	3.99E-02	8.60E-02	1.21E-01	3.87E-01	6.76E-02	1.96E-01	1.35E-01	4.15E-01	3.03E-01	2.17E-01	1.86E-01	1.51E-01
Manganese (Mn)	µg/m³	3.21E-02	3.54E-03	9.26E-03	1.07E-02	1.45E-02	5.19E-03	6.90E-03	7.29E-03	1.65E-02	3.54E-03	1.41E-02	8.35E-03	3.21E-02	1.81E-02	1.74E-02	1.23E-02	7.64E-03
Molybdenum (Mo)	μg/m³	3.17E-03	9.58E-04	9.58E-04	1.05E-03	1.01E-03	9.97E-04	1.02E-03	1.01E-03	1.04E-03	9.66E-04	3.07E-03	9.79E-04	1.04E-03	3.17E-03	1.02E-03	1.02E-03	9.63E-04
Nickel (Ni)	µg/m³	1.24E-02	9.58E-04	9.58E-04	1.05E-03	1.01E-03	9.97E-04	1.02E-03	1.01E-03	1.04E-03	2.64E-03	1.19E-02	9.79E-04	1.04E-03	1.24E-02	1.02E-03	2.31E-03	9.63E-04
Phosphorus (P)	µg/m³	3.87E-02	7.98E-03	7.98E-03	8.71E-03	8.44E-03	8.31E-03	8.46E-03	8.44E-03	1.80E-02	8.05E-03	1.77E-02	8.16E-03	3.87E-02	3.84E-02	3.20E-02	2.92E-02	3.40E-02
Selenium (Se)	µg/m³	3.48E-03	3.19E-03	3.19E-03	3.48E-03	3.38E-03	3.32E-03	3.38E-03	3.38E-03	3.47E-03	3.22E-03	3.41E-03	3.26E-03	3.45E-03	3.37E-03	3.40E-03	3.39E-03	3.21E-03
Silver (Ag)	µg/m³	1.74E-03	1.60E-03	1.60E-03	1.74E-03	1.69E-03	1.66E-03	1.69E-03	1.69E-03	1.74E-03	1.61E-03	1.70E-03	1.63E-03	1.73E-03	1.69E-03	1.70E-03	1.70E-03	1.61E-03
Strontium (Sr)	µg/m³	1.33E-02	9.97E-04	3.77E-03	5.71E-03	1.04E-02	9.97E-04	2.78E-03	3.58E-03	1.33E-02	3.03E-03	5.32E-03	5.09E-03	1.17E-02	4.85E-03	5.17E-03	5.36E-03	6.36E-03
Thallium (TI)	µg/m³	3.48E-03	3.19E-03	3.19E-03	3.48E-03	3.38E-03	3.32E-03	3.38E-03	3.38E-03	3.47E-03	3.22E-03	3.41E-03	3.26E-03	3.45E-03	3.37E-03	3.40E-03	3.39E-03	3.21E-03
Tin (Sn)	µg/m³	3.48E-03	3.19E-03	3.19E-03	3.48E-03	3.38E-03	3.32E-03	3.38E-03	3.38E-03	3.47E-03	3.22E-03	3.41E-03	3.26E-03	3.45E-03	3.37E-03	3.40E-03	3.39E-03	3.21E-03
Titanium (Ti)	µg/m³	1.77E-02	3.19E-03	3.19E-03	3.48E-03	8.78E-03	3.32E-03	3.38E-03	3.38E-03	9.72E-03	3.22E-03	3.41E-03	3.26E-03	1.45E-02	1.08E-02	1.77E-02	8.14E-03	7.70E-03
Vanadium (V)	µg/m³	1.74E-03	1.60E-03	1.60E-03	1.74E-03	1.69E-03	1.66E-03	1.69E-03	1.69E-03	1.74E-03	1.61E-03	1.70E-03	1.63E-03	1.73E-03	1.69E-03	1.70E-03	1.70E-03	1.61E-03
Zinc (Zn)	µg/m³	6.24E-02	1.37E-02	2.31E-02	2.47E-02	3.44E-02	2.00E-02	2.66E-02	1.37E-02	3.21E-02	2.13E-02	3.11E-02	1.37E-02	2.32E-02	2.43E-02	1.54E-02	6.24E-02	1.72E-02
Zirconium (Zr)	µg/m³	1.74E-03	1.60E-03	1.60E-03	1.74E-03	1.69E-03	1.66E-03	1.69E-03	1.69E-03	1.74E-03	1.61E-03	1.70E-03	1.63E-03	1.73E-03	1.69E-03	1.70E-03	1.70E-03	1.61E-03
Total Uranium (U)	μg/m³	1.57E-04	1.44E-04	1.44E-04	1.57E-04	1.52E-04	1.50E-04	1.52E-04	1.52E-04	1.56E-04	1.45E-04	1.53E-04	1.47E-04	1.55E-04	1.52E-04	1.53E-04	1.53E-04	1.44E-04

QUARTERLY AMBIENT AIR QUALITY MONITORING REPORT FOR THE DURHAM YORK ENERGY CENTRE – JANUARY TO MARCH 2017

Appendix H PAHs Data Summary May 9, 2017

Appendix H PAHS DATA SUMMARY

Project No.: 160950528 H.1

Polycyclic Aromatic Hydrocarbons	Cour	tice WPCP Sto	ation														
e a contrar				C-11	rtice	Cou	alla a	C	ırtice	C	rtice	C	rtice	C	rtice	Cou	ette e
Location Date	,	dd/mm/yyyy		7/01			/2017		1/2017		/2017		2/2017	8/03		20/03	
Start Time		hh:mm			00	0:			:00		00		00	0:		0:1	
Sample Duration		hours			.78		3.5		.15		.04		3.5	23		23	
Technician				DOS4	H	DOS5			H 592-01	DSDS	H	DSF2		I		T	
Filter Number Maxaam ID					(350	DU.			B591		изо6		C814	DWR7		DWR7 ECI	
Maxam Job #				B70		B714			4009	B73		B740		B74		B758	
Total Volumetric Flow		Am³/sample			3.52	371	1.96	378	8.25	365	5.25	346	5.66	348	3.41	354	.06
Analytical Results		Units		Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL
Benzo(a)pyrene 1-Methylnaphthalene		μg		0.0308 1.85	0.0029 0.15	0.0121 2.09	0.0023 0.10	0.0175 1.27	0.0039 0.15	0.0147 1.56	0.0067 0.10	0.0052 1.47	0.0014 0.15	0.0090 0.57	0.0034	0.0244 1.44	0.0075 0.15
2-Methylnaphthalene		µg		2.74	0.15	3.41	0.10	1.91	0.15	2.37	0.10	2.34	0.15	0.89	0.10	2.37	0.15
Acenaphthene		μg		0.216	0.075	0.254	0.050	0.219	0.075	0.204	0.050	0.771	0.075	0.094	0.050	0.318	0.075
Acenaphthylene		μg		0.096	0.075	<0.050	0.050	0.081	0.075	0.106	0.050	0.078	0.075	<0.050	0.050	< 0.075	0.075
Anthracene Benzo(a)anthracene		μg μg		<0.075 <0.075	0.075 0.075	<0.050 <0.050	0.050 0.050	<0.075 <0.075	0.075 0.075	<0.050 <0.050	0.050 0.050	<0.075 <0.075	0.075 0.075	<0.050 <0.050	0.050 0.050	<0.075 <0.075	0.075 0.075
Benzo(a)fluorene		μg		<0.15	0.15	<0.10	0.10	<0.15	0.15	<0.10	0.10	< 0.15	0.15	<0.10	0.10	<0.15	0.15
Benzo(b)fluoranthene		μg		< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075
Benzo(b)fluorene		μg		<0.15 <0.15	0.15 0.15	<0.10 <0.10	0.10 0.10	<0.15 <0.15	0.15 0.15	<0.10 <0.10	0.10 0.10	<0.15 <0.15	0.15 0.15	<0.10 <0.10	0.10 0.10	<0.15 <0.15	0.15 0.15
Benzo(e)pyrene Benzo(g,h,i)perylene		μg μg		<0.15	0.15	<0.10	0.10	<0.15	0.15	<0.10 <0.050	0.10	<0.15 <0.075	0.15	<0.10	0.10	<0.15	0.15
Benzo(k)fluoranthene		μg		< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075
Biphenyl		μg		0.88	0.15	0.82	0.10	0.76	0.15	0.96	0.10	0.89	0.15	0.25	0.10	0.73	0.15
Chrysene	hã hã hã hã hã			<0.075	0.075	<0.050	0.050	<0.075	0.075	<0.050	0.050	<0.075	0.075	<0.050	0.050	<0.075	0.075
Dibenz(a,h)anthracene	hã hã hã hã			<0.075	0.075	<0.050	0.050	<0.075	0.075	<0.050	0.050	<0.075	0.075	<0.050	0.050	<0.075 <0.15	0.075
Dibenzo(a,c) anthracene + Picene Fluoranthene	hд hд hд hд hд			<0.15 0.249	0.15 0.075	<0.10 0.184	0.10 0.050	<0.15 0.261	0.15 0.075	<0.10 0.272	0.10 0.050	<0.15 0.258	0.15 0.075	<0.10 0.108	0.10 0.050	<0.15 0.213	0.15 0.075
Indeno(1,2,3-cd)pyrene	hд hд hд hд hд			< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075
Naphthalene	hã hã hã hã			12.4	0.11	11.4	0.072	9.20	0.11	11.3	0.072	8.69	0.11	3.60	0.072	11.9	0.11
o-Terphenyl	hà hà hà			<0.15	0.15	<0.10	0.10	<0.15	0.15	<0.10 <0.10	0.10	<0.15	0.15	<0.10 <0.10	0.10	< 0.15	0.15 0.15
Perylene Phenanthrene		µg		<0.15 0.735	0.15 0.075	<0.10 0.784	0.10 0.050	<0.15 0.831	0.15 0.075	0.854	0.10 0.050	<0.15 1.20	0.15 0.075	0.252	0.10 0.050	<0.15 0.567	0.15
Pyrene		μg		0.186	0.075	0.084	0.050	0.165	0.075	0.156	0.050	0.135	0.075	0.060	0.050	0.102	0.075
Tetralin		μg		0.59	0.15	1.12	0.10	0.50	0.15	0.76	0.10	0.61	0.15	0.83	0.10	0.79	0.15
		Quarter 1															
				Cou	rtice -	Cou			rtice		rtice	Cou		Cou		Cou	
		ı	1		1	:	2		3		4		5		5	;	<i>'</i>
Calculated Concentrations																	
	Units	Maximum	Minimum														
				1/7/	2017	1/19,	/2017	1/31	/2017	12/02	/2017	24/02	2/2017	8/03	2017	20/03	/2017
Benzo(a)pyrene	ng/m³	8.84E-02	1.50E-02		E-02	3.25			3E-02		E-02		E-02	2.58	E-02	6.89	
1-Methylnaphthalene	ng/m ³	5.62E+00	1.64E+00		E+00	5.62			E+00		E+00	4.24		1.64		4.07	
2-Methylnaphthalene	ng/m³	9.17E+00	2.55E+00		E+00	9.17			E+00		E+00	6.75			E+00	6.69	
Acenaphthene	ng/m³	2.22E+00	2.70E-01		E-01	6.83			PE-01		E-01	2.22		2.70		8.98	
Acenaphthylene	ng/m³	2.90E-01	6.72E-02		E-01	6.72			1E-01		E-01	2.25		7.18		1.06	
Anthracene	ng/m³ ng/m³	1.08E-01 1.08E-01	6.72E-02 6.72E-02		E-01 E-01	6.72 6.72			IE-02 IE-02		E-02 E-02		BE-01 BE-01	7.18 7.18		1.06 1.06	
Benzo(a)anthracene Benzo(a)fluorene	ng/m ³	2.16E-01	1.34E-01		E-01	1.34			BE-02		E-02 E-01		E-01	1.44		2.12	
Benzo(b)fluoranthene	ng/m³	1.08E-01	6.72E-02		E-01	6.72			IE-02		E-02	1.08		7.18		1.06	
Benzo(b)fluorene	ng/m³	2.16E-01	1.34E-01		E-01	1.34			BE-01	1.37			E-01	1.44		2.12	
	ng/m³	2.16E-01	1.34E-01		E-01	1.34			3E-01		E-01		E-01	1.44		2.12	
Benzo(e)pyrene									IE-02		E-02		BE-01	7.18		1.06	
		1.08E-01	6.72E-02	1.06	E-01	6.72											E-01
Benzo(e)pyrene Benzo(g,h,i)perylene Benzo(k)fluoranthene	ng/m³	1.08E-01 1.08E-01	6.72E-02 6.72E-02		E-01 E-01	6.72 6.72			IE-02	6.84	E-02	1.08	BE-01	7.18	E-02		
Benzo(g,h,i)perylene	ng/m³			1.08			E-02	9.91	IE-02 E+00		E-02 E+00	1.08 2.57		7.18 7.18		2.06	E+00
Benzo(g,h,i)perylene Benzo(k)fluoranthene	ng/m³	1.08E-01	6.72E-02	1.08	E-01	6.72 2.20	E-02	9.91 2.01		2.63		2.57			E-01		
Benzo(g,h,i)perylene Benzo(k)fluoranthene Biphenyl	ng/m³ ng/m³ ng/m³	1.08E-01 2.63E+00	6.72E-02 7.18E-01	1.08 2.52 1.08	E-01 E+00	6.72 2.20	E-02 E+00 E-02	9.91 2.01 9.91	E+00	2.63 6.84	E+00	2.57 1.08	E+00	7.18	E-01 E-02	2.06	E-01
Benzo(g,h.i)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	1.08E-01 2.63E+00 1.08E-01 1.08E-01 2.16E-01	6.72E-02 7.18E-01 6.72E-02 6.72E-02 1.34E-01	1.08 2.52 1.08 1.08 2.15	E-01 E+00 E-01 E-01 E-01	6.72 2.20 6.72 6.72 1.34	E-02 E+00 E-02 E-02 E-01	9.91 2.01 9.91 9.91 1.98	E+00 IE-02 IE-02 BE-01	2.63 6.84 6.84 1.37	E+00 E-02 E-02 E-01	2.57 1.08 1.08 2.16	E+00 BE-01 BE-01 bE-01	7.18 7.18 7.18 1.44	E-01 E-02 E-02 E-01	2.06l 1.06 1.06 2.12	E-01 E-01 E-01
Benzo(g,h,i)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenz(a,c) anthracene + Picene Fluoranthene	ng/m ³	1.08E-01 2.63E+00 1.08E-01 1.08E-01 2.16E-01 7.45E-01	6.72E-02 7.18E-01 6.72E-02 6.72E-02 1.34E-01 3.10E-01	1.08 2.52 1.08 1.08 2.15 7.14	E-01 E-00 E-01 E-01 E-01	6.72 2.20 6.72 6.72 1.34 4.95	E-02 E+00 E-02 E-02 E-01 E-01	9.91 2.01 9.91 9.91 1.98 6.90	E+00 IE-02 IE-02 BE-01 DE-01	2.63 6.84 6.84 1.37 7.45	E+00 E-02 E-02 E-01 E-01	2.57/ 1.08 1.08 2.16 7.44	E+00 BE-01 BE-01 BE-01 BE-01	7.18 7.18 7.18 1.44 3.10	E-01 E-02 E-02 E-01 E-01	2.06l 1.06 1.06 2.12 6.02	E-01 E-01 E-01 E-01
Benzo(g,h,j)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenz(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	1.08E-01 2.63E+00 1.08E-01 1.08E-01 2.16E-01 7.45E-01 1.08E-01	6.72E-02 7.18E-01 6.72E-02 6.72E-02 1.34E-01 3.10E-01 6.72E-02	1.08 2.52 1.08 1.08 2.15 7.14	E-01 E+00 E-01 E-01 E-01 E-01 E-01	6.72 2.20 6.72 6.72 1.34 4.95 6.72	E-02 E+00 E-02 E-02 E-01 E-01 E-01	9.91 2.01 9.91 9.91 1.98 6.90 9.91	E+00 IE-02 IE-02 BE-01 DE-01 IE-02	2.63 6.84 6.84 1.37 7.45 6.84	E+00 E-02 E-02 E-01 E-01 E-02	2.57/ 1.08 1.08 2.16 7.44 1.08	E+00 BE-01 BE-01 BE-01 BE-01	7.18 7.18 7.18 1.44 3.10 7.18	E-01 E-02 E-02 E-01 E-01 E-02	2.06l 1.06 1.06 2.12 6.02 1.06	E-01 E-01 E-01 E-01 E-01
Benzo(g,h,i)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	1.08E-01 2.63E+00 1.08E-01 1.08E-01 2.16E-01 7.45E-01 1.08E-01 3.56E+01	6.72E-02 7.18E-01 6.72E-02 6.72E-02 1.34E-01 3.10E-01 6.72E-02 1.03E+01	1.08 2.52 1.08 1.08 2.15 7.14 1.08 3.56	E-01 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01	6.72 2.20 6.72 6.72 1.34 4.95 6.72 3.06	E-02 E+00 E-02 E-02 E-01 E-01 E-01 E-02 E+01	9.91 2.01 9.91 9.91 1.98 6.90 9.91 2.43	E+00 IE-02 IE-02 BE-01 DE-01 IE-02 E+01	2.63 6.84 6.84 1.37 7.45 6.84 3.09	E+00 E-02 E-02 E-01 E-01 E-01 E-02 E+01	2.57/ 1.08 1.08 2.16 7.44 1.08 2.51/	E+00 BE-01 BE-01 BE-01 BE-01 BE-01 E+01	7.18 7.18 7.18 1.44 3.10 7.18	E-01 E-02 E-02 E-01 E-01 E-02 E+01	2.06l 1.06 1.06 2.12 6.02 1.06 3.36l	E-01 E-01 E-01 E-01 E-01 E+01
Benzo(g,h,i)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	1.08E-01 2.63E+00 1.08E-01 1.08E-01 2.16E-01 7.45E-01 1.08E-01 3.56E+01 2.16E-01	6.72E-02 7.18E-01 6.72E-02 6.72E-02 1.34E-01 3.10E-01 6.72E-02 1.03E+01 1.34E-01	1.08 2.52 1.08 1.08 2.15 7.14 1.08 3.56	E-01 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01	6.72 2.20 6.72 6.72 1.34 4.95 6.72 3.06	E-02 E+00 E-02 E-02 E-01 E-01 E-01 E-01 E-01	9.91 2.01 9.91 9.91 1.98 6.90 9.91 2.43	E+00 IE-02 IE-02 BE-01 DE-01 IE-02 IE+01 BE-01	2.63 6.84 6.84 1.37 7.45 6.84 3.09	E+00 E-02 E-02 E-01 E-01 E-02 E+01	2.57/ 1.08 1.08 2.16 7.44 1.08 2.51/ 2.16	E+00 BE-01 BE-01 BE-01 BE-01 BE-01 E+01	7.18 7.18 7.18 7.18 1.44 3.10 7.18 1.03	E-01 E-02 E-02 E-01 E-01 E-02 E+01 E-01	2.06l 1.06 1.06 2.12 6.02 1.06 3.36l 2.12	E-01 E-01 E-01 E-01 E-01 E+01 E-01
Benzo(g.h.i)perylene Benzo(k)fluoranthene Bipharyl Chrysene Dibenz(a,h)anthracene Pluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene	ng/m³	1.08E-01 2.63E+00 1.08E-01 1.08E-01 2.16E-01 7.45E-01 1.08E-01 3.56E+01 2.16E-01 2.16E-01	6.72E-02 7.18E-01 6.72E-02 6.72E-02 1.34E-01 3.10E-01 6.72E-02 1.03E+01 1.34E-01 1.34E-01	1.08 2.52 1.08 1.08 2.15 7.14 1.08 3.56 2.15	E-01 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	6.72 2.20 6.72 6.72 1.34 4.95 6.72 3.06 1.34	E-02 E+00 E-02 E-02 E-01 E-01 E-02 E+01 E-01 E-01	9.91 9.91 9.91 1.98 6.90 9.91 2.43 1.98	E+00 IE-02 IE-02 IE-01 IE-01 IE-02 IE+01 IE-01 IE-01	2.63 6.84 6.84 1.37 7.45 6.84 3.09 1.37	E+00 E-02 E-02 E-01 E-01 E-02 E+01 E-01 E-01	2.57/ 1.08 1.08 2.16 7.44 1.08 2.51/ 2.16	E+00 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01	7.18 7.18 7.18 1.44 3.10 7.18 1.03 1.44	E-01 E-02 E-02 E-01 E-01 E-02 E+01 E-01 E-01	2.06i 1.06 1.06 2.12 6.02 1.06 3.36i 2.12	E-01 E-01 E-01 E-01 E-01 E+01 E-01 E-01
Benzo(g,h.i)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene Phenanthrene	ng/m³	1.08E-01 2.63E+00 1.08E-01 1.08E-01 2.16E-01 1.08E-01 1.08E-01 1.08E-01 2.16E-01 2.16E-01 3.46E+00	6.72E-02 7.18E-01 6.72E-02 6.72E-02 1.34E-01 3.10E-01 6.72E-02 1.03E+01 1.34E-01 7.23E-01	1.08 2.52 1.08 1.08 2.15 7.14 1.08 3.56 2.15 2.15	EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01	6.72 2.20 6.72 6.72 1.34 4.95 6.72 3.06 1.34 2.11	E-02 E+00 E-02 E-02 E-01 E-01 E-02 E+01 E-01 E-01 E-01 E-01 E-01	9.91 9.91 9.91 1.98 6.90 9.91 2.43 1.98 1.98	E+00 IE-02 IE-02 IE-01 IE-02 IE+01 IE-01 IE-01 IE-01 IE-01	2.63 6.84 6.84 1.37 7.45 6.84 3.09 1.37 1.37	E+00 E-02 E-02 E-01 E-01 E-02 E+01 E-01 E-01 E-01 E-01 E+00	2.57l 1.08 1.08 2.16 7.44 1.08 2.51l 2.16 2.16	E+00 BE-01 BE-01 BE-01 BE-01 E+01 BE-01 BE-01 BE-01 BE-01 BE-01	7.18 7.18 7.18 1.44 3.10 7.18 1.03 1.44 1.44	E-01 E-02 E-02 E-01 E-01 E-02 E+01 E-01 E-01 E-01	2.06l 1.06 1.06 2.12 6.02 1.06 3.36l 2.12 2.12	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01
Benzo(g.h.i)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene Phenanthrene Pyrene	ng/m³	1.08E-01 2.63E+00 1.08E-01 1.08E-01 2.16E-01 7.45E-01 1.08E-01 3.56E+01 2.16E-01 3.46E+00 5.34E-01	6.72E-02 7.18E-01 6.72E-02 6.72E-02 1.34E-01 3.10E-01 6.72E-02 1.03E+01 1.34E-01 7.23E-01 1.72E-01	1.08 2.52 1.08 1.08 2.15 7.14 1.08 3.56 2.15 2.15 2.11 5.34	EE-01 EE-00 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01	6.72 2.20 6.72 6.72 1.34 4.95 6.72 3.06 1.34 2.11 2.26	EE-02 EE+00 EE-02 EE-02 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01	9.91 2.01 9.91 9.91 1.98 6.90 9.91 2.43 1.98 2.20 4.36	E+00 IE-02 IE-02 IE-01 IE-02 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01	2.63 6.84 6.84 1.37 7.45 6.84 3.09 1.37 1.37 2.34	E+00 E-02 E-02 E-01 E-01 E-02 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-00	2.57 1.08 1.08 2.16 7.44 1.08 2.51 2.16 3.46 3.89	E+00 BE-01 BE-01 BE-01 BE-01 E+01 BE-01 BE-01 BE-01 BE-01 BE-01	7.18 7.18 7.18 7.18 1.44 3.10 7.18 1.03 1.44 7.23 1.72	E-01 E-02 E-02 E-01 E-01 E-02 E+01 E-01 E-01 E-01 E-01	2.06l 1.06 1.06 2.12 6.02 1.06 3.36l 2.12 2.12 1.60l	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01
Benzo(g,h,i)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene Phenanthrene	ng/m³	1.08E-01 2.63E+00 1.08E-01 1.08E-01 2.16E-01 1.08E-01 1.08E-01 1.08E-01 2.16E-01 2.16E-01 3.46E+00	6.72E-02 7.18E-01 6.72E-02 6.72E-02 1.34E-01 3.10E-01 6.72E-02 1.03E+01 1.34E-01 7.23E-01	1.08 2.52 1.08 1.08 2.15 7.14 1.08 3.56 2.15 2.11 5.34 1.69	EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01	6.72 2.20 6.72 6.72 1.34 4.95 6.72 3.06 1.34 2.11	E-02 E+00 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	9.91 2.01 9.91 9.91 1.98 6.90 9.91 2.43 1.98 2.20 4.36	E+00 IE-02 IE-02 IE-01 IE-02 IE+01 IE-01 IE-01 IE-01 IE-01	2.63 6.84 6.84 1.37 7.45 6.84 3.09 1.37 1.37 2.34	E+00 E-02 E-02 E-01 E-01 E-02 E+01 E-01 E-01 E-01 E+00 E-01 E+00	2.57l 1.08 1.08 2.16 7.44 1.08 2.51l 2.16 2.16	E+00 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 E+00 DE-01 E+00	7.18 7.18 7.18 1.44 3.10 7.18 1.03 1.44 1.44	E-01 E-02 E-02 E-01 E-01 E-02 E+01 E-01 E-01 E-01 E-01 E-01	2.06l 1.06 1.06 2.12 6.02 1.06 3.36l 2.12 2.12	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01

Note: RDL = Reportable Detection Limit

These parameters have not been subjected to Maxxam's standard validation process nor has it been accredited for the submitted matrix.

Polycyclic Aromatic Hydrocarbons	Run	dle Road Sta	lion													
Location				Rundle		Rundle		Rundle		Rundle		Rundle	Rundle		Rundle	
Date	C	id/mm/yyyy			/2017		/2017	31/01		12/02		24/02/2017	8/03/		20/03	
Start Time		hh:mm hours		0:	00 .98	0: 23		0:0 23.		0:0		0:00 8.53	0:		0:0	
Sample Duration Technician		nours		23 T			.// H	23. TI		23. Ti		8.53 TH	23. T		23. T	
Filter Number				DQ\$4		DQS5		DQS6		DSD9		Invalid. Did not run	DWR7		DWR7	
Maxaam ID				DSX			J029	DWE		DXN		for sufficient	EAC		ECI	
Maxxam Job #				B70	5301	B714	4368	B724	1009	B731	1622	amount of time	B749	9273	B758	3463
Total Volumetric Flow		Am³/sample).20		3.74	338		354		121.78	273		282	
Analytical Results		Units		Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value RDL	Value	RDL	Value	RDL
Benzo(a)pyrene 1-Methylnaphthalene		μg		0.0521 2.37	0.0035 0.15	0.0204 2.83	0.0047 0.10	0.0254 1.21	0.0064 0.15	0.0190 2.21	0.0062		0.0132 0.87	0.0061	0.0192 2.73	0.0025
2-Methylnaphthalene		μg μg		3.50	0.15	4.77	0.10	1.97	0.15	3.58	0.10		1.53	0.10	4.94	0.15
Acenaphthene		μg		0.276	0.075	0.946	0.050	0.471	0.075	0.296	0.050		0.660	0.050	1.69	0.075
Acenaphthylene		μg		< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	0.108	0.050		< 0.050	0.050	< 0.075	0.075
Anthracene		μg		<0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050		< 0.050	0.050	< 0.075	0.075
Benzo(a)anthracene		μg		< 0.075	0.075	<0.050	0.050	< 0.075	0.075	<0.050	0.050		< 0.050	0.050	< 0.075	0.075
Benzo(a)fluorene		μg		<0.15 <0.075	0.15 0.075	<0.10 <0.050	0.10 0.050	<0.15 <0.075	0.15 0.075	<0.10 0.086	0.10		<0.10 <0.050	0.10 0.050	<0.15 <0.075	0.15 0.075
Benzo(b)fluoranthene Benzo(b)fluorene		μg		<0.075	0.075	<0.050	0.050	<0.075	0.075	< 0.10	0.050		<0.050	0.050	<0.075	0.075
Benzo(e)pyrene		µg µg		<0.15	0.15	<0.10	0.10	<0.15	0.15	<0.10	0.10		<0.10	0.10	<0.15	0.15
Benzo(g,h,i)perylene		μg		< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050		< 0.050	0.050	< 0.075	0.075
Benzo(k)fluoranthene		μg		<0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	N/A	< 0.050	0.050	< 0.075	0.075
Biphenyl		μg		1.05	0.15	1.08	0.10	0.69	0.15	1.12	0.10		0.36	0.10	1.22	0.15
Chrysene		μg	<0.075	0.075	<0.050	0.050	<0.075	0.075	<0.050	0.050		<0.050	0.050	<0.075	0.075	
Dibenz(a,h)anthracene		μg	<0.075	0.075	<0.050	0.050	<0.075	0.075	<0.050	0.050		<0.050	0.050	<0.075	0.075	
Dibenzo(a,c) anthracene + Picene 1		μg	<0.15	0.15	<0.10	0.10	< 0.15	0.15	<0.10	0.10		<0.10	0.10	< 0.15	0.15	
Fluoranthene		μg	0.306	0.075	0.324	0.050	0.252	0.075	0.334	0.050		0.212	0.050	0.339 <0.075	0.075	
Indeno(1,2,3-cd)pyrene Naphthalene		µg	<0.075 15.0	0.075 0.11	<0.050 13.7	0.050 0.072	<0.075 8.18	0.075 0.11	<0.050 14.2	0.050 0.072		<0.050 3.80	0.050 0.072	14.9	0.075 0.11	
o-Terphenyl		μg	<0.15	0.11	<0.10	0.10	<0.15	0.11	<0.10	0.10		<0.10	0.10	<0.15	0.11	
Perylene		μg	< 0.15	0.15	< 0.10	0.10	< 0.15	0.15	< 0.10	0.10		< 0.10	0.10	< 0.15	0.15	
Phenanthrene		μg		0.900	0.075	1.57	0.050	0.909	0.075	1.13	0.050		0.898	0.050	1.67	0.075
Pyrene		μg		0.222	0.075	0.174	0.050	0.147	0.075	0.196	0.050		0.110	0.050	0.165	0.075
Tetralin		μg		0.79	0.15	1.05	0.10	0.40	0.15	0.96	0.10		0.34	0.10	0.81	0.15
		Quarter 1		Rur	ıdle	Run	ndle	Run	ıdle	Run	dle	Rundle	Run	ıdle	Run	idle
					1	:	2	3	3	4	1	5		5	7	
Calculated Concentrations																
Calculated Concentrations																
	Units	Maximum	Minimum													
	Δ.			1/7/		1/19/		1/31/		12/02		24/02/2017	8/03/		20/03	
Benzo(a)pyrene	ng/m³	1.58E-01	4.82E-02	1.58		5.85		7.50		5.36		-	4.82		6.80	
1-Methylnaphthalene	ng/m³	9.67E+00	3.18E+00	7.18		8.11		3.57		6.24			3.18		9.67	
2-Methylnaphthalene	ng/m³	1.75E+01	5.59E+00	1.06		1.37		5.82		1.01			5.59		1.75	
Acenaphthene	ng/m³	5.98E+00	8.35E-01	8.36			E+00	1.39		8.35	L-01	-	2.41	L+00	5.98	
Acenaphthylene	ng/m³	3.05E-01	7.17E-02	1.14	F-01											L-01
Anthracene	ng/m³					7.17		1.11			E-01		9.13		1.33	
		1.33E-01	7.05E-02		E-01	7.17	E-02	1.11	E-01	7.05	E-02		9.13	E-02	1.33	
Benzo(a)anthracene	ng/m³	1.33E-01	7.05E-02	1.14	E-01 E-01	7.17 7.17	E-02 E-02	1.11 1.11	E-01 E-01	7.05 7.05	E-02 E-02		9.13 9.13	E-02 E-02	1.33 1.33	E-01
Benzo(a)fluorene	ng/m³ ng/m³	1.33E-01 2.66E-01	7.05E-02 1.41E-01	1.14 2.27	E-01 E-01 E-01	7.17 7.17 1.43	E-02 E-02 E-01	1.11 1.11 2.21	E-01 E-01 E-01	7.05 7.05 1.41	E-02 E-02 E-01		9.13 9.13 1.83	E-02 E-02 E-01	1.33 1.33 2.66	E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene	ng/m³ ng/m³ ng/m³	1.33E-01 2.66E-01 2.43E-01	7.05E-02 1.41E-01 7.17E-02	1.14 2.27 1.14	E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17	E-02 E-02 E-01 E-02	1.11 1.11 2.21 1.11	E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43	E-02 E-02 E-01 E-01		9.13 9.13 1.83 9.13	E-02 E-02 E-01 E-02	1.33 1.33 2.66 1.33	E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene	ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.33E-01 2.66E-01 2.43E-01 2.66E-01	7.05E-02 1.41E-01 7.17E-02 1.41E-01	1.14 2.27 1.14 2.27	E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43	E-02 E-02 E-01 E-02 E-01	1.11 1.11 2.21 1.11 2.21	E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41	E-02 E-02 E-01 E-01 E-01		9.13 9.13 1.83 9.13 1.83	E-02 E-02 E-01 E-02 E-01	1.33 1.33 2.66 1.33 2.66	E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e)pyrene	ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 2.66E-01	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01	1.14 2.27 1.14 2.27 2.27	E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43	E-02 E-02 E-01 E-02 E-01 E-01	1.11 1.11 2.21 1.11 2.21 2.21	E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41	E-02 E-02 E-01 E-01 E-01 E-01		9.13 9.13 1.83 9.13 1.83 1.83	E-02 E-02 E-01 E-02 E-01 E-01	1.33 1.33 2.66 1.33 2.66 2.66	E-01 E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e)pyrene Benzo(g,h.i)perylene	ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 2.66E-01 1.33E-01	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02	1.14 2.27 1.14 2.27 2.27	E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43 7.17	E-02 E-01 E-02 E-01 E-01 E-01 E-02	1.11 1.11 2.21 1.11 2.21 2.21	E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 7.05	E-02 E-02 E-01 E-01 E-01 E-01 E-02		9.13 9.13 1.83 9.13 1.83 1.83 9.13	E-02 E-02 E-01 E-02 E-01 E-01 E-02	1.33 1.33 2.66 1.33 2.66 2.66 1.33	E-01 E-01 E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e)pyrene Benzo(g,h.i)perylene Benzo(k)fluoranthene	ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 2.66E-01 1.33E-01	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02 7.05E-02	1.14 2.27 1.14 2.27 2.27 1.14	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43 7.17	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02	1.11 1.11 2.21 1.11 2.21 2.21 1.11	E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 7.05	E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-02		9.13 9.13 1.83 9.13 1.83 9.13 9.13	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02	1.33 1.33 2.66 1.33 2.66 2.66 1.33 1.33	E-01 E-01 E-01 E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e) pyrene Benzo(e) pyrene Benzo(e), h.l)perylene Benzo(k)fluoranthene Biphenyl	ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 2.66E-01 1.33E-01 4.32E+00	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02 7.05E-02 1.32E+00	1.14 2.27 1.14 2.27 2.27 1.14 1.14 3.18	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43 7.17 7.17 3.10	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02 E+00	1.11 1.11 2.21 1.11 2.21 2.21 1.11 1.11	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 7.05 7.05 3.16	E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-02 E+00		9.13 9.13 1.83 9.13 1.83 9.13 9.13	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00	1.33 1.33 2.66 1.33 2.66 2.66 1.33 1.33 4.32	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e) pyrene Benzo(g,h.i)perylene Benzo(k)fluoranthene	ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 2.66E-01 1.33E-01	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02 7.05E-02	1.14 2.27 1.14 2.27 2.27 1.14	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43 7.17	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02 E+00	1.11 1.11 2.21 1.11 2.21 2.21 1.11	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 7.05	E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-02 E+00		9.13 9.13 1.83 9.13 1.83 9.13 9.13	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00	1.33 1.33 2.66 1.33 2.66 2.66 1.33 1.33	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e)pyrene Benzo(g,h,i)perylene Benzo(g,hi)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene	ng/m³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 2.66E-01 1.33E-01 4.32E+00 1.33E-01 1.33E-01	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02 7.05E-02 1.32E+00 7.05E-02 7.05E-02	1.14 2.27 1.14 2.27 2.27 1.14 1.14 3.18 1.14	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43 7.17 7.17 3.10 7.17	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02 E-02	1.11 1.11 2.21 1.11 2.21 2.21 1.11 1.11	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 7.05 7.05 3.16 7.05	E-02 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E+00 E-02 E-02		9.13 9.13 1.83 9.13 1.83 1.83 9.13 9.13 9.13	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02 E-02	1.33 1.33 2.66 1.33 2.66 2.66 1.33 1.33 4.32 1.33	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e)pyrene Benzo(g,h,i)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene	ng/m³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 2.66E-01 1.33E-01 4.32E+00 1.33E-01	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02 7.05E-02 1.32E+00 7.05E-02	1.14 2.27 1.14 2.27 2.27 1.14 1.14 3.18 1.14	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43 7.17 7.17 3.10 7.17	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02 E-02	1.11 1.11 2.21 1.11 2.21 2.21 1.11 1.11	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 7.05 7.05 3.16 7.05	E-02 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E+00 E-02 E-02		9.13 9.13 1.83 9.13 1.83 9.13 9.13 9.13	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02 E-02	1.33 1.33 2.66 1.33 2.66 2.66 1.33 1.33 4.32 1.33	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e)pyrene Benzo(g,h,i)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene	ng/m³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 2.66E-01 1.33E-01 4.32E+00 1.33E-01 1.33E-01	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02 7.05E-02 1.32E+00 7.05E-02 7.05E-02	1.14 2.27 1.14 2.27 2.27 1.14 1.14 3.18 1.14	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43 7.17 7.17 3.10 7.17	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02 E-02 E-02 E-02	1.11 1.11 2.21 1.11 2.21 2.21 1.11 1.11	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 7.05 7.05 3.16 7.05	E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-02 E+00 E-02 E-02 E-02		9.13 9.13 1.83 9.13 1.83 1.83 9.13 9.13 9.13	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02 E-02 E-02	1.33 1.33 2.66 1.33 2.66 2.66 1.33 1.33 4.32 1.33	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e) pyrene Benzo(e), h,i)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a, h)anthracene Dibenzo(a, c) anthracene + Picene	ng/m³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 2.66E-01 1.33E-01 4.32E+00 1.33E-01 2.66E-01	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02 7.05E-02 1.32E+00 7.05E-02 7.05E-02 1.41E-01	1.14 2.27 1.14 2.27 2.27 1.14 1.14 3.18 1.14 2.27	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43 7.17 7.17 3.10 7.17 7.17 1.43	E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01	1.11 1.11 2.21 1.11 2.21 2.21 1.11 1.11	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 7.05 7.05 3.160 7.05 7.05	E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01		9.13 9.13 1.83 9.13 1.83 1.83 9.13 9.13 9.13 1.32	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01	1.33 1.33 2.66 1.33 2.66 2.66 1.33 1.33 4.32 1.33 2.66	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-00 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(c)fluorene Benzo(a),hi)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h),anthracene Dibenz(a,c) anthracene + Picene Fluoranthene	ng/m³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 1.33E-01 1.33E-01 4.32E+00 1.33E-01 1.33E-01 2.66E-01 1.20E+00	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02 7.05E-02 1.32E+00 7.05E-02 7.05E-02 1.41E-01 7.44E-01	1.14 2.27 1.14 2.27 2.27 1.14 1.14 3.18 1.14 2.27 9.27	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43 7.17 7.17 3.10 7.17 1.43 9.29	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01	1.11 1.11 2.21 1.11 2.21 2.21 1.11 1.11	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 7.05 7.05 3.160 7.05 7.05 1.41	E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01		9.13 9.13 1.83 9.13 1.83 1.83 9.13 9.13 9.13 9.13 9.13 7.75	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01	1.33 1.33 2.66 1.33 2.66 2.66 1.33 1.33 4.32 1.33 2.66	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(e)pyrene Benzo(e)pyrene Benzo(g,h,l)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene	ng/m³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 1.33E-01 4.32E+00 1.33E-01 1.33E-01 1.33E-01 1.33E-01 1.36E-01	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02 7.05E-02 1.32E+00 7.05E-02 1.41E-01 7.44E-01 7.05E-02	1.144 2.27 1.14 2.27 2.27 1.14 1.14 3.18 1.14 1.14 2.27 9.27	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43 7.17 7.17 3.10 7.17 7.17 1.43 9.29	E-02 E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.11 1.11 2.21 1.11 2.21 2.21 1.11 1.11	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 7.05 7.05 3.160 7.055 7.05 1.41 9.42 7.05	E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-01		9.13 9.13 1.83 9.13 1.83 9.13 1.32 9.13 9.13 1.83 7.75	E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-01 E-01 E-02 E-01	1.33 1.33 2.66 1.33 2.66 2.66 1.33 1.33 4.32l 1.33 2.66 1.20l	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e)pyrene Benzo(a),hi)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h),anthracene Dibenz(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl	ng/m³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 1.33E-01 4.32E+00 1.33E-01 1.33E-01 1.33E-01 1.33E-01 1.20E+00 1.33E-01 5.28E+01	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02 7.05E-02 1.32E+00 7.05E-02 1.41E-01 7.44E-01 7.05E-02 1.39E+01	1.14 2.27 1.14 2.27 2.27 1.14 3.18 1.14 1.14 2.27 9.27 1.14	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43 7.17 7.17 3.10 7.17 7.17 1.43 9.29 7.17	E-02 E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.11 1.11 2.21 1.11 2.21 2.21 1.11 1.11	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 7.05 7.05 3.16 7.05 7.05 1.41 9.422 7.05	E-02 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01		9.13 9.13 1.83 9.13 1.83 9.13 9.13 9.13 1.32 9.13 1.83 7.75 9.13	E-02 E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.33 1.33 2.66 1.33 2.66 2.66 1.33 1.33 4.32 1.33 2.66 1.200 1.33 5.28	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(b)fluorene Benzo(g,h,i)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene	ng/m³	1.33E-01 2.66E-01 2.46E-01 2.66E-01 1.33E-01 1.33E-01 4.32E+00 1.33E-01 2.66E-01 1.20E+00 1.33E-01 5.28E+01 2.66E-01	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 1.45E-02 7.05E-02 7.05E-02 1.32E+00 7.05E-02 1.41E-01 7.44E-01 1.40E-02 1.39E+01	1.14 2.27 1.14 2.27 2.27 1.14 3.18 1.14 1.14 2.27 9.27 1.14 4.54	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 7.17 7.17 3.10 7.17 7.17 1.43 9.29 7.17 3.93 1.43	E-02 E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.11 1.11 2.21 1.11 2.21 2.21 1.11 1.11	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 1.41 7.05 7.05 3.16 7.05 1.41 9.42 7.05 4.011	E-02 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01		9.13 9.13 1.83 9.13 1.83 9.13 9.13 9.13 1.32 9.13 1.83 7.75 9.13 1.39	E-02 E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.33 1.33 2.66 1.33 2.66 2.66 1.33 1.33 4.32 1.33 2.66 1.33 2.66 1.33	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(c)pyrene Benzo(e)pyrene Benzo(g,h,l)perylene Benzo(g,h,l)perylene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene	ng/m³	1.33E-01 2.43E-01 2.66E-01 2.66E-01 1.33E-01 1.33E-01 1.33E-01 1.33E-01 2.66E-01 1.20E-00 1.33E-01 5.28E+01 2.66E-01	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02 7.05E-02 1.32E+00 7.05E-02 1.41E-01 7.05E-02 1.39E+01 1.41E-01 1.41E-01	1.144 2.27 1.14 2.27 2.27 1.14 3.18 1.14 1.14 2.27 9.27 1.14 4.54 4.54 2.27	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 7.17 7.17 3.10 7.17 7.17 1.43 9.29 7.17 3.93 1.43	E-02 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.11 1.11 2.21 1.11 2.21 2.21 1.11 1.11	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.411 7.05 7.05 3.161 7.05 7.05 1.41 9.42 7.05 4.011	E-02 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01		9.13 9.13 1.83 9.13 1.833 9.13 9.13 1.32 9.13 1.83 7.75 9.13 1.83 1.83	E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.33 1.33 2.666 2.666 2.666 1.33 1.33 4.321 1.33 2.666 1.200 1.33 5.281 2.666 2.666	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e) pyrene Benzo(e) pyrene Benzo(g),hi)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd) pyrene Naphthalene o-Terphenyl Perylene Phenanthrene	ng/m³	1.33E-01 2.66E-01 2.43E-01 2.66E-01 1.33E-01 1.33E-01 1.33E-01 1.33E-01 2.66E-01 1.20E-00 1.33E-01 5.28E+01 2.66E-01 5.26E-01 5.26E-01 5.91E+00	7.05E-02 1.41E-01 7.17E-02 1.41E-01 1.41E-01 7.05E-02 7.05E-02 1.32E+00 7.05E-02 1.41E-01 7.05E-02 1.39E+01 1.41E-01 1.41E-01 1.41E-01 1.41E-01 1.41E-01	1.14 2.27 1.14 2.27 2.27 1.14 3.18 1.14 2.27 9.27 1.14 4.54 2.27 2.27	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.17 7.17 1.43 7.17 1.43 1.43 7.17 7.17 3.100 7.17 7.17 1.43 9.29 9.71 1.43 1.43 4.50	E-02 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.111 1.111 2.21 1.1111 2.21 2.21 1.111 1.111 2.044 1.111 2.211 2.421 2.21 2.21 2.21 2.28	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.05 7.05 1.41 2.43 1.41 1.41 7.05 7.05 3.16(7.05 7.05 4.01 1.41 3.19(E-02 E-01 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01		9.13 9.13 1.83 9.13 1.83 9.13 9.13 1.32 9.13 1.32 9.13 1.83 1.39 1.39 1.83 3.28	E-02 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.33 1.33 2.66 1.33 2.66 2.66 2.66 1.33 4.32 1.33 2.66 1.20 1.33 5.28 2.66 2.66 5.91	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01

Note: RDL = Reportable Detection Limit

These parameters have not been subjected to Maxxam's standard validation process nor has it been accredited for the submitted matrix.

QUARTERLY AMBIENT AIR QUALITY MONITORING REPORT FOR THE DURHAM YORK ENERGY CENTRE – JANUARY TO MARCH 2017

Appendix I Dioxins and Furans Data Summary May 9, 2017

Appendix I DIOXINS AND FURANS DATA SUMMARY

Project No.: 160950528

Dioxins and Furans	Courtice WPCP Station												
Location		Courtice				Courtice			Courtic		Courtice		
Date	dd/mm/yyyy	7/01/2017							24/02/20	017	20/03/2017		
Start Time	hh:mm	0:00					0:00			0:00			
Sample Duration	hours	23.78 24.15					23.5			23.29			
Technician		TH TH					TH			TH			
Filter Number		DQS473-01 DQS692-01					DSE214-01			DWR787-01			
Maxaam ID		DSX350 DWB591						DZC81		ECI937			
Maxxam Job #			B706301 B724009						B74059		B758463		
Total Volumetric Flow	Am ³ /sample		348.52		378.25				346.66		354.06		
		Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF
Analytical Results	Units	7 0.00		2005			2005			2005			2005
2,3,7,8-Tetra CDD *	pg	<3.6	3.6	1	< 3.1	3.1	1	<3.2	3.2	1	<3.9	3.9	1
1,2,3,7,8-Penta CDD *	pg	<3.7	3.7	1	<3.0	3.0	1	<3.0	3.0	1	<3.7	3.7	1
1,2,3,4,7,8-Hexa CDD *	pg	<3.6	3.6	0.1	<3.1	3.1	0.1	<3.0	3.0	0.1	<3.3	3.3	0.1
1,2,3,6,7,8-Hexa CDD *	pg	4.6	3.8	0.1	<3.3	3.3	0.1	<3.3	3.3	0.1	4.5	3.6	0.1
1,2,3,7,8,9-Hexa CDD *	pg	7.5 (1)	3.4	0.1	5.4	2.9	0.1	< 2.9	2.9	0.1	5.9	3.1	0.1
1,2,3,4,6,7,8-Hepta CDD *	pg	51.8	2.6	0.01	43.3	2.7	0.01	15.5	3.2	0.01	27.6	2.7	0.01
Octa CDD *	pg	118	3.9	0.0003	126	3.1	0.0003	51.9	3.2	0.0003	86.8	3.2	0.0003
Total Tetra CDD *	pg	<3.6	3.6		<3.1	3.1		<3.2	3.2		< 3.9	3.9	
Total Penta CDD *	pg	5.4	3.7		<3.0	3.0		<3.0	3.0		<3.7	3.7	1
Total Hexa CDD *	pg	50.8	3.6		17.8	3.1		3.3	3.1		28.6	3.3	1
Total Hepta CDD *	pg	120	2.6		100	2.7		35.6	3.2		58.3	2.7	1
2,3,7,8-Tetra CDF **	pg	4.7	3.6	0.1	< 3.5	3.5	0.1	<3.0	3.0	0.1	<4.3 (3)	4.3	0.1
1,2,3,7,8-Penta CDF **	pg	<2.8	2.8	0.03	< 4.4	4.4	0.03	<3.2	3.2	0.03	<3.1	3.1	0.03
2,3,4,7,8-Penta CDF **	pg	<2.9	2.9	0.3	< 4.5	4.5	0.3	<3.2	3.2	0.3	<3.1	3.1	0.3
1,2,3,4,7,8-Hexa CDF **	pg	<2.6	2.6	0.1	< 2.7	2.7	0.1	<3.0	3.0	0.1	<3.5	3.5	0.1
1,2,3,6,7,8-Hexa CDF **	pg	<2.6	2.6	0.1	< 2.7	2.7	0.1	<3.0	3.0	0.1	<3.5	3.5	0.1
2,3,4,6,7,8-Hexa CDF **	pg	<2.8	2.8	0.1	< 2.9	2.9	0.1	<3.1	3.1	0.1	<3.6	3.6	0.1
1,2,3,7,8,9-Hexa CDF **	pg	<3.0	3.0	0.1	< 3.1	3.1	0.1	<3.2	3.2	0.1	<3.8	3.8	0.1
1,2,3,4,6,7,8-Hepta CDF **	pg	4.5	2.4	0.01	4.4	2.6	0.01	<3.0	3.0	0.01	5.5	3.3	0.01
1,2,3,4,7,8,9-Hepta CDF **	pg	<3.1	3.1	0.01	< 3.3	3.3	0.01	<3.4	3.4	0.01	<3.8	3.8	0.01
Octa CDF **	pg	7.2	2.7	0.0003	6.5	4.2	0.0003	<3.7 (2)	3.7	0.0003	7.6	3.5	0.0003
Total Tetra CDF **	pg	4.7	3.6		< 3.5	3.5		<3.0	3.0		4.3	3.6	<u> </u>
Total Penta CDF **	pg	<2.9	2.9		< 4.5	4.5		<3.2	3.2		3.7	3.1	<u> </u>
Total Hexa CDF **	pg	3.2	2.8		< 2.9	2.9		<3.1	3.1		<3.6	3.6	<u> </u>
Total Hepta CDF **	pg	8.3	2.7		4.4	2.9		<3.2	3.2		5.5	3.5	<u> </u>
Toxic Equivalency	pg												<u> </u>

Notes:

1. EMPC / Merged Peak

2. EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

3. RT > 3 seconds - PCDD/DF analysis - Peak detected exceeds expected retention time (from internal standard) by greater than 3 seconds.

* CDD = Chloro Dibenzo-p-Dioxin ** CDF = Chloro Dibenzo-p-Furan

		Quarter 1		Courtice	Courtice	Courtice	Courtice		
					2	3	4		
Calculated Concentrations									
	Units	Maximum	Minimum						
2,3,7,8-Tetra CDD *	pa/m³	5.51E-03	4.10E-03	7/01/2017 0.005	31/01/2017 0.004	24/02/2017 0.005	20/03/2017 0.006		
1.2.3.7.8-Penta CDD *	pg/m³ pg/m³	5.51E-03 5.31E-03	4.10E-03 3.97E-03	0.005	0.004	0.005	0.006		
1,2,3,7,8-Penta CDD * 1,2,3,4,7,8-Hexa CDD *	pg/m³	5.16E-03	4.10E-03	0.005	0.004	0.004	0.005		
1,2,3,4,7,8-Hexa CDD * 1,2,3,6,7,8-Hexa CDD *	pg/m³		4.36E-03	0.005	0.004	0.004	0.005		
1,2,3,6,7,8-Hexa CDD * 1,2,3,7,8,9-Hexa CDD *	pg/m³	1.32E-02 2.15E-02	4.18E-03	0.013	0.004	0.005	0.017		
1,2,3,4,6,7,8-Hepta CDD *	pg/m ³	1.49E-01	4.47E-02	0.149	0.114	0.045	0.078		
Octa CDD *	pg/m³	3.39E-01	1.50E-01	0.339	0.333	0.150	0.245		
Total Tetra CDD *	pg/m³	5.51E-03	4.10E-03	0.005	0.004	0.005	0.006		
Total Penta CDD *	pg/m³	1.55E-02	3.97E-03	0.015	0.004	0.004	0.005		
Total Hexa CDD *	pg/m³	1.46E-01	9.52E-03	0.146	0.047	0.010	0.081		
Total Hepta CDD *	pg/m³	3.44E-01	1.03E-01	0.344	0.264	0.103	0.165		
2,3,7,8-Tetra CDF **	pg/m³	1.35E-02	4.33E-03	0.013	0.005	0.004	0.006		
1,2,3,7,8-Penta CDF **	pg/m³	5.82E-03	4.02E-03	0.004	0.006	0.005	0.004		
2,3,4,7,8-Penta CDF **	pg/m³	5.95E-03	4.16E-03	0.004	0.006	0.005	0.004		
1,2,3,4,7,8-Hexa CDF **	pg/m³	4.94E-03	3.57E-03	0.004	0.004	0.004	0.005		
1,2,3,6,7,8-Hexa CDF **	pg/m³	4.94E-03	3.57E-03	0.004	0.004	0.004	0.005		
2,3,4,6,7,8-Hexa CDF **	pg/m³	5.08E-03	3.83E-03	0.004	0.004	0.004	0.005		
1,2,3,7,8,9-Hexa CDF **	pg/m³	5.37E-03	4.10E-03	0.004	0.004	0.005	0.005		
1,2,3,4,6,7,8-Hepta CDF **	pg/m³	1.55E-02	4.33E-03	0.013	0.012	0.004	0.016		
1,2,3,4,7,8,9-Hepta CDF **	pg/m³	5.37E-03	4.36E-03	0.004	0.004	0.005	0.005		
Octa CDF **	pg/m³	2.15E-02	5.34E-03	0.021	0.017	0.005	0.021		
Total Tetra CDF **	pg/m³	1.35E-02	4.33E-03	0.013	0.005	0.003	0.012		
Total Penta CDF **						* ***			
	pg/m³	1.05E-02	4.16E-03	0.004	0.006	0.005	0.010		
Total Hexa CDF **	pg/m³	9.18E-03	3.83E-03	0.009	0.004	0.004	0.005		
Total Hepta CDF **	pg/m³	2.38E-02	4.62E-03	0.024	0.012	0.005	0.016		
Toxic Equivalency	pg/m³								
TOTAL TOXIC EQUIVALENCY	pg TEQ/m ³	2.05E-02	1.46E-02	0.021 Courtice	0.016 Courtice	0.015 Courtice	0.019 Courtice		
Calculated TEQ Concentrations	Units			1/7/2017	1/31/2017	2/24/2017	3/20/2017		
2.3.7.8-Tetra CDD *	pg TEQ/m ³			0.005	0.004	0.005	0.006		
1.2.3.7.8-Penta CDD	pg TEQ/m³			0.005	0.004	0.004	0.005		
1,2,3,4,7,8-Hexa CDD	pg TEQ/m³			0.0005	0.0004	0.0004	0.0005		
1,2,3,6,7,8-Hexa CDD	pg TEQ/m³			0.0013	0.0004	0.0005	0.0013		
1,2,3,7,8,9-Hexa CDD	pg TEQ/m³			0.0022	0.0014	0.0004	0.0017		
1,2,3,4,6,7,8-Hepta CDD	pg TEQ/m ³			0.0015	0.0011	0.0004	0.0008		
Octa CDD	pg TEQ/m ³			0.00010	0.00010	0.00004	0.00007		
Total Tetra CDD	pg TEQ/m ³			0.00010	0.00010	0.00004	0.0007		
Total Penta CDD	pg TEQ/m ³								
Total Hexa CDD	pg TEQ/m³								
Total Hepta CDD	pg TEQ/m ³								
2,3,7,8-Tetra CDF **	pg TEQ/m ³			0.0013	0.0005	0.0004	0.0006		
1.2.3.7.8-Penta CDF	pg TEQ/m ³			0.0013	0.0005	0.0004	0.0006		
2,3,4,7,8-Penta CDF 2,3,4,7,8-Penta CDF	pg TEQ/m ³			0.001	0.0002	0.0001	0.0001		
1,2,3,4,7,8-Penta CDF 1,2,3,4,7,8-Hexa CDF	pg TEQ/m ³			0.001	0.002	0.001	0.001		
					0.0004				
1,2,3,6,7,8-Hexa CDF	pg TEQ/m ³			0.0004		0.0004	0.0005		
2,3,4,6,7,8-Hexa CDF	pg TEQ/m ³			0.0004	0.0004	0.0004	0.0005		
1,2,3,7,8,9-Hexa CDF	pg TEQ/m³			0.0004		0.0005	0.0005		
1,2,3,4,6,7,8-Hepta CDF	pg TEQ/m ³ pg TEQ/m ³			0.00013	0.00012	0.00004	0.00016		
1 2 2 4 7 0 0 H+- CDF		1		0.00004	0.00004	0.00005	0.00005		
1,2,3,4,7,8,9-Hepta CDF				0.000006	0.000005	0.000002	0.00006		
Octa CDF	pg TEQ/m³			0.00000					
Octa CDF Total Tetra CDF	pg TEQ/m ³ pg TEQ/m ³			0.00000					
Octa CDF Total Tetra CDF Total Penta CDF	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³			0.00000					
Octa CDF Total Tetra CDF Total Penta CDF Total Hexa CDF	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³			0.00000					
Octa CDF Total Tetra CDF Total Penta CDF	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³			0.021	0.016	0.015	0.019		

Notes:

EDL = Estimated Detection Limit

*CDD = Chloro Diberazo-p-Dioxin, *CDF = Chloro Diberazo-p-Furan

IEF = Toxic Equivalency Factor, IEQ = Toxic Equivalency Quotient

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency
Factors for Dioxins and Dioxin-like Compounds

Dioxins and Furans	Rundle Road Station													
Location		Rundle			Rundle				Rundle			Rundle		
Date	dd/mm/yyyy		7/01/2017	,		31/01/2017			24/02/2017			20/03/20	017	
Start Time	hh:mm		0:00			0:00			0:00			0:00		
Sample Duration	hours		23.98			23.89			8.53			23.37		
Technician			TH			TH			TH			TH		
Filter Number			DQS472-01	1		DQS693		Invalid. Did not run for sufficient			DWR786-01			
Maxaam ID		DSX351 DWB592 B706301 B724009					amount of	time	ECI938					
Maxxam Job #	*		B706301								B758463			
Total Volumetric Flow	Am³/sample		330.20		338.63				121.78		282.38			
		Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	
Analytical Results	Units									- 2005			2005 1-1	
2,3,7,8-Tetra CDD *	pg	<3.0	3.0	1	<3.3	3.3	1			1	<3.7	3.7	1	
1,2,3,7,8-Penta CDD *	pg	<4.0	4.0	1	<3.1	3.1	1			1	< 3.9	3.9	1	
1,2,3,4,7,8-Hexa CDD *	pg	2.8	2.6	0.1	<3.1	3.1	0.1			0.1	<3.4	3.4	0.1	
1,2,3,6,7,8-Hexa CDD *	pg	5.6	2.8	0.1	<3.3	3.3	0.1			0.1	<3.6	3.6	0.1	
1,2,3,7,8,9-Hexa CDD *	pg	8.8	2.5	0.1	<2.9	2.9	0.1			0.1	<3.2	3.2	0.1	
1,2,3,4,6,7,8-Hepta CDD *	pg	61.8	2.2	0.01	34.3	3.8	0.01			0.01	27.6	3.8	0.01	
Octa CDD *	pg	127	2.9	0.0003	93.8	3.1	0.0003			0.0003	81.1	3.5	0.0003	
Total Tetra CDD *	pg	<3.0	3.0		<3.3	3.3					<3.7	3.7		
Total Penta CDD *	pg	7.1	4.0		<3.1	3.1					< 3.9	3.9		
Total Hexa CDD *	pg	59.0	2.6		15.8	3.1					7.1	3.4		
Total Hepta CDD *	pg	137	2.2		77.4	3.8					55.3	3.8		
2,3,7,8-Tetra CDF **	pg	4.2	2.8	0.1	<3.1	3.1	0.1			0.1	<3.7 (1)	3.7	0.1	
1,2,3,7,8-Penta CDF **	pg	<2.9	2.9	0.03	<3.4	3.4	0.03	N	/A	0.03	<4.1	4.1	0.03	
2,3,4,7,8-Penta CDF **	pg	<3.0	3.0	0.3	<3.5	3.5	0.3			0.3	<4.1	4.1	0.3	
1,2,3,4,7,8-Hexa CDF **	pg	<3.0	3.0	0.1	<2.6	2.6	0.1			0.1	<3.0	3.0	0.1	
1,2,3,6,7,8-Hexa CDF **	pg	<3.0	3.0	0.1	<2.6	2.6	0.1			0.1	<3.0	3.0	0.1	
2,3,4,6,7,8-Hexa CDF **	pg	<3.2	3.2	0.1	<2.8	2.8	0.1			0.1	<3.1	3.1	0.1	
1,2,3,7,8,9-Hexa CDF **	pg	<3.5	3.5	0.1	<3.0	3.0	0.1			0.1	<3.2	3.2	0.1	
1,2,3,4,6,7,8-Hepta CDF **	pg	4.6	2.8	0.01	2.8	2.4	0.01			0.01	4.4	3.3	0.01	
1,2,3,4,7,8,9-Hepta CDF **	pg	<3.7	3.7	0.01	<3.1	3.1	0.01			0.01	<3.8	3.8	0.01	
Octa CDF **	pg	5.4	2.5	0.0003	<2.7	2.7	0.0003			0.0003	< 3.7	3.7	0.0003	
Total Tetra CDF **	pg	4.2	2.8		<3.1	3.1					3.7	3.4		
Total Penta CDF **	pg	4.1	3.0		<3.5	3.5					<4.1	4.1		
Total Hexa CDF **	pg	<3.2	3.2		<2.8	2.8					<3.1	3.1		
Total Hepta CDF **	pg	4.6	3.2		2.8	2.7					4.4	3.6		
Toxic Equivalency	pg													

Notes:

1. RT > 3 seconds - PCDD/DF analysis - Peak detected exceeds expected retention time (from internal standard) by greater than 3 seconds.

* CDD = Chloro Dilbenzo-p-Dioxin ** CDF = Chloro Dilbenzo-p-Furan

		Quarter 1		Rundle	Rundle	Rundle	Rundle
				1	2	3	4
Calculated Concentrations							
	Units	Maximum	Minimum				
	, 3			7/01/2017	31/01/2017	24/02/2017	20/03/2017
2,3,7,8-Tetra CDD *	pg/m³	6.55E-03	4.54E-03	0.005	0.005	-	0.007
1,2,3,7,8-Penta CDD *	pg/m³	6.91E-03	4.58E-03	0.006	0.005	-	0.007
1,2,3,4,7,8-Hexa CDD *	pg/m³	8.48E-03	4.58E-03	0.008	0.005	-	0.006
1,2,3,6,7,8-Hexa CDD *	pg/m ³	1.70E-02	4.87E-03	0.017	0.005	-	0.006
1,2,3,7,8,9-Hexa CDD *	pg/m ³	2.67E-02	4.28E-03	0.027	0.004	-	0.006
1,2,3,4,6,7,8-Hepta CDD *	pg/m³	1.87E-01	9.77E-02	0.187	0.101	-	0.098
Octa CDD *	pg/m³	3.85E-01	2.77E-01	0.385	0.277	-	0.287
Total Tetra CDD *	pg/m³	6.55E-03	4.54E-03	0.005	0.005	-	0.007
Total Penta CDD *	pg/m³	2.15E-02	4.58E-03	0.022	0.005	-	0.007
Total Hexa CDD *	pg/m³	1.79E-01	2.51E-02	0.179	0.047	-	0.025
Total Hepta CDD *	pg/m³	4.15E-01	1.96E-01	0.415	0.229	-	0.196
2,3,7,8-Tetra CDF **	pg/m³	1.27E-02	4.58E-03	0.013	0.005	-	0.007
1,2,3,7,8-Penta CDF **	pg/m³	7.26E-03	4.39E-03	0.004	0.005	-	0.007
2,3,4,7,8-Penta CDF **	pg/m³	7.26E-03	4.54E-03	0.005	0.005	-	0.007
1,2,3,4,7,8-Hexa CDF **	pg/m³	5.31E-03	3.84E-03	0.005	0.004	-	0.005
1,2,3,6,7,8-Hexa CDF **	pg/m³	5.31E-03	3.84E-03	0.005	0.004	-	0.005
2,3,4,6,7,8-Hexa CDF **	pg/m³	5.49E-03	4.13E-03	0.005	0.004	-	0.005
1,2,3,7,8,9-Hexa CDF **	pg/m³	5.67E-03	4.43E-03	0.005	0.004	-	0.006
1,2,3,4,6,7,8-Hepta CDF **	pg/m³	1.56E-02	8.27E-03	0.014	0.008	-	0.016
1,2,3,4,7,8,9-Hepta CDF **	pg/m³	6.73E-03	4.58E-03	0.006	0.005	-	0.007
Octa CDF **	pg/m³	1.64E-02	3.99E-03	0.016	0.004	_	0.007
Total Tetra CDF **	pg/m³	1.31E-02	4.58E-03	0.013	0.005	_	0.013
Total Penta CDF **	pg/m³	1.24E-02	5.17E-03	0.012	0.005	_	0.007
Total Hexa CDF **	pg/m³	5.49E-03	4.13E-03	0.005	0.004	-	0.005
Total Hepta CDF **	pg/m³	1.56E-02	8.27E-03	0.014	0.008	-	0.016
Toxic Equivalency	pg/m³						
TOTAL TOXIC EQUIVALENCY	pg TEQ/m ³	2.27E-02	1.58E-02	0.023	0.016	_	0.022
Calculated TEQ Concentrations	Units			Rundle	Rundle	Rundle	Rundle
				1/7/2017	1/31/2017	2/24/2017	3/20/2017
2,3,7,8-Tetra CDD *	pg TEQ/m³			0.005	0.005	-	0.007
1,2,3,7,8-Penta CDD	pg TEQ/m ³			0.006	0.005	-	0.007
1,2,3,4,7,8-Hexa CDD	pg TEQ/m³			0.0008	0.0005	-	0.0006
1,2,3,6,7,8-Hexa CDD	pg TEQ/m³			0.0017	0.0005	-	0.0006
1,2,3,7,8,9-Hexa CDD	pg TEQ/m³			0.0027	0.0004	-	0.0006
1,2,3,4,6,7,8-Hepta CDD	pg TEQ/m³			0.0019	0.0010	-	0.0010
Octa CDD	pg TEQ/m³			0.00012	0.00008	-	0.00009
Total Tetra CDD	pg TEQ/m³						
Total Penta CDD	pg TEQ/m ³						
Total Hexa CDD	pg TEQ/m ³						
Total Hepta CDD 2,3,7,8-Tetra CDF **	pg TEQ/m ³ pg TEQ/m ³			0.0013	0.0005		0.0007
z,s,r,o-retta CDF					0.0005	-	0.0007
1 2 2 7 0 Pt- CDF							
1,2,3,7,8-Penta CDF	pg TEQ/m³			0.0001	0.0002	-	
2,3,4,7,8-Penta CDF	pg TEQ/m ³ pg TEQ/m ³			0.001	0.002	-	0.002
2,3,4,7,8-Penta CDF 1,2,3,4,7,8-Hexa CDF	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³			0.001 0.0005	0.002 0.0004	-	0.002 0.0005
2,3,4,7,8-Penta CDF 1,2,3,4,7,8-Hexa CDF 1,2,3,6,7,8-Hexa CDF	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³			0.001 0.0005 0.0005	0.002 0.0004 0.0004	- - -	0.002 0.0005 0.0005
2,3,4,7,8-Penta CDF 1,2,3,4,7,8-Hexa CDF 1,2,3,6,7,8-Hexa CDF 2,3,4,6,7,8-Hexa CDF	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³			0.001 0.0005 0.0005 0.0005	0.002 0.0004 0.0004 0.0004		0.002 0.0005 0.0005 0.0005
2,3,4,7,8-Penta CDF 1,2,3,4,7,8-Hexa CDF 1,2,3,6,7,8-Hexa CDF 2,3,4,6,7,8-Hexa CDF 1,2,3,7,8,9-Hexa CDF	pg TEQ/m³ pg TEQ/m³ pg TEQ/m³ pg TEQ/m³ pg TEQ/m³ pg TEQ/m³			0.001 0.0005 0.0005 0.0005 0.0005	0.002 0.0004 0.0004 0.0004 0.0004	- - - - -	0.002 0.0005 0.0005 0.0005 0.0005
2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.6.7.8-Hexa CDF 2.3.4.6.7.8-Hexa CDF 1.2.3.7.8.9-Hexa CDF 1.2.3.4.6.7.8-Hepta CDF	pg TEQ/m³			0.001 0.0005 0.0005 0.0005 0.0005 0.00014	0.002 0.0004 0.0004 0.0004 0.0004 0.0008		0.002 0.0005 0.0005 0.0005 0.0006 0.00016
2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.6.7.8-Hexa CDF 2.3.4.6.7.8-Hexa CDF 1.2.3.7.8.9-Hexa CDF 1.2.3.4.6.7.8-Hepta CDF 1.2.3.4.7.8.9-Hepta CDF	pg TEQ/m³			0.001 0.0005 0.0005 0.0005 0.0005 0.00014 0.00006	0.002 0.0004 0.0004 0.0004 0.0004 0.00008		0.002 0.0005 0.0005 0.0005 0.0006 0.00016 0.00016
2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.6.7.8-Hexa CDF 2.3.4.6.7.8-Hexa CDF 1.2.3.6.7.8-Hexa CDF 1.2.3.4.6.7.8-Hepta CDF 1.2.3.4.7.8-Y-Hepta CDF Octa CDF	pg TEQ/m³			0.001 0.0005 0.0005 0.0005 0.0005 0.00014	0.002 0.0004 0.0004 0.0004 0.0004 0.0008		0.002 0.0005 0.0005 0.0005 0.0006 0.00016
2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.6.7.8-Hexa CDF 2.3.4.6.7.8-Hexa CDF 1.2.3.7.8.9-Hexa CDF 1.2.3.4.6.7.8-Hepta CDF 0.cta CDF Total Tetra CDF	pg TEQ/m³			0.001 0.0005 0.0005 0.0005 0.0005 0.00014 0.00006	0.002 0.0004 0.0004 0.0004 0.0004 0.00008		0.002 0.0005 0.0005 0.0005 0.0006 0.00016 0.00016
2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.6.7.8-Hexa CDF 2.3.4.6.7.8-Hexa CDF 1.2.3.7.8.9-Hexa CDF 1.2.3.4.7.8.9-Hepta CDF	pg TEO/m³			0.001 0.0005 0.0005 0.0005 0.0005 0.00014 0.00006	0.002 0.0004 0.0004 0.0004 0.0004 0.00008		0.002 0.0005 0.0005 0.0005 0.0006 0.00016 0.00016
2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.6.7.8-Hexa CDF 2.3.4.6.7.8-Hexa CDF 1.2.3.7.8.9-Hexa CDF 1.2.3.4.7.8.9-Hepta CDF 0.Cta CDF Iotal Tetra CDF	pg TEQ/m³			0.001 0.0005 0.0005 0.0005 0.0005 0.00014 0.00006	0.002 0.0004 0.0004 0.0004 0.0004 0.00008		0.002 0.0005 0.0005 0.0005 0.0006 0.00016 0.00016

Notes:

EDL = Estimated Detection Limit

*CDD = Chloro Dibenzo-p-Dioxin, **CDF = Chloro Dibenzo-p-Furan

IEF = Toxic Equivalency Factor, IEC = Toxic Equivalency Quotient

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency
Factors for Dioxins and Dioxin-like Compounds