

Quarterly Ambient Air Quality Monitoring Report for the Durham York Energy Centre (Crago Road Station) – January to March 2018

FINAL REPORT

June 22, 2018

File: 160950528

Prepared for:

The Regional Municipality of Durham 605 Rossland Road Whitby, ON L1N 6A3

Prepared by:

Stantec Consulting Ltd. 300W-675 Cochrane Drive Markham, ON L3R 0B8

Sign-off Sheet

This document entitled Quarterly Ambient Air Quality Monitoring Report for the Durham York Energy Centre (Crago Road Station) – January to March 2018 was prepared by Stantec Consulting Ltd. ("Stantec") for the account of The Regional Municipality of Durham (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by _	Telein C.
	(signature)

Toni Zbieranowski, M.Sc.

Reviewed by ________(signature)

Gregory Crooks, M.Eng., P.Eng.

Reviewed by (signature)

Kimberly Ireland, P.Eng.

Table of Contents

EXEC	CUTIVE SUMMARY	I
ABBF	REVIATIONS	ا
1.0	INTRODUCTION	1.1
1.1	LOCATION OF AMBIENT AIR QUALITY MONITORING STATION	1.2
2.0	KEY COMPONENTS ASSESSED	2.1
2.1	METEOROLOGY	
2.2	AIR QUALITY CONTAMINANTS OF CONCERN	
2.3	AIR QUALITY CRITERIA	
3.0	INSTRUMENTATION SUMMARY AND FIELD CONDITIONS	3.1
3.1	INSTRUMENTATION	
3.2	INSTRUMENTATION ISSUES	_
3.3	INSTRUMENTATION RECOVERY RATES	
3.4	FIELD CONDITION OBSERVATIONS	
4.0	SUMMARY OF AMBIENT MEASUREMENTS	11
4.1	METEOROLOGICAL DATA	
4.2	CAC AMBIENT AIR QUALITY MEASUREMENTS	
⊤.∠	4.2.1 Sulphur Dioxide (SO ₂)	
	4.2.2 Nitrogen Dioxide (NO ₂)	
	4.2.3 Nitrogen Oxides (NO _X)	
	4.2.4 Particulate Matter Smaller than 2.5 Microns (PM _{2.5})	
4.3	AMBIENT TSP / METALS CONCENTRATIONS	4.17
4.4	AMBIENT PAH CONCENTRATIONS	4.18
4.5	AMBIENT DIOXINS AND FURANS CONCENTRATIONS	
5.0	CONCLUSIONS	5.1
6.0	REFERENCES	6.1
I IST	OF TABLES	
_		2.2
Table Table		
Table	, , , , , , , , , , , , , , , , , , ,	
Table	· · · · · · · · · · · · · · · · · · ·	
Table		
Table	•	
Table		3.3
Table	3-5: Summary of Data Recovery Rates for the Crago Road Station – January	
Table	to March 2018	3.3 2 1
i anic	, 0-0.	4

Table 4-1:	Summary of Hourly Meteorological Measurements – January to March 2018
Table 4-2: Table 4-3: Table 4-4: Table 4-5:	Summary of Ambient CAC Monitoring Data – January to March 2018
LIST OF FIGU	RES
Figure 1-1: Figure 1-2: Figure 1-3: Figure 3-1:	Durham York Energy Centre Site Location Plan
Figure 4-2:	Comparison of NO ₂ and SO ₂ Ambient Air Quality Monitoring Data to Applicable Criteria at the Stations
Figure 4-3:	Pollution Rose of Measured Hourly Average SO ₂ Concentrations –
Figure 4-4:	January to March 2018
Figure 4-5:	Pollution Rose of Measured Hourly Average NO _X Concentrations –
Figure 4-6:	January to March 2018
LIST OF APPE	ENDICES
APPENDIX A	SO ₂ DATA SUMMARIES AND TIME HISTORY PLOTS
APPENDIX B	NO ₂ DATA SUMMARIES AND TIME HISTORY PLOTS
APPENDIX C	NO _X DATA SUMMARIES AND TIME HISTORY PLOTS
APPENDIX D	PM _{2.5} DATA SUMMARIES AND TIME HISTORY PLOTS
APPENDIX E	CONTINUOUS PARAMETER EDIT LOG
APPENDIX F	METALS DATA SUMMARY
APPENDIX G	PAHS DATA SUMMARY
APPENDIX H	DIOXINS AND FURANS DATA SUMMARY

Executive Summary

The Regional Municipalities of Durham and York operate the Durham York Energy Centre (DYEC) which is an Energy from Waste (EFW) facility intended to provide a long-term, sustainable solution to manage the remaining municipal solid waste after waste diversion from the Regions. The facility commenced commercial operation on February 1, 2016.

An Ambient Air Quality Monitoring Plan – Durham York Residual Waste Study (Ambient Monitoring Plan) was developed and included two monitoring stations referred to as the Courtice Water Pollution Control Plant (WPCP) Station and the Rundle Road Station (as well as a temporary Fence Line Station). The plan developed for these stations was based on the Regional Council's mandate to provide ambient air quality monitoring in the area of the DYEC for a three-year period.

Subsequently, the Region decided to add a third ambient air monitoring station located near the corner of Crago and Osborne Roads (referred to as the Crago Road Station), which was installed in October/ November 2014. The Crago Road Station is not part of the Ambient Monitoring Plan, however, it is operated following the same protocols as the other two stations. Results from the Crago Road Station are reported separately from the Courtice WPCP and Rundle Road Stations.

The Crago Road Station is equipped to measure concentrations of several air contaminants either continuously or at scheduled intervals (non-continuously) as outlined below:

- Contaminants monitored continuously:
 - Sulphur Dioxide (SO₂);
 - Nitrogen Oxides (NO_X); and,
 - Particulate Matter smaller than 2.5 microns (PM_{2.5}).
- Contaminants monitored non-continuously:
 - Metals in Total Suspended Particulate (TSP) matter;
 - Polycyclic Aromatic Hydrocarbons (PAHs); and,
 - Dioxins and Furans.

Meteorological data is also measured at the station. The predominantly downwind Crago Road Station measures horizontal wind speed, wind direction, atmospheric temperature, relative humidity, and rainfall.

This quarterly report provides a summary of the ambient air quality data collected at the Crago Road Station for the period January to March 2018 (Calendar Quarter 1). All measured air quality parameters had acceptable data recovery rates during this quarter. Instrumentation recovery rates are presented in Section 3.2 of this report.

Site personnel noted ongoing Highway 418 construction on the north and south sides of Highway 401 between Courtice and Crago Roads during Quarter 1 2018.

The following observations and conclusions were made from a review of the measured ambient air quality monitoring data:

- 1. Measured levels of NO₂, SO₂ and PM_{2.5} were below the applicable O. Reg. 419/05 Standards or human health risk assessment (HHRA) health-based criteria presented in **Table 2-1** of this report.
- 2. Since the Canadian Ambient Air Quality Standard (CAAQS) for PM_{2.5} is based on a 98th percentile level over 3 years, whereas the PM_{2.5} measurement period at the Crago Road Station for this quarterly report was three months, there was insufficient data collected to determine with any certainty if exceedances of the CAAQS would occur. Therefore, no comparison of the measured PM_{2.5} data during this quarter to the CAAQS was conducted for this report, as it would not be scientifically accurate or representative.
- 3. The maximum measured concentrations of TSP and all metals with Ministry of Environment and Climate Change (MOECC) air quality Standards were below their applicable Standards (as presented in **Table 2-2** in this report).
- 4. The maximum measured concentrations of PAHs with MOECC air quality Standards were below their applicable criteria shown in **Table 2-3**, with the exception of the 24-hour benzo(a)pyrene (B(a)P) concentration in four (4) samples which exceeded the applicable Ontario Ambient Air Quality Criteria (AAQC) by a range of 18% to 108%. The current Ontario 24-hour B(a)P AAQC was introduced in 2011 and levels above this AAQC are commonly measured throughout Ontario. The measurements were however, well below the MOECC Schedule 6 Upper Risk Threshold, the MOECC O. Reg. 419/05 24-hour average quideline, and the HHRA health-based criterion.
- 5. The maximum measured toxic equivalent dioxin and furan concentration was below the applicable Standard presented in **Table 2-3**.

In summary, the measured concentrations of the air contaminants monitored were below their applicable MOECC Standards during the monitoring period between January and March 2018, with the exception of four (4) benzo(a)pyrene samples. All measured levels of the monitored contaminants were below their applicable HHRA health-based criteria.

Abbreviations

AAQC Ambient Air Quality Criteria

ACB List Air Contaminants Benchmarks List: Standards, Guidelines and Screening

Levels for Assessing Point of Impingement Concentrations of Air Contaminants

CAAQS Canadian Ambient Air Quality Standard

CAC Criteria Air Contaminants
CDD Chlorinated Dibenzo-p-dioxins
CDF Chlorinated Dibenzo-p-furans

D/Fs Dioxins and Furans

DYEC Durham York Energy Centre

EFW Energy from Waste

HHRA Human Health Risk Assessment

MOECC Ontario Ministry of the Environment and Climate Change

SO₂ Sulphur Dioxide NO_x Nitrogen Oxides

O₃ Ozone

PAH Polycyclic Aromatic Hydrocarbons

Particulate A particle of a solid or liquid that is suspended in air.

PCB Polychlorinated Biphenyl

PCDD/PCDF Polychlorinated Dibenzo-p-dioxins and Dibenzofurans

PM Particulate Matter

PM_{2.5} Particulate Matter smaller than 2.5 microns

Q1, Q2, Q3, Q4 Quarter 1 (January, February, and March); Quarter 2 (April, May, and June);

Quarter 3 (July, August, and September); and Quarter 4 (October, November,

and December)

TEQ Toxic Equivalent Quotient

TEQs Toxic Equivalents

TSP Total Suspended Particulate
WPCP Water Pollution Control Plant

Elements	
Cd	Cadmium
Hg	Mercury
Pb	Lead
Al	Aluminum
As	Arsenic
Ве	Beryllium
Cr	Chromium
Cu	Copper
Mn	Manganese
Ni	Nickel
Ag	Silver
TI	Thallium
Sn	Tin
V	Vanadium
Zn	Zinc
Miscellaneous	
°C	Temperature in degrees Celsius

N/A Not Available % Percent

ppm Parts per million ppb Parts per billion

ppbv Parts per billion by volume

ppt Parts per trillion
min Minimum
max Maximum
mm Millimetre
m Metre

km/hr Kilometre per hour

 mg/m^3 Milligrams per cubic metre $\mu g/m^3$ Micrograms per cubic metre ng/m^3 Nanograms per cubic metre pg/m^3 Picograms per cubic metre

pg TEQ/m³ Picograms toxic exposure equivalents per cubic metre

Introduction June 22, 2018

1.0 INTRODUCTION

The Regional Municipalities of Durham and York operate the Durham York Energy Centre (DYEC) which is an Energy from Waste (EFW) facility intended to provide a long-term, sustainable solution to manage municipal solid waste remaining after diversion from the Regions. The location of the DYEC is shown in **Figure 1-1**. The facility commenced commercial operation on February 1, 2016.

An Ambient Air Quality Monitoring Plan – Durham York Residual Waste Study (Ambient Monitoring Plan) was developed and included two monitoring stations referred to as the Courtice Water Pollution Control Plant (WPCP) Station and the Rundle Road Station (as well as a temporary Fence Line Station). The plan developed for these stations was based on the Regional Council's mandate to provide ambient air quality monitoring in the area of the DYEC for a three-year period.

The purposes of the ambient air quality monitoring program are to:

- 1. Quantify any measurable ground level concentrations resulting from emissions from the DYEC cumulative to local air quality, including validating the predicted concentrations from the dispersion modelling conducted in the Environmental Assessment (Jacques Whitford, 2009);
- 2. Monitor concentration levels of EFW-related air contaminants in nearby residential areas; and,
- 3. Quantify background ambient levels of air contaminants in the area.

At the request of the Regional Municipality of Durham (the Region), a third ambient air monitoring station located near the corner of Crago and Osborne Roads was installed. This station, which is not part of the Ambient Monitoring Plan, is operated following the same protocols as the other two stations (Courtice WPCP and Rundle Road Stations) already in operation.

The Crago Road Station is equipped to measure concentrations of several air contaminants either continuously or at scheduled intervals (non-continuously) as outlined below:

- Contaminants monitored continuously:
 - Sulphur Dioxide (SO₂);
 - Nitrogen Oxides (NO_X); and,
 - Particulate Matter smaller than 2.5 microns (PM_{2.5}).
- Contaminants monitored non-continuously:
 - Metals in Total Suspended Particulate (TSP) matter;
 - Polycyclic Aromatic Hydrocarbons (PAHs); and,
 - Dioxins and Furans.

This quarterly report provides a summary of the ambient air quality data collected at this station for the period January to March 2018 (Q1).

1.1

Introduction June 22, 2018

1.1 LOCATION OF AMBIENT AIR QUALITY MONITORING STATION

The selection of the site for the monitoring station was accomplished in consultation with Regional Municipality of Durham representatives, with consideration of the location of the existing monitoring stations and general MOECC siting criteria. The final location of the monitoring station was influenced by the availability of electrical power, accessibility of each location, and security.

The Crago Road Station is sited east of the DYEC near the Darlington Hydro Upper and Lower Soccer Fields on the east side of Crago Road, north of Osborne Road. Its location is shown in **Figure 1-2** and **Figure 1-3**. The monitoring station measures all the air contaminants listed in Section 1.1 and meteorological data.

Introduction June 22, 2018

Figure 1-3: View of Crago Road Ambient Air Quality Monitoring Station

Key Components Assessed June 22, 2018

2.0 KEY COMPONENTS ASSESSED

2.1 METEOROLOGY

The following meteorological parameters are measured at the Crago Road monitoring station:

- Wind Speed and direction at a height of 7.5 m;
- Ambient temperature at a height of 2 m;
- · Relative humidity; and,
- Rainfall.

2.2 AIR QUALITY CONTAMINANTS OF CONCERN

The ambient air quality monitoring program for the Crago Road Station includes the following contaminants specified in the Ambient Monitoring Plan (Stantec, 2012):

- Continuously monitored criteria air contaminants (CACs)
 - Sulphur Dioxide (SO₂);
 - Nitrogen Oxides (NO_X); and,
 - Particulate Matter smaller than 2.5 microns (PM_{2.5}).
- Non-continuously monitored
 - Metals in Total Suspended Particulate (TSP) matter;
 - Polycyclic Aromatic Hydrocarbons (PAHs); and,
 - Dioxins and Furans.

The following are lists of the specific metals, PAHs, and dioxins and furans being measured. Rationales for the choice of contaminants being monitored are provided in the Ambient Monitoring Plan (Stantec, 2012).

Metals:

- Aluminum (Al)
- Antimony (Sb)
- Arsenic (As)
- Barium (Ba)
- Beryllium (Be)
- Bismuth (Bi)
- Boron (B)
- Cadmium (Cd)
- Cobalt (Co)
- Copper (Cu)
- Chromium (Cr) (Total)

- Iron (Fe)
- Lead (Pb)
- Magnesium (Mg)
- Manganese (Mn)
- Mercury (Hg)
- Molybdenum (Mo)
- Nickel (Ni)
- Phosphorus (Ph)
- Selenium (Se)
- Silver (Ag)
- Strontium (Sr)

- Thallium (TI)
- Tin (Sn)
- Titanium (Ti)
- Uranium (U)
- Vanadium (V)
- Zinc (Zn)
- Zirconium (Zr)

Key Components Assessed June 22, 2018

Polycyclic Aromatic Hydrocarbons:

- 1-Methylnaphthalene
- 2-Methylnaphthalene
- Acenaphthene
- Acenaphthylene
- Anthracene
- Benzo(a)anthracene
- Benzo(a)fluorene
- Benzo(a)pyrene
- Benzo(b)fluorene

- Benzo(b)fluoranthene
- Benzo(e)pyrene
- Benzo(g,h,i)perylene
- Benzo(k)fluoranthene
- Biphenol
- Chrysene
- Dibenz(a,h)anthracene
- Dibenz(a,c)anthracene
- Fluoranthene

- Indeno(1,2,3-cd)pyrene
- Naphthalene
- Perylene
- Phenanthrene
- Pyrene
- Tetralin
- o-Terphenyl
- Total PAHs

Dioxins and Furans:

- 2,3,7,8-Tetra CDD
- 1,2,3,7,8-Penta CDD
- 1,2,3,4,7,8-Hexa CDD
- 1,2,3,6,7,8-Hexa CDD
- 1,2,3,7,8,9-Hexa CDD
- 1,2,3,4,6,7,8-Hepta CDD
- Octa CDD
- Total Tetra CDD
- Total Penta CDD
- Total Hexa CDD

- Total Hepta CDD
- 2,3,7,8-Tetra CDF
- 1,2,3,7,8-Penta CDF
- 2,3,4,7,8-Penta CDF
- 1,2,3,4,7,8-Hexa CDF
- 1,2,3,6,7,8-Hexa CDF
- 2,3,4,6,7,8-Hexa CDF
- 1,2,3,7,8,9-Hexa CDF
- 1,2,3,4,6,7,8-Hepta CDF
- 1,2,3,4,7,8,9-Hepta CDF

- Octa CDF
- Total Tetra CDF
- Total Penta CDF
- Total Hexa CDF
- Total Hepta CDF
- Total toxic equivalency (I-TEQ)

2.3 AIR QUALITY CRITERIA

Several evaluation criteria were used for comparison to the air quality data as specified in the Ambient Monitoring Plan (Stantec, 2012). The first set was the Ontario Ambient Air Quality Criteria (AAQC) developed by the MOECC (MOECC, 2012). The second set of criteria was the Standards reported in O. Reg. 419/05 (Schedules 3 and 6). These are compliance based Standards used throughout the province of Ontario. These criteria, along with O. Reg. 419/05 Guidelines and Jurisdictional Screening Levels were consolidated in December 2016 into a new format known as the "Air Contaminants Benchmarks List: Standards, Guidelines and Screening Levels for Assessing Point of Impingement Concentrations of Air Contaminants" (ACB List) (MOECC, 2018).

Not all chemicals have O. Reg. 419/05 Standards, or in some instances updated health-based criteria were used in the human health risk assessment (HHRA) conducted in support of the Environmental Assessment (July 31, 2009 - December 10, 2009). These health-based values, which were reported in Table 7-2 (Summary of Inhalation TRVs and Inhalation Benchmarks Selected for CACs) and Table 7-3 (Inhalation TRVs and Inhalation Benchmarks for Selected COPCs) of the HHRA (Stantec, 2009) were used as another set of evaluation criteria.

Key Components Assessed June 22, 2018

The previously applicable 24-hour average Canada-Wide Standard (CWS) for PM_{2.5} of 30 μ g/m³ (98th percentile averaged over 3 consecutive years), has been superseded by a new Canadian Ambient Air Quality Standard (CAAQS) of 28 μ g/m³ (98th percentile averaged over three consecutive years) and an annual objective of 10 μ g/m³ as noted in **Table 2-1**. The proposed CAAQS 24-hour objective for 2020 is 27 μ g/m³.

Summaries of the relevant air quality criteria for the contaminants monitored are presented in **Table 2-1** to **Table 2-3**.

Table 2-1: Summary of Air Quality Criteria for CACs

		M	MOECC Criteria		HHRA Health-Based Criteria		
Contaminant	CAS	1-Hour (ppb / μg/m³)	24-Hour (ppb / μg/m³)	Annual (ppb / μg/m³)	1-Hour (ppb / μg/m³)	24-Hour (ppb / μg/m³)	Annual (ppb / μg/m³)
Sulphur dioxide	7446095	250 /690	100 / 275	20 / 55	250 / 690	100 / 275	11 / 29
Nitrogen dioxide	10102-44-0	200 /400	100 / 200	-	200 / 400	100 / 200	30 / 60
		Canadian Ambient Air Quality Standards (CAAQS)			HHRA Health-Based Criteria		
Contaminant	CAS	1-Hour (μg/m³)	24-Hour (µg/m³)	Other Time Period (µg/m³)	1-Hour (µg/m³)	24-Hour (μg/m³)	Other Time Period (µg/m³)
PM _{2.5}	N/A	-	28 ^A	10 ^B	-	30 ^C	-

Notes:

- A. Canadian Ambient Air Quality Standards (CAAQS) for Respirable Particulate Matter and Ozone, effective by 2015 (CCME, 2012). The Respirable Particulate Matter Objective is referenced to the 98th percentile daily average concentration averaged over 3 consecutive years.
- B. Annual Canadian Ambient Air Quality Standard for Respirable Particulate Matter, effective by 2015. The Respirable Particulate Matter Objective is referenced to the 3-year average of the annual average concentrations.
- C. HHRA Health-Based criterion for PM_{2.5} was selected referencing CCME (2006).

Key Components Assessed June 22, 2018

Table 2-2: Summary of Air Quality Criteria for Metals

		MOECC Criteria			HHRA Health-Based Criteria		
Contaminant	CAS	1-Hour (µg/m³)	24-Hour (μg/m³)	Other Time Period (µg/m³)	1-Hour (µg/m³)	24-Hour (μg/m³)	Annual (μg/m³)
Total Particulate	NA	-	120	-	-	120	60
Aluminum	7429-90-5	-	4.8	-	-	-	-
Antimony	7440-36-0	-	25	-	5	25	0.2
Arsenic	7440-38-2	-	0.3	-	0.2	0.3	0.015 ^A 0.0043 ^B
Barium	7440-39-3	-	10	-	5	10	1
Beryllium	7440-41-7	-	0.01	-	0.02	0.01	0.007 ^A 0.0024 ^B
Bismuth	7440-69-9			-			
Boron	7440-42-8	-	120	-	50	-	5
Cadmium	7440-43-9	-	0.025	0.005; annual	0.1	0.025	0.005 ^A 0.0098 ^B
Chromium (Total)	7440-47-3	-	0.5	-	1	-	60
Cobalt	7440-48-4	-	0.1	-	0.2	0.1	0.1
Copper	8440-50-8	-	50	-	-	-	-
Iron	15438-31-0	1	4	-	-	-	-
Lead	7439-92-1	-	0.5	0.2; 30-day	1.5	0.5	0.5
Magnesium	7439-95-4			-			
Manganese	7439-96-5	1	0.4	-	-	-	-
Mercury	7439-97-6	1	2	-	0.6	2	0.3
Molybdenum	7439-87-7	1	120	-	-	-	-
Nickel	7440-02-0	-	0.2	0.04; annual	6	-	0.05
Phosphorus	7723-14-0	-	-	-	-	-	6.4 x 10 ⁷
Selenium	7782-49-2	1	10	-	2	10	0.2
Silver	7440-22-4	ı	1	-	0.1	1	0.01
Strontium	7440-24-6	ı	120	-	-	-	-
Thallium	7440-28-0	-	-	-	1		0.1
Tin	7440-31-5	-	10	-	20	10	2
Titanium	7440-32-6	-	120	-	-	-	-

Key Components Assessed June 22, 2018

Summary of Air Quality Criteria for Metals Table 2-2:

			MOECC Criteria			HHRA Health-Based Criteria		
Contaminant	CAS	1-Hour (µg/m³)	24-Hour (μg/m³)	Other Time Period (µg/m³)	1-Hour (µg/m³)	24-Hour (µg/m³)	Annual (µg/m³)	
Vanadium	7440-62-2	-	2	-	0.5	1	1	
Uranium	7440-61-1	-	1.5	0.03; annual	-	-	-	
Zinc	7440-66-6	-	120	-	50		5	
Zirconium	7440-67-7	-	20	-	-	-	-	

Notes:

A. Annual AverageB. Carcinogenic Annual Average

Table 2-3: Summary of Air Quality Criteria for PAHs and D/Fs

		N	OECC Crite	eria	НН	RA Healt	h-Based	Criteria
Contaminant	CAS	1-Hour (ng/m³)	24-Hour (ng/m³)	Other Time Period (ng/m³)	1-Hour (ng/m³)	24-Hour (ng/m³)	Annual (ng/m³)	Toxic Equivalency Factor Annual ^{A, F} (ng/m³)-1
1-Methylnaphthalene	90-12-0	-	12,000	-	-	-	3,000	-
2-Methylnaphthalene	91-57-6	-	10,000	-	-	-	3,000	-
Acenaphthene	83-32-9	-	-	-	1,000	-	-	1
Acenaphthylene	208-96-8	-	3,500	-	1,000	-	-	10
Anthracene	120-12-7	-	200	-	500	-	50	-
Benzo(a)anthracene	56-55-3	-	-	-	500	-	-	100
Benzo(b)fluoranthene	205-99-2	-	-	-	500	-	-	100
Benzo(k)fluoranthene	207 -08-9	-	-	-	500	-	-	100
Benzo(a)fluorene	238-84-6	-	-	-	500	-	50	-
Benzo(b)fluorene	243-17-4	-	-	-	500	-	50	-
Benzo (g,h,i) perylene	191-24-2	-	-	-	500	-	-	100
Benzo(a)pyrene	50-32-8	-	0.05 ^B 5 ^C 1.1 ^D	0.01; annual	-	1	87 ^A	-
Benzo(e)pyrene	192-97-2	-	-	-	500	-	-	10
Biphenyl	92-52-4	-	-	-	-	-	224,000	-
Chrysene	218-01-9			-				-
Dibenzo(a,c)anthracene	215-58-7	-	-	-	-	-	-	100

Key Components Assessed June 22, 2018

Table 2-3: Summary of Air Quality Criteria for PAHs and D/Fs

		N	OECC Crite	ria	HHRA Health-Based Criteria			Criteria
Contaminant	CAS	1-Hour (ng/m³)	24-Hour (ng/m³)	Other Time Period (ng/m³)	1-Hour (ng/m³)	24-Hour (ng/m³)	Annual (ng/m³)	Toxic Equivalency Factor Annual ^{A, F} (ng/m³)-1
Dibenzo(a,h)anthracene	53-70-3	-	-	-	500	-	-	1,000
Fluoranthene	206-44-0	-	-	-	500	-	-	1
Indeno(1,2,3-cd)pyrene	193-39-5	-	-	-	500	-	-	100
Naphthalene	91-20-3	-	22,500	-	-	22,500	3,000	-
o-Terphenyl	84-15-1	-	-	-	50,000	-	5,000	-
Perylene	198-55-0	-	-	-	500	-	-	1
Phenanthrene	85-01-8	-	-	-	500	-	-	1
Pyrene	129-00-0	-	-	-	500	-	-	1
Tetralin	119-64-2			-				-
Dioxins and Furans Total Toxic Equivalency E	NA	-	0.1 (pg TEQ/m ³) ^E 1 (pg TEQ/m ³) ^C	-	-	-	-	-

Notes:

- Carcinogenic Annual Average. Units in (ng/m³)⁻¹.
 Ontario Ambient Air Quality Criteria The standard for benzo(a)pyrene (B(a)P) is for B(a)P as a surrogate for PAHs.
- O. Reg. 419/05 Schedule 6 Upper Risk Thresholds
- D. O. Reg. 419/05 24 Hour Guideline
- Application of the air standard for dioxins, furans, and dioxin-like PCBs requires the calculation of the total toxicity equivalent (TEQ) concentration contributed by all dioxin-like compounds in the mixture. TEQ is calculated using the methodology as per the O. Reg. 419/05 Summary of Standards and Guidelines, and the corresponding WHO₂₀₀₅ toxic equivalency factors (i-TEFs).
- F. Toxic Equivalency Factors (TEFs) are shown as benzo(a)pyrene equivalents.

Instrumentation Summary and Field Conditions June 22, 2018

3.0 INSTRUMENTATION SUMMARY AND FIELD CONDITIONS

3.1 INSTRUMENTATION

The measurement program at the monitoring site includes both continuous and non-continuous monitors to sample air contaminant concentrations.

Monitoring for respirable particulate matter ($PM_{2.5}$), nitrogen oxides (NO_X) and sulphur dioxide (SO_2) are conducted on a continuous basis. A summary of the continuous monitors and a brief description of their principle of operation are provided in **Table 3-1** below.

Table 3-1: Summary of Continuous Ambient Air Quality Monitors

Contaminant	Monitor	Principle of Operation	Range	Time Interval
PM _{2.5}	Thermo Sharp 5030 Synchronized Hybrid Ambient Real-time Particulate Monitor	Light Scattering Photometry / Beta Attenuation - Consists of a carbon14 source, detector, and light scattering Nephelometer in a rack-mountable enclosure. The Thermo Sharp utilizes a continuous (non-step wise) hybrid mass measurement and a combination of beta attenuation and light scattering technology. The unit's filter tape is automatically advanced based upon a user defined frequency or particulate loading.	0 - 10 mg/m ³	1 minute
NO, NO ₂ , NO _X	Teledyne API Model 200E Chemiluminescence Analyzer	Chemiluminescence - Uses a chemiluminescence detection principle and microprocessor technology for ambient continuous emissions monitoring (CEM). Measurements are automatically compensated for temperature and pressure changes.	0 – 1000 ppb	1 second
SO ₂	Teledyne API Model T100	Pulsed Florescence - SO ₂ levels are measured based on the principle that SO ₂ has a strong ultraviolet (UV) absorption at a wavelength between 200 and 240 nanometres (nm). The absorption of photons at these wavelengths results in the emission of fluorescence photons at a higher wavelength. The amount of fluorescence measured is directly proportional to the concentration of SO ₂ .	0 – 1000 ppb	1 second

Instrumentation Summary and Field Conditions June 22, 2018

Two manually operated, high-volume air samplers are installed at the Crago Road Station to collect metals in total suspended particulate (TSP), polycyclic aromatic hydrocarbons (PAHs), and dioxins and furans. Sampling for these contaminants is conducted following the methodology and analyses described in the Ambient Monitoring Plan (Stantec, 2012), as presented in **Table 3-2**. The samples were submitted to Maxxam Analytics Inc., a Canadian Association for Laboratory Accreditation Inc. (CALA) / Standards Council of Canada (SCC) accredited laboratory, for analysis.

Table 3-2: Summary of Non-Continuous Ambient Air Quality Monitors

Contaminant	Sampler	Filter Media	Lab Analysis	Sampling Schedule
TSP and metals	Tisch Environmental TE-5170 mass-flow high volume sampler	Pre-weighed, conditioned Teflon coated glass fibre filters	Weighed for particulate loading and analysed using the Atomic Emission Spectroscopy / Inductively Coupled Plasma (AES/ICP) technique to determine metals content	24-hour sample taken every 6 days
PAHs	Tisch Environmental TE-1000 mass-flow	Dual chambered sampling module	Gas Chromatography / Mass Spectrometry	24-hour sample taken every 12 days
Dioxins and Furans	high volume air sampler	with a Teflon-coated glass fibre filter and a Poly-Urethane Foam (PUF) cartridge	(GC/MS)	24-hour sample taken every 24 days

Horizontal wind speed, wind direction, atmospheric temperature, relative humidity, and rainfall are measured at the predominantly downwind Crago Road Station. The meteorological sensors at the Crago Road Station are mounted on an external 7.5 m aluminum tower and are logged using a digital data acquisition system (DAS). The meteorological equipment at the Crago Road Station is summarized in **Table 3-3**.

Table 3-3: Summary of Meteorological Equipment

Parameter	Equipment
Wind Speed/Wind Direction	Met One Instruments Inc. Model 034B
Temperature/Relative Humidity	Campbell Scientific Model HMP60
Rainfall	Texas Electronic TE525M

A Campbell Scientific CRX1000 station data acquisition system is used to collect continuous instrument monitoring data and status codes from the ambient air quality monitors. Continuous station data is maintained in the data loggers, and data is viewed locally using a laptop and the relevant DAS software applications. Remote data transmission is accomplished by the periodic transmission of collected station air quality data via cellular phone.

Instrumentation Summary and Field Conditions June 22, 2018

3.2 INSTRUMENTATION ISSUES

A summary of the operational issues for each measurement parameter during the monitoring period is presented in **Table 3-4**.

Table 3-4: Summary of Instrument Issues at the Crago Road Station

Parameter	Issues	Timeframe	Remedial Action
SO ₂	None	1	-
NOx	None	-	-
DM	Elevated PM _{2.5} concentrations observed following a zero check of the Crago SHARP unit.	February 5, 2018 17:00 to February 6, 2018 6:00	Elevated PM _{2.5} concentrations during this period were invalidated.
PM _{2.5}	Elevated PM _{2.5} concentrations observed following a zero check of the Crago SHARP unit.	March 23, 2018 8:00 – 13:00	Elevated PM _{2.5} concentrations during this period were invalidated.
TSP/Metals Hi-Vol.	Power outage at Station during sample run for TSP/metals.	January 8, 2018	The TSP/metals sample was determined to be invalid as the sample did not run for 24-hours +/-10% and therefore, was not sent to the laboratory for analysis.
PAH/ D/F Hi-Vol	None	-	-
Other	None	-	-

3.3 INSTRUMENTATION RECOVERY RATES

Data recovery rates for each monitor at the station during this quarter are presented in **Table 3-5**.

Table 3-5: Summary of Data Recovery Rates for the Crago Road Station – January to March 2018

Parameter	Valid Measurement Hours	Data Recovery Rate (%)
SO ₂	2154	99.7%
NO _X	2152	99.6%
PM _{2.5}	2129	98.6%
Temperature	2160	100%
Rainfall	2160	100%
Relative Humidity	2160	100%
Wind Speed/Direction	2017	93.4%
TSP/Metals	14 ^A	93.3%
PAHs	8 A	100%

Instrumentation Summary and Field Conditions June 22, 2018

Table 3-5: Summary of Data Recovery Rates for the Crago Road Station – January to March 2018

Parameter	Valid Measurement Hours	Data Recovery Rate (%)
Dioxins and Furans	4 ^A	100%

Notes:

- A. Number of filters/24-hour average samples.
- B. Includes any instrumentation issues summarized in Table 3-4, maintenance, and monthly calibrations.

3.4 FIELD CONDITION OBSERVATIONS

During Q1 2018, activities in the vicinity of the Crago ambient air monitoring station were observed that had the potential to be affecting air quality levels. These observations were noted during field visits by Stantec personnel.

Construction of Highway 418, which will connect with Highway 401 between Courtice Road and Crago Road was ongoing during this quarter. Highway 418 will provide a north-south link between Highway 401 and the Phase 2 expansion of Highway 407. The Highway 401/418 interchange will be located almost directly north of the DYEC. Throughout the quarter, excavator/dump truck crews were observed working in a large area immediately north of the DYEC between Megawatt Drive and Highway 401. Major work observed included earthworks and Highway 401 overpass construction for on/off ramps connecting to Highway 418. A photograph of soil berms/ramps and overpass construction activities are provided in **Figure 3-1**.

During Q1, there was one period for Boiler 1 and two periods for Boiler 2 where waste feed to each boiler was halted. The times when these feed stops occurred are summarized in **Table 3-6**.

Table 3-6: Summary of Boiler Operational Status in Q1 2018

Boiler	Date	Time	Status
Deilar 4	January 15	15:31 – 22:46	Feed Stop
Boiler 1	March 11 – March 29	00:01 – 00:01	Scheduled Outage
	February 11 – March 1	12:00 – 14:04	Scheduled Outage
Boiler 2	March 2	16:28 – 17:02	Feed Stop
	March 2	20:03 – 22:35	Feed Stop

Instrumentation Summary and Field Conditions June 22, 2018

Figure 3-1: Looking North from Megawatt Drive at the Highway 401 and Highway 418 Construction (January 29, 2018)

Summary of Ambient Measurements June 22, 2018

4.0 SUMMARY OF AMBIENT MEASUREMENTS

The following sections provide summaries of the validated data and the validation completed on each parameter.

4.1 METEOROLOGICAL DATA

A summary of the maximum, minimum, arithmetic mean, and standard deviation of the hourly average meteorological parameters measured at the monitoring station for the January to March 2018 period are presented in **Table 4-1**.

Table 4-1: Summary of Hourly Meteorological Measurements – January to March 2018

Parameter		Crago Road Station (Predominately Downwind)	Units
Temperature	Maximum	9.5	С
	Minimum	-26.5	С
	Mean (January)	-6.4	С
	Mean (February)	-2.6	С
	Mean (March)	-0.9	С
	Mean (Period)	-3.3	С
	Standard Deviation	6.3	С
Rainfall	Maximum	5	mm
	Minimum	0.0	mm
	Mean (January)	0.05	mm
	Mean (February)	0.08	mm
	Mean (March)	0.03	mm
	Mean (Period)	0.05	mm
	Standard Deviation	0.29	mm
Relative Humidity	Maximum	98.8	%
	Minimum	21.9	%
	Mean (January)	73.3	%
	Mean (February)	75.3	%
	Mean (March)	62.9	%
	Mean (Period)	70.3	%
	Standard Deviation	15.7	%

Summary of Ambient Measurements June 22, 2018

Table 4-1: Summary of Hourly Meteorological Measurements – January to March 2018

Parameter		Crago Road Station (Predominately Downwind)	Units
Wind Speed ^A	Maximum	45.4	km/hr
	Minimum	0.0	km/hr
	Mean (January)	16.1	km/hr
	Mean (February)	14.1	km/hr
	Mean (March)	15.0	km/hr
	Mean (Period)	15.2	km/hr
	Standard Deviation	8.0	km/hr

Note:

A. Wind speed is measured at 7.5 m.

A wind rose showing directionality and speed is presented in **Figure 4-1**. The length of the radial barbs gives the total percent frequency of winds from the indicated direction, while portions of the barbs of different widths indicate the frequency associated with each wind speed category.

Winds over the three-month period occurred predominantly from northwesterly to northerly directions. Wind contribution from the southeast to southwest was low. Higher wind speeds occurred from west-southwesterly to west-northwesterly directions.

Summary of Ambient Measurements June 22, 2018

Figure 4-1: Wind Rose for January to March 2018

4.2 CAC AMBIENT AIR QUALITY MEASUREMENTS

A summary of the maximum, minimum, arithmetic mean, and standard deviation of the measured CAC pollutant concentrations are presented in **Table 4-2**. Also, presented in this table are the number of exceedances (if any occurred) of the relevant O. Reg. 419/05 Schedule 3 Standards, Ontario Ambient Air Quality Criteria (AAQC) or health-based criteria for each contaminant. All monitored contaminants were below their applicable criteria during the period January to March 2018.

Summary of Ambient Measurements June 22, 2018

Nitric oxide (NO) has no regulatory criteria as discussed in Section 4.2.2 below. There are both hourly and daily AAQCs for NO_2 which are based on health effects of NO_2 ; therefore, the AAQC were compared to measured NO_2 concentrations in this report.

The maximum concentration levels measured at the Crago Road Station in this quarter are compared in **Figure 4-2** to their respective air quality criteria along with the levels measured at the Courtice WPCP and Rundle Road Stations (Stantec, 2018).

Summary of Ambient Measurements June 22, 2018

Table 4-2: Summary of Ambient CAC Monitoring Data – January to March 2018

Pollutant	Averaging Period	MOECC and HHRA Health- Based Criteria		2	Crago Road Station (Predominately Downwind)	
		ppb	μg/m³	Description	Concentration (ppbv)	Concentration (μg/m³) ^c
SO ₂	1	250	690	Maximum	29.4	82.9
				Minimum	0.0	0.0
				Mean (January)	1.2	3.4
				Mean (February)	1.2	3.6
				Mean (March)	0.9	2.6
				Mean (Period)	1.1	3.2
				Standard Deviation	1.3	3.8
				# of Exceedances	0	0
	24	100	275	Maximum	8.0	22.5
				Minimum	0.0	0.0
				Mean (January)	1.2	3.4
				Mean (February)	1.2	3.6
				Mean (March)	0.9	2.6
				Mean (Period)	1.1	3.2
				Standard Deviation	0.8	2.2
				# of Exceedances	0	0

Summary of Ambient Measurements June 22, 2018

Table 4-2: Summary of Ambient CAC Monitoring Data – January to March 2018

Pollutant	Averaging Period	MOECC and HHRA Health- Based Criteria			Crago Road Station (Predominately Downwind)	
		ppb	μg/m³	Description	Concentration (ppbv)	Concentration (µg/m³) ^C
PM _{2.5}	24	N/A	28 ^A	Maximum	-	21.4
				Minimum	-	0.8
				Mean (January)	-	6.2
				Mean (February)	-	6.8
				Mean (March)	-	3.9
				Mean (Period)	-	5.6
				Standard Deviation	-	3.7
				# of Exceedances	-	N/A
NO ₂	1	200	400	Maximum	44.4	98.1
				Minimum	0.0	0.0
				Mean (January)	7.9	16.6
				Mean (February)	8.7	18.1
				Mean (March)	3.5	7.3
				Mean (Period)	6.6	13.9
				Standard Deviation	7.5	15.8
				# of Exceedances	0	0
	24	100	200	Maximum	21.2	45.2
				Minimum	0.1	0.1
				Mean (January)	7.9	16.6
				Mean (February)	8.7	18.1
				Mean (March)	3.6	7.4

Summary of Ambient Measurements June 22, 2018

Table 4-2: Summary of Ambient CAC Monitoring Data – January to March 2018

Pollutant	Averaging	MOECC and HHRA Health- Based Criteria		December 41 and	Crago Road Station (Pre	edominately Downwind)
Period	ppb	μg/m³	Description	Concentration (ppbv)	Concentration (μg/m³) ^c	
	-			Mean (Period)	6.7	13.9
				Standard Deviation	4.7	10.0
				# of Exceedances	0	0
				Maximum	62.6	82.1
				Minimum	0.0	0.0
			N/A	Mean (January)	2.3	3.1
	1	N/A N/A		Mean (February)	2.4	3.2
	1			Mean (March)	1.2	1.6
				Mean (Period)	2.0	2.6
				Standard Deviation	3.8	5.2
NO ^B				# of Exceedances	N/A	N/A
NO -				Maximum	16.2	21.3
				Minimum	0.0	0.0
				Mean (January)	2.3	3.1
	24	NI/A	NI/A	Mean (February)	2.4	3.2
	24	24 N/A N/A	IN/A	Mean (March)	1.2	1.6
				Mean (Period)	1.9	2.6
				Standard Deviation	2.0	2.7
				# of Exceedances	N/A	N/A

Summary of Ambient Measurements June 22, 2018

Table 4-2: Summary of Ambient CAC Monitoring Data – January to March 2018

Pollutant	Averaging	MOECC and HHRA Health- Based Criteria		December 1	Crago Road Station (Pre	edominately Downwind)
Period		ppb	μg/m³	Description	Concentration (ppbv)	Concentration (μg/m³) ^c
				Maximum	92.9	187.0
				Minimum	0.0	0.0
				Mean (January)	9.9	20.7
	1	NI/A	NI/A	Mean (February)	10.7	22.4
	I	N/A	N/A	Mean (March)	4.4	9.1
				Mean (Period)	8.3	17.2
				Standard Deviation	10.1	21.0
NO _X B				# of Exceedances	N/A	N/A
NOX				Maximum	33.9	69.2
				Minimum	0.2	0.4
				Mean (January)	9.9	20.7
	24	NI/A	N1/A	Mean (February)	10.7	22.4
24	24	N/A	N/A	Mean (March)	4.5	9.2
				Mean (Period)	8.3	17.3
				Standard Deviation	6.3	13.1
				# of Exceedances	N/A	N/A

Notes:

A. Canadian Ambient Air Quality Standards (CAAQS) for Respirable Particulate Matter (CCME, 2012). The Respirable Particulate Matter Objective is referenced to the 98th percentile over 3 consecutive years.

B. NO and NOx have no Ambient Air Quality Criteria.

C. The conversions from ppb to $\mu g/m^3$ are based on actual temperature and pressure. Therefore, the maximum concentration in ppb may not correspond to the same hour as the maximum concentration in $\mu g/m^3$.

Summary of Ambient Measurements June 22, 2018

Figure 4-2: Comparison of NO₂ and SO₂ Ambient Air Quality Monitoring Data to Applicable Criteria at the Stations

Detailed discussion for each measured contaminant is presented in the following sections.

4.2.1 Sulphur Dioxide (SO₂)

Data summaries are presented in **Appendix A** for sulphur dioxide for each month as well as time history plots of hourly and 24-hour average SO_2 concentrations. For hourly and 24-hour averages, the Ontario AAQCs of 250 ppb and 100 ppb (690 μ g/m³ and 275 μ g/m³) are shown with blue lines on the respective plot. As shown in these figures, measured ambient SO_2 concentrations at the station were well below the Ontario AAQCs.

The maximum hourly and 24-hour average SO_2 concentrations measured at the Crago Road Station during January to March 2018 were 29.4 and 8.0 ppb (82.9 and 22.5 μ g/m³) respectively, which are 12% and 8% of the applicable 1-hour and 24-hour Ontario AAQCs.

A pollution rose of hourly average SO₂ concentrations measured at the Crago Road Station is presented in **Figure 4-3**. The pollution rose plot presents measured hourly average contaminant concentrations versus measured wind direction (over 10° wind sectors). Concentrations less than 2 ppb, which account for 88% of the measurements, have been removed from the plot to allow the distribution of maximum levels to be more clearly shown in the figure. In this period, the Crago Road Station generally measured higher hourly concentrations for winds blowing from easterly directions.

Summary of Ambient Measurements June 22, 2018

The maximum hourly average concentration of SO₂ occurred on January 22, 2018 at 22:00, with winds blowing from the east for which St. Mary's Cement and a CN railway was upwind. The maximum 24-hour average SO₂ concentration also occurred for winds blowing from east (the direction of St. Mary's Cement and a CN railway) on January 23, 2018.

Figure 4-3: Pollution Rose of Measured Hourly Average SO₂ Concentrations – January to March 2018

Summary of Ambient Measurements June 22, 2018

4.2.2 Nitrogen Dioxide (NO₂)

Nitrogen oxides (NO_x) are almost entirely made up of nitric oxide (NO) and nitrogen dioxide (NO₂). Together, they are often referred to as NO_x. Most NO₂ in the atmosphere is formed by the oxidation of NO, which is emitted directly by combustion processes, particularly those at high temperature and pressure. Exposure to both NO and NO₂ can result in adverse health effects to an exposed population. NO₂ is the regulated form of NO_x. Similar to other jurisdictions (e.g., Alberta Environment, World Health Organization), the O. Reg. 419/05 Schedule 3 Standards for NO_x are based on health effects of NO₂, as health effects are seen at much lower concentrations of NO₂ than NO. In this report, because NO₂ is the regulated form of NO_x, the AAQC were compared to measured NO₂ concentrations.

Data summaries for nitrogen dioxide are presented in **Appendix B** for each month as well as time history plots of the hourly and 24-hour average NO₂ concentrations. For the hourly and 24-hour averages, the Ontario AAQCs of 200 ppb and 100 ppb (400 μ g/m³ and 200 μ g/m³) are shown with blue lines on the respective plot. As shown in these figures, measured ambient NO₂ concentrations were well below the Ontario AAQCs.

The maximum measured hourly and 24-hour average concentrations were 44.4 and 21.2 ppb (98.1 and 45.2 μg/m³), which are 22% and 21% respectively, of the applicable 1-hour and 24-hour Ontario AAQCs.

A pollution rose of measured hourly average NO₂ concentrations is presented in **Figure 4-4**. Concentrations less than 25 ppb, which account for 89% of the measurements, have been removed from the plot to allow the distribution of maximum levels to be more clearly shown in the figure. Higher measured hourly average concentrations generally occurred for winds blowing from northerly directions.

The highest measured hourly average NO₂ concentration occurred on February 12, 2018 at 23:00. During this hour, winds were blowing from a north-northwesterly direction for which Highway 401 and Highway 418 construction activities were upwind. The highest 24-hour average NO₂ concentration occurred when winds were blowing from the northwest on January 17, 2018 for which agricultural fields, Highway 401 and Highway 418 construction activities were upwind.

Summary of Ambient Measurements June 22, 2018

Figure 4-4: Pollution Rose of Measured Hourly Average NO₂ – January to March 2018

Summary of Ambient Measurements June 22, 2018

4.2.3 Nitrogen Oxides (NO_X)

Data summaries for each month are presented in **Appendix C** for nitrogen oxides as well as time history plots of the hourly and 24-hour average NO_X concentrations. The maximum hourly NO_X concentration measured at the Crago Road Station was 92.9 ppb (187.0 μ g/m³), and the maximum measured 24-hour average NO_X concentration was 33.9 ppb (69.2 μ g/m³). See **Table 4-2** for detailed results.

A pollution rose of measured hourly average NO_x concentrations is presented in **Figure 4-5**. Concentrations less than 20 ppb, which account for 84% of the measurements, have been removed from the plot to allow the distribution of maximum levels to be more clearly shown. In **Figure 4-5**, higher measured hourly average NO_x concentrations typically occurred for winds blowing from easterly directions.

The highest measured hourly average NO_x concentration occurred for a wind blowing from the east (from the direction of St. Mary's Cement and a CN railway) on January 23, 2018 at 00:00, the maximum 24-hour average NO_x concentration was also measured on January 23, 2018 when winds were blowing from the east.

Summary of Ambient Measurements June 22, 2018

Figure 4-5: Pollution Rose of Measured Hourly Average NO_X Concentrations – January to March 2018

Summary of Ambient Measurements June 22, 2018

4.2.4 Particulate Matter Smaller than 2.5 Microns (PM_{2.5})

Data summaries and time history plots of measured 24-hour average concentrations are presented in **Appendix D** for PM_{2.5}.

The maximum measured 24-hour average PM_{2.5} concentration was 21.4 μ g/m³ during this quarter. It should be noted that an exceedance of the 24-hour CAAQS for PM_{2.5} requires the average of the 98th percentile levels in each of three consecutive calendar years to be greater than 28 μ g/m³. The PM_{2.5} measurements in this report consist of 3 months of data; therefore, there is insufficient data to determine with any certainty if exceedances of the CAAQS would occur.

A pollution rose showing the measured 24-hour average ambient PM_{2.5} concentrations versus direction is shown in **Figure 4-6**. Concentrations less than 10 μ g/m³, which account for 80% of the measurements, have been removed from the plot to allow the distribution of maximum levels to be more clearly shown in the figure. Higher measured concentrations typically occurred from northwesterly to northerly directions.

The highest measured 24-hour average PM_{2.5} concentration occurred on February 9, 2018 with winds originating from the northwest. For this wind direction, agricultural fields, Highway 401, and Highway 418 construction activities were upwind of the Crago Road Station.

Summary of Ambient Measurements June 22, 2018

Figure 4-6: Pollution Rose of Measured 24-Hour Average PM_{2.5} Concentrations – January to March 2018

Summary of Ambient Measurements June 22, 2018

4.3 AMBIENT TSP / METALS CONCENTRATIONS

A summary of the maximum and minimum ambient TSP and metals concentrations (for a daily averaging period) are presented in **Table 4-3**. A detailed summary of the concentrations measured for each sample is presented in **Appendix F**.

The maximum measured concentrations of TSP and all metals with MOECC AAQCs were below their applicable 24-hour criteria (shown in **Table 4-3** below).

 Table 4-3:
 Summary of Measured Ambient TSP/Metals Concentrations

			HHRA		Results	esults	
Contaminant	Units	MOECC Criteria	Health Based Criteria	Maximum	Minimum	No. of Exceedances	
Particulate	μg/m³	120	120	31	10	0	
Total Mercury (Hg)	μg/m³	2	2	4.78E-05	6.28E-06 A	0	
Aluminum (Al)	μg/m³	4.8	-	1.40E-01	1.74E-02 A	0	
Antimony (Sb)	μg/m³	25	25	3.92E-03 A	3.14E-03 A	0	
Arsenic (As)	μg/m³	0.3	0.3	2.35E-03 A	1.88E-03 A	0	
Barium (Ba)	μg/m³	10	10	6.51E-03	2.76E-03	0	
Beryllium (Be)	μg/m³	0.01	0.01	3.92E-04 A	3.14E-04 A	0	
Bismuth (Bi)	μg/m³	-	-	2.35E-03 A	1.88E-03 A	-	
Boron (B)	μg/m³	120	-	2.35E-03 A	1.88E-03 A	0	
Cadmium (Cd)	μg/m³	0.025	0.025	7.84E-04 A	6.28E-04 A	0	
Chromium (Cr)	μg/m³	0.5	-	1.96E-03 A	1.57E-03 A	0	
Cobalt (Co)	μg/m³	0.1	0.1	7.84E-04 ^A	6.28E-04 A	0	
Copper (Cu)	μg/m³	50	-	1.79E-02	1.64E-03 A	0	
Iron (Fe)	μg/m³	4	-	3.12E-01	1.04E-01	0	
Lead (Pb)	μg/m³	0.5	0.5	5.37E-03	9.42E-04 A	0	
Magnesium (Mg)	μg/m³	-	-	1.83E-01	3.96E-02	-	
Manganese (Mn)	μg/m³	0.4	-	9.80E-03	2.76E-03	0	
Molybdenum (Mo)	μg/m³	120	-	1.18E-03 A	9.42E-04 A	0	
Nickel (Ni)	μg/m³	0.2	-	1.18E-03 A	9.42E-04 A	0	
Phosphorus (P)	μg/m³	-	-	1.84E-02	7.85E-03 A	-	
Selenium (Se)	μg/m³	10	10	3.92E-03 A	3.14E-03 A	0	
Silver (Ag)	μg/m³	1	1	1.96E-03 A	1.57E-03 A	0	
Strontium (Sr)	μg/m³	120	-	6.21E-03	1.32E-03	0	
Thallium (TI)	μg/m³	-	-	3.92E-03 A	3.14E-03 A	-	
Tin (Sn)	μg/m³	10	10	3.92E-03 A	3.14E-03 A	0	
Titanium (Ti)	μg/m³	120	-	9.28E-03	3.14E-03 A	0	

Summary of Ambient Measurements June 22, 2018

Table 4-3: Summary of Measured Ambient TSP/Metals Concentrations

			HHRA	Results			
Contaminant	Units	Units MOECC Health Criteria Based Criteria		Maximum	Minimum	No. of Exceedances	
Vanadium (V)	μg/m³	2	1	1.96E-03 ^A	1.57E-03 A	0	
Zinc (Zn)	μg/m³	120	-	4.76E-02	7.03E-03	0	
Zirconium (Zr)	μg/m³	20	-	1.96E-03 ^A	1.57E-03 ^A	0	
Total Uranium (U)	μg/m³	1.5	-	1.76E-04 ^A	1.41E-04 ^A	0	

Note:

4.4 AMBIENT PAH CONCENTRATIONS

A summary of the maximum and minimum ambient PAH concentrations (for a daily averaging period) are presented in **Table 4-4**. In this summary, both individual PAHs as well as a total PAH concentration are reported. A detailed summary of the concentrations measured for each sample is presented in **Appendix G**.

The maximum measured concentrations of PAHs with MOECC AAQCs were below their applicable 24-hour criteria, with the exception of four (4) benzo(a)pyrene (B(a)P) measurements which were collected on January 2, 14, 26 and February 7, 2018. The Ontario B(a)P AAQC level was exceeded in these four samples by a range of 18% to 108%. However, all four samples were well below the MOECC Schedule 6 Upper Risk Threshold, the MOECC O. Reg. 419/05 24-hour average guideline, and the HHRA health-based criteria. On these four sample days (January 2, 14, 26 and February 7), winds were blowing from the west, east, and south-southeast respectively. For winds blowing from the west, agricultural fields, the DYEC and the CN rail line are upwind, for easterly winds St. Mary's Cement and the CN railway are upwind. For south-southeasterly winds agricultural fields and the CN rail line are upwind.

Based on the air quality assessments completed during the Environmental Assessment Study and the Environmental Compliance Approval application for the DYEC, the facility will not be a significant contributor of B(a)P. Therefore, ambient B(a)P levels are not expected to be substantially impacted by the operation of the DYEC.

B(a)P is a byproduct of a wide variety of natural and man-made combustion processes (including motor vehicles, natural gas, wood, refuse, oil, forest fires, etc.) and is widely present in the environment (including being present in soil and water).

The current Ontario 24-hour B(a)P AAQC was introduced in 2011 and levels above this AAQC are commonly measured throughout Ontario. B(a)P measurement data available from the National Air Pollutant Surveillance (NAPS) network for Ontario in 2013 (for Simcoe, Toronto, and Hamilton), all had maximum levels above the AAQC (varying between 136% - 6,220% of the criteria). Available NAPS data for Ontario in 2012 (for Windsor, Toronto, and Hamilton) showed maximum B(a)P levels at these stations

A. Measured concentration was less than the laboratory method detection limit.

Summary of Ambient Measurements June 22, 2018

that varied between 716% - 2,920% of the criteria. In 2011, NAPS data available for seven Ontario stations (Windsor, Toronto, Etobicoke, Hamilton, Simcoe, Pt. Petrie, and Burnt Island) showed exceedances at six of the seven stations, with only the remote Burnt Island Ontario station reporting a maximum level below the MOECC AAQC. In 2010, all of these stations, including the Burnt Island station, measured B(a)P levels above the AAQC.

Table 4-4: Summary of Measured Ambient PAH Concentrations

			HHRA		Results		
Contaminant	Units	MOECC Criteria	Health Based Criteria	Maximum	Minimum	No. of Exceedances	
		0.05 ^A				4	
Benzo(a)pyrene	ng/m³	5 ^B	1	1.04E-01	1.44E-02	0	
		1.1 ^C				0	
1-Methylnaphthalene	ng/m³	12,000	1	4.56E+00	8.64E-01	0	
2-Methylnaphthalene	ng/m³	10,000	1	7.13E+00	1.37E+00	0	
Acenaphthene	ng/m³	1	1	1.19E+00	9.00E-02 A	-	
Acenaphthylene	ng/m³	3500	-	5.02E-01	7.61E-02 A	0	
Anthracene	ng/m³	200	-	1.32E-01 A	7.22E-02 A	0	
Benzo(a)anthracene	ng/m³	-	-	1.32E-01 A	7.22E-02 A	-	
Benzo(a)fluorene	ng/m³	-	-	2.64E-01 A	1.44E-01 A	-	
Benzo(b)fluoranthene	ng/m³	-	-	3.06E-01	7.61E-02 A	-	
Benzo(b)fluorene	ng/m³	-	-	2.64E-01 A	1.44E-01 A	-	
Benzo(e)pyrene	ng/m³	-	-	2.64E-01 A	1.44E-01 A	-	
Benzo(g,h,i)perylene	ng/m³	-	-	1.32E-01 A	7.22E-02 A	-	
Benzo(k)fluoranthene	ng/m³	-	-	1.32E-01 A	7.22E-02 A	-	
Biphenyl	ng/m³	-	-	2.72E+00	6.48E-01	-	
Chrysene	ng/m³	-	-	3.12E-01	7.61E-02 A	-	
Dibenz(a,h)anthracene D	ng/m³	-	-	1.32E-01 A	7.22E-02 A	-	
Dibenzo(a,c)anthracene + Picene	ng/m³	-	-	2.64E-01 A	8.51E-02 A	-	
Fluoranthene	ng/m³	-	-	9.01E-01	9.00E-02 A	-	
Indeno (1,2,3-cd)pyrene	ng/m³	-	-	1.32E-01 A	7.22E-02 A	-	
Naphthalene	ng/m³	22,500	22,500	3.17E+01	5.26E+00	0	
o-Terphenyl	ng/m³	-	-	2.64E-01 A	1.44E-01 ^A	-	
Perylene	ng/m³	-	-	2.64E-01 A	1.44E-01 ^A	-	
Phenanthrene	ng/m³			2.59E+00	7.13E-01	-	

Summary of Ambient Measurements June 22, 2018

Table 4-4: Summary of Measured Ambient PAH Concentrations

			HHRA	Results		
Contaminant	Units	MOECC Criteria	Health Based Criteria	Maximum	Minimum	No. of Exceedances
Pyrene	ng/m³	-	-	6.18E-01	8.68E-02 A	-
Tetralin	ng/m³	-	-	2.04E+00	7.56E-01	-
Total PAH ^E	ng/m³	-	-	5.34E+01	1.18E+01	-

- A. Ontario Ambient Air Quality Criteria (AAQC). The AAQC for benzo(a)pyrene (B(a)P) is a surrogate for PAHs.
- B. O. Reg. 419/05 Schedule 6 Upper Risk Thresholds.
- C. O. Reg. 419/05 24 Hour Guideline
 D. Based on laboratory analyses, dibenzo(a,c)anthracene co-elutes with dibenz(a,h)anthracene. Picene elutes after dibenz(a.h)anthracene
- E. The reported total PAH is the sum of all analyzed PAH species.
- F. Measured concentration was less than the laboratory method detection limit.

4.5 AMBIENT DIOXINS AND FURANS CONCENTRATIONS

A summary of the maximum and minimum ambient dioxins and furans concentrations (for a daily averaging period) are presented in Table 4-5. In this summary, both individual dioxin and furan concentrations (pg/m³) as well as the total toxic equivalency concentration (TEQ) are reported. A detailed summary of the concentrations measured for each sample is presented in Appendix H.

The maximum measured toxic equivalent dioxin and furan concentration was below the applicable 24hour Ontario AAQC of 0.1 pg TEQ/m³ (as shown in **Table 4-5**).

Table 4-5: Summary of Measured Ambient Dioxins and Furans Concentrations

			HHRA	Results		
Contaminant	Units	MOECC Criteria	Health Based Criteria	Maximum	Minimum	No. of Exceedances
2,3,7,8-Tetra CDD *	pg/m³			6.24E-03 A	5.06E-03 A	
1,2,3,7,8-Penta CDD	pg/m³			1.36E-02	5.28E-03 A	
1,2,3,4,7,8-Hexa CDD	pg/m³			1.62E-02	5.46E-03 A	
1,2,3,6,7,8-Hexa CDD	pg/m³			2.89E-02	5.79E-03 A	
1,2,3,7,8,9-Hexa CDD	pg/m³			5.03E-02	7.94E-03 A	
1,2,3,4,6,7,8-Hepta CDD	pg/m³	_	-	3.50E-01	7.45E-02	-
Octa CDD	pg/m³			6.39E-01	1.09E-01 A	
Total Tetra CDD	pg/m³			6.24E-03 A	5.28E-03 A	
Total Penta CDD	pg/m³			4.25E-02	5.28E-03 A	
Total Hexa CDD	pg/m³			2.25E-01	3.12E-02	
Total Hepta CDD	pg/m³			6.27E-01	1.75E-01	

Summary of Ambient Measurements June 22, 2018

Table 4-5: Summary of Measured Ambient Dioxins and Furans Concentrations

			HHRA	Results		
Contaminant	Units	MOECC Criteria	Health Based Criteria	Maximum	Minimum	No. of Exceedances
2,3,7,8-Tetra CDF **	pg/m³			2.05E-02	4.41E-03 A	
1,2,3,7,8-Penta CDF	pg/m³			6.80E-03 A	4.33E-03 A	
2,3,4,7,8-Penta CDF	pg/m³			6.80E-03 A	4.48E-03 A	
1,2,3,4,7,8-Hexa CDF	pg/m³			6.09E-03 A	5.28E-03 A	
1,2,3,6,7,8-Hexa CDF	pg/m³			5.95E-03 A	4.33E-03 A	
2,3,4,6,7,8-Hexa CDF	pg/m³			6.66E-03 A	5.06E-03 A	
1,2,3,7,8,9-Hexa CDF	pg/m³			7.37E-03 A	5.92E-03 A	
1,2,3,4,6,7,8-Hepta CDF	pg/m³			3.12E-02	4.76E-03 A	
1,2,3,4,7,8,9-Hepta CDF	pg/m³			9.07E-03 A	5.46E-03 A	
Octa CDF	pg/m³			1.60E-02	5.46E-03 A	
Total Tetra CDF	pg/m³			4.57E-02	4.41E-03 A	
Total Penta CDF	pg/m³			9.54E-03 A	5.28E-03 A	
Total Hexa CDF	pg/m³			1.82E-02	5.45E-03 A	
Total Hepta CDF	pg/m³			3.12E-02	5.11E-03 A	
TOTAL TOXIC	TEO/3	0.1		2.705.02	2.045.02	0
EQUIVALENCY B	pg TEQ/m ³	1 ^C	-	3.78E-02	2.04E-02	0

Notes:

A. Measured concentration was less than the laboratory method detection limit.

B. Total Toxicity Equivalent (TEQ) concentration contributed by all dioxins, furans and dioxin-like PCBs calculated as per O. Reg. 419/05 methodology using corresponding WHO₂₀₀₅ toxic equivalency factors (TEFs) and a value of half the minimum detection limit (MDL) substituted for concentrations less than the MDL.

C. O. Reg. 419/05 Schedule 6 Upper Risk Thresholds

^{*} CDD - Chloro Dibenzo-p-Dioxin, ** CDF - Chloro Dibenzo-p-Furan

Conclusions June 22, 2018

5.0 CONCLUSIONS

This quarterly report provides a summary of the ambient air quality data collected at the Crago Road monitoring station for the period January to March 2018.

The following observations and conclusions were made from a review of the measured ambient air quality monitoring data:

- 1. Measured levels of NO₂, SO₂ and PM_{2.5} were below the applicable O. Reg. 419/05 Standards or human health risk assessment (HHRA) health-based criteria presented in **Table 2-1** of this report.
- 2. Since the Canadian Ambient Air Quality Standard (CAAQS) for PM_{2.5} is based on a 98th percentile level over 3 years, whereas the PM_{2.5} measurement period at the Crago Road Station for this quarterly report was three months, there was insufficient data collected to determine with any certainty if exceedances of the CAAQS would occur. Therefore, no comparison of the measured PM_{2.5} data during this quarter to the CAAQS was conducted for this report, as it would not be scientifically accurate or representative.
- 3. The maximum measured concentrations of TSP and all metals with Ministry of Environment and Climate Change (MOECC) air quality Standards were below their applicable Standards (as presented in **Table 2-2** in this report).
- 4. The maximum measured concentrations of PAHs with MOECC air quality Standards were below their applicable criteria shown in **Table 2-3**, with the exception of the 24-hour benzo(a)pyrene (B(a)P) concentration in four (4) samples which exceeded the applicable Ontario Ambient Air Quality Criteria (AAQC) by a range of 18% to 108%. The current Ontario 24-hour B(a)P AAQC was introduced in 2011 and levels above this AAQC are commonly measured throughout Ontario. The measurements were however, well below the MOECC Schedule 6 Upper Risk Threshold, the MOECC O. Reg. 419/05 24-hour average guideline, and the HHRA health-based criterion.
- 5. The maximum measured toxic equivalent dioxin and furan concentration was below the applicable Standard presented in **Table 2-3**.

In summary, the measured concentrations of the air contaminants monitored were below their applicable MOECC criteria during the monitoring period between January and March 2018, with the exception of four (4) benzo(a)pyrene samples. All measured levels of the monitored contaminants were below their applicable HHRA health-based criteria.

(

References June 22, 2018

6.0 REFERENCES

- Canadian Council of Ministers of the Environment (CCME), (2007). Guidance Document on Achievement Determination. Canada-Wide Standards for Particulate Matter and Ozone. Revised (PN1391) (978-1-896997-74-2 PDF).
- Canadian Council of Ministers of the Environment (CCME), (2012). Guidance Document on Achievement Determination. Canadian Ambient Air Quality Standards for Fine Particulate Matter and Ozone (PN 1483) (978-1 896997-91-9 PDF).
- Jacques Whitford, (2009). Final Environmental Assessment, December 4, 2009.
- Ontario Minister of the Environment (MOECC), (2010). Environmental Assessment Act, Section 9. Notice of Approval to Proceed with the Undertaking. Re: The Amended Environmental Assessment for Durham and York Residual Waste Study (EA File No: 04-EA-02-08).
- Ontario Ministry of the Environment (MOECC), (2012a). Standards Development Branch, Ontario's Ambient Air Quality Criteria, April 2012. (PIBs 6570e01).
- Ontario Ministry of the Environment and Climate Change (MOECC), (2018). Air Contaminants Benchmarks List: Standards, Guidelines and Screening Levels for Assessing Point of Impingement Concentrations of Air Contaminants (ACB List), April 27, 2018.
- Stantec Consulting Limited, (2009). Final Environmental Assessment, Appendix C12: Site Specific Human Health and Ecological Risk Assessment Technical Study Report, December 4, 2009.
- Stantec Consulting Limited, (2012). Ambient Air Quality Monitoring Plan Durham York Residual Waste Study, May 8, 2012.
- Stantec Consulting Limited, (2018). Quarterly Ambient Air Quality Monitoring Report for the Durham York Energy Centre January to March 2018, May 10, 2018.

APPENDIX A

SO₂ Data Summaries and Time History Plots

											Ja	inuary	ago Road 2018																		
	Hour										ppb)																			
Day		0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>250	Days>100
	1	0.4	0.4	0.4	0.4	0.5	0.3	0.3	0.4	0.5	1.0	1.1	0.8	0.6	0.5	0.5	0.5	0.5	0.5	1.0	1.5	1.7	1.3	0.8	0.8	24	1.7	0.3	0.7	0	0
	2	0.9	0.8	0.7	0.7	0.6	0.6	0.9	0.8	0.6	0.7	0.9	0.9	1.1	1.0	0.8	0.9	1.0	0.9	0.8	1.0	1.2	1.1	0.9	0.9	24	1.2	0.6	0.9	0	0
	4	0.9 1.2	0.8 1.3	0.9 1.4	0.8 1.5	0.8 1.4	1.2 1.1	1.0 1.0	1.2 0.8	1.1 0.8	1.4 0.8	1.1 0.8	1.1 0.7	1.4 0.6	1.5 0.8	1.5 0.8	1.6 0.8	1.5 0.8	1.6 0.7	1.5 0.7	1.4 0.6	1.2 0.7	1.1 0.6	1.2 0.5	1.1 0.5	24 24	1.6 1.5	0.8 0.5	1.2 0.9	0	0
	5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.7	0.5	0.5	0.6	0.8	1.2	0.8	0.7	1.0	0.8	0.7	0.8	1.2	24	1.2	0.2	0.6	0	0
	6	1.8	1.4	0.8	0.6	0.6	0.6	0.6	0.8	1.0	1.1	1.1	1.0	0.8	0.6	0.6	0.5	0.6	0.5	0.5	0.4	0.5	0.5	0.5	0.5	24	1.8	0.4	0.7	0	0
	7	0.5	0.5	0.5	0.5	0.5	0.7	8.0	1.2	1.9	1.3	0.8	1.2	1.0	0.7	0.8	0.8	1.0	1.1	1.2	1.5	1.9	2.0	1.9	2.6	24	2.6	0.5	1.1	0	0
	8	2.8	3.0	1.5	1.4	1.3	1.3	1.1	1.0	1.0	0.9	1.0	1.2	1.2	1.3	1.1	0.9	8.0	0.8	0.9	0.8	0.9	0.7	0.9	0.8	24	3.0	0.7	1.2	0	0
	9	0.8	0.7	1.0	0.8	0.6	0.5	0.6	0.6	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.6	0.5	0.5	0.6	0.5	0.5	24	1.0	0.5	0.6	0	0
1	1	0.5 0.8	0.6 0.6	0.6 0.8	0.7 0.8	0.6 0.8	0.5 0.8	0.7 0.8	0.7 0.8	0.8 0.9	0.8 1.0	0.8 1.1	0.7 0.9	0.8 1.3	0.8 1.1	0.8 1.1	0.7 1.3	0.7 1.5	0.7 0.9	1.9 0.8	1.7 0.8	0.9 0.8	0.7 0.9	0.6 0.8	0.7 0.9	24 24	1.9 1.5	0.5 0.6	0.8	0 0	0
1	2	0.8	0.9	0.8	0.9	0.8	0.8	0.8	0.8	1.0	0.9	0.8	0.3	0.8	0.8	0.8	0.8	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	24	1.0	0.6	0.8	0	0
1	3	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.6	0.6	0.5	0.5	0.5	24	0.6	0.5	0.6	0	0
1	4	0.5	0.5	0.5	0.5	0.4	0.3	0.4	0.4	0.4	0.7	1.4	2.4	2.3	1.1	0.4	1.0	0.8	0.5	0.5	0.6	0.8	0.7	0.8	0.7	24	2.4	0.3	0.8	0	0
1	5	0.6	0.6	0.6	0.6	0.5	0.5	1.2	0.8	0.5	0.5	0.5	0.5	1.6	2.7	1.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	24	2.7	0.5	0.8	0	0
1	6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.9	1.4	2.4	2.4	2.5	2.6	2.0	1.4	1.2	1.4	1.1	0.8	0.9	0.8	24	2.6	0.6	1.2	0	0
1	γ	0.8 1.1	0.9 1.0	0.9 1.2	1.5 1.3	1.8 1.3	1.7 1.4	1.3 1.4	1.1 1.3	1.3 1.4	1.3 1.3	1.1 1.3	1.4 1.3	0.9 1.3	1.0 1.4	0.8 1.2	0.8 1.1	1.1 1.1	1.3 1.1	2.1 1.2	1.6 1.1	1.2 1.3	1.2 1.2	1.3 1.5	1.3 1.4	24 24	2.1 1.5	0.8 1.0	1.2 1.3	0	0
1	9	1.3	1.3	1.3	1.4	1.5	1.6	1.6	1.6	1.6	1.6	2.2	2.5	2.5	2.4	2.1	1.6	1.4	1.5	1.8	3.0	2.2	2.1	1.6	1.6	24	3.0	1.3	1.8	0	0
2	0	1.4	1.3	1.7	2.1	1.8	1.6	1.5	1.6	1.6	1.8	1.7	1.9	2.0	1.9	1.8	1.9	1.4	1.1	1.1	1.1	1.1	1.2	1.6	1.6	24	2.1	1.1	1.6	0	0
2	1	1.5	1.9	1.9	1.5	1.2	1.3	1.5	1.1	1.1	1.4	2.4	4.4	3.0	2.8	3.0	2.3	2.0	1.5	1.3	1.2	1.0	1.1	1.1	1.0	24	4.4	1.0	1.8	0	0
2	2	0.9	0.9	0.9	1.3	0.9	0.8	2.0	1.7	2.1	1.7	3.6	3.3	2.5	2.2	0.9	0.9	0.9	4.9	7.8	12.0	8.9	16.0	29.4	10.7	24	29.4	0.8	4.9	0	0
2	3	24.8 0.9	15.2	17.3 1.0	20.2 1.0	2.6	1.4 0.8	1.3 0.6	1.1 0.6	1.3 0.6	1.2	1.1 0.6	1.4 0.5	1.5 0.6	1.2 0.6	1.2 0.5	1.1 0.6	1.4	1.2 0.6	1.0 0.6	1.1 0.5	1.7 0.6	1.8 0.5	1.1 0.6	1.1 0.6	24 24	24.8	1.0 0.5	4.3 0.7	0	0
2	5	0.9	1.0 0.6	0.6	0.6	1.2 0.6	0.5	0.5	0.5	0.6	0.6 0.5	1.1	1.2	1.1	1.4	1.2	0.8	0.6 0.6	0.6	0.8	0.5	0.6	0.5	0.6	0.6	24	1.2 1.4	0.5	0.7	0	0
2	6	0.6	0.5	0.6	0.7	0.6	0.7	0.8	0.6	0.6	0.6	0.9	0.5	0.9	1.1	1.0	1.0	0.8	0.7	1.3	4.4	2.1	1.1	0.9	0.9	24	4.4	0.5	1.0	0	0
2	7	1.1	1.0	0.9	0.9	1.1	1.1	1.1	1.1	0.9	0.9	0.9	0.9	1.0	1.2	1.1	1.0	0.7	0.8	0.9	0.9	0.8	0.8	0.8	0.8	24	1.2	0.7	0.9	0	0
2	8	0.9	0.7	0.7	1.0	1.0	0.6	0.6	0.7	0.8	0.8	0.8	0.9	0.9	1.7	1.0	0.7	0.7	0.6	0.5	0.5	0.5	0.6	0.6	0.7	24	1.7	0.5	0.8	0	0
2	9	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.6	0.6	0.7	0.7	0.6	0.6	0.6	0.6	0.6	0.4	0.5	0.6	0.6	0.6	24	0.7	0.4	0.6	0	0
3	0	0.6 0.8	0.6 0.7	0.6 0.6	0.6 0.6	0.6 0.7	0.6 0.6	0.6 0.8	0.6 0.9	0.6 0.8	0.6 0.8	0.5 C	0.5 C	0.6 1.0	0.5 0.9	0.5 1.0	0.6 1.1	0.6 1.1	0.6 1.1	0.6 1.4	0.6 1.5	0.8 1.3	0.7 1.1	0.6 1.2	0.9 1.4	24 22	0.9 1.5	0.5 0.6	0.6 1.0	0	0
Count	1	31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	31	31	742	1.3	0.0	1.0	0	U
Maximum	1	24.8	15.2	17.3	20.2	2.6	1.7	2.0	1.7	2.1	1.8	3.6	4.4	3.0	2.8	3.0	2.6	2.0	4.9	7.8	12.0	8.9	16.0	29.4	10.7	24					
Minimum		0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.4	0.2	0.5	0.5	0.5	0.4	0.5	0.5	0.5	0.5	22					
Averaage		1.7	1.4	1.4	1.5	0.9	0.8	0.9	0.9	0.9	0.9	1.1	1.2	1.2	1.2	1.1	1.0	1.0	1.0	1.2	1.5	1.3	1.4	1.8	1.3						
Percentile	es		10		20		30		40		50		60		70		80		90		95		99		100			Maxim	um Hourly		29.4
Data			0.5		0.6		0.6		0.7		0.8		1.0		1.1		1.3		1.7		2.2		10.0		29.4				mum Daily ly Average		4.9 1.2
Notes		C -	Calibration	/ Span Cyc	cle NA	A - No Data	Available	T -	Test	A-	MOE Audit	M	- Equipment M	alfunction /	[/] Down	R -	Rate of Ch	nange													

												bruary	ago Road 2018																		
	Hour																														
Day		0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>250	Days>100
	1	1.3	1.6	1.8	1.8	1.6	2.1	2.1	2.1	2.6	2.5	2.7	2.4	1.6	1.5	1.1	1.0	0.9	0.9	8.0	0.8	0.8	0.8	0.8	0.8	24	2.7	0.8	1.5	0	0
	2	0.8	0.8	0.8	0.8	0.8	0.7	0.7	0.8	0.7	0.6	0.6	1.0	0.9	1.1	1.2	1.1	1.1	0.8	0.8	0.8	0.8	1.0	1.0	0.9	24	1.2	0.6	0.9	0	0
	3	0.8	0.8	0.8	0.7	0.8	0.8	0.6	0.8	1.1	1.3	1.2	1.2	1.3	1.3	1.1	1.2	0.9	0.9	1.1	1.1	1.1	1.1	1.1	1.2	24	1.3	0.6	1.0	0	0
	4	1.3 0.8	1.3 0.8	1.7 1.6	2.6 1.9	2.0 7.0	1.3 4.0	1.1 4.2	1.1 3.1	1.5 2.3	1.4 1.7	1.4 1.3	1.5 1.3	1.0 0.9	1.0 0.9	1.2 0.8	1.3 0.8	1.2 0.8	1.1 1.3	1.1 1.4	0.9 1.4	0.9 1.3	0.9 1.5	0.9 1.5	0.8 1.7	24 24	2.6 7.0	0.8 0.8	1.3 1.8	0	0
	6	1.4	1.5	1.5	1.2	1.2	1.8	1.7	2.4	2.5	2.4	1.5	1.5	1.5	1.2	1.0	0.8	0.8	0.8	0.8	0.8	0.7	0.6	0.6	0.8	24	2.5	0.6	1.3	0	0
	7	0.7	0.7	0.7	0.7	0.8	0.9	0.9	0.8	0.8	0.9	0.9	0.8	0.8	0.9	1.0	0.8	0.9	0.9	0.8	0.8	0.8	0.8	0.8	1.0	24	1.0	0.7	0.8	0	0
	8	0.8	0.7	0.7	0.7	0.6	0.8	0.7	0.7	0.8	0.7	0.8	1.2	1.0	1.5	1.7	1.4	0.8	0.7	0.9	1.7	1.3	1.1	1.2	1.2	24	1.7	0.6	1.0	0	0
	9	0.9	0.9	0.8	0.9	0.9	0.9	1.0	1.0	0.1	2.0	1.8	1.2	1.1	0.9	1.0	1.1	0.8	0.9	0.8	0.9	0.9	0.9	0.9	0.8	24	2.0	0.1	1.0	0	0
1	0	0.8	0.9	0.8	0.9	0.9	0.8	0.9	0.8	0.9	0.9	0.8	0.9	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	24	0.9	0.8	0.8	0	0
1	1	0.8	0.7	8.0	0.8	0.8	0.8	0.9	2.5	1.1	1.9	18.0	7.3	2.2	8.2	5.9	5.4	2.6	1.1	1.1	1.0	1.0	0.9	0.9	0.9	24	18.0	0.7	2.8	0	0
1	2	0.8	0.8	0.9	0.9	0.8	0.9	0.8	0.9	0.9	0.9	0.8	0.8	0.9	0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.6	0.7	0.8	1.1	24	1.1	0.6	0.8	0	0
1	3	0.8	0.5	0.5	0.6	0.6	0.5	0.6	0.6	0.6	0.8	0.8	0.8	0.6	0.6	0.6	0.8	0.9	0.8	0.7	0.8	0.9	0.8	0.9	1.2	24	1.2	0.5	0.7	0	0
1	4	1.2	0.8	0.7 1.0	0.8 1.0	1.2 1.1	3.1	1.6	1.5 1.1	2.3	2.6	2.7 1.3	2.4	2.4 1.5	3.1 1.5	C 1.4	1 2	1.5	1.4 1.3	1.4 1.4	1.8	1.3	1.2 1.3	1.5 1.3	2.0	22 24	3.1	0.7 1.0	1.8 1.3	0	0
1	6	1.6 1.1	1.5 0.7	0.9	1.0	0.9	1.1 0.9	1.0 0.9	1.1	1.2 1.0	1.2 1.0	1.0	1.3 1.0	0.9	1.0	1.4	1.3 1.4	1.3 0.9	0.8	0.8	1.2 0.8	1.3 0.8	0.8	0.9	1.2 1.0	24	1.6 1.8	0.7	1.0	0	0
1	7	0.8	1.0	0.9	0.9	1.0	1.0	1.0	1.1	1.2	1.0	1.0	0.9	0.9	1.0	0.7	1.0	1.1	1.1	1.2	1.1	1.1	1.2	1.3	2.2	24	2.2	0.7	1.1	0	0
1	8	1.6	1.7	1.4	1.4	1.7	1.0	0.9	1.0	0.9	0.9	0.9	0.8	0.9	0.8	0.9	1.3	1.3	1.0	1.0	1.1	1.2	1.2	1.1	0.9	24	1.7	0.8	1.1	0	0
1	9	0.8	0.9	0.9	0.8	0.9	0.8	0.8	0.9	0.9	0.9	0.9	0.8	0.9	0.9	0.9	0.9	0.9	0.8	0.9	0.9	1.0	1.0	1.0	0.9	24	1.0	0.8	0.9	0	0
2	0	1.0	1.8	1.8	1.3	1.1	1.7	1.1	1.0	0.9	0.9	1.0	0.9	1.0	0.9	1.0	0.9	1.1	1.0	0.9	1.1	1.1	1.1	1.0	1.2	24	1.8	0.9	1.1	0	0
2	1	1.0	1.2	1.0	1.2	1.1	1.0	1.3	0.8	8.0	0.6	8.0	0.8	0.8	0.8	0.8	0.8	0.7	0.7	0.7	0.6	0.6	0.6	0.6	0.6	24	1.3	0.6	0.8	0	0
2	2	0.6	0.6	0.5	0.6	0.6	0.5	0.6	0.6	0.6	0.6	1.4	2.2	0.7	0.7	2.0	2.0	2.5	0.8	0.7	0.6	0.8	0.6	1.1	5.0	24	5.0	0.5	1.1	0	0
2	3	0.9	3.8	1.8	2.9	12.5	6.1	4.9	1.2	0.9	0.9	0.9	0.9	0.9	0.8	0.9	0.9	0.8	0.9	0.9	0.9	1.2	1.3	1.3	1.1	24	12.5	0.8	2.1	0	0
2	4	1.1 0.9	1.1 2.9	0.9 4.9	0.9 1.6	0.9 0.6	1.0 3.5	0.8 2.6	0.8 1.6	0.8 1.1	0.8 1.1	0.9 1.1	0.9 1.1	1.1 1.3	1.2 1.2	1.0 1.1	1.0 1.1	1.6 1.1	1.0 0.9	0.9 0.9	1.1 1.0	0.9 1.1	0.8 1.1	1.0 1.1	0.8 1.3	24 24	1.6 4.9	0.8 0.6	1.0 1.5	0	0
2	6	1.1	1.2	1.6	1.5	1.6	1.4	1.4	1.4	1.4	1.2	1.1	1.0	0.8	1.0	1.1	1.1	0.9	0.9	0.9	0.9	1.0	0.9	0.9	0.9	24	1.6	0.8	1.1	0	0
2	7	1.0	1.1	0.9	1.0	0.9	0.9	1.0	1.4	1.5	2.0	1.8	3.0	2.7	3.4	1.6	1.3	1.4	1.3	1.1	1.1	1.2	1.3	1.5	1.1	24	3.4	0.9	1.5	0	0
2	8	1.1	1.2	1.6	1.9	2.7	3.2	2.4	1.3	1.5	1.7	1.9	1.7	1.6	1.5	1.4	1.5	1.5	1.3	1.3	1.1	1.1	0.9	0.9	0.9	24	3.2	0.9	1.5	0	0
2	9																									0					
3	0																									0					
3	1																									0					
Count		28	28	28 4.9	28	28 12 E	28 6.1	28	28	28	28	28 18.0	28 7.2	28 2.7	28 8.2	27 5.0	27	28	28	28	28	28	28 1 E	28 1 E	28	670					
Maximum Minimum		1.6 0.6	3.8 0.5	4.9 0.5	2.9 0.6	12.5 0.6	6.1 0.5	4.9 0.6	3.1 0.6	2.6 0.1	2.6 0.6	18.0 0.6	7.3 0.8	2.7 0.6	8.2 0.6	5.9 0.6	5.4 0.8	2.6 0.7	1.4 0.7	1.4 0.7	1.8 0.6	1.3 0.6	1.5 0.6	1.5 0.6	5.0 0.6	24 0					
Averaage		1.0	1.2	1.2	1.2	1.7	1.6	1.4	1.2	1.2	1.3	1.8	1.5	1.2	1.5	1.3	1.3	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.2	Ū					
Percentile	es		10		20		30		40		50		60		70		80		90		95		99		100			Maxim	um Hourly		18.0
			_		_																_								mum Daily		2.8
Data			0.7		0.8		0.9		0.9		1.0		1.1		1.2		1.4		1.8		2.5		5.5		18.0			Month	ly Average		1.2
Notes		C -	Calibration	/ Span Cyc	le NA	A - No Data	Available	T -	Test	А	- MOE Audit	М	- Equipment M	alfunction /	Down	R -	Rate of Ch	nange											· ·		

											r	March	ago Road 2018																		
	Hour										ppk	,																	T		
Day		0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>250	Days>100
	1	0.9	0.9	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.5	0.9	0.9	0.9	0.9	0.9	0.9	3.6	2.1	1.1	1.1	1.0	0.9	0.9	0.9	24	3.6	0.9	1.1	0	0
	2	0.9	0.9	0.9	0.9	0.8	0.9	0.9	0.9	0.8	0.9	0.9	0.9	0.9	0.8	0.9	0.9	0.9	0.8	0.8	0.9	0.8	0.8	0.8	0.9	24	0.9	0.8	0.9	0	0
	4	0.9 0.7	0.9 0.9	0.8 0.8	0.8 0.7	0.7 0.7	0.7 0.8	0.8 1.0	0.8 0.9	0.8 0.7	0.7 0.7	0.8 0.8	0.7 0.6	0.7 0.6	0.6 0.8	0.7 0.8	0.8 0.8	0.8 0.9	0.7 0.9	0.8 0.7	0.8 0.6	0.8 0.7	0.8 0.7	0.7 0.8	0.7 0.9	24 24	0.9 1.0	0.6 0.6	0.8	0	0
	5	0.8	0.9	0.8	0.9	0.9	0.9	0.8	0.9	0.7	0.8	0.8	0.8	0.8	0.9	0.7	0.7	0.9	0.9	0.7	0.8	1.1	1.0	0.9	0.7	24	1.1	0.7	0.8	0	o
	6	0.8	0.6	0.8	0.9	0.9	0.9	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.9	0.9	0.9	0.9	24	0.9	0.6	0.9	0	0
	7	0.9	0.9	1.0	1.0	0.9	0.9	0.9	1.0	1.2	1.2	1.3	1.3	1.1	0.9	0.9	0.9	0.9	0.9	0.9	0.9	1.0	1.1	1.1	1.2	24	1.3	0.9	1.0	0	0
;	8	1.0	1.0	0.9	1.0	1.1	1.0	1.0	1.1	1.1	0.9	0.9	0.9	1.0	1.6	1.6	1.5	1.4	1.3	1.1	1.1	1.0	1.0	0.9	0.9	24	1.6	0.9	1.1	0	0
1	0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	1.5 0.9	0.8	0.9	1.6 0.9	1.3	1.4	1.2	1.1	1.1	0.9	0.9	0.9	0.9	0.9 1.8	0.9 1.6	0.9 1.3	0.9 1.5	24	2.7 1.8	0.9	1.1	0	0
1	1	1.2	1.2	1.1	0.9	0.9	0.9	0.9	0.8	0.8	1.1	1.2	1.0	1.1	1.1	0.9	1.1	1.0	0.9	1.0	1.2	1.2	1.1	0.9	0.9	24	1.2	0.8	1.0	0	o
1	2	0.9	1.0	1.1	1.1	1.1	1.2	1.3	1.2	1.1	1.0	1.0	0.9	0.9	0.8	0.9	1.1	1.1	1.1	1.1	1.1	1.0	0.9	0.9	0.9	24	1.3	0.8	1.0	0	0
1	3	0.9	0.9	1.0	1.0	1.0	0.9	0.9	0.9	0.8	0.9	0.8	0.9	0.8	0.9	1.1	1.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	24	1.1	0.8	0.9	0	0
1	4	0.9	0.9	0.9	1.0	1.0	0.9	0.9	0.9	0.9	1.0	1.0	0.9	0.9	1.0	1.1	1.2	1.1	1.1	0.9	0.9	0.9	0.9	1.0	0.9	24	1.2	0.9	1.0	0	0
1	5	0.6	0.9	0.9	0.9	1.0	1.0	1.0	1.1	1.0	1.3	1.3	1.1	1.1	1.1	1.1	1.0	1.0	1.1	1.8	1.2	1.4	1.4	1.2	1.1	24	1.8	0.6	1.1	0	0
1	7	1.1 0.9	1.1 1.0	0.9 0.9	0.9 0.9	0.8 0.9	0.9 0.9	0.8 0.8	0.9 0.9	0.8	0.9 0.9	1.1 1.0	1.3 1.0	1.3 1.7	1.6 1.4	0.9 1.4	0.9 1.9	0.9 1.9	0.9 1.5	0.9 1.3	0.8 1.3	0.9 1.2	0.9 1.0	0.9 0.9	0.9 0.9	24 24	1.6 1.9	0.8 0.8	1.0 1.1	0	0
1	8	0.9	0.9	0.9	0.9	0.9	0.8	0.8	0.9	0.9	1.0	3.8	2.0	1.8	2.1	1.8	1.4	1.3	1.3	1.1	1.1	1.1	1.0	0.9	1.0	24	3.8	0.8	1.3	0	o
1	9	1.0	0.9	0.9	0.9	1.0	1.1	1.1	1.0	0.8	0.8	0.9	0.9	0.9	0.9	0.9	0.8	0.8	0.9	0.8	0.9	0.9	1.0	0.9	0.9	24	1.1	0.8	0.9	0	0
2	0	0.9	0.8	0.8	0.9	0.8	0.8	0.9	0.9	0.8	0.8	0.8	0.8	С	С	1.1	0.9	1.0	0.9	0.9	1.0	1.0	0.9	0.9	0.9	22	1.1	0.8	0.9	0	0
2	1	0.6	0.8	0.9	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.8	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	24	0.9	0.6	0.8	0	0
2	2	0.9 0.9	0.8 0.9	0.9 0.9	0.9 0.9	0.9 0.8	0.9 0.9	0.9 0.8	0.9 0.9	0.8	0.9 0.8	0.9 0.8	0.9 0.8	0.8 0.9	0.8 0.9	0.8 0.4	0.9	0.8 0.3	0.9 0.2	0.9 0.2	0.9 0.2	1.1 0.2	1.3 0.2	1.3 0.2	1.3 0.1	24 24	1.3 0.9	0.8 0.1	0.9 0.6	0	0
2	4	0.3	0.9	0.3	0.9	0.0	0.9	0.0	0.9	0.0	0.0	0.0	0.0	0.9	0.9	0.4	0.0	0.0	0.2	0.2	0.2	0.0	0.2	0.0	0.0	24	0.3	0.0	0.0	0	0
2	5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.1	24	0.2	0.0	0.0	0	0
2	6	0.1	0.1	0.1	0.3	0.0	0.0	0.2	0.2	0.6	1.1	0.9	0.9	0.9	0.8	0.8	0.8	0.8	1.4	3.2	1.2	0.8	0.8	8.0	0.8	24	3.2	0.0	0.7	0	0
2	7	0.9	0.8	0.9	0.8	0.8	0.8	8.0	0.8	0.9	0.9	0.9	0.9	0.9	0.8	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	24	0.9	0.8	0.9	0	0
2	8	0.9	0.8	0.8	0.9	0.8	0.8	1.0	1.2	1.2	1.1	1.1	1.3	1.3	1.0	1.1	1.0	1.0	1.1	1.1	1.1	0.9	1.0	1.4	1.0	24	1.4	0.8	1.0	0	0
3	0	1.1 0.7	1.0 0.8	0.9 0.9	1.0 0.9	1.0 0.9	1.1 0.9	1.0 1.0	1.1 0.9	1.1 0.9	1.5 0.9	1.3 0.8	1.4 0.9	1.0 0.9	0.9 0.9	0.7 0.8	0.9	0.9 0.8	1.1 1.0	1.0 1.1	0.9 0.8	0.9 0.9	0.8 0.9	0.9 0.9	1.0 0.9	24 24	1.5 1.1	0.7 0.7	1.0 0.9	0	0
3	1	0.9	0.9	0.9	1.0	1.0	1.6	1.3	2.0	1.3	1.3	1.2	1.3	1.1	1.2	1.1	1.1	1.1	1.1	0.9	1.0	1.0	1.0	1.1	0.9	24	2.0	0.9	1.1	0	0
Count		31	31	31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	742					
Maximum	1	1.2	1.2	1.1	1.1	1.1	1.6	1.3	2.0	1.3	2.7	3.8	2.0	1.8	2.1	1.8	1.9	3.6	2.1	3.2	1.3	1.8	1.6	1.4	1.5	24					
Minimum		0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22					
Averaage		0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.9	0.9	1.0	1.0	0.9	1.0	1.0	0.9	0.9	1.0	0.9	1.0	0.9	0.9	0.9	0.9	0.9						
Percentile	:s		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly		3.8
Data			0.7		0.8		0.9		0.9		0.9		0.9		1.0		1.1		1.2		1.4		2.0		3.8				num Daily y Average		1.3 0.9
Notes		C -	Calibration	ı / Span Cyc	le NA	A - No Data	Available	T -	Test	A-	MOE Audit	M	- Equipment M	alfunction /	[/] Down	R -	Rate of Ch	nange													

Figure A-1 Time History Plots of Measured Hourly Average and 24-Hour Average SO₂
Concentrations— Crago Road Station

APPENDIX B

NO₂ Data Summaries and Time History Plots

												anuary	go Road 2018																		
	Hour																														
Day		0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
		1.7	2.0	3.0	3.9	4.7	6.9	4.1	6.9	8.7	7.2	8.2	13.1	9.3	5.2	4.5	2.0	1.8	2.3	1.9	2.4	2.3	1.9	4.6	7.6	24	13.1	1.7	4.9	0	0
		3.7	2.7	3.5	8.8	7.3	14.9	27.1	29.2	14.0	7.8	8.4	7.0	8.3	9.0	9.0	8.4	9.6	10.4	11.0	12.4	22.1	29.1	17.7	8.8	24	29.2	2.7	12.1	0	0
		2.3 3.9	23.3 31.2	20.5 30.4	19.5 25.4	18.8 34.1	11.4 25.4	7.6 18.5	3.7 6.9	3.9 4.9	4.8	3.2 3.5	4.7 2.6	4.4	5.2 2.6	6.3 2.7	6.1 2.8	6.1 2.8	6.2 2.6	6.3 2.3	12.9 2.1	16.4 2.0	22.8 1.9	23.8 1.7	27.3	24 24	27.3 34.1	3.2 1.7	11.6 10.3	0	0
		1.9	1.6	1.6	2.2	3.0	3.3	3.2	2.8	2.4	3.2 1.9	3.3 1.7	1.8	2.7 0.0	0.0	0.0	0.0	1.3	3.6	4.6	4.5	4.6	4.3	3.2	1.9 2.7	24	4.6	0.0	2.4	0	0
		3.1	2.3	2.3	2.0	2.9	5.0	5.3	3.7	3.2	2.1	1.6	1.4	1.2	1.3	1.2	1.6	3.1	4.0	6.1	13.4	10.1	6.3	7.2	8.0	24	13.4	1.2	4.1	0	0
		5.9	15.4	19.7	8.5	8.8	14.2	23.5	29.4	21.5	2.3	2.3	2.6	1.9	1.5	1.6	1.9	3.2	3.5	3.5	4.4	4.3	5.2	4.6	5.9	24	29.4	1.5	8.2	0	0
	8 6	6.3	7.5	4.1	4.0	3.2	2.9	2.5	2.6	2.6	2.7	3.6	4.6	5.0	5.2	8.1	11.8	12.2	11.9	10.9	9.2	12.6	7.3	7.2	6.7	24	12.6	2.5	6.4	0	0
	9 6	6.9	7.8	7.6	9.2	7.5	4.6	4.7	8.2	10.5	10.1	10.0	6.5	5.0	3.9	3.7	5.0	5.6	6.1	7.2	15.2	13.3	7.3	7.0	8.9	24	15.2	3.7	7.6	0	0
1		1.4	5.5	3.0	1.6	2.2	1.4	1.4	2.6	4.0	2.5	3.5	2.2	4.3	3.9	4.6	4.1	6.2	5.6	9.8	15.7	12.7	14.8	11.3	21.2	24	21.2	1.4	6.5	0	0
1		9.0	13.5	11.0	13.7	8.6	15.2	20.3	14.3	22.5	24.2	22.5	19.2	25.9	22.9	26.7	16.6	С	С	18.6	3.7	6.6	7.9	16.6	18.5	22	26.7	3.7	16.7	0	0
1		2.3	4.2	1.9	2.4	3.9	12.6	20.0	18.5	24.1	7.0	2.6	1.9	1.4	1.5	1.8	1.3	1.0	1.1	0.8	0.8	0.5	0.6	0.4	0.3	24	24.1	0.3	5.1	0	0
1		0.3	0.2	0.3	0.1	0.1	0.1	0.2	0.5	0.4	0.7	0.4	0.5	0.4	0.5	0.5	0.6	0.9	1.7	1.7	1.2	1.1	1.0	2.9	4.3	24	4.3	0.1	0.9	0	0
1		3.9	5.5	5.2	4.7	5.3 6.0	2.2	2.0	4.0 8.5	4.1	4.5	6.0 3.4	6.7 2.5	7.6 6.2	4.6 7.0	0.7 5.7	3.7 7.0	4.9	5.2 6.6	5.1 7.1	8.0	2.3	1.9 8.0	1.9	1.1 8.0	24 24	8.0	0.7	4.2 5.6	0	0
1		0.6 7.6	1.9 7.4	0.9 9.0	4.0 10.4	6.5	5.1 9.0	7.3 9.1	9.3	5.4 12.6	3.4 9.7	10.0	10.3	12.5	11.1	12.8	20.8	6.1 27.0	34.2	35.5	7.5 37.0	7.9 32.8	23.7	8.1 25.5	20.5	24	8.5 37.0	0.6 6.5	16.9	0	0
1		5.2	4.7	5.1	13.2	21.0	19.7	23.4	30.3	29.4	24.8	19.2	17.9	12.7	12.0	8.6	6.6	7.6	8.1	7.8	6.4	7.1	5.6	6.1	6.1	24	30.3	4.7	12.9	0	0
1		6.5	6.6	8.1	8.8	9.0	8.9	9.0	10.2	12.6	13.9	11.7	11.9	10.4	8.8	8.2	10.7	12.1	11.4	9.7	9.6	6.9	7.4	9.0	8.5	24	13.9	6.5	9.6	0	0
1		8.3	8.0	9.1	8.9	9.1	10.6	11.2	13.7	13.3	10.9	9.7	8.4	8.9	6.7	6.2	5.5	6.7	7.2	7.8	8.8	7.5	8.6	7.9	6.8	24	13.7	5.5	8.7	0	0
2	0 5	5.8	4.7	5.2	5.7	5.0	4.6	4.6	5.4	5.2	5.5	5.7	6.4	6.5	6.3	5.5	6.3	6.5	8.8	9.9	8.9	8.7	7.1	8.4	10.6	24	10.6	4.6	6.5	0	0
2	1 21	1.6	32.2	35.4	34.2	31.1	28.1	21.8	18.4	17.5	15.3	15.8	10.6	6.8	7.6	7.9	10.1	10.0	7.4	9.1	6.8	6.8	14.1	11.2	12.9	24	35.4	6.8	16.4	0	0
2		9.5	7.4	7.2	11.7	6.5	7.5	12.2	25.2	19.4	15.9	22.5	14.7	18.7	14.6	4.3	5.6	5.1	17.5	22.0	20.9	23.6	23.1	27.8	24.1	24	27.8	4.3	15.3	0	0
2		0.3	20.4	21.6	27.0	6.0	5.1	5.0	3.1	8.0	5.9	5.7	5.9	4.3	4.1	4.3	4.4	4.8	4.5	5.8	2.9	2.6	2.5	2.2	1.4	24	30.3	1.4	7.8	0	0
2		1.3	1.1	0.9	1.0 2.4	1.0	1.7	1.4 4.2	1.6	1.6	1.5 10.5	1.1 10.0	1.2	0.8	1.0	1.2	1.6	2.1	2.7 8.6	3.5 14.4	4.0	2.2	2.6	2.6	3.1 18.9	24	4.0	0.8	1.8 7.2	0	0
2		3.1 5.5	3.8 16.6	2.8 14.4	2. 4 16.1	2.6 15.3	3.4 11.3	3.1	4.0 3.1	4.6 2.3	10.5	2.2	4.7 2.0	2.1 3.5	2.3 4.7	2.0 3.9	2.2 3.5	3.6 6.6	8.6 4.1	6.2	14.2 16.3	15.8 12.2	16.4 9.3	16.4 8.2	14.4	24 24	18.9 16.6	2.0 1.5	8.2	0	0
2		4.5	9.2	14.5	10.1	8.1	5.0	2.0	3.0	2.2	1.9	2.8	2.1	2.2	3.3	2.9	2.7	2.3	2.6	3.0	3.6	2.9	3.4	10.6	9.9	24	14.5	1.9	5.2	0	0
2		7.4	7.0	10.3	23.0	23.2	9.6	5.5	5.2	6.5	4.8	3.1	4.1	5.2	7.1	4.1	2.4	2.8	2.3	2.3	2.1	2.4	1.9	2.1	2.7	24	23.2	1.9	6.1	0	0
2		4.9	5.1	7.4	2.8	1.3	3.0	3.9	3.6	4.1	3.5	1.9	1.9	2.3	1.7	1.6	3.0	3.4	3.1	3.4	3.3	3.5	3.2	2.4	1.9	24	7.4	1.3	3.2	0	0
3	0 2	2.4	1.7	1.1	1.3	1.0	1.0	2.2	2.0	2.1	1.5	1.3	1.7	1.0	1.0	1.2	2.2	2.4	2.7	5.3	6.6	6.4	15.7	24.4	36.1	24	36.1	1.0	5.2	0	0
3	1 32	2.8	29.8	22.2	15.0	18.8	13.4	16.0	9.2	3.2	2.6	С	С	3.1	2.3	2.6	2.5	4.3	4.1	4.1	5.3	5.5	3.7	4.0	3.5	22	32.8	2.3	9.5	0	0
Count		31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	30	30	31	31	31	31	31	31	740					
Maximun		3.9	32.2	35.4	34.2	34.1	28.1	27.1	30.3	29.4	24.8	22.5	19.2	25.9	22.9	26.7	20.8	27.0	34.2	35.5	37.0	32.8	29.1	27.8	36.1	24					
Minimum		0.3	0.2	0.3	0.1	0.1	0.1	0.2	0.5	0.4	0.7	0.4	0.5	0.0	0.0	0.0	0.0	0.9	1.1	0.8	0.8	0.5	0.6	0.4	0.3	22					
Averaage	9	9.7	9.4	9.3	9.7	9.1	8.6	9.1	9.3	8.9	6.9	6.8	6.0	6.0	5.5	5.0	5.3	5.7	6.7	8.0	8.7	8.6	8.7	9.3	10.1						
Percentile	es		10		20		30		40		50		60		70		80		90		95		99		100			Maxim	um Hourly		37.0
Data			1.6		2.3		3.1		4.3		5.5		7.1		8.9		12.2		19.0		24.1		33.5		37.0				mum Daily ly Average		16.9 8.0
Notes		C - 0		n / Span Cy		A - No Data		T -	Test	A-	MOE Audit	M -	Equipment M	alfunction ,		R -	- Rate of Ch	ange													

											ebruary	ago Road 2018																		
He	our																													
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900 3.0	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
2	6.4 6.4	5.3 10.4	4.8 7.0	5.5 11.6	5.4 8.3	5.8 1.8	6.4 2.6	6.6 2.8	6.6 2.5	7.1 1.8	5.9 1.5	4.8 1.5	4.3 1.5	5.7 2.1	5.7 1.9	2.5 1.6	2.3 2.2	2.0 4.2	2.6 13.6	20.7	3.3 17.9	3.5 14.4	5.7 4.4	5.7 2.8	24 24	7.1 20.7	2.0 1.5	4.9 6.1	0	
3	3.2	2.8	2.3	2.6	2.9	2.7	2.8	3.4	4.6	9.8	7.7	4.4	4.4	5.4	4.7	3.8	4.3	4.1	4.8	3.8	3.2	3.7	3.3	3.2	24	9.8	2.3	4.1	0	ن ار
4	3.3	3.8	3.1	6.5	4.9	5.0	5.2	6.9	9.0	12.7	16.4	15.4	2.7	2.3	2.9	2.8	3.2	3.0	3.0	4.8	1.4	1.5	1.5	1.2	24	16.4	1.2	5.1	0	ء ار
5	1.0	1.1	1.2	1.2	1.5	4.9	14.5	15.5	12.3	17.1	12.9	11.5	8.7	5.7	6.1	5.7	6.0	6.5	13.4	17.0	23.0	10.6	10.3	11.2	24	23.0	1.0	9.1	0	(
6	20.2	23.8	20.8	19.6	22.8	17.8	20.4	21.5	22.0	21.4	15.3	13.1	11.2	9.9	7.4	6.2	5.3	7.3	14.0	28.1	29.4	24.4	29.1	37.7	24	37.7	5.3	18.7	0	(
7	32.9	16.2	19.3	15.7	8.0	10.4	10.5	15.3	13.9	9.3	11.4	8.8	6.1	6.1	5.3	4.1	4.1	5.6	6.4	11.2	17.2	28.0	29.7	38.6	24	38.6	4.1	13.9	0	· (
8	37.1	32.8	31.9	30.4	29.4	33.2	23.5	17.6	18.8	12.6	8.1	15.2	12.5	4.0	4.0	10.1	6.9	10.2	15.1	16.0	10.8	8.4	10.6	30.9	24	37.1	4.0	17.9	0	
9	33.6	32.8	34.1	32.9	38.9	36.9	38.9	35.9	10.3	25.2	23.5	22.8	6.5	7.0	6.1	4.9	4.5	9.7	12.1	10.2	11.1	10.8	10.0	9.1	24	38.9	4.5	19.5	0	, (
10	5.5 2.9	6.1 4.0	6.9 4.6	5.7 4.1	5.3 2.9	6.1 2.8	5.4 3.5	9.0 8.9	8.2 4.5	9.0 4.6	7.6 17.3	5.7 6.2	4.4 3.7	4.3 10.8	5.1 9.1	4.4 12.5	3.4 7.9	4.2 7.2	5.5 6.8	6.4 7.7	6.0 9.7	5.9 8.2	5.0 5.8	3.7 3.3	24 24	9.0 17.3	3.4 2.8	5.8 6.6	0	,
12	5.1	7.2	5.9	4.1	5.7	6.8	5.5 6.0	8.9 11.4	24.2	4.6 15.6	8.0	2.7	2.7	2.3	2.4	2.5	2.8	7.2 5.9	12.2	16.7	18.3	36.6	40.8	44.4	24	17.5 44.4	2.8	12.1	0	, ,
13	38.1	27.4	16.6	20.2	20.7	18.0	15.7	13.4	14.7	18.9	10.7	2.2	1.8	2.3	3.1	2.8	4.7	4.1	3.5	3.0	5.5	2.0	2.6	3.7	24	38.1	1.8	10.7	0	, ,
14	9.8	18.7	25.9	24.7	4.9	11.8	7.6	8.9	8.1	8.1	7.5	7.3	7.1	7.0	С	С	4.1	4.5	4.4	4.9	4.8	5.8	6.2	6.1	22	25.9	4.1	9.0	0	, .
15	4.9	8.2	5.6	4.4	3.9	7.8	4.5	5.5	4.4	4.1	3.4	3.7	3.7	3.6	4.1	6.3	9.3	12.3	16.9	19.5	26.5	30.3	31.2	28.4	24	31.2	3.4	10.5	0	, (
16	25.7	10.8	10.3	28.5	12.4	7.0	6.7	5.8	4.4	3.2	3.3	2.0	1.2	0.8	8.0	0.5	0.4	1.2	2.9	2.8	3.3	5.0	10.1	10.0	24	28.5	0.4	6.6	0	, c
17	4.2	29.1	22.4	23.4	23.6	26.6	27.3	16.2	1.3	1.5	1.5	1.4	1.0	1.3	0.7	2.5	1.2	1.2	1.6	1.0	1.1	2.8	1.5	3.6	24	29.1	0.7	8.2	0	· C
18	7.0	14.7	9.2	13.5	11.4	5.4	5.3	7.1	6.9	3.5	3.5	2.7	2.7	2.1	1.4	2.0	2.6	2.3	1.9	1.3	2.1	1.1	1.3	2.1	24	14.7	1.1	4.7	0	·
19	2.1	4.7	4.2	2.4	3.1	3.4	1.6	4.7	9.0	4.8	1.6	2.3	3.1	7.0	6.7	4.8	6.3	10.5	14.7	13.4	14.4	16.3	10.3	8.0	24	16.3	1.6	6.6	0	, C
20	7.7 19.6	7.7 20.8	12.3 15.8	10.0 23.7	8.5 18.5	12.9 20.6	8.7 20.9	12.0 2.1	11.4 1.2	12.9 1.3	15.2 1.6	11.0 1.5	11.7 1.2	8.5 0.9	13.1 0.7	8.7 0.7	6.9 1.1	2.3 2.3	3.9 3.1	2.7 6.8	6.6 6.6	23.1 3.4	19.5 1.9	22.8 0.7	24 24	23.1 23.7	2.3 0.7	10.8 7.4	0	
21	1.0	13.2	0.0	0.3	1.3	5.2	6.9	7.5	3.0	4.1	4.6	5.7	3.1	1.4	3.0	2.0	4.4	2.3	2.1	5.7	11.1	6.2	8.7	13.4	24	13.4	0.7	4.8	0	,
23	3.6	8.7	5.9	7.1	17.1	13.0	7.3	3.3	2.3	2.5	2.4	2.1	2.0	3.1	3.2	3.8	2.6	17.5	22.5	5.1	10.1	17.5	24.4	14.2	24	24.4	2.0	8.4	0	ن ار
24	7.8	5.9	1.8	3.1	3.4	6.6	8.0	1.3	1.3	0.6	0.5	0.0	0.0	0.0	1.1	0.0	1.8	0.0	11.9	1.4	5.5	1.7	0.6	1.3	24	11.9	0.0	2.7	0) c
25	0.5	5.3	9.5	1.7	0.0	4.6	3.2	2.0	1.0	1.3	0.8	0.1	0.4	0.0	0.7	0.4	0.5	0.8	0.3	0.5	0.9	1.0	1.6	1.5	24	9.5	0.0	1.6	0	, (
26	2.4	3.8	2.5	2.1	2.4	3.1	3.3	4.3	5.0	7.6	5.6	2.0	1.8	1.7	1.2	2.1	1.5	4.5	8.1	14.3	33.1	25.3	30.2	35.5	24	35.5	1.2	8.5	0	, (
27	34.3	38.1	32.6	28.7	21.8	17.0	25.3	22.5	16.4	13.5	12.5	6.2	6.2	6.1	2.4	1.7	2.8	2.4	2.9	3.1	4.8	2.7	3.4	2.3	24	38.1	1.7	12.9	0	· C
28	2.8	1.4	2.5	1.8	4.2	3.2	4.0	9.8	20.7	12.8	4.1	3.7	4.1	6.8	4.2	2.9	3.9	4.3	15.4	5.3	5.2	3.4	3.1	4.6	24	20.7	1.4	5.6	0	· (
29																									0				ļ	
30																									0				ļ	
Count	28	28	28	28	28	28	28	28	28	28	28	28	28	28	27	27	28	28	28	28	28	28	28	28	670					L
Maximum	38.1	38.1	34.1	32.9	38.9	36.9	38.9	35.9	24.2	25.2	23.5	22.8	12.5	10.8	13.1	12.5	9.3	17.5	22.5	28.1	33.1	36.6	40.8	44.4	24					
Minimum	0.5	1.1	0.0	0.3	0.0	1.8	1.6	1.3	1.0	0.6	0.5	0.0	0.0	0.0	0.7	0.0	0.4	0.0	0.3	0.5	0.9	1.0	0.6	0.7	0					
Averaage	11.8	13.0	11.4	12.0	10.5	10.7	10.6	10.0	8.9	8.8	7.7	5.9	4.3	4.2	4.0	3.8	3.8	5.1	8.1	8.4	10.5	10.8	11.2	12.5						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maxim	um Hourly		44.4
																												mum Daily		19.
Data		1.4		2.4		3.2		4.3		5.5		6.9		9.8		13.6		21.8		28.9		37.8		44.4			Month	ly Average		8.7
Notes	C -	Calibration	/ Span Cv	cle NA	A - No Data	Available	T -	- Test	A-	MOE Audit	М	- Equipment M	alfunction .	[/] Down	R -	Rate of Ch	ange													

											March	ago Road 2018																		
H	our																													
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>10
1	6.6 0.5	2.2 0.4	10.3 0.0	15.0 0.2	14.6 0.1	8.4 0.5	15.6 2.3	13.6 1.1	8.5 1.7	1.8 0.2	1.2 0.3	0.7 0.1	0.3 0.0	0.3 0.2	0.3 0.3	0.8 0.7	5.9 0.8	9.2 0.4	15.4 0.5	5.8 0.6	1.9 0.7	2.1 0.3	1.1 0.6	0.8 0.7	24 24	15.6 2.3	0.3 0.0	5.9 0.6	Û	, ;
3	0.3	0.4	0.0	0.0	0.1	0.0	0.6	0.1	0.0	0.2	0.5	0.0	0.0	0.2	0.0	0.0	0.0	0.4	0.3	0.8	0.7	0.5	0.0	0.0	24	0.8	0.0	0.0	C C	,
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	1.5	1.3	0.6	0.1	0.3	24	1.5	0.0	0.2	0	ن ار
5	0.0	0.0	0.0	0.0	0.0	1.8	2.6	3.9	0.6	0.4	0.6	2.3	0.0	0.0	0.9	0.8	0.9	2.4	3.6	3.3	16.4	28.9	24.0	25.8	24	28.9	0.0	5.0	0	,
6	16.0	17.1	15.2	17.5	9.2	7.4	5.3	7.7	6.4	1.4	0.1	0.8	1.5	0.0	0.0	0.8	1.0	0.1	0.1	0.4	1.9	0.4	1.5	1.1	24	17.5	0.0	4.7	0	, (
7	0.9	1.8	1.4	2.6	3.8	4.0	6.6	5.1	3.4	3.7	5.4	3.6	1.9	1.9	2.2	3.2	2.2	2.1	1.1	3.9	2.2	3.6	1.9	2.1	24	6.6	0.9	2.9	0	,
8	1.2	1.7	2.4	3.2	2.4	1.9	6.5	4.7	2.3	2.2	2.3	4.0	4.0	2.4	2.2	3.1	3.9	5.3	8.3	13.7	17.6	22.8	6.9	4.1	24	22.8	1.2	5.4	0	
9	5.7	3.6	2.0	2.8	5.6	9.9	8.0	4.7	1.9	1.3	0.6	0.2	0.4	0.6	0.1	0.6	0.5	1.0	1.2	1.0	1.5	1.7	1.9	2.8	24	9.9	0.1	2.5	0	(
10	4.4	3.2	3.5	4.6	3.5	5.4	6.7	6.1	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	1.4	2.3	3.1	3.3	24	6.7	0.0	2.1	0	(
11	3.0	3.8	4.2	4.6	4.6	5.0	4.0	3.8	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	1.2	1.7	1.9	1.5	3.5	4.3	24	5.0	0.0	2.0	0	, .
12	7.3 1.8	2.3 1.3	0.7 0.9	0.8 1.4	1.5 3.7	2.4 4.0	2.2 3.7	3.4 2.6	1.5 1.3	0.7 0.4	2.6 0.3	0.0 0.2	0.0 0.0	0.0 0.0	0.0 0.8	0.4	1.3 0.8	1.3 1.4	4.2 2.1	4.5 2.0	9.0 1.7	6.6 1.1	3.2 1.0	4.4 1.5	24 24	9.0 4.0	0.0 0.0	2.5 1.4	0	, ',
14	1.2	1.4	1.0	0.9	0.9	1.3	1.5	1.1	1.1	1.0	0.5	0.2	0.0	0.4	0.8	0.3	0.6	0.9	1.0	2.0	2.3	1.7	1.4	1.7	24	2.3	0.0	1.4	r	, `
15	3.9	4.1	7.9	7.6	8.4	10.9	16.4	24.7	9.4	0.8	0.6	0.4	0.4	0.4	0.4	0.9	0.9	0.6	1.0	1.6	1.1	1.5	2.0	2.5	24	24.7	0.2	4.5	0	ن ار
16	2.0	1.1	0.5	0.1	0.6	0.2	0.5	0.5	0.3	0.2	0.0	0.0	0.2	0.8	0.2	0.0	0.4	0.9	1.3	3.0	4.3	4.1	4.4	5.7	24	5.7	0.0	1.3	0	آ ار
17	12.7	11.5	9.6	12.8	13.3	8.3	6.5	7.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.6	0.0	0.0	0.0	1.4	24	13.3	0.0	3.5	0	,
18	1.5	2.3	5.7	5.7	5.6	3.3	5.7	5.7	8.4	2.1	2.2	1.1	1.3	1.5	0.9	1.3	1.6	1.5	1.6	2.4	17.5	17.7	13.2	1.6	24	17.7	0.9	4.7	0	, (
19	2.6	2.8	1.2	1.8	4.3	5.8	8.7	3.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.7	2.5	0.3	14.0	35.1	25.4	29.4	24	35.1	0.0	5.8	0	C
20	9.0	8.8	6.3	4.5	6.2	3.1	2.4	1.5	0.6	0.7	0.0	0.0	С	С	2.2	1.6	1.5	2.0	2.3	26.9	28.1	26.8	15.7	4.3	22	28.1	0.0	7.0	0	
21	7.5	3.7	3.3	2.8	4.0	3.1	4.2	3.6	2.9	2.3	2.0	1.6	1.7	1.7	1.9	1.6	1.8	3.3	18.9	22.0	14.8	16.1	10.7	4.1	24	22.0	1.6	5.8	0	(
22	3.2	2.9	1.7	2.6	2.6	3.2	4.1	2.8	2.3	2.5	1.8	1.5	1.3	1.7	1.5	1.6	1.9	2.3	2.8	3.8	2.4	2.3	2.5	2.7	24	4.1	1.3	2.4	0	
23	2.3	2.3	2.4	5.1	5.0	4.7	5.6	4.4	2.7	1.9	2.0	1.5	1.4	2.0	1.0	1.0	0.9	0.8	0.8	1.2	1.4 0.7	1.1 0.9	1.1	0.9	24	5.6	0.8	2.2 0.7	0	.] .
25	0.7 1.2	0.6 0.5	0.7 0.5	0.6 0.5	0.6 0.4	0.6 1.1	0.6 1.2	0.5 1.1	0.5 1.5	0.6 0.8	0.6 1.1	0.6 1.0	0.7 0.8	0.5 0.9	0.6 0.8	0.5 1.3	0.6 1.3	0.6 2.3	0.6 4.0	0.6 4.0	3.7	5.1	1.1 5.6	1.1 3.7	24 24	1.1 5.6	0.5 0.4	1.9	r	, ;
26	3.1	7.0	3.2	8.2	5.0	4.0	12.8	5.7	7.4	2.3	1.9	2.1	2.2	2.1	2.1	2.2	2.2	1.7	2.3	1.8	1.5	1.3	1.2	4.4	24	12.8	1.2	3.7	C C	ا ا
27	2.1	2.6	2.4	3.2	3.4	3.4	6.9	7.3	6.0	5.6	4.1	3.4	3.4	2.7	3.4	3.7	4.3	5.0	5.8	3.4	4.3	3.3	7.3	7.1	24	7.3	2.1	4.3	0	ن ار
28	26.2	18.3	7.6	3.7	3.9	4.2	4.8	7.7	6.8	4.6	2.5	3.0	3.8	3.7	5.1	3.5	3.7	4.3	4.7	13.9	4.9	26.1	33.8	28.5	24	33.8	2.5	9.6	0	,
29	14.9	11.1	7.5	3.4	5.6	11.4	12.3	13.9	9.5	13.2	11.2	9.9	7.3	5.4	6.0	6.7	5.0	6.0	5.1	3.6	3.7	4.1	3.8	3.0	24	14.9	3.0	7.7	0	i
30	2.6	2.7	2.5	3.2	2.6	2.6	2.7	2.1	1.7	1.3	1.3	1.2	1.2	1.3	1.1	1.1	1.2	1.3	1.7	2.0	2.7	4.6	10.5	19.1	24	19.1	1.1	3.1	0	(
31	14.9	16.4	17.6	18.8	15.3	4.5	2.9	2.9	2.6	2.9	2.7	1.9	2.3	2.4	2.8	3.1	3.6	2.5	1.9	2.6	2.3	1.8	2.9	3.3	24	18.8	1.8	5.6	0	. (
Count	31	31	31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	742					
Maximum	26.2	18.3	17.6	18.8	15.3	11.4	16.4	24.7	9.5	13.2	11.2	9.9	7.3	5.4	6.0	6.7	5.9	9.2	18.9	26.9	28.1	35.1	33.8	29.4	24					
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	22					
Averaage	5.1	4.4	3.9	4.5	4.4	4.1	5.3	4.9	3.0	1.8	1.5	1.3	1.2	1.1	1.2	1.3	1.6	2.0	3.1	4.4	5.4	7.3	6.2	5.7						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				num Hourly		35.
Data		0.0		0.4		0.8		1.3		1.9		2.5		3.5		4.7		8.4		14.9		26.6		35.1				mum Daily nly Average		9. 3.
Notes	С	- Calibration	n / Span Cy	rcle NA	A - No Data	Available	Т-	- Test	A-	MOE Audit	М	- Equipment M	alfunction ,	' Down	R -	Rate of Ch	ange													

Figure B-1 Time History Plots of Measured Hourly Average and 24-Hour Average NO₂
Concentrations – Crago Road Station

APPENDIX C

NO_X Data Summaries and Time History Plots

												NOx Cr	ago Road																		
												anuary	2018																		
	Hour										ppl	,																			
Day	_	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
		1.7	2.0	2.7	3.8	4.7	6.7	4.0	6.8	9.3	8.2	10.9	23.1	14.8	7.6	5.7	2.2	1.9	2.1	2.0	2.3	2.3	2.0	4.7	7.5	24	23.1	1.7	5.8	0	0
		3.6 2.2	2.8 23.7	3.5 21.0	8.7 19.4	7.3 18.7	14.9 12.2	29.3 8.2	32.4 3.9	15.2 4.0	8.7 5.7	11.3 3.5	9.1 6.3	10.5 5.1	12.0 5.8	11.0 6.7	9.9 6.4	10.3	10.7 6.2	11.1 6.1	12.8 13.4	22.7 17.1	30.1 23.3	18.0 24.4	8.8	24 24	32.4 28.2	2.8 3.5	13.1 12.0	0	0
		2.2 9.8	34.2	32.9	25.9	40.1	26.9	19.5	7.0	5.6	4.1	5.3	3.8	3.8	3.8 4.1	4.1	3.7	6.1 3.3	3.1	2.4	2.4	2.3	23.3	24.4	28.2	24	40.1	2.0	11.7	0	. 0
		2.2	2.0	1.8	2.4	3.4	3.9	3.9	3.2	3.2	2.8	3.1	3.0	0.0	0.0	1.0	0.0	1.6	3.3	4.3	4.3	4.5	4.2	3.1	2.7	24	4.5	0.0	2.7	0	0
	6 3	3.3	2.3	2.2	1.9	2.9	4.7	5.3	3.7	3.6	2.7	2.3	2.2	1.5	1.5	1.5	1.8	3.1	3.9	5.9	13.4	10.0	6.2	7.0	7.9	24	13.4	1.5	4.2	0	0
	7 5	5.6	15.7	20.0	8.3	8.4	13.9	23.1	29.7	22.7	2.1	2.9	3.4	2.0	1.3	1.5	1.6	3.7	3.4	3.6	4.4	4.3	5.0	4.3	5.7	24	29.7	1.3	8.2	0	0
		6.2	7.3	3.7	3.8	2.7	2.5	2.2	2.4	2.2	3.0	3.8	5.2	6.4	6.1	9.4	13.1	13.1	12.2	11.2	9.2	12.7	7.4	7.3	7.5	24	13.1	2.2	6.7	0	0
		7.4	7.8	7.7	9.6	7.3	4.3	4.6	8.2	11.1	11.8	12.5	7.7	6.2	4.5	4.6	5.8	5.6	6.4	7.0	15.4	13.8	7.5	7.0	8.7	24	15.4	4.3	8.0	0	0
1		1.3 0.9	5.1 13.2	3.8 10.7	1.1 14.1	2.0 8.4	1.3 19.9	1.3 22.0	3.1 14.0	7.3 42.3	2.9 44.9	5.1 39.1	2.8 27.8	6.0 54.9	5.8 41.3	5.0 44.1	4.1 30.8	6.2 C	5.4 C	9.5 32.9	15.9 3.7	12.6 8.8	14.3 8.2	11.1 19.2	24.3 26.1	24 22	24.3 54.9	1.1 3.7	7.0 24.9	0	0
1		3.2	4.4	2.0	2.5	3.9	13.8	20.5	20.2	29.5	8.7	4.0	3.0	2.1	2.1	2.2	1.8	1.2	1.5	1.2	1.2	0.7	0.7	0.7	0.4	24	29.5	0.4	5.9	0	. 0
1		0.5	0.4	0.4	0.2	0.3	0.5	0.4	0.9	0.8	1.2	1.0	1.0	1.0	1.2	1.2	1.0	1.2	2.0	1.9	1.5	1.2	1.2	3.0	4.6	24	4.6	0.2	1.2	0	0
1	4 3	3.9	5.7	5.4	5.1	5.4	2.4	2.3	4.2	4.5	6.2	9.4	10.7	12.1	5.9	1.3	4.8	5.4	5.5	5.5	8.5	2.9	2.8	2.8	1.2	24	12.1	1.2	5.2	0	0
1		8.0	3.6	1.2	4.5	6.2	5.8	8.9	9.5	5.7	4.1	4.3	3.3	9.1	10.2	7.8	8.2	6.7	6.8	7.3	7.8	8.3	8.4	8.4	8.4	24	10.2	0.8	6.5	0	0
1		7.8	7.5	9.3	10.6	6.6	9.3	9.4	9.7	13.7	12.2	15.5	18.5	27.1	22.1	23.5	35.1	36.1	42.1	48.5	65.4	43.2	27.2	32.1	23.2	24	65.4	6.6	23.2	0	0
1		5.9	4.8	6.8	13.7	22.2	21.2	26.3	48.9	64.8	57.9	42.8	39.4	22.7	21.9	12.1	8.4	9.2	9.0	9.5	7.4	8.4	6.2	6.7	6.2	24	64.8	4.8	20.1	0	0
1		7.2 8.8	7.0 8.5	8.9 9.7	8.8 9.1	9.2 9.5	9.7 10.9	9.4 11.7	11.0 14.6	14.4 14.5	17.6 13.2	15.8 13.7	17.0 13.2	14.5 12.5	11.4 8.7	11.0 8.0	12.8 6.5	13.5 7.9	12.1 7.6	10.6 9.0	12.6 9.0	7.7 7.7	7.8 9.0	10.0 8.4	8.8 7.6	24 24	17.6 14.6	7.0 6.5	11.2 10.0	0	. 0
2		6.6	4.8	5.7	6.5	5.4	4.8	4.6	6.0	5.5	6.3	7.3	8.8	8.5	8.4	7.8	7.2	7.0	10.2	11.2	9.2	9.0	7.3	8.7	10.8	24	11.2	4.6	7.4	0	0
2		1.9	37.9	49.8	42.0	35.6	30.3	22.5	19.1	25.0	21.8	25.8	13.9	8.2	9.3	9.2	11.1	11.0	7.6	9.4	7.0	7.2	14.3	11.6	13.1	24	49.8	7.0	19.4	0	0
2	2 9	9.8	7.6	7.4	12.2	6.9	7.9	14.4	38.9	29.6	21.3	38.7	21.5	31.0	26.0	4.7	6.4	6.1	25.4	35.7	33.6	39.4	37.9	64.9	51.6	24	64.9	4.7	24.1	0	0
2	92	2.9	40.5	53.8	83.3	6.4	5.3	6.3	3.6	9.0	6.6	6.9	8.3	5.6	5.1	6.2	4.8	5.4	4.9	6.7	3.1	3.0	2.9	2.7	1.8	24	92.9	1.8	15.6	0	0
2		1.6	1.3	1.2	1.2	1.2	2.2	1.8	2.0	2.1	2.2	1.8	2.1	1.6	1.9	2.1	2.2	2.6	3.1	3.9	4.5	2.6	3.2	3.1	3.8	24	4.5	1.2	2.3	0	0
2		3.5 6.3	4.3 17.4	2.9 15.0	2.5 17.1	2.8 15.9	3.6 11.5	4.6 4.4	4.1 4.6	5.1 3.1	13.8	13.1 3.5	7.3 3.3	3.5 6.0	3.4 7.2	2.8 5.7	2.6 4.6	4.4 8.8	9.0 4.4	14.5 6.6	14.3 16.8	16.3 12.4	17.0 9.7	17.2 8.4	20.2 19.1	24	20.2 19.1	2.5 1.9	8.0 9.3	0	0
2		8.0	9.3	16.9	10.8	8.7	5.0	2.1	3.6	2.8	1.9 2.6	3.5 4.5	3.3 2.9	3.1	4.3	3.8	3.2	8.8 2.7	3.5	3.6	5.1	3.0	3.6	10.8	10.6	24 24	18.0	2.1	6.0	0	. 0
2		7.8	7.4	10.4	23.8	27.6	10.4	5.6	5.5	7.6	6.6	4.4	6.6	7.7	7.9	4.9	2.6	3.7	2.6	2.8	2.6	2.7	2.0	2.6	3.2	24	27.6	2.0	7.0	0	. 0
2		5.4	5.6	8.2	3.1	1.6	3.2	4.4	4.0	4.7	4.2	2.6	3.0	3.3	2.6	1.9	3.6	4.0	3.6	4.0	3.7	4.0	3.9	3.0	2.3	24	8.2	1.6	3.7	0	0
3	0 2	2.8	2.1	1.5	1.8	1.3	1.3	2.9	2.9	3.1	2.8	3.2	4.1	3.0	2.4	2.6	3.5	3.5	3.2	5.9	7.1	6.5	16.3	28.9	53.9	24	53.9	1.3	6.9	0	0
3		5.4	40.6	26.3	16.9	21.9	14.4	17.0	10.7	3.6	3.4	С	С	4.9	3.4	3.7	3.9	5.5	4.7	4.4	5.7	5.8	3.8	4.2	3.8	22	45.4	3.4	11.6	0	0
Count		31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	30	30	31	31	31	31	31	31	740					
Maximur		2.9 0.5	40.6 0.4	53.8 0.4	83.3 0.2	40.1 0.3	30.3 0.5	29.3 0.4	48.9 0.9	64.8 0.8	57.9 1.2	42.8 1.0	39.4 1.0	54.9 0.0	41.3 0.0	44.1 1.0	35.1 0.0	36.1 1.2	42.1 1.5	48.5 1.2	65.4 1.2	43.2 0.7	37.9 0.7	64.9 0.7	53.9 0.4	24 22					
Averaage		2.7	10.9	11.4	12.1	9.8	9.2	9.8	10.9	12.1	10.0	10.6	9.4	9.6	8.2	7.0	6.9	6.7	7.5	9.6	10.4	9.8	9.5	11.2	12.4	22					
. Trei dage	12		10.5	11.7	12.1	3.0	J.2	5.0	10.5	12.1	10.0	10.0	3.4	3.0	0.2	7.0	0.5	0.7	,.5	5.0	10.4	3.0	3.3	11.2	12.7						
Percentil	es		10		20		30		40		50		60		70		80		90		95		99		100			Maxim	um Hourly		92.9
																													mum Daily		24.9
Data			2.0		2.9		3.7		4.7		6.2		7.8		9.5		13.7		23.1		34.2		53.9		92.9			Month	ly Average		10.0
Notes		C - 0	Calibration	n / Span Cy	cle N	A - No Data	Available	T -	Test	A-	MOE Audit	М	- Equipment M	alfunction ,	/ Down	R -	Rate of Ch	nange							L				l		

												NOx Cra	igo Road 2018																		
											ppl	•																			
	Hou	ır																													
Day	1	6.8	100 5.7	200 5.0	300 5.6	400 6.4	500 6.1	600 7.3	700 7.9	800 8.0	900 11.2	1000 10.4	8.2	1200 6.8	1300 8.3	1400 7.3	1500	1600 2.9	1700 2.5	3.0	1900 3.3	2000 3.7	2100 3.9	2200 6.0	2300 6.3	Count 24	Maximum 11.2	Minimum 2.5	Average 6.1	Hrs>400	Days>200
	2	6.7	10.9	7.2	11.9	9.1	2.4	3.3	3.4	3.6	3.7	2.8	3.1	2.8	3.8	3.4	2.4	2.9	4.6	14.0	21.0	18.7	15.0	5.0	3.0	24	21.0	2.4	6.9	0	٥
	3	3.9	3.2	2.6	3.1	3.4	3.2	3.3	3.8	5.3	12.7	11.3	6.3	6.2	7.8	6.0	4.9	4.9	5.2	6.8	4.2	3.6	4.3	3.6	3.5	24	12.7	2.6	5.1	0	0
	4	3.5	4.5	3.3	8.4	5.3	5.3	5.7	7.5	10.6	15.7	23.4	22.9	3.6	3.6	4.4	4.5	4.2	3.7	3.2	5.7	1.7	1.9	2.2	1.5	24	23.4	1.5	6.5	0	0
	5	1.3	1.5	1.5	1.7	1.9	5.3	14.8	16.2	14.9	27.4	21.2	18.7	12.6	8.5	9.2	8.0	7.0	7.4	14.1	17.7	23.7	11.3	11.1	11.9	24	27.4	1.3	11.2	0	0
	6	20.6 40.0	24.1	21.0	19.8 16.5	23.1	18.2 11.1	21.0	22.5	26.8 14.8	35.7	26.2 13.4	21.8 11.2	20.3	16.3	11.2 7.9	8.3 5.6	6.4	8.0	14.5 7.0	28.9	31.7 17.9	25.4	30.9	46.6 54.4	24	46.6 54.4	6.4	22.1	0	
	8	49.3	17.2 37.6	20.4 35.2	34.2	8.4 32.5	38.6	10.8 25.1	16.1 18.6	22.4	10.7 17.1	12.7	26.8	8.3 19.9	8.8 6.0	7.9 4.8	13.5	5.2 8.7	6.3 11.4	15.6	11.6 16.7	17.9	29.4 9.0	31.8 11.3	32.0	24 24	49.3	5.2 4.8	16.0 21.3	0	. 0
	9	36.2	34.3	35.7	34.1	47.3	42.0	43.1	41.4	14.9	39.7	34.1	28.7	8.2	8.8	7.2	5.5	5.1	10.2	12.5	10.5	11.3	10.9	10.4	9.5	24	47.3	5.1	22.6	0	0
	10	5.9	6.5	7.1	6.1	5.3	6.2	5.7	9.4	9.1	10.4	9.2	6.9	5.2	5.0	5.8	4.9	3.9	4.4	5.7	6.8	6.4	6.3	5.4	4.0	24	10.4	3.9	6.3	0	0
	11	3.3	4.2	4.9	4.5	3.1	3.2	3.8	10.0	5.2	5.7	27.1	8.5	5.2	16.7	14.1	16.6	9.1	7.5	7.1	8.1	10.1	8.5	6.0	3.6	24	27.1	3.1	8.2	0	0
	12	5.2	7.6	6.5	4.4	6.0	7.0	6.3	12.6	33.1	25.2	11.6	4.3	4.3	3.6	3.8	4.0	3.6	6.4	12.7	17.0	18.8	41.7	57.0	79.6	24	79.6	3.6	15.9	0	0
	13	49.8 10.7	30.0 19.4	17.1 26.6	20.9 25.8	23.0 5.8	18.8 12.1	16.8 7.7	14.8 9.7	20.0 10.2	33.6 12.0	18.1 11.3	3.3 11.7	2.6 10.6	3.6 10.2	5.1 C	4.0	5.6 5.0	5.2 6.4	4.5 4.9	3.7 5.6	7.3 5.8	2.2 7.2	2.8 6.5	4.0 6.4	24 22	49.8 26.6	2.2 4.9	13.2 10.5	0	١
	15	5.1	11.1	6.0	4.7	4.2	8.4	5.1	7.2	5.4	6.1	5.8	6.7	6.7	5.6	6.4	9.3	12.2	15.2	41.7	28.4	43.3	39.5	48.8	37.5	24	48.8	4.9	15.4	0	. 0
	16	30.7	11.5	10.8	32.8	12.9	7.7	6.9	6.2	5.3	4.3	4.6	3.4	2.6	1.9	1.9	1.4	1.2	1.8	3.4	3.1	3.8	5.4	10.6	10.6	24	32.8	1.2	7.7	0	0
	17	4.7	31.6	23.2	24.2	24.4	29.4	29.4	17.9	2.0	2.5	3.1	3.1	2.2	2.4	1.3	5.4	1.7	1.8	3.7	1.5	1.3	4.5	2.0	4.2	24	31.6	1.3	9.5	0	0
	18	7.4	15.3	10.0	14.1	11.6	5.9	5.7	7.7	8.8	5.0	5.4	4.2	3.8	3.4	2.4	3.1	4.0	3.5	3.2	1.7	3.6	1.5	1.7	3.0	24	15.3	1.5	5.7	0	0
	19	3.1	5.0	4.6	2.9	3.5	4.7	2.0	5.3	11.3	6.6	2.6	3.4	3.8	8.5	7.8	5.6	7.3	11.2	15.3	14.4	16.2	17.8	11.5	8.9	24	17.8	2.0	7.6	0	0
	20	8.2 28.3	9.6 41.5	13.5 16.6	10.6 28.1	9.0 22.5	15.7 25.0	10.2 40.6	14.5 3.3	13.3 1.9	16.2 2.1	21.8 2.6	16.5 2.4	17.4 2.1	11.7 1.7	23.5 1.6	10.9 1.7	9.1 1.7	2.7 2.9	4.5 3.4	3.2 7.3	7.2 7.3	26.6 3.9	24.1 2.3	46.3 1.1	24 24	46.3 41.5	2.7 1.1	14.4 10.5	0	١
	22	1.6	14.1	0.4	0.5	1.7	5.5	7.6	8.1	3.7	5.0	6.5	8.0	4.5	2.2	4.6	3.3	7.0	3.4	2.7	6.5	11.5	6.5	9.3	15.7	24	15.7	0.4	5.8	0	. 0
	23	4.1	10.2	6.7	8.4	21.7	16.2	9.4	3.9	3.0	4.9	3.6	2.7	2.7	3.7	4.0	4.5	3.2	23.1	28.9	5.7	10.8	19.4	38.7	16.7	24	38.7	2.7	10.7	0	o
	24	9.5	6.5	2.1	3.4	3.9	7.1	8.3	1.7	1.9	1.3	1.2	0.3	0.2	0.1	2.4	0.8	3.5	0.3	14.0	1.9	6.0	1.9	1.0	2.2	24	14.0	0.1	3.4	0	O
	25	0.9	7.5	13.0	2.3	0.1	7.2	5.1	3.0	1.5	2.1	1.9	0.9	1.5	1.1	2.3	1.6	1.5	1.9	0.7	0.9	1.5	1.7	2.6	2.1	24	13.0	0.1	2.7	0	0
	26	3.0	5.8	2.7	2.6	2.7	3.5	4.0	5.7	6.8	12.8	8.6	3.4	3.4	3.3	2.0	4.1	2.4	5.5	8.6	14.6	36.3	26.9	31.5	43.7	24	43.7	2.0	10.2	0	0
	28	38.7 2.8	44.9 1.7	34.2 3.0	31.3 2.2	22.0 5.0	20.6 3.5	35.6 4.3	55.1 11.7	36.0 32.4	22.5 17.3	22.3 5.7	10.2 5.3	9.9 5.8	9.6 12.7	4.1 6.2	2.9 4.5	4.2 5.0	2.9 5.0	3.3 18.1	3.5 5.8	5.1 5.8	3.2 3.9	3.8 3.6	2.6 5.4	24 24	55.1 32.4	2.6 1.7	17.9 7.4	0	ı
	29	2.0	1.7	3.0	2.2	5.0	3.3	4.5	11.7	32.4	17.3	5.7	5.5	5.6	12.7	0.2	4.5	5.0	5.0	10.1	5.6	5.0	3.9	5.0	5.4	0	32.4	1.7	7.4	O	ı ĭ
	30																									0					, l
	31																									0					ı
Coun		28	28	28	28	28	28	28	28	28	28	28	28	28	28	27	27	28	28	28	28	28	28	28	28	670					
Maxii		49.8 0.9	44.9 1.5	35.7 0.4	34.2 0.5	47.3 0.1	42.0 2.4	43.1 2.0	55.1 1.7	36.0 1.5	39.7	34.1 1.2	28.7 0.3	20.3 0.2	16.7 0.1	23.5	16.6 0.8	12.2 1.2	23.1 0.3	41.7	28.9 0.9	43.3 1.3	41.7 1.5	57.0 1.0	79.6 1.1	24 0					
Avera		14.0	1.5	12.2	13.0	11.6	12.1	12.5	12.3	11.9	1.3 13.2	11.7	9.0	6.5	6.4	1.3 6.0	5.4	4.9	6.1	0.7 9.9	9.3	1.3	1.5	1.0 13.6	16.7	U					
-		14.0	13.1	12.2	15.0	11.0	12.1	12.5	12.5	11.5	15.2	****	5.0	0.5	0.4	0.0	5.4	4.5	V.1	3.3	J.5	11.0	12.1	15.0	10.7				<u> </u>		
Perce	entiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximi	um Hourly		79.6
Data			2.2		3.3		4.0		5.2		6.4		8.4		11.3		16.6		26.8		35.4		47.7		79.6				num Daily y Average		22.6 10.7
Notes		C -		n / Span Cy		A - No Data		Т.	Test	Δ	- MOE Audit	M.	Equipment M	alfunction		R.	Rate of Ch	ange											,		

												NOx Cra	ago Road 2018																		
											ppb		2018																		
	Hour	r																													
Day	1	7.2	100 2.4	200 10.8	300 15.5	400 16.7	500 8.8	600 16.4	700 17.1	800 11.4	900 3.0	3.0	1100 1.8	1.0	1300 1.2	1.0	1500 1.4	7.1	1700 9.8	1800 15.9	1900 6.2	2.2	2100 2.3	2200 1.5	2300	Count 24	Maximum 17.1	Minimum 1.0	Average 6.9	Hrs>400	Days>200
	2	1.1	0.9	0.6	0.6	0.5	1.0	2.8	1.8	2.8	1.2	1.4	1.1	0.9	1.2	1.0	1.4	1.9	1.0	1.1	1.1	1.2	0.5	1.0	1.2	24	2.8	0.5	1.2	0	i o
	3	0.6	0.7	0.1	0.4	0.5	0.6	1.0	0.6	0.0	0.5	0.1	0.6	0.0	0.2	0.0	0.0	0.0	0.1	0.8	1.3	0.6	0.2	0.8	0.3	24	1.3	0.0	0.4	0	0
	4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.5	0.0	0.3	0.0	0.0	0.4	0.4	0.1	1.0	2.0	1.9	1.1	0.6	0.7	24	2.0	0.0	0.4	0	0
	5	0.5	0.0	0.1	0.3	0.4	2.3	2.8	4.7	1.3	1.2	1.8	4.8	0.6	0.6	1.9	1.5	2.1	4.0	5.3	3.7	30.6	43.2	26.1	29.1	24	43.2	0.0	7.0	0	0
	6	16.9	17.6	15.7	18.1 3.0	9.5	7.9	5.8	8.6	7.7 4.1	2.4	0.8	1.8	3.0	0.3	0.5	1.4 3.9	1.6	0.7	0.5	0.7 4.8	2.5	1.0	1.7 2.7	1.5 3.2	24	18.1	0.3	5.3 3.8	0	
	8	1.2 1.5	2.4 2.1	1.6 3.1	4.0	4.2 3.0	4.6 2.2	7.1 6.9	5.6 5.5	3.2	5.8 3.8	9.1 3.7	5.7 6.5	2.6 6.2	2.5 3.8	2.7 3.7	4.8	2.7 5.3	3.0 6.0	1.5 9.4	4.6 14.3	2.6 18.4	4.6 24.6	7.3	4.3	24 24	9.1 24.6	1.2 1.5	6.4	0	i o
	9	6.1	4.2	2.6	3.1	5.9	10.4	8.5	5.4	2.8	2.2	1.5	1.2	1.1	1.5	1.1	1.4	1.0	1.6	1.6	1.3	1.8	2.0	2.3	3.3	24	10.4	1.0	3.1	0	ı o
	10	4.9	3.6	3.8	5.1	3.8	5.9	7.2	7.6	2.4	0.8	0.4	0.1	0.2	0.4	0.0	0.2	0.1	0.4	0.1	1.3	1.9	2.8	3.6	3.7	24	7.6	0.0	2.5	0	0
	11	3.3	4.0	4.6	5.1	4.8	5.4	4.5	5.1	1.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.8	1.0	1.8	2.2	2.4	1.9	4.0	4.7	24	5.4	0.0	2.4	0	0
	12	7.8 2.2	2.8 1.8	1.1 1.6	1.3 1.7	1.9 4.2	3.1 4.4	2.9 4.3	4.2 3.3	2.2	1.5	4.8 1.2	0.8 1.2	0.4 0.4	0.0 0.5	0.4 1.6	1.5 1.3	2.1 1.3	1.8 2.0	4.8 2.6	5.0 2.4	9.4 2.1	7.2 1.7	3.7 1.6	4.9 2.2	24 24	9.4 4.4	0.0	3.1 2.1	0	١
	14	1.4	1.8	1.6	1.7	1.4	2.3	2.2	2.1	1.9	1.3 2.2	1.6	1.2	1.0	1.2	1.1	1.2	1.5	1.5	1.6	2.4	2.7	2.2	1.8	2.2	24	2.7	0.4 1.0	1.7	0	ı o
	15	4.4	4.5	8.4	7.9	8.7	11.5	17.4	33.6	13.7	1.9	1.9	1.4	1.4	1.1	1.4	1.5	1.9	1.4	1.5	2.1	1.7	2.2	2.4	2.8	24	33.6	1.1	5.7	0	0
	16	2.3	1.7	1.1	1.0	1.2	0.9	1.4	1.3	1.1	1.4	0.8	0.9	1.2	1.8	1.0	0.8	1.2	1.6	1.8	3.4	4.8	4.9	5.2	6.4	24	6.4	0.8	2.0	0	0
	17	13.1	12.0	10.0	13.2	13.7	8.6	6.9	9.1	1.0	0.6	0.4	0.0	0.0	0.0	0.0	0.0	0.3	0.2	0.9	1.2	0.1	0.1	0.0	1.8	24	13.7	0.0	3.9	0	0
	18	2.0 3.0	2.7 3.2	6.0 1.7	6.2 2.0	6.2 4.9	3.9 6.3	6.3 9.6	6.9 4.8	10.9 0.7	3.3 0.8	4.0 0.8	2.3 1.2	2.8 0.2	2.7 0.6	1.9 0.1	2.4 0.3	2.6 1.0	2.2 1.9	2.0 3.3	2.9 0.7	18.1 17.7	18.4 46.3	13.7 27.3	2.2 32.5	24 24	18.4 46.3	1.9 0.1	5.5 7.1	0	
	20	9.7	9.7	6.9	5.0	6.8	3.6	3.0	2.3	1.6	1.8	0.8	1.5	0.2 C	0.0 C	4.1	3.0	2.4	3.0	2.9	29.8	32.1	28.5	16.6	5.3	22	32.1	0.8	8.2	0	0
	21	8.3	4.5	4.1	3.7	4.7	3.7	4.9	4.7	4.1	3.5	3.4	2.8	2.8	2.9	2.9	2.6	2.9	4.3	19.9	24.0	15.5	16.9	11.5	4.9	24	24.0	2.6	6.8	0	0
	22	3.7	3.6	2.3	3.4	3.5	4.3	5.1	4.2	3.8	4.2	3.3	2.6	2.3	2.9	2.6	2.8	3.1	3.2	3.8	4.7	3.3	3.2	3.4	3.7	24	5.1	2.3	3.5	0	0
	23	3.1	3.2	3.2	5.8	6.0	5.9	7.1	6.3	4.3	3.4	3.5	2.4	2.6	3.4	1.4	0.9	0.8	0.4	0.5	1.0	1.3	0.9	0.9	0.8	24	7.1	0.4	2.9	0	0
	24	0.6 1.2	0.4 0.5	0.7 0.5	0.4 0.3	0.4 0.2	0.5 1.0	0.5 1.1	0.3 1.1	0.5 1.7	0.5 0.9	0.5 1.3	0.8 1.1	0.7 0.9	0.5 1.0	0.3 0.6	0.4 1.3	0.5 1.4	0.4 2.2	0.5 3.9	0.4 4.1	0.4 3.9	0.7 5.0	0.9 5.4	0.9 3.6	24 24	0.9 5.4	0.3 0.2	0.5 1.8	0	1 0
	26	3.2	9.6	3.0	14.0	5.8	3.9	20.8	7.3	11.4	3.5	3.0	3.5	3.4	3.0	3.0	3.2	2.9	2.4	3.1	2.4	2.1	1.8	2.0	5.4	24	20.8	1.8	5.2	0	ı
	27	2.7	3.2	3.2	4.1	4.5	4.0	8.5	8.7	7.7	7.4	5.2	4.5	4.5	3.7	4.5	5.0	5.2	5.9	6.6	4.3	5.3	3.8	8.2	8.4	24	8.7	2.7	5.4	0	0
	28	32.7	19.9	8.5	4.5	4.6	4.8	5.6	9.2	8.7	6.1	3.6	4.5	5.8	6.0	8.5	5.4	5.7	5.5	5.6	14.5	5.5	33.8	60.8	34.0	24	60.8	3.6	12.7	0	0
	29	15.8	12.0	8.1	3.9	6.1	12.3	13.1	15.7	11.4	17.5	14.6	13.1	9.5	7.3	7.6	8.5	6.2	7.0	6.0	4.4	4.5	4.8	4.7	3.9	24	17.5	3.9	9.1	0	0
	30	3.5 15.6	3.3 17.0	3.1 18.4	4.1 19.6	3.2 16.0	3.3 5.2	3.7 4.4	2.9 4.6	2.7 4.4	2.3 5.2	2.1 4.6	1.8 3.0	2.0 3.5	2.2 3.5	1.8 3.7	1.8 4.1	1.9 5.0	1.8 3.6	2.5 3.1	2.7 4.2	3.4 3.4	5.4 2.5	11.3 3.7	19.8 3.9	24 24	19.8 19.6	1.8 2.5	3.9 6.8	0	ı
Count	-	31	31	31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	742	15.0	2.3	0.0		
Maxim	um	32.7	19.9	18.4	19.6	16.7	12.3	20.8	33.6	13.7	17.5	14.6	13.1	9.5	7.3	8.5	8.5	7.1	9.8	19.9	29.8	32.1	46.3	60.8	34.0	24					
Minimu		0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.4	0.1	0.1	0.0	0.3	22					
Averaa	ge	5.8	5.0	4.4	5.1	4.9	4.6	6.2	6.3	4.3	2.9	2.7	2.4	2.0	1.9	2.0	2.1	2.3	2.6	3.7	5.0	6.6	8.9	7.6	6.5						
Percent	tiles		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly		60.8
Data			0.4		0.9		1.4		1.9		2.7		3.4		4.4		5.8		9.6		16.4		32.3		60.8				num Daily ly Average		12.7 4.4
Notes		C -	Calibratio	n / Span Cy	cle N	A - No Data	Available	T -	Test	A	- MOE Audit	M	- Equipment Ma	alfunction /	Down	R -	Rate of Ch	ange													

Figure C-1 Time History Plots of Measured Hourly Average and 24-Hour Average NO_X
Concentrations – Crago Road Station

APPENDIX D

PM_{2.5} Data Summaries and Time History Plots

												inuary	rago Road 2018																	
	lour																													
Day	2.4		100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	
1	2.4		2.4	4.5	4.3 4.7	2.9 5.5	2.2	1.5	2.1	1.3	3.4	3.8	3.4	2.6	2.6	3.7	1.2 8.7	1.7	2.1	2.0	1.9	1.9	2.1	3.4	3.8	24	4.5	1.2	2.6 8.5	
2	4.4 9.9		4.4 15.2	4.3 11.8	10.3	9.2	6.6 5.6	6.9 4.2	5.3 3.1	4.2 5.3	4.5 7.5	7.9 7.5	9.4 8.5	10.4 9.3	10.3 10.2	9.6 10.6	10.0	8.2 9.3	9.0 9.1	12.0 10.1	13.4 17.1	16.2 21.2	16.1 19.5	13.3 20.3	8.1 22.1	24 24	16.2 22.1	4.2 3.1	11.1	
4	24.1		23.7	23.7	24.0	25.3	23.1	13.9	2.9	2.1	1.9	2.2	2.0	2.5	3.3	3.4	3.5	3.0	2.3	2.2	2.1	1.8	1.5	1.5	1.6	24	25.3	1.5	8.2	
5	1.4		1.5	1.5	1.4	1.4	1.1	1.1	1.2	1.6	2.0	2.2	3.5	4.0	2.6	1.8	1.4	1.4	2.2	3.3	3.5	3.0	3.1	2.8	3.6	24	4.0	1.1	2.2	
6	4.9		3.9	4.3	5.0	4.8	5.1	5.3	6.0	6.4	5.0	4.3	4.1	3.7	3.3	2.7	2.2	3.8	4.1	5.3	9.0	6.0	5.9	5.6	5.2	24	9.0	2.2	4.8	
7	3.0)	5.8	4.8	3.1	4.4	6.1	5.9	4.3	3.6	1.8	2.7	3.3	3.8	4.0	3.3	3.8	5.3	5.9	7.0	8.6	9.0	10.8	11.1	12.5	24	12.5	1.8	5.6	
8	11.5	5	11.9	12.3	9.9	8.3	7.5	6.9	5.0	3.6	2.3	2.2	2.6	2.6	3.1	6.2	12.9	12.3	13.6	14.6	17.1	19.7	16.6	12.6	12.6	24	19.7	2.2	9.5	
9	12.9		10.9	8.6	8.5	8.6	3.0	2.2	2.3	2.4	2.4	2.6	2.5	2.6	2.8	3.1	3.4	3.9	4.4	4.9	5.7	5.6	4.7	4.1	4.9	24	12.9	2.2	4.9	
10	5.4		4.4	3.6	4.8	5.4	5.0	8.7	9.1	6.6	8.8	9.0	9.1	9.5	9.3	9.3	9.2	8.9	8.2	12.9	12.3	10.3	11.0	9.7	10.3	24	12.9	3.6	8.4	
11	8.8 2.6		7.6 3.3	7.4 2.8	8.2 2.7	8.3 3.1	8.7 3.3	9.3 3.3	8.2 3.5	8.3 11.4	6.9 1.6	6.6 1.3	6.1 1.2	7.3 1.5	5.2 1.4	5.5 1.6	7.0 2.3	7.6 2.4	5.4 2.1	4.1 1.9	1.5 1.5	3.0 1.4	3.2 1.2	2.8 1.1	3.0 1.2	24 24	9.3 11.4	1.5 1.1	6.3 2.5	
12	0.9		0.9	0.9	0.8	0.9	3.3 1.2	1.3	3.5 1.4	11.4	1.6	1.3	1.4	1.5	1.4	1.6	1.8	2.4 1.7	1.6	1.5	1.5	1.4 1.4	1.4	1.1	1.8	24 24	11.4	0.8	1.4	
14	1.9		1.9	1.8	2.2	2.4	2.4	2.6	2.2	2.0	2.2	3.2	3.5	4.1	2.4	1.6	2.4	2.2	3.3	2.0	2.1	1.4	1.4	1.5	1.7	24	4.1	1.4	2.3	
15	1.6		1.6	1.7	2.6	2.6	2.6	5.2	3.6	2.6	2.1	2.7	2.8	5.1	5.2	4.1	4.4	4.5	5.0	5.5	5.4	6.5	6.6	6.5	6.0	24	6.6	1.6	4.0	
16	5.6	5	6.2	6.3	6.5	6.0	6.3	6.6	6.7	7.8	8.6	9.3	8.9	9.6	10.5	12.3	14.4	16.0	17.8	17.0	17.3	18.4	16.0	13.4	11.2	24	18.4	5.6	10.8	
17	7.2	2	6.7	6.7	7.8	9.1	9.5	11.8	14.9	17.9	19.9	17.2	14.5	6.6	4.9	2.8	3.0	3.0	4.1	3.6	3.8	4.9	4.7	6.4	7.0	24	19.9	2.8	8.2	
18	7.0		7.2	7.2	6.8	6.8	6.6	6.6	6.7	7.8	8.8	9.1	9.3	8.8	8.1	8.2	9.4	9.5	9.9	9.9	7.7	7.0	7.6	8.3	8.5	24	9.9	6.6	8.0	
19	8.1		8.1	8.6	8.6	9.0	9.3	9.2	9.4	8.8	8.3	8.0	7.1	7.0	6.3	5.6	5.4	6.4	7.1	7.7	8.4	8.1	8.3	7.3	6.4	24	9.4	5.4	7.8	
20	6.0 12.6		6.1 13.9	6.6 14.5	7.1 15.7	7.5 15.8	8.1 15.1	8.2 14.4	8.2 14.1	8.0 15.0	7.6 16.1	7.7 15.2	7.6 13.6	8.0 12.1	8.0 11.7	7.6 11.4	7.8 11.5	7.7 11.9	8.7 12.4	9.1 11.7	9.3 11.6	9.4 11.7	8.9 13.7	9.5 13.1	10.7 12.1	24 24	10.7 16.1	6.0 11.4	8.1 13.4	
22	10.2		9.3	9.6	11.7	10.8	11.3	14.4	16.9	14.7	12.5	15.2	14.3	12.1	10.9	5.1	4.0	3.1	10.2	12.9	11.6	14.0	11.9	23.5	11.4	24	23.5	3.1	11.8	
23	19.3		8.6	9.9	13.3	8.3	8.0	4.7	2.4	2.2	2.0	1.9	1.7	1.9	2.3	2.3	2.5	1.9	1.7	1.8	0.9	1.0	1.0	0.8	0.8	24	19.3	0.8	4.2	
24	0.9		1.1	1.0	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.1	1.1	1.2	1.7	1.9	Т	4.5	4.0	4.0	3.4	3.7	4.2	4.4	23	4.5	0.8	2.0	
25	3.8	8	3.0	2.7	2.6	2.2	2.3	2.8	3.1	3.7	5.3	7.0	8.0	7.2	10.1	6.8	3.8	2.7	2.8	4.8	4.7	5.1	4.4	4.7	5.6	24	10.1	2.2	4.5	
26	5.0)	4.1	4.7	6.0	6.8	9.7	4.3	2.6	2.5	2.0	3.0	3.0	4.7	6.1	5.8	6.0	8.7	11.7	11.9	12.9	9.5	7.5	7.5	8.3	24	12.9	2.0	6.4	
27	6.8		5.2	5.4	4.5	4.6	3.9	2.5	3.3	4.6	5.2	5.8	6.3	7.1	8.6	8.8	10.2	9.5	8.6	7.0	9.2	15.7	20.0	18.5	12.7	24	20.0	2.5	8.1	
28	16.3		13.0	14.0	14.5	13.2	10.5	9.5	9.3	8.9	8.5	8.4	8.1	8.6	9.1	6.0	4.1	3.0	2.4	1.7	1.4	1.3	1.7	1.1	1.3	24	16.3	1.1	7.3	
29	1.7 2.7		1.6 2.1	1.7 1.9	1.4 1.8	1.3 1.6	1.4 1.5	1.4 1.7	1.3 1.4	1.6 1.3	3.2 1.6	4.2 1.9	4.5 2.0	4.6 2.0	4.2 2.1	3.5 1.9	4.8 2.2	4.4 1.7	4.0 2.1	4.1 1.9	4.6 1.9	4.5 1.8	4.6 2.2	4.5 3.5	3.5 4.7	24 24	4.8 4.7	1.3 1.3	3.2 2.1	
30	6.4		8.8	5.7	4.1	3.7	2.2	2.8	2.8	1.9	2.3	1.9 C	2.0 C	2.0	2.1	2.5	2.5	2.5	2.1	2.7	3.6	3.8	4.3	5.0	5.5	22	8.8	1.5	3.7	
Count	31		31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	30	31	31	31	31	31	31	31	741		2.3	5.7	. <u> </u>
Maximum	24.1		23.7	23.7	24.0	25.3	23.1	14.6	16.9	17.9	19.9	17.2	14.5	12.9	11.7	12.3	14.4	16.0	17.8	17.0	17.3	21.2	20.0	23.5	22.1	24				
Minimum	0.9	9	0.9	0.9	0.8	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.1	1.1	1.2	1.4	1.2	1.4	1.6	1.5	0.9	1.0	1.0	0.8	0.8	22				
Averaage	6.9	9	6.6	6.5	6.6	6.5	6.1	5.8	5.3	5.5	5.4	5.8	5.8	5.6	5.6	5.2	5.4	5.6	6.1	6.5	6.9	7.4	7.3	7.4	6.8					
Percentiles			10		20		30		40	•	50		60		70		80		90		95		99		100			Maximu	ım Hourly	25.3
Data			1.5		2.1		2.8		3.8		4.9		6.5		8.1		9.3		12.6		15.1		21.7		25.3				num Daily y Average	13.4 6.3
				10 -										16					12.0		13.1		21./		دی.5			IVIOIILIII	y Average	0.2
Notes		C - C	alibration	/ Span Cy	cie N	A - No Data	Available	Γ-	- Test	A-	MOE Audit	M	- Equipment M	aitunction ,	own	К-	 Rate of Ch 	ıange												

										Fe	PM _{2.5} - Cra ebruary ·/m³)	ago Road 2018																	
	Hour	100	200	200	400	500	600	700		000	1000	4400	1200	1200	4.400	1500	1600	4700	1000	1000	2000	2400	2200	2200	G				
Day 1	6.9	7.1	200 6.8	300 4.3	400 5.7	500 7.5	9.0	700 10.2	800 11.4	900 12.5	1000 12.6	1100 12.5	1200 12.4	1300 10.5	1400 4.4	1500 2.6	1600 2.0	1700 0.8	1800 0.6	1900 1.0	2000 1.2	2100 1.0	2200 1.2	2300 1.2	Count 24	Maximum 12.6	Minimum 0.6	Average 6.1	
2	1.0	0.9	0.6	0.7	0.5	0.4	0.6	0.7	0.6	1.0	0.8	0.8	0.9	0.9	0.8	0.5	0.6	1.0	2.3	2.5	2.9	2.6	1.3	1.1	24	2.9	0.4	1.1	
3	1.2	1.1	1.0	1.1	1.2	1.4	1.9	2.3	3.0	5.7	5.5	5.0	5.4	6.3	6.7	7.9	8.7	8.3	8.9	9.0	8.0	8.0	6.3	4.1	24	9.0	1.0	4.9	
4	4.0	4.4	4.0	4.6	4.4	4.7	5.5	7.2	9.5	12.0	14.8	11.5	2.3	1.6	2.0	3.1	2.3	1.6	1.9	4.5	3.3	2.8	2.4	2.2	24	14.8	1.6	4.9	
5	2.0	1.5	1.0	1.0	1.2	1.3	1.8	1.9	2.6	4.1	3.0	2.9	3.1	3.4	4.3	5.2	T	M	M	M	M	M	M	M	16	5.2	1.0	2.5	
6	M o 1	M 8.0	M 6.3	M 4.3	M 4.3	M 6.5	M 10.4	18.5 20.2	19.5 8.4	19.3 6.3	16.9 6.2	17.0 5.1	15.1 4.6	14.1 5.3	10.5 5.5	8.6 5.0	6.9 5.5	7.3 6.9	8.5 7.4	9.7 7.7	9.6 7.6	8.0 9.9	8.6 9.9	7.4 12.2	17 24	19.5 20.2	6.9 4.3	12.1 7.5	
8	8.1 16.5	17.7	14.1	9.3	9.9	8.9	7.3	6.3	6.2	5.9	4.7	8.2	9.1	5.9	7.6	11.3	7.9	9.5	10.5	12.6	12.3	12.9	17.0	24.1	24	24.1	4.5	10.6	
9	26.2	29.9	32.3	34.0	33.9	34.3	30.0	30.4	Т	40.3	20.3	18.1	15.6	16.8	13.5	7.4	4.7	12.3	12.1	11.8	12.1	13.4	13.3	13.8	23	40.3	4.7	20.7	
10	15.0	19.2	20.8	23.2	23.8	23.7	23.6	23.0	17.7	16.6	14.5	12.7	10.9	10.3	9.1	9.2	8.7	8.7	8.8	8.2	8.4	7.5	8.0	8.2	24	23.8	7.5	14.2	
11	7.0	7.3	9.0	6.3	6.1	6.4	6.9	9.9	6.3	6.2	13.8	7.8	6.9	10.9	9.3	9.8	6.0	4.7	5.9	7.4	8.1	7.3	5.0	3.1	24	13.8	3.1	7.4	
12	4.1	5.8	3.9	3.9	5.0	5.8	6.4	8.7	11.2	11.4	7.9	4.5	4.6	4.6	4.7	4.5	4.4	5.1	7.1	7.9	8.9	11.2	12.8	14.3	24	14.3	3.9	7.0	
13	14.7	10.9	6.9	6.1	5.0	5.1	5.9	5.7	4.3	8.5	5.4	2.5	2.9	3.3	3.1	3.4	4.3	4.7	4.0	6.6	7.1	6.6	7.5	7.0	24	14.7	2.5	5.9	
14	8.9	8.8	9.5	10.8	11.9 8.9	15.7	22.2	26.8	23.5 5.3	21.4	22.9	23.8	22.1 T	20.4	C 0.1	11.0	21.8	20.5	19.3	18.8	17.9	17.4	15.9	14.8	22	26.8	8.8	18.0 10.6	
16	14.9 16.3	14.2 16.7	12.1 16.1	6.9 15.6	8.9 13.5	6.7 10.0	5.6 6.8	1.2 6.9	7.4	9.5 2.1	8.3 2.3	5.0 2.9	2.2	8.3 1.8	9.1 1.6	11.0 1.6	12.1 1.4	11.6 1.1	13.2 1.3	14.8 1.3	15.8 1.5	15.7 1.5	16.5 2.1	16.2 1.8	23 24	16.5 16.7	1.2 1.1	5.7	
17	0.9	2.0	2.4	2.9	4.7	6.0	7.2	4.8	2.1	2.6	3.3	3.6	3.7	3.8	4.2	5.1	4.6	4.6	4.7	5.0	5.5	6.3	6.6	8.7	24	8.7	0.9	4.4	
18	13.7	19.1	19.3	18.8	15.7	11.4	9.7	9.1	6.3	5.2	5.1	4.5	5.4	4.9	6.1	7.5	9.0	10.2	9.9	9.4	10.3	9.7	10.3	9.7	24	19.3	4.5	10.0	
19	9.5	9.4	7.9	8.0	7.1	6.6	6.0	6.1	5.8	4.7	4.3	4.4	5.3	5.6	6.7	6.8	5.5	6.9	9.8	6.2	3.7	2.2	1.6	1.5	24	9.8	1.5	5.9	
20	1.3	1.8	2.6	2.3	3.1	3.6	2.6	2.7	3.6	3.8	2.4	2.3	3.1	3.7	3.9	6.0	4.6	4.3	6.7	5.3	7.0	9.6	5.8	5.2	24	9.6	1.3	4.1	
21	6.6	8.5	11.8	12.4	10.5	9.5	14.1	1.9	2.0	2.1	2.1	1.8	1.9	2.0	2.1	2.2	2.2	2.3	2.3	2.6	2.5	2.2	2.1	2.1	24	14.1	1.8	4.6	
22	1.9	1.7	1.7	1.7 1.8	1.9	2.0	2.1 5.8	2.2	2.0 3.8	2.5	2.5	2.2	T 2.1	2.4	2.7	2.7	4.7	2.8	2.5	2.0	2.4	2.3 5.2	2.2 5.2	2.4 3.1	23 24	4.7	1.7	2.3 2.8	
24	1.7 2.3	2.1 2.1	1.9 1.7	1.8	3.0 2.2	5.0 2.3	2.4	3.4 1.7	1.5	3.4 1.3	3.6 1.3	3.1 1.2	2.1 1.4	1.3 1.6	1.3 1.3	1.0 1.4	0.4 1.9	1.9 1.8	1.5 2.8	1.7 2.8	2.9 2.9	2.0	1.8	1.5	24	5.8 2.9	0.4 1.2	1.9	
25	1.5	2.6	3.6	1.8	1.9	4.8	3.8	2.8	1.8	1.5	1.6	1.1	1.6	1.7	2.6	4.3	4.9	6.6	7.8	9.1	9.2	8.7	8.5	8.7	24	9.2	1.1	4.3	
26	8.5	7.7	7.6	6.7	7.1	7.0	6.8	7.2	7.1	5.9	4.9	2.0	1.7	2.4	2.5	2.5	2.2	2.2	2.9	3.9	4.0	4.2	4.3	5.2	24	8.5	1.7	4.9	
27	5.4	6.4	7.1	7.8	7.7	8.2	8.5	8.3	4.4	3.3	3.8	2.8	3.1	3.4	2.9	2.2	1.7	1.5	1.9	2.1	2.3	2.3	3.2	2.5	24	8.5	1.5	4.3	
28	3.0	3.6	5.3	6.8	5.4	6.0	5.9	7.1	8.1	4.6	3.3	3.1	3.3	3.9	3.7	3.9	4.6	5.4	7.2	9.3	10.2	11.3	10.9	9.9	24	11.3	3.0	6.1	
29																									0				
30																									0				
Count	27	27	27	27	27	27	27	28	27	28	28	28	26	28	27	27	27	27	27	27	27	27	27	27	0 652				
Maximum	26.2	29.9	32.3	34.0	33.9	34.3	30.0	30.4	23.5	40.3	22.9	23.8	22.1	20.4	13.5	11.3	21.8	20.5	19.3	18.8	17.9	17.4	17.0	24.1	24				
Minimum	0.9	0.9	0.6	0.7	0.5	0.4	0.6	0.7	0.6	1.0	0.8	0.8	0.9	0.9	0.8	0.5	0.4	0.8	0.6	1.0	1.2	1.0	1.2	1.1	0				
Averaage	7.5	8.2	8.0	7.6	7.6	7.8	8.1	8.5	6.9	8.0	7.1	6.2	5.8	5.8	4.9	5.1	5.3	5.7	6.4	6.8	6.9	7.1	7.0	7.1					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly	40.
Data		1.6		2.2		2.9		4.3		5.4		6.8		8.1		9.9		14.7		19.1		29.9		40.3				mum Daily lly Average	20. 6.
Data		1.0		۷.۷		2.5		7.5		5.4		0.0		0.1		5.5		17.7		13.1		25.5		40.5			WOULD	ily / WCIUSC	0.
Notes	C	- Calibratio	n / Span Cy	rcle N	A - No Data	Available	Т-	- Test	A-	MOE Audit	M ·	Equipment M	alfunction ,	/ Down	R -	Rate of Ch	ange							I				1	

												larch	rago Road 2018																	
H	our																													
Day	0)	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	
1	7.8		4.6	3.4	4.0	3.5	2.0	2.1	2.3	1.7	1.4	1.1	2.5	2.7	2.9	3.1	3.8	8.3	5.1	8.3	3.4	2.4	2.7	2.5	3.3	24	8.3	1.1	3.5	
2	3.6		3.4	2.9	2.6	2.3	2.2	2.0	2.0	2.1	2.0	1.8	1.7	1.8	1.9	2.1	2.8	2.5	1.9	1.9	2.0	1.9	1.8	1.9	1.8	24	3.6	1.7	2.2	
3	1.7		1.5	1.2	1.2	1.2	1.2	1.6	1.5	1.3	1.3	1.4	1.6	1.4	1.2	1.2	1.1	1.0	0.9	1.3	1.4	1.5	1.7	1.8	1.8	24	1.8	0.9	1.4	
4	1.6 1.0		1.5 0.9	1.5 0.8	1.5 0.8	1.6 0.8	1.6 1.1	1.7 1.2	1.8 1.3	1.7 1.2	1.5 1.4	2.0 1.4	1.6 2.2	1.2 2.1	1.3 2.0	1.4 3.1	1.5 3.5	1.3 3.8	0.9 5.9	0.9 6.0	1.2 5.8	1.1 10.3	0.9 24.0	0.8 9.5	1.1 7.4	24 24	2.0 24.0	0.8 0.8	1.4 4.1	
6	5.5		4.9	4.3	5.1	3.7	2.4	2.2	2.3	2.4	2.5	2.9	4.1	3.2	1.9	2.5	2.6	3.3	3.5	3.7	3.2	3.3	24.0	2.3	3.5	24	5.5	1.9	3.3	
7	6.0		9.0	12.2	14.0	15.9	15.4	17.0	14.7	13.5	9.8	11.1	7.7	6.1	2.3	2.1	2.2	2.1	1.8	1.4	1.5	2.3	6.5	4.6	4.6	24	17.0	1.4	7.7	
8	2.3		2.2	2.3	2.3	2.0	2.3	2.4	2.8	2.1	1.7	2.1	2.7	2.2	2.0	2.0	2.1	2.2	2.8	3.8	5.4	5.9	6.1	4.1	4.1	24	6.1	1.7	2.9	
9	4.7		4.0	2.3	2.1	2.3	2.9	2.3	2.6	2.7	3.3	2.8	2.3	2.2	2.0	0.9	0.8	0.7	1.1	1.3	1.7	1.8	2.0	2.0	2.1	24	4.7	0.7	2.2	
10	1.9)	1.7	1.7	1.6	1.4	1.5	1.8	1.7	1.5	1.0	0.7	1.3	1.7	2.5	2.3	2.8	1.6	1.1	1.4	1.9	2.8	4.1	4.3	4.4	24	4.4	0.7	2.0	
11	3.4		2.7	3.4	2.7	3.1	2.7	2.2	2.0	1.5	1.5	1.8	2.0	2.5	2.2	2.2	2.0	3.0	4.1	4.3	4.1	4.4	3.4	2.8	3.0	24	4.4	1.5	2.8	
12	4.5		5.0	4.7	4.1	4.1	3.6	4.2	4.0	3.3	3.0	3.5	1.9	2.2	2.3	4.2	6.3	9.0	12.1	14.2	15.1	14.9	7.4	3.5	3.4	24	15.1	1.9	5.8	
13	4.0		3.5	3.8	4.4	4.3	4.2	3.4	3.0	2.4	2.0	2.2	2.5	2.2	5.3	3.7	3.6	3.5	3.9	4.8	5.5	4.3	2.8	2.0	1.6	24	5.5 6.8	1.6	3.5	
14	1.1		1.1 11.5	1.0 11.6	0.7 11.4	0.8 9.9	0.7 9.5	0.8 9.4	1.1 9.6	1.3 6.4	1.5 4.0	1.9 4.4	2.1 3.8	2.1 2.4	2.2 2.5	2.9 2.9	5.1 3.3	5.0 3.9	3.2 3.5	2.0 5.1	2.4	4.2 6.8	5.9 7.0	5.1 6.9	6.8 6.4	24 24	6.8	0.7 2.4	2.5 6.6	
16	9.9 7.1		8.3	8.7	7.2	7.1	5.7	4.7	4.4	4.7	4.9	7.0	6.0	6.6	5.9	4.3	4.3	4.2	4.8	3.4	6.4 3.2	3.1	2.9	3.1	3.4	24	11.6 8.7	2.4	5.2	
17	6.8		9.8	6.5	7.2	6.6	4.8	3.2	2.4	1.3	1.3	1.2	1.1	1.0	1.0	1.3	1.4	1.3	1.2	1.2	1.1	0.7	0.6	0.8	0.9	24	9.8	0.6	2.7	
18	1.1		1.1	1.9	1.5	2.3	1.8	1.9	1.6	2.0	1.9	3.3	4.2	5.1	5.4	4.8	4.8	4.1	3.6	3.7	4.5	10.7	10.5	6.7	2.8	24	10.7	1.1	3.8	
19	2.2	2	2.2	1.9	1.1	1.1	1.0	1.2	1.0	1.2	1.1	1.1	0.9	0.8	0.8	0.9	1.0	1.2	1.3	1.4	1.2	2.4	3.6	5.3	6.0	24	6.0	0.8	1.8	
20	4.1	L	2.7	3.0	3.0	3.3	2.9	3.0	2.2	2.2	3.2	2.5	3.6	С	С	5.8	4.7	5.0	5.6	6.3	10.0	11.7	11.9	6.5	2.1	22	11.9	2.1	4.8	
21	2.0)	1.6	1.6	1.6	1.4	1.3	1.5	1.8	2.0	2.1	2.3	2.6	1.4	1.8	1.5	1.3	0.9	0.8	1.5	3.4	7.4	6.3	3.5	1.6	24	7.4	8.0	2.2	
22	1.4		1.3	1.1	1.2	1.1	1.7	2.5	2.2	2.0	2.0	1.9	1.9	1.9	3.4	3.6	2.7	2.2	2.5	2.7	2.6	2.1	2.1	2.2	2.2	24	3.6	1.1	2.1	
23	2.2		2.1	2.1	2.2	2.4	2.6	3.8	5.5	M	M	M	M	M	M	6.6	3.0	3.0	2.3	2.6	4.1	4.4	4.0	4.7	6.6	18	6.6	2.1	3.6	
24	4.3		4.7 4.0	3.9 4.0	2.4 3.4	2.4 6.7	2.4 4.7	2.9 3.0	2.2 2.2	2.3	2.4 3.4	2.5 3.2	2.5 2.6	3.0 3.1	2.7 3.4	2.3 3.0	2.1 3.3	2.2	2.9 3.3	2.5 5.6	2.5 12.7	4.2 21.5	3.2 19.9	3.4 11.6	4.0 5.3	24 24	4.7 21.5	2.1 2.2	2.9 5.8	
25	3.9 4.9		3.8	3.4	3.5	3.5	3.4	4.3	3.6	3.2	2.8	3.5	4.8	6.7	5.2	3.4	3.3	3.1 3.7	3.3 4.6	3.6	3.2	3.1	3.2	3.4	3.9	24	6.7	2.2	3.8	
27	8.2		8.6	11.3	11.6	13.0	18.3	18.7	12.9	9.9	7.5	5.4	4.6	3.5	3.1	3.8	3.7	3.3	2.6	2.4	3.4	4.7	4.3	3.3	5.3	24	18.7	2.4	7.2	
28	6.2		5.2	4.6	4.6	5.0	4.6	4.7	5.8	4.4	3.6	3.5	4.4	16.8	18.6	15.7	14.0	9.9	9.5	11.1	12.0	11.7	16.8	17.5	14.9	24	18.6	3.5	9.4	
29	12.3		11.2	9.9	7.0	6.3	11.2	14.0	11.9	12.3	15.1	14.8	12.4	7.3	2.0	1.4	1.2	1.2	1.4	1.4	1.2	1.3	1.5	1.8	2.0	24	15.1	1.2	6.8	
30	1.8	3	3.2	10.0	8.5	6.5	5.0	2.6	3.0	2.5	1.8	1.7	1.5	1.4	1.3	1.2	1.1	1.1	1.5	1.7	1.7	1.4	1.6	1.9	3.0	24	10.0	1.1	2.8	
31	2.3		2.2	2.3	2.3	2.2	2.2	2.1	2.8	3.9	2.5	2.1	1.9	2.2	2.6	2.6	2.8	3.1	2.1	2.0	2.6	2.8	2.7	3.3	2.9	24	3.9	1.9	2.5	
Count	31		31	31	31	31	31	31	31	30	30	30	30	29	29	31	31	31	31	31	31	31	31	31	31	736				
Maximum	12.3		11.5	12.2	14.0	15.9	18.3	18.7	14.7	13.5	15.1	14.8	12.4	16.8	18.6	15.7	14.0	9.9	12.1	14.2	15.1	21.5	24.0	17.5	14.9	24				
Minimum Averaage	1.0 4.2		0.9 4.2	0.8 4.3	0.7 4.1	0.8 4.1	0.7 4.1	0.8 4.2	1.0 3.8	1.2 3.4	1.0 3.1	0.7 3.2	0.9 3.2	0.8 3.3	0.8 3.2	0.9 3.2	0.8 3.2	0.7 3.3	0.8 3.3	0.9 3.7	1.1 4.2	0.7 5.2	0.6 5.6	0.8 4.3	0.9 3.9	18				
Averdage	4.2	-	4.2	4.3	4.1	4.1	4.1	4.2	3.0	3.4	3.1	3.2	3.2	3.3	3.2	3.2	3.2	3.3	3.3	3.7	4.4	٦.٢	3.0	4.3	3.9					
Percentiles			10		20		30		40		50		60		70		80		90		95		99		100				ım Hourly	24.
Data			1.2		1.6		2.0		2.3		2.7		3.3		4.0		5.0		7.8		11.7		16.9		24.0				num Daily y Average	9. 3.
Notes		C - C	Calibration	/ Span Cy	cle NA	A - No Data	Available	T -	Test	A-	MOE Audit	M	- Equipment M	alfunction /	[/] Down	R -	Rate of Ch	nange												

Figure D-1 Time History Plot of Measured 24-Hour Average PM_{2.5} Concentrations – Crago Road Station

APPENDIX E Continuous Parameter Edit Log

Project Name	Durham York Ener	gy Centre Ambient	Air Monitoring Program					
Contact	Greg Crooks / Con	nie Lim / Toni Zbier	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, toni.zbieranowski@stantec.com
Station number:	N	/A	Station Name:	Crago Road				
Station address:	Crago Road		Emitter Address:	The Region of D	urham, 605 Ro	ssland Rd, Whitby	, ON	
Pollutant or parameter:	SO2	Instrument make 8	& model:	Teledyne Monit	or Labs Sulphu	r Dioxide	Serial Number:	1228
Data edit period	Start date:	1-Jan-18	End date:	31-Mar-18	3			Time Zone : EST
				Start	ing	End	ling	Reason
Edit #	Edit date	Editor's Name	Edit Action	Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd/mm/yyyy)	Hour (xx:xx)	(dd/mm/yyyy)	nour (xx:xx)	
1	16-Feb-18	TZ	Invalidate	31-Jan-18	10:00	31-Jan-18	11:00	Monthly calibration.
2	17-Apr-18	TZ	Invalidate	14-Feb-18	14:00	14-Feb-18	15:00	Monthly calibration.
3	17-Apr-18	TZ	Invalidate	20-Mar-18	12:00	20-Mar-18	13:00	Monthly calibration.
4	19-Apr-18	TZ	Data Review	22-Jan-18	19:00	23-Jan-18	03:00	Elevated SO2 concentrations ranging from 12 to 29 ppb were noted. Elevated concentrations were also measured at the Courtice
								WPCP during this time at about the same levels. Winds were blowing from the east. Possible emission sources include St. Mary's
								Cement. Data determined to be valid.
5	19-Apr-18	TZ	Data Review	11-Feb-18	10:00	11-Feb-18	15:00	Elevated SO2 concentrations ranging from 2 to 18 ppb were noted. Elevated concentrations were also measured at the Courtice
								WPCP during this time at about the same levels. Winds were blowing from the east. Possible emission sources include St. Mary's
								Cement. Data determined to be valid.
6	19-Apr-18	TZ	Data Review	18-Mar-18	10:00	18-Mar-18	10:00	A slightly elevated SO2 concentration of 4 ppb was noted, similar concentrations were observed at Rundle and Courtice stations
								indicating a source which was influencing all stations.
7	19-Apr-18	TZ	Data Review	4-Jan-18	23:00	5-Jan-18	13:00	
8	19-Apr-18	TZ	Data Review	6-Jan-18	21:00	7-Jan-18	04:00	
9	19-Apr-18	TZ	Data Review	12-Jan-18	17:00	13-Jan-18	15:00	
10	19-Apr-18	TZ	Data Review	15-Jan-18	16:00	16-Jan-18	08:00	
11	19-Apr-18	TZ	Data Review	29-Jan-18	01:00	29-Jan-18	08:00	
12	19-Apr-18	TZ	Data Review	29-Jan-18	22:00	30-Jan-18	09:00	
13	19-Apr-18	TZ	Data Review	1-Feb-18	19:00	2-Feb-18	04:00	Repeating values were investigated. Measurements fluctuated, but appear as repeating due to round off.
14	19-Apr-18	TZ	Data Review	10-Feb-18	13:00	11-Feb-18	00:00	nepeating values were investigated. Measurements indetailed, but appear as repeating due to round on.
15	19-Apr-18	TZ	Data Review	28-Feb-18	22:00	1-Mar-18	06:00	
16	19-Apr-18	TZ	Data Review	6-Mar-18	11:00	6-Mar-18	18:00	
17	19-Apr-18	TZ	Data Review	9-Mar-18	19:00	10-Mar-18	04:00	
18	19-Apr-18	TZ	Data Review	13-Mar-18	17:00	14-Mar-18	02:00	
19	19-Apr-18	TZ	Data Review	21-Mar-18	13:00	22-Mar-18	00:00	
20	19-Apr-18	TZ	Data Review	27-Mar-18	16:00	28-Mar-18	00:00	
21	19-Apr-18	TZ	Data Review	24-Mar-18	08:00	24-Mar-18	14:00	
22	19-Apr-18	TZ	Data Review	24-Mar-18	17:00	24-Mar-18	17:00	Instances of repeating zero values in this timeframe were due to negative instrument zero drift less than -5 ppb and rounded to 0
23	19-Apr-18	TZ	Data Review	24-Mar-18	20:00	24-Mar-18	22:00	ppb. As per the MOECC Ambient Monitoring Guideline, no drift correction was applied.
24	19-Apr-18	TZ	Data Review	25-Mar-18	01:00	25-Mar-18	14:00	ppb. As per the Modece Ambient Monitoring Guideline, no unit correction was applied.
25	19-Apr-18	TZ	Data Review	25-Mar-18	18:00	25-Mar-18	22:00	

Examples of Acceptable Edit Actions: Add offset of

Delete hours Zero Correction

Slope Correction

Slope Correction

Manual data entry for missing, but collected data

Invalidating span & zero check data

Invalidating data due to equipment malfunctions and power failures.

Invalidating data when instrumentation off-line Marking data as out-of-range

Project Name	Durham York Ene	gy Centre Ambient	Air Monitoring Program										
Contact	Greg Crooks / Con	nie Lim / Toni Zbie	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, toni.zbieranowski@stantec.com					
Station number:	N	/A	Station Name:	Crago Road									
Station address:	Crago Road		Emitter Address:	The Region of D	urham, 605 Ro	ssland Rd, Whitby	, ON						
Pollutant or parameter:	NOx	Instrument make	& model:	API Model 200E	Chemilumines	cence Analyzer	Serial Number:	1424					
Data edit period	Start date:	1-Jan-18	End date:	31-Mar-18	3			Time Zone : EST					
Edit #	Edit date	Instrument make & model: Ite:		Start	ing	End	ing	Reason					
				Date	Hour (xx:xx)	Date	Hour (xx:xx)						
				(dd/mm/yyyy)		(dd/mm/yyyy)							
1	16-Feb-18	TZ	Invalidate	31-Jan-18	10:00	31-Jan-18	11:00	Monthly calibration.					
2	17-Apr-18	TZ	Invalidate	14-Feb-18	14:00	14-Feb-18	15:00	Monthly calibration.					
3	17-Apr-18	TZ	Invalidate	20-Mar-18	12:00	20-Mar-18	13:00	Monthly calibration.					
4	19-Apr-18	TZ	Invalidate	11-Jan-18	16:00	11-Jan-18	17:00	Rotek on-site to service NO _X analyzer.					
5	19-Apr-18	TZ	Data Review	22-Jan-18	21:00	23-Jan-18	03:00	Elevated NOx concentrations of 38 to 93 ppb was noted during this time period. Elevated NOx was also measured at the Courtice WPCP during this time. Winds were blowing from the east. Concentrations of NO were higher than concentrations of NO2, indicating a nearby combustion source. NO2 concentrations measured at Oshawa during this time were lower, similar to lower levels measured at Rundle. Possible near-by emission source is St. Mary's Cement. Data determined to be valid.					
7	19-Apr-18		Data Review Data Review	12-Feb-18 28-Mar-18	21:00	13-Feb-18 28-Mar-18	02:00	Elevated NOx concentrations of 17 to 80 ppb was noted during this time period. Elevated NOx was also measured at the Courtice WPCP during this time. NO2 concentration was slightly higher than NO indicating a more distant emission source. NO2 concentrations measured at Oshawa during this time were lower than those measured at Crago and the Courtice WPCP but higher than those measured at Rundle. Possible sources include Highway 401, the CP rail line, or the DYEC. Data determined to be valid. Elevated NOx concentrations of 34 to 61 ppb was noted during this time period. Elevated NOx was also measured at the Courtice WPCP during this time. Winds were blowing from the north. During this time, NO2 concentration was slightly higher than NO indicating a more distant emission source. Possible sources include Highway 401 and the CP rail line. Data determined to be valid.					

Examples of Acceptable Edit Actions: Add offset of

Delete hours Zero Correction

Slope Correction

Manual data entry for missing, but collected data

Invalidating span & zero check data Invalidating data due to equipment malfunctions and power failures. Invalidating data when instrumentation off-line

Marking data as out-of-range

Project Name	Durham York Ene	Air Monitoring Program						
Contact	Greg Crooks / Cor	nie Lim / Toni Zbie	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, toni.zbieranowski@stantec.com
Station number:			Station Name:	Crago Road				
Station address:	Crago Road PM2.5	Instrument make	Emitter Address:			ssland Rd, Whitb		01.000
Pollutant or parameter: Data edit period	Start date:		s model: End date:	Thermo Sharp 5 31-Mar-18		zea Hybria	Serial Number:	CM 0269 Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Start		Enc	ling	Reason
Euit #	Euit date	Euitoi s ivaille	Euit Action	Date	Hour (xx:xx)	Date	Hour (xx:xx)	Reason
				(dd/mm/yyyy)	Tiour (xx.xx)	(dd/mm/yyyy)	Hour (AA.AA)	
1	16-Feb-18	TZ	Invalidate	31-Jan-18	10:00	31-Jan-18	11:00	Monthly calibration.
2	21-Mar-18	AE	Invalidate	24-Jan-18	16:00	24-Jan-18	16:00	Hourly data invalidated during SHARP zero concentration check done at Site.
3	21-Mar-18	AE	Invalidate	5-Feb-18	16:00	5-Feb-18	16:00	Hourly data invalidated during SHARP zero concentration check done at Site.
4	21-Mar-18	AE	Invalidate	9-Feb-18	08:00	9-Feb-18	08:00	Hourly data invalidated during SHARP zero concentration check done at Site.
5	21-Mar-18	AE	Invalidate	15-Feb-18	12:00	15-Feb-18	12:00	Hourly data invalidated during SHARP zero concentration check done at Site.
6	21-Mar-18	AE	Invalidate	22-Feb-18	12:00	22-Feb-18	12:00	Hourly data invalidated during SHARP zero concentration check done at Site.
7	17-Apr-18	TZ	Invalidate	14-Feb-18	14:00	14-Feb-18	15:00	Monthly calibration.
8	17-Apr-18	TZ	Invalidate	20-Mar-18	12:00	20-Mar-18	13:00	Monthly calibration.
9	19-Apr-18	TZ	Data Review	3-Jan-18	19:00	4-Jan-18	06:00	Elevated PM2.5 concentrations were observed during this time, ranging from 14 to 25 μg/m³. Elevated concentrations were also
								observed at the Courtice WPCP and Rundle stations as well as Oshawa. Winds were from the West to Northwest, with overall
								higher ambient levels in the area. Data is determined to be valid.
10	19-Apr-18	TZ	Invalidate	5-Feb-18	17:00	6-Feb-18	06:00	Elevated PM2.5 concentrations were observed during this time, starting at around 36 µg/m ³ and slowly decreasing to about 17
								μg/m³. These elevated concentrations were observed to occur following a zero check of the Crago SHARP unit and was not
								observed at the other stations. PM2.5 concentrations at the Courtice WPCP and Rundle Road stations as well as Oshawa were all
								similar to each other during this time period ranging from about 6 μg/m ³ to 17 μg/m ³ . The PM2.5 concentrations measured
								during this period were invalidated, as the elevated concentrations were likely due to ambient air (not filtered for PM2.5)
								entering the unit and depositing on the inlet tube when the PM2.5 impactor head was removed.
11	19-Apr-18	TZ	Invalidate	23-Mar-18	08:00	23-Mar-18	13:00	
11	19-Apr-18	12	iiivalidate	23-IVIAT-18	06:00	23-IVIBT-18	13:00	Elevated PM2.5 concentrations were observed during this time, starting high at around 33 µg/m ³ and slowly decreasing to about
								18 µg/m ³ . These elevated concentrations were observed to occur following a zero check of the Crago SHARP unit and was not
								observed at the other stations. PM2.5 concentrations at the Courtice WPCP and Rundle stations were low and similar to each
								other during this time period ranging from about 3 µg/m ³ to 7 µg/m ³ (no data was available from Oshawa). The PM2.5
								concentrations measured during this period were invalidated, as the elevated concentrations were likely due to ambient air (not
		I		1				filtered for PM2.5) entering the unit and depositing on the inlet tube when the PM2.5 impactor head was removed.

Examples of Acceptable Edit Actions: Add offset of Delete hours

Zero Correction Slope Correction

Manual data entry for missing, but collected data

Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Marking data as out-of-range

EDIT LOG TABLE															
Project Name	Durham York En	ergy Centre Ambien	t Air Monitoring Program												
Contact	Greg Crooks / Co	onnie Lim / Toni Zbie	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, toni.zbieranowski@stantec.com							
Station number:		N/A	Station Name:	Crago Road	1										
Station address:	Crago Road		Emitter Address:	The Region of D	urham, 605 Ro	ssland Rd, Whitby	, ON								
Pollutant or parameter:	Temperature	Instrument make	& model:	Campbell Scient	ific Model HM	P60									
Data edit period	Start date:	1-Jan-18	End date:	31-Mar-18	31-Mar-18 Time Zone : EST										
Edit #	Edit date	Editor's Name	Edit Action	Start	ing	End	ing	Reason							
				Date	Hour (xx:xx)	Date	Hour (xx:xx)								
				(dd/mm/yyyy)		(dd/mm/yyyy)									
· ·															

EDIT LOG TABLE

EDIT LOG TABLE														
Project Name			Air Monitoring Program											
Contact	Greg Crooks / Cor	nnie Lim / Toni Zbie	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, toni.zbieranowski@stantec.com						
Station number:	ı	I/A	Station Name:	Crago Road										
Station address:	Crago Road		Emitter Address:	The Region of D	urham, 605 Ro	ssland Rd, Whitby	y, ON							
Pollutant or parameter:	Rainfall	Instrument make	& model:	Texas Electronic	TE525M									
Data edit period	Start date:	1-Jan-18	End date:	31-Mar-18	3			Time Zone : EST						
Edit #	Edit date	Editor's Name	Edit Action	Start	ing	End	Iding Reason							
					Hour (xx:xx)	Date	Hour (xx:xx)							
				(dd/mm/yyyy)		(dd/mm/yyyy)								

Examples of Acceptable Edit Actions: Add offset of

Delete hours

Zero Correction

Slope Correction

Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.

Invalidating data when instrumentation off-line

EDIT LOG TABLE													
Project Name	Durham York End	ergy Centre Ambien	Air Monitoring Program										
Contact	Greg Crooks / Co	nnie Lim / Toni Zbie	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, toni.zbieranowski@stantec.com					
Station number:	1	N/A	Station Name:	Crago Road									
Station address:	Crago Road		Emitter Address:	The Region of D	urham, 605 Ro	ssland Rd, Whitby	, ON						
Pollutant or parameter:	Relative	Instrument make	& model:	Campbell Scient	npbell Scientific Model HMP60								
	Humidity												
Data edit period	Start date:	1-Jan-18	End date:	31-Mar-18	Time Zone : EST								
Edit #	Edit date	Editor's Name	Edit Action	Start	ing	End	ing	Reason					
				Date	Hour (xx:xx)	Date	Hour (xx:xx)						
				(dd/mm/yyyy)		(dd/mm/yyyy)							

EDIT LOG TABLE

EDIT LOG TABLE											
Project Name	Durham York Ene	rgy Centre Ambien	t Air Monitoring Program								
Contact	Greg Crooks / Cor	nnie Lim / Toni Zbie	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, toni.zbieranowski@stantec.com			
Station number:	N	I/A	Station Name:	Crago Road							
Station address:	Crago Road		Emitter Address:	The Region of D	urham, 605 Ro	ssland Rd, Whitb	y, ON				
Pollutant or parameter:	Wind	Instrument make	& model:	Met One Instrur	nents Inc. Mod	del 034B					
	Speed/Wind										
	Direction										
Data edit period	Start date:	1-Jan-18	End date:	31-Mar-18 Time Zone : EST							
Edit #	Edit date	Editor's Name	Edit Action	Start	31-Mar-18 Time Zone : EST Starting Ending Reason						
				Date	Hour (xx:xx)	Date	Hour (xx:xx)				
				(dd/mm/yyyy)		(dd/mm/yyyy)					
1	16-Feb-18	TZ	Invalidate	12-Jan-18	15:00	14-Jan-18	10:00	Sampler malfunction, WS and WD reading all 0 km/hr and 360° respectively during this time period.			
2	16-Feb-18	TZ	Invalidate	14-Jan-18	12:00	14-Jan-18	13:00	Sampler malfunction, WS and WD reading all 0 km/hr and 360° respectively during this time period.			
3	27-Mar-18	AE	Invalidate	4-Feb-18	20:00	7-Feb-18	16:00	Sampler malfunction, WS and WD reading all 0 km/hr and 360° respectively during this time period.			
4	27-Mar-18	AE	Invalidate	11-Feb-18	15:00	12-Feb-18	09:00	Sampler malfunction, WS and WD reading all 0 km/hr and 360° respectively during this time period.			
5	17-Apr-18	TZ	Invalidate	27-Feb-18 01:00 27-Feb-18 07:00 Sampler malfunction, WS and WD reading all 0 km/hr and 360° respectively during this time period.							
6	17-Apr-18	TZ	Invalidate	28-Mar-18 19:00 28-Mar-18 20:00 Sampler malfunction, WS and WD reading all 0 km/hr and 360° respectively during this time period.							

Examples of Acceptable Edit Actions:

Add offset of Delete hours Zero Correction

Slope Correction

Manual data entry for missing, but collected data

Invalidating span & zero check data

Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range

APPENDIX F

Metals Data Summary

Metals and Total	Crago Road Station																														
Particulates	g																														
Location		Cr	rago	Crag	10	Cra	igo	Cre	igo	Cr	ago	Cr	rago	Cre	ago	Cro	ago	Crago		Crag	go	Cro	ago	Cı	rago	Cr	ago	Cr	rago	Cr	ago
Date	dd/mm/yyyy		1/2018	08/01/2		14/01/			/2018		/2018		2/2018	07/02			2/2018	19/02/20	18	25/02/		03/03			3/2018		3/2018		3/2018		3/2018
Start Time	hh:mm	C	0:00	0:00)	0:0	00	0:	00	0	:00	C	0:00	0:	:00	0:	:00	0:00		0:00	0	0:	:00	C	0:00	0	:00	0	0:00	0	:00
Sample Duration	Hours	2	3.39	8.45	5	23.	.28	2	3.4	24	.38	2	3.77	23	3.84	23	3.76	23.74		23.7	72	23	3.77	2	3.88	23	3.81	23	3.77	23	i.81
Technician			TZ	TZ		TZ	Z	1	Z	A	E,TZ	A	E,TZ	1	ΑE	Α	ΑE	AE		AE		A	ΑE		AE	,	ΑE		AE	1	AE
Filter Number		171	21279			1712	1287	1712	1288	171:	21294	171	21299	1712	21999	1801	11979	B841720)	B8479	906	B85	1218	B85	57743	B86	1029	B86	66964	B87	0985
Analytical Report #		B80	01282			B809	849	B81	9762	B82	1483	B83	34540	B83	2196	B838	8591	1801198	5	16121	539	1802	20133	161	21541	180	21537	180	22755	1802	20137
Total Volumetric Flow	Am³/sample	12	78.50	482.9	99	1342	2.20	141	6.52	145	0.15	14	56.87	144	10.10	127	4.97	1591.61	1	1544	.30	155	0.75	15	74.98	151	9.95	1.50	09.31	146	54.47
Analytical Results	Units	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL
Particulate	mg	37.5	5.0			29.8	5	44.3	5	42.8	5	32	5	17.4	5	27.6	5	25.4	5	15.3	5.0	16.9	5	15.1	5.0	32.2	5.0	25.8	5.0	21.9	5.0
Total Mercury (Hg)	μg	< 0.02	0.02			< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	<0.02	0.02	<0.02	0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	<0.02	0.02	0.07	0.02
Aluminum (Al)	μg	110	50			118	50	120	50	203	50	106	50	<50	50	53	50	55	50	81	50	82	50	127	50	155	50	175	50	123	50
Antimony (Sb)	μg	<10	10			<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Arsenic (As)	μg	<6.0	6.0			<6.0	6.0	<6	6.0	<6	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Barium (Ba)	μg	8.0	1.0			4.6	1.0	8.3	1.0	8.2	1.0	7.0	1.0	5.3	1.0	3.6	1.0	4.4	1.0	6.9	1.0	4.8	1.0	8.8	1.0	9.9	1.0	8.7	1.0	6.8	1.0
Beryllium (Be)	μg	<1.0	1.0			<1.0	1.0	<1	1.0	<1	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0
Bismuth (Bi)	μg	<6.0	6.0			<6.0	6.0	<6	6.0	<6	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Boron (B)	μg	<6.0	6.0			<6.0	6.0	<6	6.0	<6	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Cadmium (Cd)	μg	<2.0	2.0			<2.0	2.0	<2	2.0	<2	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0
Chromium (Cr)	μg	<5.0	5.0			<5.0	5.0	<5	5.0	<5	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Cobalt (Co)	μg	<2.0	2.0			<2.0	2.0	<2	2.0	<2	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0
Copper (Cu)	μg	22.9	5.0			9.3	5.0	19.2	5.0	9.4	5.0	24.3	5.0	6.2	5.0	<5.0	5.0	6.3	5.0	5.3	5.0	6.4	5.0	5.9	5.0	<5.0	5.0	9.3	5.0	7.6	5.0
Iron (Fe)	μg	274	50			236	50	327	50	452	50	323	50	166	50	140	50	165	50	239	50	190	50	225	50	462	50	402	50	362	50
Lead (Pb)	μg	<3.0	3.0			<3.0	3.0	7.6	3.0	3.2	3.0	3.4	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Magnesium (Mg)	μg	168	50			145	50	182	50	266	50	146	50	57	50	100	50	71	50	183	50	118	50	114	50	201	50	242	50	185	50
Manganese (Mn)	μg	12.1	1.0			5.3	1.0	10.1	1.0	11.1	1.0	12.3	1.0	5.0	1.0	3.8	1.0	4.4	1.0	8.2	1.0	5.8	1.0	6.6	1.0	14.9	1.0	12.1	1.0	7.8	1.0
Molybdenum (Mo)	μg	<3.0	3.0			<3.0	3.0	<3	3.0	<3	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Nickel (Ni)	μg	<3.0	3.0			<3.0	3.0	<3	3.0	<3	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Phosphorus (P)	hd	<25	25			<25	25	<25	25	<25	25	<25	25	<25	25	<25	25	<25	25	<25	25	<25	25	<25	25	<25	25	<25	25	27	25
Selenium (Se)	μg	<10	10			<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Silver (Ag)	μg	<5.0	5.0			<5.0	5.0	<5	5.0	<5	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Strontium (Sr)	hd	3.2	1.0			5.3	1.0	4.6	1.0	9	1.0	3.7	1.0	1.9	1.0	2.6	1.0	2.6	1.0	4.1	1.0	3,6	1.0	3.5	1.0	7.0	1.0	6.7	1.0	3.4	1.0
Thallium (TI)	hd	<10	10			<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Tin (Sn)	hd	<10	10			<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Titanium (Ti)	μg	<10	10			<10	10	<10	10	12	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	14	10	<10	10
Vanadium (V)	ha	<5.0	5.0			<5.0	5.0	<5	5.0	<5	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0		5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Zinc (Zn)	μg	29.1	5.0			18.6	5.0	41.5	5.0	21.5	5.0	69.3	5.0	19.4	5.0	15.9	5.0	24.8	5.0	17.3	5.0	10.9	5.0	14.2	5.0	24.8	5.0	18.1	5.0	18.5	5.0
Zirconium (Zr)	μg	<5.0	5.0			<5.0	5.0	<5	5.0	<5	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Total Uranium (U)	ua ua	<0.45	0.45			<0.45	0.45	<0.45	0.45	<0.45	0.45	<0.45	0.45	<0.45	0.45	<0.45	0.45		0.45	<0.45	0.45	<0.45	0.45	<0.45	0.45	<0.45	0.45	<0.45	0.45	<0.45	0.45
iolai oralioni (u)	μg	~0.43	0.43			NO.40	0.43	~0.43	0.43	~0.43	0.43	~0.43	0.43	~0.43	0.43	~0.43	0.43	~U.40	0.45	~U.43	0.43	~0.43	0.43	~0.43	0.43	NO.43	0.43	~U.43	0.43	~0.43	0.43

		Quarter 1		Crago	Crago	Crago	Crago	Crago	Crago	Crago	Crago	Crago	Crago	Crago	Crago	Crago	Crago	Crago
				1	2	3	4	5	6	7	8	9	10	- 11	12	13	14	15
Calculated Concentrations	Units	Maximum	Minimum															
				1/2/2018	1/8/2018	1/14/2018	1/20/2018	1/26/2018	2/1/2018	2/7/2018	2/13/2018	2/19/2018	2/25/2018	3/3/2018	3/9/2018	3/15/2018	3/21/2018	3/27/2018
Particulate	μg/m³	31.27	9.59	29.33		22.20	31.27	29.51	21.96	12.08	21.65	15.96	9.91	10.90	9.59	21.18	17.09	14.95
Total Mercury (Hg)	μg/m³	4.78E-05	6.28E-06	7.82E-06		7.45E-06	7.06E-06	6.90E-06	6.86E-06	6.94E-06	7.84E-06	6.28E-06	6.48E-06	6.45E-06	6.35E-06	6.58E-06	6.63E-06	4.78E-05
Aluminum (Al)	μg/m³	1.40E-01	1.74E-02	8.60E-02		8.79E-02	8.47E-02	1.40E-01	7.28E-02	1.74E-02	4.16E-02	3.46E-02	5.25E-02	5.29E-02	8.06E-02	1.02E-01	1.16E-01	8.40E-02
Antimony (Sb)	μg/m³	3.92E-03	3.14E-03	3.91E-03		3.73E-03	3.53E-03	3.45E-03	3.43E-03	3.47E-03	3.92E-03	3.14E-03	3.24E-03	3.22E-03	3.17E-03	3.29E-03	3.31E-03	3.41E-03
Arsenic (As)	µg/m³	2.35E-03	1.88E-03	2.35E-03		2.24E-03	2.12E-03	2.07E-03	2.06E-03	2.08E-03	2.35E-03	1.88E-03	1.94E-03	1.93E-03	1.90E-03	1.97E-03	1.99E-03	2.05E-03
Barium (Ba)	µg/m³	6.51E-03	2.76E-03	6.26E-03		3.43E-03	5.86E-03	5.65E-03	4.80E-03	3.68E-03	2.82E-03	2.76E-03	4.47E-03	3.10E-03	5.59E-03	6.51E-03	5.76E-03	4.64E-03
Beryllium (Be)	µg/m³	3.92E-04	3.14E-04	3.91E-04		3.73E-04	3.53E-04	3.45E-04	3.43E-04	3.47E-04	3.92E-04	3.14E-04	3.24E-04	3.22E-04	3.17E-04	3.29E-04	3.31E-04	3.41E-04
Bismuth (Bi)	µg/m³	2.35E-03	1.88E-03	2.35E-03		2.24E-03	2.12E-03	2.07E-03	2.06E-03	2.08E-03	2.35E-03	1.88E-03	1.94E-03	1.93E-03	1.90E-03	1.97E-03	1.99E-03	2.05E-03
Boron (B)	µg/m³	2.35E-03	1.88E-03	2.35E-03		2.24E-03	2.12E-03	2.07E-03	2.06E-03	2.08E-03	2.35E-03	1.88E-03	1.94E-03	1.93E-03	1.90E-03	1.97E-03	1.99E-03	2.05E-03
Cadmium (Cd)	μg/m³	7.84E-04	6.28E-04	7.82E-04		7.45E-04	7.06E-04	6.90E-04	6.86E-04	6.94E-04	7.84E-04	6.28E-04	6.48E-04	6.45E-04	6.35E-04	6.58E-04	6.63E-04	6.83E-04
Chromium (Cr)	μg/m³	1.96E-03	1.57E-03	1.96E-03		1.86E-03	1.76E-03	1.72E-03	1.72E-03	1.74E-03	1.96E-03	1.57E-03	1.62E-03	1.61E-03	1.59E-03	1.64E-03	1.66E-03	1.71E-03
Cobalt (Co)	μg/m³	7.84E-04	6.28E-04	7.82E-04		7.45E-04	7.06E-04	6.90E-04	6.86E-04	6.94E-04	7.84E-04	6.28E-04	6.48E-04	6.45E-04	6.35E-04	6.58E-04	6.63E-04	6.83E-04
Copper (Cu)	μg/m³	1.79E-02	1.64E-03	1.79E-02		6.93E-03	1.36E-02	6.48E-03	1.67E-02	4.31E-03	1.96E-03	3.96E-03	3.43E-03	4.13E-03	3.75E-03	1.64E-03	6.16E-03	5.19E-03
Iron (Fe)	μg/m³	3.12E-01	1.04E-01	2.14E-01		1.76E-01	2.31E-01	3.12E-01	2.22E-01	1.15E-01	1.10E-01	1.04E-01	1.55E-01	1.23E-01	1.43E-01	3.04E-01	2.66E-01	2.47E-01
Lead (Pb)	μg/m³	5.37E-03	9.42E-04	1.17E-03	Sample was invalid	1.12E-03	5.37E-03	2.21E-03	2.33E-03	1.04E-03	1.18E-03	9.42E-04	9.71E-04	9.67E-04	9.52E-04	9.87E-04	9.94E-04	1.02E-03
Magnesium (Mg)	μg/m ³	1.83E-01	3.96E-02	1.31E-01		1.08E-01	1.28E-01	1.83E-01	1.00E-01	3.96E-02	7.84E-02	4.46E-02	1.19E-01	7.61E-02	7.24E-02	1.32E-01	1.60E-01	1.26E-01
Manganese (Mn)	μg/m³	9.80E-03	2.76E-03	9.46E-03		3.95E-03	7.13E-03	7.65E-03	8.44E-03	3.47E-03	2.98E-03	2.76E-03	5.31E-03	3.74E-03	4.19E-03	9.80E-03	8.02E-03	5.33E-03
Molybdenum (Mo)	μg/m³	1.18E-03	9.42E-04	1.17E-03		1.12E-03	1.06E-03	1.03E-03	1.03E-03	1.04E-03	1.18E-03	9.42E-04	9.71E-04	9.67E-04	9.52E-04	9.87E-04	9.94E-04	1.02E-03
Nickel (Ni)	μg/m³	1.18E-03	9.42E-04	1.17E-03		1.12E-03	1.06E-03	1.03E-03	1.03E-03	1.04E-03	1.18E-03	9.42E-04	9.71E-04	9.67E-04	9.52E-04	9.87E-04	9.94E-04	1.02E-03
Phosphorus (P)	μg/m³	1.84E-02	7.85E-03	9.78E-03		9.31E-03	8.82E-03	8.62E-03	8.58E-03	8.68E-03	9.80E-03	7.85E-03	8.09E-03	8.06E-03	7.94E-03	8.22E-03	8.28E-03	1.84E-02
Selenium (Se)	μg/m³	3.92E-03	3.14E-03	3.91E-03		3.73E-03	3.53E-03	3.45E-03	3.43E-03	3.47E-03	3.92E-03	3.14E-03	3.24E-03	3.22E-03	3.17E-03	3.29E-03	3.31E-03	3.41E-03
Silver (Ag)	μg/m³	1.96E-03	1.57E-03	1.96E-03		1.86E-03	1.76E-03	1.72E-03	1.72E-03	1.74E-03	1.96E-03	1.57E-03	1.62E-03	1.61E-03	1.59E-03	1.64E-03	1.66E-03	1.71E-03
Strontium (Sr)	µg/m³	6.21E-03	1.32E-03	2.50E-03		3.95E-03	3.25E-03	6.21E-03	2.54E-03	1.32E-03	2.04E-03	1.63E-03	2.65E-03	2.32E-03	2.22E-03	4.61E-03	4.44E-03	2.32E-03
Thallium (TI)	μg/m³	3.92E-03	3.14E-03	3.91E-03		3.73E-03	3.53E-03	3.45E-03	3.43E-03	3.47E-03	3.92E-03	3.14E-03	3.24E-03	3.22E-03	3.17E-03	3.29E-03	3.31E-03	3.41E-03
Tin (Sn)	μg/m³	3.92E-03	3.14E-03	3.91E-03		3.73E-03	3.53E-03	3.45E-03	3.43E-03	3.47E-03	3.92E-03	3.14E-03	3.24E-03	3.22E-03	3.17E-03	3.29E-03	3.31E-03	3.41E-03
Titanium (Ti)	μg/m³	9.28E-03	3.14E-03	3.91E-03		3.73E-03	3.53E-03	8.27E-03	3.43E-03	3.47E-03	3.92E-03	3.14E-03	3.24E-03	3.22E-03	3.17E-03	3.29E-03	9.28E-03	3.41E-03
Vanadium (V)	µg/m³	1.96E-03	1.57E-03	1.96E-03		1.86E-03	1.76E-03	1.72E-03	1.72E-03	1.74E-03	1.96E-03	1.57E-03	1.62E-03	1.61E-03	1.59E-03	1.64E-03	1.66E-03	1.71E-03
Zinc (Zn)	μg/m³	4.76E-02	7.03E-03	2.28E-02		1.39E-02	2.93E-02	1.48E-02	4.76E-02	1.35E-02	1.25E-02	1.56E-02	1.12E-02	7.03E-03	9.02E-03	1.63E-02	1.20E-02	1.26E-02
Zirconium (Zr)	μg/m ³	1.96E-03	1.57E-03	1.96E-03		1.86E-03	1.76E-03	1.72E-03	1.72E-03	1.74E-03	1.96E-03	1.57E-03	1.62E-03	1.61E-03	1.59E-03	1.64E-03	1.66E-03	1.71E-03
Total Uranium (U)	μg/m³	1.76E-04	1.41E-04	1.76E-04		1.68E-04	1.59E-04	1.55E-04	1.54E-04	1.56E-04	1.76E-04	1.41E-04	1.46E-04	1.45E-04	1.43E-04	1.48E-04	1.49E-04	1.54E-04

APPENDIX G PAHS Data Summary

Second Process Seco	Polycyclic Aromatic Hydrocarbons	С	rago Statior											_						_
Description	Location				Crago		Crago		Crago		Crago		Crago		Crago		Crago		Crago	
Part	Date	d	d/mm/yyyy			2018		2018		/2018		/2018		/2018		2018		/2018		2018
Section Part	Start Time		hh:mm		0:0	0	0:0	0	0:	00	0:	:00	0:	00	0:0	00	0:0	00	0:0	0
The Number of Company Part	Sample Duration		hours																	
Macroan December Mary Macroan December Mary																				
Marcon Note																				
Second Companies Second Comp	Maxam Job #																			
Long	Total Volumetric Flow	4	m³/sample								346	6.31	293	3.73			283	.74	288.	08
	Analytical Results	,	Units																	
Contemplation Contemplati	Benzo(a)pyrene		μg		0.0209	0.0047	0.0228	0.0016	0.0284	0.00082	0.0361	0.00060	0.0055	0.0017	0.0041	0.0016	0.0052	0.0015	0.00416	0.00070
Carcophime																				
Completify where																				
Anthrecore																				
Searce 190	Benzo(a)anthracene																			
Semeral Disconsidements 1-12	Benzo(a)fluorene		μg		< 0.15	0.15	<0.10	0.10	< 0.15	0.15	< 0.10	0.10	< 0.15	0.15	<0.10	0.10	< 0.15	0.15	<0.10	
Serioscolpymene 1.02	Benzo(b)fluoranthene		μg																	
Page																				
Part																		0.15	<0.10	
Implement Impl																				
Distance 1.02	Biphenyl																			
Disent (c) Aphthrocene Up	Chrysene																			
Disearchiene	Dibenz(a,h)anthracene				<0.075			0.050	<0.075		<0.050						<0.075	0.075	<0.050	
Note	Dibenzo(a,c) anthracene + Picene 1				<0.15	0.15	<0.10	0.10	<0.15	0.15	<0.10	0.10	<0.050	0.050	<0.10	0.10	<0.15	0.15	<0.10	0.10
Maximum Maxi	Fluoranthene				0.243	0.075	0.262	0.050	0.270	0.075	0.312	0.050	0.189	0.075	< 0.050	0.050	< 0.075	0.075	0.100	0.050
- Tephend 1.02 -0.15 0.15 0.10 0.10 0.10 0.15 0.15 0.10 0.10 0.10 0.15 0.15 0.10 0.10 0.15 0.15 0.10 0.10 0.15 0.15 0.10 0.10 0.10 0.15 0.15 0.15 0.10 0.10 0.15 0.15 0.15 0.10 0.10 0.15 0	Indeno(1,2,3-cd)pyrene																			
Page Page																				
Presentative pg pg pg pg pg pg pg p																				
yer efection yg 0.55 0.75 0.79 0.950 0.950 0.75 0.75 0.75 0.950												0.10								
Color Crop	Pyrene																			
Calculated Concentrations	Tetralin						0.33		0.63											
Calculated Concentrations			Quarter 1		Cray	70	Cra	70	Cre	700	C**	aa0	Cre	100	Cro	100	Cre	100	Crac	70
Calculated Concentrations					Ciu															
Units Maximum Minimum Minimu					<u> </u>		2		,	ა 		4	,	,	۰	,	,	,	•	
1/4/2018 1/4/2018 1/4/2018 1/4/2018 1/2/2018	Calculated Concentrations																			
1/4/2018 1/4/2018 1/4/2018 1/4/2018 1/2/2018		Units	Maximum	Minimum																
Nemzo(plymene ng/m² 1.04E-01 1.44E-02 5.92E-02 6.94E-02 8.21E-02 1.04E-01 1.87E-02 1.48E-02 1.48E-03 1.48E-0																				
Nemzo(plymene ng/m² 1.04E-01 1.44E-02 5.92E-02 6.94E-02 8.21E-02 1.04E-01 1.87E-02 1.48E-02 1.48E-03 1.48E-0					1/2/2	018	1/14/	2018	1/26	/2018	7/02	/2018	19/02	/2018	3/03/	2018	15/03	/2018	27/03/	2018
Welthyinophtholene	Benzo(a)pyrene	ng/m³	1.04E-01	1.44E-02																
Part	1-Methylnaphthalene		4.56	0.86	4.36E	+00	2.37E	+00	3.38	E+00	4.56	E+00								
Accord A	2-Methylnaphthalene	ng/m³	7.13	1.37	6.75E	+00	3.59E	+00	5.11	E+00	7.13	8E+00	6.30	E+00	1.378	E+00	4.23	E+00	2.36E	+00
Anthracene	Acenaphthene	ng/m³	1.19E+00	9.00E-02	5.19E	-01	3.418	-01	6.07	E-01	4.62	2E-01	1.19	E+00	9.00	E-02	4.86	E-01	9.72E	-01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Acenaphthylene	ng/m³																		
Benzo(gl)anthracene ng/m² 1.32E-01 7.22E-02 1.06E-01 7.61E-02 1.08E-01 7.22E-02 1.28E-01 9.00E-02 1.32E-01 8.68E-02	Anthracene	ng/m³	0.13	0.07	1.06E	-01														
Renzo(plfluorene ng/m² 2,44E-01 1,44E-01 2,13E-01 1,52E-01 1,08E-01 1,24E-01 1,24	Benzo(a)anthracene	ng/m³	1.32E-01	7.22E-02	1.06E	-01							1.28	E-01			1.32	E-01		
Renzo h fluoranthene ng/m³ 3.06E-01 7.61E-02 1.06E-01 7.61E-02 1.08E-01 3.06E-01 1.28E-01 9.00E-02 1.32E-01 3.66E-02 3.06E-01 1.28E-01 9.00E-02 1.32E-01 1.44E-01 2.55E-01 1.80E-01 2.64E-01 1.74E-01 3.06E-01 2.55E-01 1.80E-01 2.64E-01 1.74E-01 3.06E-01 2.55E-01 3.06E-01 2.64E-01 1.74E-01 3.06E-01 2.55E-01 3.06E-01	Benzo(a)fluorene																			
Renzo(ph)fluorene ng/m³ 2,44E-01 1,44E-01 2,13E-01 1,52E-01 1,2E-01 1,44E-01 2,55E-01 1,80E-01 2,44E-01 1,74E-01 1,74	Benzo(b)fluoranthene																			
Remzo(e pyrene ng/m³ 2,64E-01 1,44E-01 2,13E-01 1,52E-01 1,52E-01 1,08E-01 2,55E-01 1,80E-01 2,64E-01 1,74E-01 2,74E-02 1,74E-02 1,74E-01 2,74E-02 1,74E-02 1,74E-01 2,74E-02 1,74E-01 2,74E-02 1,74E-01 2,74E-02 1,74E-02 1,74E-01 2,74E-02 1,74E-02 1,74E-	Benzo(b)fluorene																			
Senzo(g,h,i)perylene ng/m^3 $1.32E-01$ $7.22E-02$ $1.06E-01$ $7.6E-02$ $1.08E-01$ $7.22E-02$ $1.28E-01$ $9.00E-02$ $1.32E-01$ $8.68E-02$ $9.00E-02$ $1.32E-01$ $1.32E-01$ $9.00E-02$ $1.32E-01$ $1.$																				
Renzo(k)fluoranthene																				
Sipheny ng/m³ 2.72E+00 6.48E-01 2.41E+00 1.31E+00 2.20E+00 2.48E+00 2.72E+00 6.48E-01 8.11E-01 9.72E-01 Chrysene	Benzo(a.h.i)pervlene																			
Chrysene ng/m³ 3,12E-01 7,61E-02 1.06E-01 7,61E-02 1.08E-01 3.12E-01 1.28E-01 9,00E-02 1.32E-01 8,68E-02 1)benz(pa)-horizone ng/m³ 1.32E-01 7,22E-02 1.06E-01 7,61E-02 1.08E-01 7,22E-02 1.28E-01 9,00E-02 1.32E-01 1.32E-01 8,68E-02 1)benz(pa)-horizone ng/m³ 2,64E-01 8,51E-02 2.13E-01 1.52E-01 1.52E-01 2.17E-01 1.44E-01 8,51E-02 1.80E-01 2,64E-01 1.74E-01 1.00E-01 1.23E-01 9,00E-02 1.32E-01 1.32E-01 1.74E-01 1.00E-01 1.23E-01 1.32E-01	Benzo(g,h,i)perylene Benzo(k)fluoranthene			7.22F-02								02	20		,.001					
Dibenz(a,h)anthracene ng/m³ 1,32E-01 7,22E-02 1,06E-01 7,61E-02 1,08E-01 7,22E-02 1,28E-01 9,00E-02 1,32E-01 8,68E-02	Benzo(k)fluoranthene	ng/m³	1.32E-01					+00	2 20	F+00	2 48	8F+00	2 72	F+00	A ⊿ΩI	F-01		F-01		-01
Dibenzo(a,c) anthracene + Picene ng/m^3 2,64E-01 8,51E-02 2,13E-01 1,52E-01 2,17E-01 1,44E-01 8,51E-02 1,80E-01 2,64E-01 1,74E-01 1,00E-01 1,00E	Benzo(k)fluoranthene Biphenyl	ng/m³	1.32E-01 2.72E+00	6.48E-01	2.41E	+00	1.31E										8.11			
Superal Supe	Benzo(k)fluoranthene Biphenyl Chrysene	ng/m ³ ng/m ³ ng/m ³	1.32E-01 2.72E+00 3.12E-01	6.48E-01 7.61E-02	2.41E 1.06E	+00 -01	1.31E 7.61E	-02	1.08	BE-01	3.12	2E-01	1.28	E-01	9.00	E-02	8.11 1.32	E-01	8.68E	-02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene	ng/m³ ng/m³ ng/m³ ng/m³	1.32E-01 2.72E+00 3.12E-01 1.32E-01	6.48E-01 7.61E-02 7.22E-02	2.41E 1.06E 1.06E	+00 -01 -01	1.31E 7.61E 7.61E	-02 -02	1.08	BE-01 BE-01	3.12 7.22	2E-01 2E-02	1.28 1.28	E-01 E-01	9.00i 9.00i	E-02 E-02	8.11 1.32 1.32	E-01 E-01	8.68E 8.68E	-02 -02
Naphthalene	Benza (k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenza(a,c) anthracene + Picene	ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.32E-01 2.72E+00 3.12E-01 1.32E-01 2.64E-01	6.48E-01 7.61E-02 7.22E-02 8.51E-02	2.41E 1.06E 1.06E 2.13E	+00 -01 -01 -01	1.31E 7.61E 7.61E 1.52E	-02 -02 -01	1.08 1.08 2.17	BE-01 BE-01 'E-01	3.12 7.22 1.44	2E-01 2E-02 4E-01	1.28 1.28 8.51	E-01 E-01 E-02	9.000 9.000 1.800	E-02 E-02 E-01	8.11 1.32 1.32 2.64	E-01 E-01 E-01	8.68E 8.68E 1.74E	-02 -02 -01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Benza(k)fliuoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenza(a,c) anthracene + Picene Fluoranthene	ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.32E-01 2.72E+00 3.12E-01 1.32E-01 2.64E-01 9.01E-01	6.48E-01 7.61E-02 7.22E-02 8.51E-02 9.00E-02	2.41E 1.06E 1.06E 2.13E 6.89E	+00 -01 -01 -01 -01	1.31E 7.61E 7.61E 1.52E 7.97E	-02 -02 -01 -01	1.08 1.08 2.17 7.80	BE-01 BE-01 'E-01 DE-01	3.12 7.22 1.44 9.01	2E-01 2E-02 4E-01 1E-01	1.28 1.28 8.51 6.43	E-01 E-01 E-02 E-01	9.000 9.000 1.800 9.000	E-02 E-02 E-01 E-02	8.11 1.32 1.32 2.64 1.32	E-01 E-01 E-01 E-01	8.68E 8.68E 1.74E 3.47E	-02 -02 -01 -01
Perylene ng/m^3 2.64E-01 1.44E-01 2.13E-01 1.52E-01 2.17E-01 1.44E-01 2.55E-01 1.80E-01 2.64E-01 1.74E-01 0.74E-01 0.	Benza(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene	ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.32E-01 2.72E+00 3.12E-01 1.32E-01 2.64E-01 9.01E-01 1.32E-01	6.48E-01 7.61E-02 7.22E-02 8.51E-02 9.00E-02 7.22E-02	2.41E 1.06E 1.06E 2.13E 6.89E 1.06E	+00 -01 -01 -01 -01	7.61E 7.61E 7.61E 1.52E 7.97E 7.61E	-02 -02 -01 -01 -02	1.08 1.08 2.17 7.80 1.08	8E-01 8E-01 'E-01 9E-01 8E-01	3.12 7.22 1.44 9.01 7.22	2E-01 2E-02 4E-01 1E-01 2E-02	1.28 1.28 8.51 6.43 1.28	E-01 E-01 E-02 E-01 E-01	9.00i 9.00i 1.80i 9.00i 9.00i	E-02 E-02 E-01 E-02 E-02	8.11 1.32 1.32 2.64 1.32	E-01 E-01 E-01 E-01 E-01	8.68E 8.68E 1.74E 3.47E 8.68E	-02 -02 -01 -01
Phenonthrene ng/m^3 2.59E+00 7.13E-01 2.53E+00 1.94E+00 1.92E+00 2.59E+00 2.34E+00 7.13E-01 8.04E-01 1.25E+00 Pyrene ng/m^3 6.18E-01 8.68E-02 4.34E-01 5.84E-01 4.16E-01 6.18E-01 1.28E-01 9.00E-02 1.32E-01 8.68E-02 Pyrene ng/m^3 2.04E+00 7.56E-01 1.59E+00 1.00E+00 1.82E+00 1.76E+00 2.04E+00 7.56E-01 1.90E+00 9.72E-01	Benza(k)fliuoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	1.32E-01 2.72E+00 3.12E-01 1.32E-01 2.64E-01 9.01E-01 1.32E-01 31.7	6.48E-01 7.61E-02 7.22E-02 8.51E-02 9.00E-02 7.22E-02 5.26	2.41E 1.06E 1.06E 2.13E 6.89E 1.06E 3.17E	+00 -01 -01 -01 -01 -01 -01 +01	1.31E 7.61E 7.61E 1.52E 7.97E 7.61E 1.73E	-02 -02 -01 -01 -01 -02	1.08 1.08 2.17 7.80 1.08 2.58	8E-01 8E-01 'E-01 9E-01 8E-01 E+01	3.12 7.22 1.44 9.01 7.22 3.03	2E-01 2E-02 4E-01 1E-01 2E-02 8E+01	1.28 1.28 8.51 6.43 1.28 2.74	E-01 E-01 E-02 E-01 E-01 E-01	9.000 9.000 1.800 9.000 9.000 5.266	E-02 E-02 E-01 E-02 E-02 E+00	8.11 1.32 1.32 2.64 1.32 1.34	E-01 E-01 E-01 E-01 E-01 E+01	8.68E 8.68E 1.74E 3.47E 8.68E 1.00E	:-02 :-02 :-01 :-01 :-02 +-01
Pyrene n_9/m^3 6.18E-01 8.68E-02 4.34E-01 5.84E-01 4.16E-01 6.18E-01 1.28E-01 9.00E-02 1.32E-01 8.68E-02 (eltralin n_9/m^3 2.04E+00 7.56E-01 1.59E+00 1.00E+00 1.82E+00 1.76E+00 2.04E+00 7.56E-01 1.90E+00 9.72E-01	Benza(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	1.32E-01 2.72E+00 3.12E-01 1.32E-01 2.64E-01 9.01E-01 1.32E-01 31.7 2.64E-01	6.48E-01 7.61E-02 7.22E-02 8.51E-02 9.00E-02 7.22E-02 5.26 1.44E-01	2.41E 1.06E 1.06E 2.13E 6.89E 1.06E 3.17E 2.13E	+00 -01 -01 -01 -01 -01 +01 -01	1.31E 7.61E 7.61E 1.52E 7.97E 7.61E 1.73E	E-02 E-02 E-01 E-01 E-02 E+01 E-01	1.08 1.08 2.17 7.80 1.08 2.58 2.17	8E-01 8E-01 'E-01 9E-01 8E-01 E+01 'E-01	3.12 7.22 1.44 9.01 7.22 3.03 1.44	2E-01 2E-02 4E-01 1E-01 2E-02 8E+01 4E-01	1.28 1.28 8.51 6.43 1.28 2.74 2.55	E-01 E-01 E-02 E-01 E-01 E+01 E-01	9.001 9.001 1.801 9.001 9.001 5.26E 1.801	E-02 E-02 E-01 E-02 E-02 E+00 E-01	8.11 1.32 1.32 2.64 1.32 1.34 2.64	E-01 E-01 E-01 E-01 E-01 E+01 E-01	8.68E 8.68E 1.74E 3.47E 8.68E 1.00E	-02 -02 -01 -01 -02 +01
etralin ng/m³ 2.04E+00 7.56E-01 1.59E+00 1.00E+00 1.82E+00 1.76E+00 2.04E+00 7.56E-01 1.90E+00 9.72E-01	Benza(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Penylene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	1.32E-01 2.72E+00 3.12E-01 1.32E-01 2.64E-01 9.01E-01 1.32E-01 31.7 2.64E-01 2.64E-01	6.48E-01 7.61E-02 7.22E-02 8.51E-02 9.00E-02 7.22E-02 5.26 1.44E-01 1.44E-01	2.41E 1.06E 1.06E 2.13E 6.89E 1.06E 3.17E 2.13E	+00 -01 -01 -01 -01 -01 +01 -01	7.61E 7.61E 1.52E 7.97E 7.61E 1.73E 1.52E	E-02 E-02 E-01 E-01 E-02 E+01 E-01	1.08 1.08 2.17 7.80 1.08 2.58 2.17 2.17	8E-01 8E-01 'E-01 9E-01 8E-01 E+01 'E-01	3.12 7.22 1.44 9.01 7.22 3.03 1.44	2E-01 2E-02 4E-01 1E-01 2E-02 3E+01 4E-01	1.28 1.28 8.51 6.43 1.28 2.74 2.55	E-01 E-01 E-02 E-01 E-01 E+01 E-01 E-01	9.001 9.001 1.801 9.001 9.001 5.26E 1.801 1.801	E-02 E-02 E-01 E-02 E-02 E+00 E-01 E-01	8.11 1.32 1.32 2.64 1.32 1.34 2.64	E-01 E-01 E-01 E-01 E-01 E+01 E-01	8.68E 8.68E 1.74E 3.47E 8.68E 1.00E 1.74E	-02 -02 -01 -01 -02 +01 -01
	Benza(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene Phenanthrene	ng/m³	1.32E-01 2.72E+00 3.12E-01 1.32E-01 2.64E-01 9.01E-01 1.32E-01 31.7 2.64E-01 2.59E+00	6.48E-01 7.61E-02 7.22E-02 8.51E-02 9.00E-02 7.22E-02 5.26 1.44E-01 1.44E-01 7.13E-01	2.41E 1.06E 1.06E 2.13E 6.89E 1.06E 3.17E 2.13E 2.13E	+00 -01 -01 -01 -01 -01 +01 -01 -01 +01	1.31E 7.61E 7.61E 1.52E 7.97E 7.61E 1.73E 1.52E 1.52E	E-02 E-02 E-01 E-01 E-02 E+01 E-01 E-01	1.08 1.08 2.17 7.80 1.08 2.58 2.17 2.17	8E-01 8E-01 7E-01 8E-01 8E-01 E+01 7E-01 7E-01 E+00	3.12 7.22 1.44 9.01 7.22 3.03 1.44 1.44 2.59	2E-01 2E-02 4E-01 1E-01 2E-02 3E+01 4E-01 PE+00	1.28 1.28 8.51 6.43 1.28 2.74 2.55 2.55 2.34	E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01	9.001 9.001 1.801 9.001 9.001 5.268 1.801 1.801 7.131	E-02 E-02 E-01 E-02 E-02 E+00 E-01 E-01 E-01	8.11 1.32 1.32 2.64 1.32 1.32 1.34 2.64 2.64	E-01 E-01 E-01 E-01 E-01 E+01 E-01 E-01	8.68E 1.74E 3.47E 8.68E 1.00E 1.74E 1.74E	:-02 :-02 :-01 :-01 :-02 ++01 :-01 :-01
otal PAH ng/m" 5.34E+01 1.18E+01 5.33E+01 3.09E+01 4.44E+01 5.34E+01 4.94E+01 1.18E+01 2.72E+01 2.04E+01	Benza(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenz(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naghthalene o-Terphenyl Penylene Phenanthrene Pyrene	ng/m³	1.32E-01 2.72E+00 3.12E-01 1.32E-01 2.64E-01 9.01E-01 1.32E-01 31.7 2.64E-01 2.59E+00 6.18E-01	6.48E-01 7.61E-02 7.22E-02 8.51E-02 9.00E-02 7.22E-02 5.26 1.44E-01 1.44E-01 7.13E-01 8.68E-02	2.41E 1.06E 1.06E 2.13E 6.89E 1.06E 3.17E 2.13E 2.13E 4.34E	+00 -01 -01 -01 -01 -01 -01 -01 -	1.31E 7.61E 7.61E 1.52E 7.97E 7.61E 1.73E 1.52E 1.94E 5.84E	E-02 E-01 E-01 E-02 E+01 E-01 E-01 E-01 E-01	1.08 1.08 2.17 7.80 1.08 2.58 2.17 2.17 1.92 4.16	8E-01 8E-01 7E-01 8E-01 8E-01 E+01 7E-01 7E-01 E+00	3.12 7.22 1.44 9.01 7.22 3.03 1.44 2.59 6.18	2E-01 2E-02 4E-01 1E-01 2E-02 3E+01 4E-01 4E-01 7E+00 3E-01	1.28 8.51 6.43 1.28 2.74 2.55 2.55 2.34	E-01 E-01 E-02 E-01 E-01 E+01 E-01 E-01 E+00 E-01	9.001 9.001 1.801 9.001 9.001 5.26E 1.801 1.801 7.131 9.001	E-02 E-02 E-01 E-02 E-02 E+00 E-01 E-01 E-01 E-01	8.11 1.32 1.32 2.64 1.32 1.34 2.64 2.64 8.04	E-01 E-01 E-01 E-01 E-01 E+01 E-01 E-01 E-01 E-01	8.68E 1.74E 3.47E 8.68E 1.00E 1.74E 1.25E 8.68E	3-02 3-01 3-01 3-02 3-01 3-01 3-01 3-01 3-01 3-01
	Benza(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Penylene Phenanthrene Pyrene Tetralin	ng/m³	1.32E-01 2.72E+00 3.12E-01 1.32E-01 2.64E-01 9.01E-01 1.32E-01 31.7 2.64E-01 2.59E+00 6.18E-01 2.04E+00	6.48E-01 7.61E-02 7.22E-02 8.51E-02 9.00E-02 7.22E-02 5.26 1.44E-01 1.44E-01 7.13E-01 8.68E-02 7.56E-01	2.41E 1.06E 1.06E 2.13E 6.89E 1.06E 3.17E 2.13E 2.13E 2.53E 4.34E	+00 -01 -01 -01 -01 -01 +01 -01 -01 +00 -01 +00	1.31E 7.61E 7.61E 1.52E 7.97E 7.61E 1.73E 1.52E 1.52E 1.94E 5.84E	E-02 E-02 E-01 E-01 E-02 E+01 E-01 E-01 E-01 E+00 E-01	1.08 1.08 2.17 7.80 1.08 2.58 2.17 2.17 1.92 4.16	8E-01 8E-01 7E-01 8E-01 8E-01 E+01 7E-01 7E-01 E+00 8E-01 E+00	3.12 7.22 1.44 9.01 7.22 3.03 1.44 2.59 6.18	2E-01 2E-02 4E-01 1E-01 2E-02 3E+01 4E-01 4E-01 4E-01 9E+00 3E-01 3E-01	1.28 8.51 6.43 1.28 2.74 2.55 2.55 2.34 1.28	E-01 E-01 E-02 E-01 E-01 E+01 E-01 E-01 E+00 E-01 E+00	9.001 9.001 1.801 9.001 9.001 5.26E 1.801 1.801 7.131 9.001 7.561	E-02 E-02 E-01 E-02 E-02 E+00 E-01 E-01 E-01 E-02 E-01	8.11 1.32 2.64 1.32 1.32 1.34 2.64 2.64 8.04 1.32	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	8.68E 8.68E 1.74E 3.47E 8.68E 1.00E 1.74E 1.74E 1.25E 8.68E 9.72E	3-02 3-02 3-01 3-01 3-02 3-01 3-01 3-01 3-02 3-02 3-01

Note: RDL = Reportable Detection Limit

These parameters have not been subjected to Maxxam's standard validation process nor has it been accredited for the submitted matrix.

APPENDIX H

Dioxins and Furans Data Summary

Dioxins and Furans	Crago Station												
Location		Crago			Crago			Crago			Crago		
Date	dd/mm/yyyy		2/01/2018			26/01/2	018		19/02/20	118		15/03/20	018
Start Time	hh:mm		0:00			0:00			0:00			0:00	
Sample Duration	hours		23.69			23.95			23.84			23.09	
Technician			TZ			AE, TZ			AE			AE	
Filter Number			FSB015-01			FTJ433-			FXQ365-			GCK081	
Maxaam ID			FVT589			FZR82			GDD21			GHG80	
Maxxam Job #			B801260			B82169			B84044			B8218	
Total Volumetric Flow	Am³/sample		352.82			346.07	7		293.73			283.74	
		Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF
Analytical Results	Units			- 2005 1-1			- 2003			- 2005 1-1			- 2005 1-1
2,3,7,8-Tetra CDD *	pg	<4.4	4.4	1	<3.5	3.5	1	<3.1	3.1	1	<3.0	3.0	1
1,2,3,7,8-Penta CDD *	pg	<4.6	4.6	1	4.7	3.4	1	<3.1	3.1	1	<3.2	3.2	1
1,2,3,4,7,8-Hexa CDD *	pg	<6.2	6.2	0.1	5.6	4.0	0.1	<3.4	3.4	0.1	<3.1	3.1	0.1
1,2,3,6,7,8-Hexa CDD *	pg	<6.3	6.3	0.1	10.0	3.1	0.1	<3.4	3.4	0.1	3.7	3.1	0.1
1,2,3,7,8,9-Hexa CDD *	pg	<5.6	5.6	0.1	17.4	3.4	0.1	6.4 (1)	3.2	0.1	6.6	2.9	0.1
1,2,3,4,6,7,8-Hepta CDD *	pg	26.3	4.0	0.01	121	3.4	0.01	24.6	3.1	0.01	35.9	3.3	0.01
Octa CDD *	pg	<77 (1)	77	0.0003	221	3.2	0.0003	76.3	3.1	0.0003	62.8	3.2	0.0003
Total Tetra CDD *	pg	<4.4	4.4		<4.2 (1)	4.2		<3.1	3.1		<3.4 (1)	3.4	
Total Penta CDD *	pg	<4.6	4.6		14.7	3.4		<3.1	3.1		<3.8 (1)	3.8	
Total Hexa CDD *	pg	11.0	6.0		77.7	3.5		20.2	3.4		48.3	3.0	
Total Hepta CDD *	pg	61.7	4.0		217	3.4		53.5	3.1		101	3.3	
2,3,7,8-Tetra CDF **	pg	<4.6	4.6	0.1	7.1	3.3	0.1	4.1	3.3	0.1	<2.5	2.5	0.1
1,2,3,7,8-Penta CDF **	pg	<4.8	4.8	0.03	<3.0	3.0	0.03	<3.2	3.2	0.03	<3.0	3.0	0.03
2,3,4,7,8-Penta CDF ** 1,2,3,4,7,8-Hexa CDF **	pg	<4.8 <4.3	4.8 4.3	0.3	<3.1 <3.8	3.1 3.8	0.3 0.1	<3.1 <3.1	3.1	0.3	<3.0 <3.3	3.0 3.3	0.3 0.1
1,2,3,4,7,8-Hexa CDF **	pg	<4.3 <4.2	4.3	0.1 0.1	<3.8 <3.0	3.8	0.1	<3.1 <2.9	2.9	0.1	<3.3 <3.1	3.3	0.1
2.3.4.6.7.8-Hexa CDF **	pg	<4.7	4.2	0.1	<3.5	3.5	0.1	<3.3	3.3	0.1	<3.5	3.5	0.1
1.2.3.7.8.9-Hexa CDF **	pg	<5.2	5.2	0.1	<4.1	4.1	0.1	<3.5	3.5	0.1	<3.7	3.7	0.1
1,2,3,7,8,7-nexd CDF **	pg pg	<4.8	4.8	0.1	10.8	3.0	0.01	5.3	3.1	0.1	<2.7	2.7	0.01
1,2,3,4,7,8,9-Hepta CDF **	pg pg	< 6.4	6.4	0.01	<3.8	3.8	0.01	<3.6	3.6	0.01	<3.1	3.1	0.01
Octa CDF **	pg pg	<6.0	6.0	0.0003	<11 (1)	11	0.0003	4.7	3.4	0.0003	<3.1	3.1	0.0003
Total Tetra CDF **	pg pg	<4.6	4.6	0.0000	15.8	3.3	0.0000	4.1	3.3	0.0000	<2.5	2.5	0.0000
Total Penta CDF **	pg pg	<4.8	4.8		<6.6 (1)	6.6		<3.1	3.1		<3.0	3.0	
Total Hexa CDF **	pg pg	<4.6	4.6		6.3	3.5		<3.2	3.2		<3.4	3.4	
Total Hepta CDF **	pg pg	<5.5	5.5		10.8	3.4		5.3	3.3		<2.9	2.9	
Toxic Equivalency	pg	33.3	3.5		.0.0	5.4		0.0	0.0		-2.7	/	
loxic Equivalency	P9												

Notes:
* CDD = Chloro Dibenzo-p-Dioxin ** CDF = Chloro Dibenzo-p-Furan

		Quarter 1		Crago	Crago	Crago	Crago
				1	2	3	4
Calculated Concentrations							
	Units	Maximum	Minimum				
				2/01/2018	26/01/2018	19/02/2018	15/03/2018
2,3,7,8-Tetra CDD *	pg/m³	6.24E-03	5.06E-03	0.006	0.005	0.005	0.005
1,2,3,7,8-Penta CDD *	pg/m³	1.36E-02	5.28E-03	0.007	0.014	0.005	0.006
1,2,3,4,7,8-Hexa CDD *	pg/m³	1.62E-02	5.46E-03	0.009	0.016	0.006	0.005
1,2,3,6,7,8-Hexa CDD *	pg/m³	2.89E-02	5.79E-03	0.009	0.029	0.006	0.013
1,2,3,7,8,9-Hexa CDD *	pg/m³	5.03E-02	7.94E-03	0.008	0.050	0.022	0.023
1,2,3,4,6,7,8-Hepta CDD *	pg/m³	3.50E-01	7.45E-02	0.075	0.350	0.084	0.127
Octa CDD *	pg/m³	6.39E-01	1.09E-01	0.109	0.639	0.260	0.221
Total Tetra CDD *	pg/m³	6.24E-03	5.28E-03	0.006	0.006	0.005	0.006
Total Penta CDD *	pg/m³	4.25E-02	5.28E-03	0.007	0.042	0.005	0.007
Total Hexa CDD *	pg/m³	2.25E-01	3.12E-02	0.031	0.225	0.069	0.170
Total Hepta CDD *	pg/m³	6.27E-01	1.75E-01	0.175	0.627	0.182	0.356
2,3,7,8-Tetra CDF **	pg/m³	2.05E-02	4.41E-03	0.007	0.021	0.014	0.004
1,2,3,7,8-Penta CDF **	pg/m³	6.80E-03	4.33E-03	0.007	0.004	0.005	0.005
2,3,4,7,8-Penta CDF **	pg/m³	6.80E-03	4.48E-03	0.007	0.004	0.005	0.005
1,2,3,4,7,8-Hexa CDF **	pg/m³	6.09E-03	5.28E-03	0.006	0.005	0.005	0.006
1,2,3,6,7,8-Hexa CDF **	pg/m³	5.95E-03	4.33E-03	0.006	0.004	0.005	0.005
2,3,4,6,7,8-Hexa CDF **	pg/m ³	6.66E-03	5.06E-03	0.007	0.005	0.006	0.006
1,2,3,7,8,9-Hexa CDF **	pg/m³	7.37E-03	5.92E-03	0.007	0.006	0.006	0.007
1,2,3,4,6,7,8-Hepta CDF **	pg/m³	3.12E-02	4.76E-03	0.007	0.031	0.018	0.005
1,2,3,4,7,8,9-Hepta CDF **	pg/m³	9.07E-03	5.46E-03	0.009	0.005	0.006	0.005
Octa CDF **	pg/m ³	1.60E-02	5.46E-03	0.009	0.016	0.016	0.005
Total Tetra CDF **	pg/m³	4.57E-02	4.41E-03	0.007	0.046	0.014	0.004
Total Penta CDF **	pg/m³	9.54E-03	5.28E-03	0.007	0.010	0.005	0.005
Total Hexa CDF **	pg/m³	1.82E-02	5.45E-03	0.007	0.018	0.005	0.006
Total Hepta CDF **	pg/m³	3.12E-02	5.11E-03	0.008	0.031	0.018	0.005
Toxic Equivalency	pg/m³	3.12L-02	3.11E-03	0.000	0.031	0.010	0.000
TOTAL TOXIC EQUIVALENCY	pg TEQ/m ³	3.78E-02	2.04E-02	0.022	0.038	0.020	0.021
		3.7 OL-02	2.04L-02	Crago	Crago	Crago	Crago
Calculated TEQ Concentrations	Units			1/2/2018	1/26/2018	2/19/2018	3/15/2018
2,3,7,8-Tetra CDD *	pg TEQ/m³			0.006	0.005	0.005	0.005
1,2,3,7,8-Penta CDD	pg TEQ/m ³			0.007	0.014	0.005	0.006
1,2,3,4,7,8-Hexa CDD							
	ng TEQ/m ³					0.0006	0.0005
LL 2.3.6.7.8-Heya CDD	pg TEQ/m ³ pg TFQ/m ³			0.0009	0.0016	0.0006	0.0005
1,2,3,6,7,8-Hexa CDD 1,2,3,7,8,9-Hexa CDD	pg TEQ/m ³			0.0009 0.0009	0.0016 0.0029	0.0006	0.0013
1,2,3,7,8,9-Hexa CDD	pg TEQ/m ³ pg TEQ/m ³			0.0009 0.0009 0.0008	0.0016 0.0029 0.0050	0.0006 0.0022	0.0013 0.0023
1,2,3,7,8,9-Hexa CDD 1,2,3,4,6,7,8-Hepta CDD	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³			0.0009 0.0009 0.0008 0.0007	0.0016 0.0029 0.0050 0.0035	0.0006 0.0022 0.0008	0.0013 0.0023 0.0013
1.2.3.7.8,9-Hexa CDD 1.2.3.4.6.7.8-Hepta CDD Octa CDD	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³			0.0009 0.0009 0.0008	0.0016 0.0029 0.0050	0.0006 0.0022	0.0013 0.0023
1,2,3,7,8,9-Hexa CDD 1,2,3,4,6,7,8-Hepta CDD	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³			0.0009 0.0009 0.0008 0.0007	0.0016 0.0029 0.0050 0.0035	0.0006 0.0022 0.0008	0.0013 0.0023 0.0013
1.2,3.7.8,9-Hexa CDD 1.2,3.4.6,7.8-Hepta CDD Octa CDD Total Tetra CDD	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³			0.0009 0.0009 0.0008 0.0007	0.0016 0.0029 0.0050 0.0035	0.0006 0.0022 0.0008	0.0013 0.0023 0.0013
1.2.3.7.8,9-Hexa CDD 1.2.3.4.6.7.8-Hepta CDD Octa CDD Total Tetra CDD Total Penta CDD Total Hexa CDD	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³			0.0009 0.0009 0.0008 0.0007	0.0016 0.0029 0.0050 0.0035	0.0006 0.0022 0.0008	0.0013 0.0023 0.0013
1,2,3,7,8,9-Hexa CDD 1,2,3,4,6,7,8-Hepta CDD Octa CDD Total Tetra CDD Total Penta CDD	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³			0.0009 0.0009 0.0008 0.0007	0.0016 0.0029 0.0050 0.0035	0.0006 0.0022 0.0008	0.0013 0.0023 0.0013
1.2.3.7.8,9-Hexa CDD 1.2.3.4,6.7,8-Hepta CDD Octa CDD Total Tetra CDD Total Tenta CDD Total Hexa CDD Total Hexa CDD	pg TEQ/m³			0.0009 0.0009 0.0008 0.0007 0.00003	0.0016 0.0029 0.0050 0.0035 0.00019	0.0006 0.0022 0.0008 0.00008	0.0013 0.0023 0.0013 0.00007
1.2.3.7.8.9+lexa CDD 1.2.3.4.6.7.8-Hepta CDD Octa CDD Total Tetra CDD Total Tetra CDD Total Hexa CDD Total Hexa CDD Total Hexa CDD Total Hexa CDD Total Tetra CDD 2.3.7.8-Tetra CDF **	pg IEQ/m³			0.0009 0.0009 0.0008 0.0007 0.00003	0.0016 0.0029 0.0050 0.0035 0.00019	0.0006 0.0022 0.0008 0.00008	0.0013 0.0023 0.0013 0.00007
1.2.3.7.8,9-Hexa CDD 1.2.3.4.6.7.8-Hepta CDD Octa CDD Total Tetra CDD Total Tetra CDD Total Hexa CDD Total Hepta CDD Total Hepta CDD Total Hepta CDD 1.3.7.8-Tetra CDF ** 1.2.3.7.8-Penta CDF	pg IEQ/m³			0.0009 0.0009 0.0008 0.0007 0.00003	0.0016 0.0029 0.0050 0.0035 0.00019	0.0006 0.0022 0.0008 0.00008	0.0013 0.0023 0.0013 0.00007
1.2.3.7.8,9-Hexa CDD 1.2.3.4.6,7.8-Hepta CDD Octa CDD Total Tetra CDD Total Tenta CDD Total Henta CDD Total Hepta CDD Total Hepta CDD Total Hepta CDD 2.3.7.8-Tetra CDF ** 2.3.47.8-Penta CDF 2.3.47.8-Penta CDF	pg IEQ/m³			0.0009 0.0009 0.0008 0.0007 0.00003	0.0016 0.0029 0.0050 0.0035 0.00019	0.0006 0.0022 0.0008 0.00008 0.00008	0.0013 0.0023 0.0013 0.00007 0.00004 0.0002 0.0002
1.2.3.7.8,9-Hexa CDD 1.2.3.4.6.7.8-Hepta CDD Octa CDD Total Tetra CDD Total Tetra CDD Total Hexa CDD Total Hexa CDD Total Hepta CDD 2.3.7.8-Tetra CDF ** 1.2.3.7.8-Penta CDF 1.2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Penta CDF	pg IEQ/m³			0.0009 0.0009 0.0008 0.0007 0.00003 0.0007 0.0002 0.0002	0.0016 0.0029 0.0050 0.0035 0.00019 0.0021 0.0001 0.0001	0.0006 0.0022 0.0008 0.00008 0.00004 0.00014 0.0002 0.0002	0.0013 0.0023 0.0013 0.00007 0.00004 0.0002 0.0002
1.2.3.7.8,9-Hexa CDD 1.2.3.4.6.7.8-Hepta CDD Octa CDD Total Tetra CDD Total Tetra CDD Total Tetra CDD Total Hepta CDD Total Hepta CDD Total Hepta CDD 2.3.7.8-Tetra CDF 2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.6.7.8-Hexa CDF	pg IEQ/m³			0.0009 0.0009 0.0008 0.0007 0.0003 0.0007 0.0002 0.0002 0.0002 0.0006 0.0006	0.0016 0.0029 0.0050 0.0035 0.00019 0.0001 0.0001 0.0001 0.0005 0.0004	0.0006 0.0022 0.0008 0.00008 0.00004 0.0002 0.0002 0.0005 0.0005	0.0013 0.0023 0.0013 0.00007 0.00004 0.0002 0.0002 0.0006 0.0005
1.23.7.8.9+lexa CDD 1.23.4.6.7.8-Hepta CDD Octa CDD Total Tetra CDD Total Tetra CDD Total Hexa CDD Total Hexa CDD Total Hepta CDD 2.3.7.8-Tetra CDF 1.2.3.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF	pg IEQ/m³			0.0009 0.0009 0.0008 0.0007 0.00003 0.0007 0.0002 0.0002 0.0006 0.0006 0.0006	0.0016 0.0029 0.0050 0.0035 0.00019 0.0021 0.0001 0.001 0.0001 0.0005 0.0004	0.0006 0.0022 0.0008 0.00008 0.00004 0.0002 0.0002 0.0005 0.0005	0.0013 0.0023 0.0013 0.00007 0.00007 0.0002 0.0002 0.0002 0.0006 0.0005
1.2.3.7.8,9-Hexa CDD 1.2.3.4.6.7.8-Hepta CDD Cota CDD Total Tetra CDD Total Tetra CDD Total Hexa CDD Total Hepta CDD Total Hepta CDD 2.3.7.8-Tetra CDF* 1.2.3.7.8-Penta CDF 2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.8-9-Hexa CDF 1.2.3.4.8-9-Hexa CDF	pg IEQ/m³			0.0009 0.0009 0.0008 0.0007 0.00003 0.0007 0.0002 0.0002 0.0006 0.0006 0.0007	0.0016 0.0029 0.0050 0.0035 0.00019 0.0001 0.0001 0.0001 0.0005 0.0004 0.0005	0.0006 0.0022 0.0008 0.00008 0.00014 0.0002 0.0002 0.0005 0.0005 0.0006	0.0013 0.0023 0.0013 0.00007 0.0004 0.0002 0.0002 0.0005 0.0006 0.0005
1.2.3.7.8,9-Hexa CDD 1.2.3.4.6.7.8-Hepta CDD Octa CDD Total Tetra CDD Total Tetra CDD Total Tetra CDD Total Hepta CDD Total Hepta CDD Total Hepta CDD 2.3.7.8-Tetra CDF 2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.8-9-Hexa CDF 1.2.3.4.8-9-Hexa CDF	pg IEQ/m³			0.0009 0.0009 0.0008 0.0007 0.00003 0.0007 0.0002 0.0002 0.0004 0.0006 0.0007 0.0007	0.0016 0.0029 0.0050 0.0035 0.00019 0.0001 0.0001 0.0005 0.0004 0.0005 0.0006 0.0006	0.0006 0.0022 0.0008 0.00008 0.00004 0.0002 0.0002 0.0005 0.0005 0.0006 0.0006	0.0013 0.0023 0.0013 0.00007 0.00004 0.0002 0.0002 0.0006 0.00005 0.00005
1.2.3.7.8,9-Hexa CDD 1.2.3.4.6.7.8-Hepta CDD Octa CDD Total Tetra CDD Total Tetra CDD Total Hexa CDD Total Hexa CDD Total Hepta CDD 2.3.7.8-Tetra CDF ** 1.2.3.7.8-Penta CDF 1.2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.6.7.8-Hexa CDF 1.2.3.4.6.7.8-Hexa CDF 1.2.3.4.6.7.8-Hepta CDF 1.2.3.4.6.7.8-Hepta CDF 1.2.3.4.6.7.8-Hepta CDF 1.2.3.4.6.7.8-Hepta CDF 1.2.3.4.6.7.8-Hepta CDF	pg IEQ/m³			0.0009 0.0009 0.0008 0.0007 0.00003 0.0007 0.0002 0.0006 0.0006 0.0007 0.0007	0.0016 0.0029 0.0050 0.0035 0.00019 0.0001 0.0001 0.0001 0.0005 0.0004 0.0005 0.0006 0.00031 0.00005	0.0006 0.0022 0.0008 0.00008 0.00014 0.0002 0.0002 0.0005 0.0005 0.0006 0.0006	0.0013 0.0023 0.0013 0.00007 0.0004 0.0002 0.0002 0.0006 0.0005 0.0006 0.0007
1.2.3.7.8,9-Hexa CDD 1.2.3.4.6.7.8-Hepta CDD Cota CDD Total Tetra CDD Total Tetra CDD Total Henta CDD Total Hepta CDD Total Hepta CDD Total Hepta CDD 2.3.7.8-Tetra CDF 1.2.3.7.8-Penta CDF 2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hepta CDF	pg IEQ/m³			0.0009 0.0009 0.0008 0.0007 0.00003 0.0007 0.0002 0.0006 0.0006 0.0007 0.0007	0.0016 0.0029 0.0050 0.0035 0.00019 0.0001 0.0001 0.0001 0.0005 0.0004 0.0005 0.0006 0.00031 0.00005	0.0006 0.0022 0.0008 0.00008 0.00014 0.0002 0.0002 0.0005 0.0005 0.0006 0.0006	0.0013 0.0023 0.0013 0.00007 0.0004 0.0002 0.0002 0.0006 0.0005 0.0006 0.0007
1.2.3.7.8.9+lexa CDD 1.2.3.4.6.7.8.Helpta CDD Octa CDD Total Tetra CDD Total Tetra CDD Total Hexa CDD Total Hexa CDD Total Hexa CDD Total Hepta CDD 2.3.7.8-Tetra CDF 1.2.3.7.8-Penta CDF 1.2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8.9-Hexa CDF 1.2.3.4.7.8.9-Hexa CDF 1.2.3.4.7.8.9-Hexa CDF 1.2.3.4.7.8.9-Hepta CDF	pg IEQ/m³			0.0009 0.0009 0.0008 0.0007 0.00003 0.0007 0.0002 0.0006 0.0006 0.0007 0.0007	0.0016 0.0029 0.0050 0.0035 0.00019 0.0001 0.0001 0.0001 0.0005 0.0004 0.0005 0.0006 0.00031 0.00005	0.0006 0.0022 0.0008 0.00008 0.00014 0.0002 0.0002 0.0005 0.0005 0.0006 0.0006	0.0013 0.0023 0.0013 0.00007 0.0004 0.0002 0.0002 0.0006 0.0005 0.0006 0.0007
1.2.3.7.8.9-Hexa CDD 1.2.3.4.6.7.8-Hepta CDD Cota CDD Total Tetra CDD Total Tetra CDD Total Penta CDD Total Hexa CDD Total Hepta CDD Total Hepta CDD 23.7.8-Tetra CDF 1.2.3.7.8-Penta CDF 1.2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Penta CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.7.8-Hexa CDF 1.2.3.4.6.7.8-Hexa CDF 1.2.3.4.6.7.8-Hepta CDF	pg IEQ/m³			0.0009 0.0009 0.0008 0.0007 0.00003 0.0007 0.0002 0.0006 0.0006 0.0007 0.0007	0.0016 0.0029 0.0050 0.0035 0.00019 0.0001 0.0001 0.0001 0.0005 0.0004 0.0005 0.0006 0.00031 0.00005	0.0006 0.0022 0.0008 0.00008 0.00014 0.0002 0.0002 0.0005 0.0005 0.0006 0.0006	0.0013 0.0023 0.0013 0.00007 0.0004 0.0002 0.0002 0.0006 0.0005 0.0006 0.0007

Notes:

EDL = Estimated Detection Limit

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency
Factors for Dioxins and Dioxin-like Compounds