Quarterly Ambient Air Quality Monitoring Report for the Durham York Energy Centre – October to December 2017

Durham York Energy Centre

Prepared for: The Regional Municipality of Durham 605 Rossland Rd. Whitby, ON L1N 6A3

Prepared by: Stantec Consulting Ltd. 300W-675 Cochrane Dr. Markham, ON L3R 0B8

Project No.: 160950528

February 9, 2018

Sign-off Sheet

This document entitled Quarterly Ambient Air Quality Monitoring Report for the Durham York Energy Centre – October to December 2017 was prepared by Stantec Consulting Ltd. for the account of The Regional Municipality of Durham. The material in it reflects Stantec's best judgment considering the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec Consulting Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

S'Slam
Prepared by
(signature)
Brian Bylhouwer, MRM
Reviewed by
(signature)
Gregory Crooks, M.Eng., P.Eng.
2/1/1

Kimberly Ireland, P.Eng.

Reviewed by _____

(signature)

Table of Contents

Exec	utive Summary	iv
Abbr	reviations	vii
1.0	Introduction	1.1
1.1	BACKGROUND AND OBJECTIVES	1.1
1.2	LOCATIONS OF AMBIENT AIR QUALITY MONITORING STATIONS	1.2
2.0	Key Components Assessed	2.1
2.1	METEOROLOGY	
2.2	AIR QUALITY CONTAMINANTS OF CONCERN	2.1
2.3	AIR QUALITY CRITERIA	2.3
3.0	Instrumentation Summary and Field Conditions	3.1
3.1	INSTRUMENTATION	
3.2	INSTRUMENTATION ISSUES	
3.3	INSTRUMENTATION RECOVERY RATES	
3.4	CONTINUOUS MONITOR INTERNAL CALIBRATIONS	
3.5	FIELD CONDITION OBSERVATIONS	3.5
4.0	Summary of Ambient Measurements	
4.1	METEOROLOGICAL DATA	
4.2	CAC AMBIENT AIR QUALITY MEASUREMENTS	
	4.2.1 Sulphur Dioxide (SO ₂)	
	4.2.2 Nitrogen Dioxide (NO ₂)	
	4.2.3 Nitrogen Oxides (NO _X)	
4.3	AMBIENT TSP / METALS CONCENTRATIONS	
4.3 4.4	AMBIENT PAH CONCENTRATIONS	
4.4 4.5	AMBIENT DIOXINS AND FURANS CONCENTRATIONS	
5.0	Conclusions	5 1
6.0	References	6.1

LIST OF TABLES

Table 2-1	Summary of Meteorological Parameters Measured at Each Station	2.1
Table 2-2	Summary of Air Quality Criteria for CACs	2.4
Table 2-3	Summary of Air Quality Criteria for Metals	2.4
Table 2-4	Summary of Air Quality Criteria for PAHs and D/Fs	2.6
Table 3-1	Summary of Continuous Ambient Air Quality Monitors	
Table 3-2	Summary of Non-Continuous Ambient Air Quality Monitors	3.2
Table 3-3	Summary of Meteorological Equipment	3.3
Table 3-4	Summary of Instrument Issues at the Courtice WPCP Station	
	(Predominately Upwind)	3.3
Table 3-5	Summary of Instrument Issues at the Rundle Road Station	
	(Predominately Downwind)	3.3
Table 3-6	Summary of Instrument Issues at the Fence Line Station	3.4
Table 3-7	Summary of Data Recovery Rates for the Courtice WPCP Station	
	(Predominately Upwind) - October to December 2017	3.4
Table 3-8	Summary of Data Recovery Rates for the Rundle Road Station	
	(Predominately Downwind) - October to December 2017	3.4
Table 3-9	Summary of Data Recovery Rates for the Fence Line Station –	
	October to December 2017	
Table 3-10	Summary of Boiler Operational Status in Q4 2017	3.6
Table 4-1	Summary of Hourly Meteorological Measurements – October to	
	December 2017	4.1
Table 4-2	Summary of Ambient CAC Monitoring Data – October to	
	December 2017	
Table 4-3	Summary of Measured Ambient TSP/Metals Concentrations	
Table 4-4	Source Contribution Analysis – Quarter 4 2017 TSP Exceedance	
Table 4-5	Summary of Measured Ambient PAH Concentrations	
Table 4-6	Source Contribution Analysis – Quarter 4 2017 B(a)P Exceedances	
Table 4-7	Summary of Measured Ambient Dioxins and Furans Concentrations	4.24
LIST OF FIGU	RES	
Figure 1-1	Durham York Energy Centre Site Location Plan	1 4
Figure 1-2	Locations of Ambient Air Quality Monitoring Stations	
Figure 1-3	View of the Rundle Road Ambient Air Quality Monitoring Station	
Figure 1-4	View of the Courtice WPCP Ambient Air Quality Monitoring Station	
Figure 1-5	View of the Fence Line Ambient Air Quality Monitoring Station	
Figure 3-1	Looking North from Megawatt Drive of the Highway 401 and	
9	Highway 418 Construction (October 23, 2017)	3.7
Figure 3-2	Looking North from Megawatt Drive at Highway 401 and Highway	
9	418 Construction (November 28, 2017)	3.8
Figure 3-3	Looking West from Rundle Road Station at Heavy Truck Operations	
5	on Adjacent Unpaved Road (November 28, 2017)	3.9
Figure 4-1	Wind Roses for October to December 2017	
Figure 4-2	Comparison of NO ₂ and SO ₂ Ambient Air Quality Monitoring Data	
J	to Applicable Criteria	4.8

Figure 4-3	Pollution Roses of Measured Hourly Average SO ₂ Concentrations – October to December 20174	10
Figure 4-4	Pollution Roses of Measured Hourly Average NO ₂ Concentrations – October to December 2017	
Figure 4-5	Pollution Roses of Measured Hourly Average NO _X Concentrations – October to December 2017	
Figure 4-6	Pollution Roses of Measured 24-Hour Average PM _{2.5} Concentrations - October to December 2017	
LIST OF APPE	NDICES	
APPENDIX A	SO ₂ AND NO _X INSTRUMENT DAILY INTERNAL ZERO CALIBRATION SUMMARIES	4.1
APPENDIX B	SO ₂ DATA SUMMARIES AND TIME HISTORY PLOTS	B.1
APPENDIX C	NO ₂ DATA SUMMARIES AND TIME HISTORY PLOTS	2.1
APPENDIX D	NO _X DATA SUMMARIES AND TIME HISTORY PLOTS) .1
APPENDIX E	PM _{2.5} DATA SUMMARIES AND TIME HISTORY PLOTS	E.1
APPENDIX F	CONTINUOUS PARAMETER EDIT LOGS	F.1
APPENDIX G	METALS DATA SUMMARY	€.1
APPENDIX H	PAHS DATA SUMMARY	Н.1
APPENDIX I	DIOXINS AND FURANS DATA SUMMARY	I.1

Executive Summary

The Regional Municipalities of Durham and York constructed the Durham York Energy Centre (DYEC) which is an Energy-from-Waste (EFW) Facility intended to provide a long-term, sustainable solution to manage the remaining municipal solid waste after waste diversion from the Regions. The facility commenced commercial operation on February 1, 2016.

The Ambient Air Quality Monitoring Plan - Durham York Residual Waste Study (Stantec, 2012), was developed based on the Regional Council's mandate to provide ambient air quality monitoring in the area of the DYEC for a three-year period. An ambient air quality monitoring and reporting program was also a requirement laid out in the Provincial Minister's Notice of Approval to Proceed with the Undertaking, detailed in Condition 11 of the Notice of Approval (MOECC, 2010). The air monitoring plan was also developed to satisfy the conditions of the Environmental Compliance Approval and the environmental mitigation and commitments set out in the Environmental Assessment (Jacques Whitford, 2009). The predominantly downwind station is located along Rundle Road, south of Baseline Road. The predominantly upwind station is sited at the Courtice Water Pollution Control Plant (WPCP). Since May 2013, measurements of the following air contaminants have been made at the two stations:

- Continuously monitored
 - Sulphur Dioxide (SO₂)
 - Nitrogen Oxides (NO_X), and
 - Particulate Matter smaller than 2.5 microns (PM_{2.5}).
- Non-continuously monitored
 - Metals in Total Suspended Particulate (TSP) matter
 - Polycyclic Aromatic Hydrocarbons (PAHs), and
 - Dioxins and Furans.

Operation of the non-continuous monitors was temporarily discontinued from June 28, 2014 (after completion of the background air quality data collection period) onwards through the rest of construction and commissioning, as per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012). The EFW facility became fully operational on February 1, 2016, and monitoring of non-continuous air quality parameters resumed.

A third Fence Line Station, which measures non-continuous parameters (metals and total particulate matter), was installed prior to full operation of the DYEC. As per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012), the Fence Line Station, which collects non-continuous parameters began operation on February 1, 2016 upon start of commercial operations. The Fence Line Station was scheduled to run for a one-year period but this period has been extended by one year for a total of two years at the request of the Regional Municipality of Durham.

Meteorological data is also measured at the Courtice WPCP and Rundle Road Stations. The predominantly downwind Rundle Road Station measures horizontal wind speed, wind direction, atmospheric temperature, relative humidity, and rainfall. The predominantly upwind Courtice WPCP Station measures atmospheric temperature, relative humidity, rainfall, and barometric pressure. Wind speed and wind direction data at the predominantly upwind location are measured and provided by the Courtice Water Pollution Control Plant.

This quarterly report provides a summary of the ambient air quality data collected at the three stations for the period from October to December 2017 (Calendar Quarter 4). Data recovery rates for all measured air quality parameters for this quarter were acceptable. Additional details on instrumentation issues are presented in Section 3.2 of this report.

Site personnel noted ongoing Highway 418 construction on the north and south sides of Highway 401 between Courtice and Crago Roads during Quarter 4, 2017.

The following observations and conclusions were made from a review of the measured ambient air quality monitoring data:

- 1. Measured concentrations of NO₂, SO₂, and PM_{2.5} were below the applicable air quality evaluation criteria or human health risk assessment (HHRA) health-based criteria presented in **Table 2-2** of this report.
- 2. Since the Canadian Ambient Air Quality Standard (CAAQS) for PM_{2.5} is based on a 98th percentile level over 3 years, whereas the PM_{2.5} measurement period at both stations for this quarterly report was 3 months, there is insufficient data collected to determine with any certainty if exceedances of the CAAQS would occur. Therefore, no comparison of the measured PM_{2.5} data during this quarter to the CAAQS was conducted for this report, as it would not be scientifically accurate or representative.
- 3. The maximum measured concentrations of TSP and all metals with MOECC air quality Standards, were below their applicable Standards (as presented in **Table 2-3** in this report) with the exception of one TSP measurement at the Rundle Road Station on November 27, 2017 which exceeded the applicable criteria by 94%. As required by the Ambient Air Quality Monitoring Plan, a written notice of exceedance was submitted to the Region of Durham, Region of York, MOECC, and the local Medical Officer of Health. Stantec's root cause analysis determined that the likely cause of the TSP exceedance was truck activity occurring adjacent to the Rundle Road Station.
- 4. The maximum measured concentrations of PAHs with MOECC air quality Standards were well below their applicable criteria shown in **Table 2-4**, with the exception of one (1) 24-hour benzo(a)pyrene (B(a)P) concentration measured on December 9, 2017 at the Courtice WPCP Station, and two (2) B(a)P measurements on November 15 and December 9, 2017 at the Rundle Road Station. Measured concentrations of B(a)P exceeded the applicable Ontario Ambient Air Quality Criteria (AAQC) by between 15% and 120%. The current Ontario 24-hour B(a)P AAQC was introduced in 2011 and levels above this AAQC are commonly

Stantec

measured throughout Ontario. The measurements were however, well below the MOECC Schedule 6 Upper Risk Threshold, the MOECC O. Reg. 419/05 24-hour average guideline, and the HHRA health based criterion.

5. The maximum measured toxic equivalent dioxin and furan concentration was below the applicable Standard presented in **Table 2-4.**

In summary, the measured concentrations of the air contaminants monitored were below their applicable MOECC Standards during the October to December 2017 monitoring period with the exception of benzo(a)pyrene and TSP. Furthermore, all measured levels of the monitored contaminants were below their applicable HHRA health-based criteria except for TSP.

Abbreviations

AAQC Ambient Air Quality Criteria

ACB List Air Contaminants Benchmarks List: Standards, Guidelines, and

Screening Levels for Assessing Point of Impingement Concentrations of

Air Contaminants

CAAQS Canadian Ambient Air Quality Standards

CAC Criteria Air Contaminants

CDD Chlorinated Dibenzo-p-dioxins
CDF Chlorinated Dibenzo-p-furans

D/Fs Dioxins and Furans

DYEC Durham York Energy Centre

EFW Energy from Waste

MOECC Ontario Ministry of the Environment and Climate Change

SO₂ Sulphur Dioxide NO_x Nitrogen Oxides

PAH Polycyclic Aromatic Hydrocarbons

Particulate A particle of a solid or liquid that is suspended in air.

PCB Polychlorinated biphenyl

PCDD/PCDF Polychlorinated dibenzo-p-dioxins and dibenzofurans

PM Particulate Matter

PM_{2.5} Particulate Matter smaller than 2.5 microns

TEQ Toxic Equivalent Quotient

TEQs Toxic Equivalents

TSP Total Suspended Particulate
WPCP Water Pollution Control Plant

Cd Cadmium Hg Mercury Pb Lead Al Aluminum As Arsenic Be Beryllium

Cr Chromium Cu Copper Mn Manganese Ni Nickel Ag Silver Ti Titanium ΤI Thallium Sn Tin ٧ Vanadium Zn Zinc Zr Zirconium

Miscellaneous	
°C	Temperature in degrees Celsius
N/A	Not Available
%	Percent
μg	microgram
ppm	Parts per million
ppb	Parts per billion
ppbv	Parts per billion by volume
ppt	Parts per trillion
min	Minimum
max	Maximum
mm	Millimetre
m	Metre
nm	nanometre
km/hr	Kilometres per hour
mg/m³	Milligrams per cubic metre

Microgram per cubic metre

Nanograms per cubic metre

Picograms per cubic metre

Picograms of toxic exposure equivalents per cubic metre

 $\mu g/m^3$

ng/m³

pg/m³

pg TEQ/m³

Introduction February 9, 2018

1.0 INTRODUCTION

1.1 BACKGROUND AND OBJECTIVES

The Regional Municipalities of Durham and York constructed the Durham York Energy Centre (DYEC) which is an Energy-from-Waste (EFW) Facility intended to provide a long-term, sustainable solution to manage municipal solid waste remaining after diversion from the Regions. The site location of the DYEC is shown in **Figure 1-1.** The facility commenced commercial operation on February 1, 2016.

An Ambient Air Quality Monitoring Plan – Durham York Residual Waste Study (Ambient Monitoring Plan) was developed and included two monitoring stations referred to as the Courtice Water Pollution Control Plant (WPCP) Station and the Rundle Road Station (as well as a temporary Fence Line Station). The plan developed for these stations was based on the Regional Council's mandate to provide ambient air quality monitoring in the area of the DYEC for a three-year period.

The purposes of the ambient air quality monitoring program are to:

- Quantify any measurable ground level concentrations resulting from emissions from the DYEC cumulative to local air quality, including validating the predicted concentrations from the dispersion modelling conducted in the Environmental Assessment (Jacques Whitford, 2009);
- 2. Monitor concentration levels of EFW-related air contaminants in nearby residential areas; and
- 3. Quantify background ambient levels of air contaminants in the area.

Two monitoring stations (Courtice WPCP and Rundle Road Stations) in the vicinity of the DYEC were set up in April 2013. Since May 2013, the two stations have measured the following air contaminants:

- Continuously monitored criteria air contaminants (CACs)
 - Sulphur Dioxide (SO₂)
 - Nitrogen Oxides (NO_X), and
 - Particulate Matter smaller than 2.5 microns (PM_{2.5}).
- Non-continuously monitored
 - Metals in Total Suspended Particulate (TSP) matter
 - Polycyclic Aromatic Hydrocarbons (PAHs), and
 - Dioxins and Furans.

Operation of the non-continuous monitors was temporarily discontinued from June 28, 2014 (after completion of the background air quality data collection period) onwards through the

Stantec

Introduction February 9, 2018

rest of construction and commissioning, as per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012). The EFW facility became fully operational starting February 1, 2016, and non-continuous monitoring resumed (as specified in the Ambient Monitoring Plan).

A third Fence Line Station, which measures non-continuous parameters (metals and total particulate matter), was installed prior to full operation of the DYEC. As per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012), the Fence Line Station, which collects non-continuous parameters began operation on February 1, 2016 upon start of commercial operations. The Fence Line Station was scheduled to run for a one-year period but this period has been extended by one year for a total of two years at the request of the Regional Municipality of Durham.

This quarterly report provides a summary of the ambient air quality data collected at the three stations for the period from October to December 2017 (Q4).

1.2 LOCATIONS OF AMBIENT AIR QUALITY MONITORING STATIONS

The selection of sites for the monitoring stations was accomplished in consultation with the Ontario Ministry of Environment and Climate Change (MOECC) and Regional Municipality of Durham and York representatives based on the results of air quality modelling done in support of the environmental assessment for the project, the locations of nearby sensitive receptors, and general MOECC siting criteria. Two monitoring stations (one predominantly downwind and one predominantly upwind) were chosen for the ambient air quality program. The final locations of the monitoring stations were influenced by the availability of electrical power, accessibility of each location and security. Details of the siting requirements are provided in the Ambient Monitoring Plan.

The Rundle Road Station is sited northeast of the DYEC in the vicinity of residential receptors predominantly downwind of the DYEC, and within the area where maximum annual concentrations are predicted to occur. This predominantly downwind station is located along Rundle Road, south of Baseline Road. Its location is shown in **Figure 1-2** and **Figure 1-3**. The monitoring station measures all the air contaminants listed in Section1.1 and meteorological data.

The predominately upwind Courtice WPCP Station is located at the Courtice Water Pollution Control Plant (WPCP) to the southwest of the DYEC with the objective of measuring background air quality in a predominantly upwind location. The location is presented in **Figure 1-2** and **Figure 1-4.** This monitoring station measures the air contaminants presented in Section 1.1, as well as meteorological data, with the exception of wind speed and wind direction, which are measured and provided by the Courtice Water Pollution Control Plant.

A third Fence Line Station, which measures non-continuous parameters (metals and total particulate matter), was installed prior to full operation of the DYEC. As per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012), the Fence Line Station, which collects non-continuous

Introduction February 9, 2018

parameters began operation after the Facility's commissioning period was completed. The Fence Line Station was scheduled to run for a one-year period but this period has been extended by one year for a total of two years. The location is presented in **Figure 1-2** and **Figure 1-5**.

Introduction February 9, 2018

Figure 1-3 View of the Rundle Road Ambient Air Quality Monitoring Station

Figure 1-4 View of the Courtice WPCP Ambient Air Quality Monitoring Station

Introduction February 9, 2018

Figure 1-5 View of the Fence Line Ambient Air Quality Monitoring Station

Key Components Assessed February 9, 2018

2.0 KEY COMPONENTS ASSESSED

2.1 METEOROLOGY

The following meteorological parameters are measured at the Rundle Road and Courtice WPCP Stations.

Table 2-1 Summary of Meteorological Parameters Measured at Each Station

Courtice WPCP (Predominately Upwind) Ambient Air Quality Monitoring Station	Rundle Road (Predominately Downwind) Ambient Air Quality Monitoring Station
Wind Speed and Direction @ 20 m	Wind Speed and Direction @7.5 m
Ambient Temperature @ 2 m	Ambient Temperature @ 2 m
Relative Humidity	Relative Humidity
Rainfall	Rainfall
Barometric Pressure	

2.2 AIR QUALITY CONTAMINANTS OF CONCERN

The ambient air quality monitoring program for the DYEC includes the following contaminants specified in the Ambient Monitoring Plan (Stantec, 2012):

- Continuously monitored criteria air contaminants (CACs)
 - Sulphur Dioxide (SO₂)
 - Nitrogen Oxides (NOx), and
 - Particulate Matter smaller than 2.5 microns (PM_{2.5}).
- Non-continuously monitored
 - Metals in Total Suspended Particulate (TSP) matter
 - Polycyclic Aromatic Hydrocarbons (PAHs), and
 - Dioxins and Furans.

Operation of the non-continuous monitors was temporarily discontinued between June 28, 2014 and January 31, 2016 as per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012). The EFW facility started full commercial operation on February 1, 2016, and monitoring of non-continuous monitors resumed, as specified in the Ambient Monitoring Plan (Stantec, 2012).

The following are lists of the specific metals, PAHs, and dioxins and furans being measured. Rationales for the choice of contaminants being monitored are provided in the Ambient Monitoring Plan (Stantec, 2012).

Key Components Assessed February 9, 2018

Metals:

- Aluminum (Al)
- Antimony (Sb)
- Arsenic (As)
- Barium (Ba)
- Beryllium (Be)
- Bismuth (Bi)
- Boron (B)
- Cadmium (Cd)
- Cobalt (Co)
- Copper (Cu)
- Chromium (Cr) (Total)

- Iron (Fe)
- Lead (Pb)
- Magnesium (Mg)
- Manganese (Mn)
- Mercury (Hg)
- Molybdenum (Mo)
- Nickel (Ni)
- Phosphorus (Ph)
- Selenium (Se)
- Silver (Ag)
- Strontium (Sr)

- Thallium (TI)
- Tin (Sn)
- Titanium (Ti)
- Uranium (U)
- Vanadium (V)
- Zinc (Zn)
- Zirconium (Zr)

Polycyclic Aromatic Hydrocarbons:

- 1-Methylnaphthalene
- 2-Methylnaphthalene
- Acenaphthene
- Acenaphthylene
- Anthracene
- Benzo(a)anthracene
- Benzo(a)fluorene
- Benzo(a)pyrene
- Benzo(b)fluorene

- Benzo(b)fluoranthene
- Benzo(e)pyrene
- Benzo(g,h,i)perylene
- Benzo(k)fluoranthene
- Biphenol
- Chrysene
- Dibenz(a,h)anthracene
- Dibenz(a,c)anthracene
- Fluoranthene

- Indeno(1,2,3-cd)pyrene
- Naphthalene
- Perylene
- Phenanthrene
- Pyrene
- Tetralin
- o-Terphenyl
- Total PAHs

Dioxins and Furans:

- 2,3,7,8-Tetra CDD
- 1,2,3,7,8-Penta CDD
- 1,2,3,4,7,8-Hexa CDD
- 1,2,3,6,7,8-Hexa CDD
- 1,2,3,7,8,9-Hexa CDD
- 1,2,3,4,6,7,8-Hepta CDD
- Octa CDD
- Total Tetra CDD
- Total Penta CDD
- Total Hexa CDD

- Total Hepta CDD
- 2,3,7,8-Tetra CDF
- 1,2,3,7,8-Penta CDF
- 2,3,4,7,8-Penta CDF
- 1,2,3,4,7,8-Hexa CDF
- 1,2,3,6,7,8-Hexa CDF
- 2,3,4,6,7,8-Hexa CDF
- 1,2,3,7,8,9-Hexa CDF
- 1,2,3,4,6,7,8-Hepta CDF
- 1,2,3,4,7,8,9-Hepta CDF

- Octa CDF
- Total Tetra CDF
- Total Penta CDF
- Total Hexa CDF
- Total Hepta CDF
- Total toxic equivalency (I-TEQ)

Key Components Assessed February 9, 2018

2.3 AIR QUALITY CRITERIA

Several evaluation criteria were used for comparison to the air quality data as specified in the Ambient Air Monitoring Plan (Stantec, 2012). The first set was the Ontario Ambient Air Quality Criteria (AAQC) developed by the MOECC (MOECC, 2012). The second set of criteria was the Standards reported in O. Reg. 419/05 (Schedules 3 and 6) and the MOECC Guidelines and Jurisdictional Screening Levels. In December 2016, O. Reg. 419/05 Standards, Guidelines, and Jurisdictional Screening Levels were consolidated into a new format known as the "Air Contaminants Benchmarks List: Standards, Guidelines, and Screening Levels for Assessing Point of Impingement Concentrations of Air Contaminants" (MOECC, 2016) (ACB List).

Not all chemicals have regulatory limits, or in some instances updated health-based criteria were used in the human health risk assessment (HHRA) conducted in support of the Environmental Assessment (July 31, 2009 - December 10, 2009). These health-based values, which were reported in Table 7-2 (Summary of Inhalation TRVs and Inhalation Benchmarks Selected for CACs) and Table 7-3 (Inhalation TRVs and Inhalation Benchmarks for Selected COPCs) of the HHRA (Stantec, 2009) were used as another set of criteria.

Additionally, federal ambient air quality standards were considered. The previously applicable 24-hour Canada-Wide Standard (CWS) for $PM_{2.5}$ of 30 $\mu g/m^3$ (98th percentile averaged over 3 consecutive years) has been superseded by the new Canadian Ambient Air Quality Standard (CAAQS) of 28 $\mu g/m^3$ (98th percentile averaged over 3 consecutive years) and the annual objective of 10 $\mu g/m^3$ as noted in **Table 2-2**. The proposed CAAQS 24-hour objective for 2020 is 27 $\mu g/m^3$.

There is an AAQC for nitrogen dioxide (NO_2) as well as a Schedule 3 Standard for nitrogen oxides (NO_X) which is based on health effects of NO_2 , as NO_2 has adverse health effects at much lower concentrations than nitric oxide (NO). At the request of the MOECC (MOECC, 2017), ambient NO_X measurements are not compared with the NO_2 AAQC or Schedule 3 NO_X Standard.

Summaries of the relevant air quality criteria for the contaminants monitored in Q4 2017 are presented in **Table 2-2** to **Table 2-4**.

Key Components Assessed February 9, 2018

Table 2-2 Summary of Air Quality Criteria for CACs

		M	OECC Criteri	ia	HHRA Health-Based Criteria			
Contaminant	CAS	1-Hour (ppb / μg/m³)	24-Hour (ppb / μg/m³)	Annual (ppb / µg/m³)	1-Hour (ppb / μg/m³)	24-Hour (ppb / μg/m³)	Annual (ppb / µg/m³)	
Sulphur dioxide	7446095	250 /690	100 / 275	20 / 55	250 / 690	100 / 275	11 / 29	
Nitrogen Dioxide	10102-44-0	200 /400	100 / 200	-	200 / 400	100 / 200	30 / 60	
		Canadian Ambient Air Quality Standards (CAAQS)			HHRA Health-Based Criteria			
Contaminant	CAS	1-Hour (µg/m³)	24-Hour (µg/m³)	Annual (µg/m³)	1-Hour (µg/m³)	24-Hour (µg/m³)	Other time Period (µg/m³)	
PM _{2.5}	N/A	-	28 ^A	10 ^B	-	30 ^C	-	

A. Canadian Ambient Air Quality Standards (CAAQS) for Respirable Particulate Matter and Ozone, effective by 2015 (CCME, 2012). The Respirable Particulate Matter Objective is referenced to the 98th percentile daily average concentration averaged over 3 consecutive years.

Table 2-3 Summary of Air Quality Criteria for Metals

		N	NOECC Crite	ia	HHRA Health-Based Criteria		
Contaminant	CAS	1-Hour (µg/m³)	24-Hour (µg/m³)	Other time Period (µg/m³)	1-Hour (μg/m³)	24-Hour (μg/m³)	Annual (µg/m³)
Total Particulate	NA	-	120	-	-	120	60
Aluminum	7429-90-5	-	4.8	-	-	-	-
Antimony	7440-36-0	-	25	-	5	25	0.2
Arsenic	7440-38-2	-	0.3	-	0.2	0.3	0.015 ^A 0.0043 ^B
Barium	7440-39-3	-	10	-	5	10	1
Beryllium	7440-41-7	-	0.01	-	0.02	0.01	0.007 A 0.0024 B
Bismuth	7440-69-9			-			
Boron	7440-42-8	-	120	-	50	-	5
Cadmium	7440-43-9	-	0.025	0.005; annual	0.1	0.025	0.005 A 0.0098 B
Chromium (Total)	7440-47-3	-	0.5	-	1	-	60

Stantec

B. Annual Canadian Ambient Air Quality Standard for Respirable Particulate Matter, effective by 2015. The Respirable Particulate Matter Objective is referenced to the 3-year average of the annual average concentrations.

C. HHRA Health-Based criterion for PM2.5 was selected referencing CCME (2006).

Key Components Assessed February 9, 2018

Table 2-3 Summary of Air Quality Criteria for Metals

		N	OECC Crite	ria	HHRA Health-Based Criteria		
Contaminant	CAS	1-Hour (µg/m³)	24-Hoυr (μg/m³)	Other time Period (µg/m³)	1-Hour (μg/m³)	24-Hour (μg/m³)	Annual (µg/m³)
Cobalt	7440-48-4	-	0.1	-	0.2	0.1	0.1
Copper	8440-50-8	-	50	-	-	-	-
Iron	15438-31-0	-	4	-	-	-	-
Lead	7439-92-1	-	0.5	0.2; 30-day	1.5	0.5	0.5
Magnesium	7439-95-4			-			
Manganese	7439-96-5	-	0.4	-	-	-	-
Mercury	7439-97-6	-	2	-	0.6	2	0.3
Molybdenum	7439-87-7	-	120	-	-	-	-
Nickel	7440-02-0	-	0.2	0.04; annual	6	-	0.05
Phosphorus	7723-14-0	-	-	-	-	-	6.4 x 10 ⁷
Selenium	7782-49-2	-	10	-	2	10	0.2
Silver	7440-22-4	-	1	-	0.1	1	0.01
Strontium	7440-24-6	-	120	-	-	-	-
Thallium	7440-28-0	-	-	-	1	-	0.1
Tin	7440-31-5	-	10	-	20	10	2
Titanium	7440-32-6	-	120	-	-	-	-
Vanadium	7440-62-2	-	2	-	0.5	1	1
Uranium	7440-61-1	-	1.5	0.03; annual	-	-	-
Zinc	7440-66-6	-	120	-	50	-	5
Zirconium	7440-67-7	-	20	-	-	-	-

A. Annual Average

B. Carcinogenic Annual Average

Key Components Assessed February 9, 2018

Table 2-4 Summary of Air Quality Criteria for PAHs and D/Fs

	MOECC Criteria			HHRA Health-Based Criteria				
Contaminant	CAS	1-Hour (ng/m³)	24-Hour (ng/m³)	Other time Period (ng/m³)	1-Hour (ng/m³)	24-Hour (ng/m³)	Annual (ng/m³)	Toxic Equivalency Factor Annual ^{A, G} (ng/m³)-1
1-Methylnaphthalene	90-12-0	-	12,000	-	-	-	3,000	-
2-Methylnaphthalene	91-57-6	-	10,000	-	-	-	3,000	-
Acenaphthene	83-32-9	-	-	-	1,000	-	-	1
Acenaphthylene	208-96-8	-	3,500	-	1,000	-	-	10
Anthracene	120-12-7	-	200	-	500	-	50	-
Benzo(a)anthracene	56-55-3	-	-	-	500	-	-	100
Benzo(b)fluoranthene	205-99-2	-	-	-	500	-	-	100
Benzo(k)fluoranthene	207 -08-9	-	-	-	500	-	-	100
Benzo(a)fluorene	238-84-6	-	-	-	500	-	50	-
Benzo(b)fluorene	243-17-4	-	-	-	500	-	50	-
Benzo (g,h,i) perylene	191-24-2	-	-	-	500	-	-	100
Benzo(a)pyrene	50-32-8	-	0.05 ^B 5 ^C 1.1 ^D	0.01; annual	-	1	87 A	-
Benzo(e)pyrene	192-97-2	-	-	-	500	-	-	10
Biphenyl	92-52-4	-	-	-	-	-	224,000	-
Chrysene	218-01-9			-				-
Dibenzo(a,c)anthracene	215-58-7	-	-	-	-	-	-	100
Dibenzo(a,h)anthracene	53-70-3	-	-	-	500	-	-	1,000
Fluoranthene	206-44-0	-	-	-	500	-	-	1
Indeno(1,2,3-cd)pyrene	193-39-5	-	-	-	500	-	-	100
Naphthalene	91-20-3	-	22,500	-	-	22,500	3,000	-
o-Terphenyl	84-15-1	-	-	-	50,000	-	5,000	-

Key Components Assessed February 9, 2018

Table 2-4 Summary of Air Quality Criteria for PAHs and D/Fs

		MOECC Criteria			HHRA Health-Based Criteria			
Contaminant	CAS	1-Hour (ng/m³)	24-Hour (ng/m³)	Other time Period (ng/m³)	1-Hour (ng/m³)	24-Hour (ng/m³)	Annual (ng/m³)	Toxic Equivalency Factor Annual ^{A, G} (ng/m³)·1
Perylene	198-55-0	-	-	-	500	-	-	1
Phenanthrene	85-01-8	-	-	-	500	-	-	1
Pyrene	129-00-0	-	-	-	500	-	-	1
Tetralin	119-64-2			-				-
Dioxins and Furans Total Toxic Equivalency ^E	NA	-	0.1 (pg TEQ/m³) ^F 1 (pg TEQ/m³) ^C	-	-	-	-	-

A. Carcinogenic Annual Average. Units in (ng/m3)-1.

B. Ontario Ambient Air Quality Criteria - The standard for benzo(a)pyrene (B(a)P) is for B(a)P as a surrogate for PAHs.

C. O. Reg. 419/05 Schedule 6 Upper Risk Thresholds.

D. O. Reg. 419/05 24 Hour Guideline.

E. Application of the air standard for dioxins, furans, and dioxin-like PCBs requires the calculation of the total toxicity equivalent (TEQ) concentration contributed by all dioxin-like compounds in the mixture. TEQ is calculated using the methodology as per the O. Reg. 419/05 Summary of Standards and Guidelines, and the corresponding WHO2005 toxic equivalency factors (i-TEFs).

F. O. Reg. 419/05 Schedule 3 Standard phased in after July 1, 2016.

G. Toxic Equivalency Factors (TEFs) are shown as benzo(a)pyrene equivalents.

Instrumentation Summary and Field Conditions February 9, 2018

3.0 INSTRUMENTATION SUMMARY AND FIELD CONDITIONS

3.1 INSTRUMENTATION

The measurement program at the monitoring stations includes both continuous and non-continuous monitors to sample air contaminant concentrations.

Monitoring for respirable particulate matter (PM_{2.5}), nitrogen oxides (NO_x) and sulphur dioxide (SO₂) are conducted on a continuous basis. A summary of the continuous monitors and a brief description of their principle of operation are provided in **Table 3-1** below.

Table 3-1 Summary of Continuous Ambient Air Quality Monitors

Contaminant	Monitor	Principle of Operation	Range	Time Interval
PM _{2.5}	Thermo Sharp 5030 Synchronized Hybrid Ambient Real-time Particulate Monitor	Light Scattering Photometry / Beta Attenuation - Consists of a carbon14 source, detector and light scattering Nephelometer in a rack-mountable enclosure. The Thermo Sharp utilizes a continuous (non-step wise) hybrid mass measurement and a combination of beta attenuation and light scattering technology. The unit's filter tape is automatically advanced based upon a user defined frequency or particulate loading.	0 -10 mg/m ³	1 minute
NO, NO ₂ , NO _x	Teledyne API Model 200E Chemiluminescence Analyzer	Chemiluminescence - Uses a chemiluminescence detection principle and microprocessor technology for ambient continuous emissions monitoring (CEM). Measurements are automatically compensated for temperature and pressure changes.	0 – 1000 ppb	1 second
SO ₂	Teledyne API Model T100	Pulsed Florescence - SO ₂ levels are measured based on the principle that SO ₂ has a strong ultraviolet (UV) absorption at a wavelength between 200 and 240 nanometres (nm). The absorption of photons at these wavelengths results in the emission of fluorescence photons at a higher wavelength. The amount of fluorescence measured is directly proportional to the concentration of SO ₂ .	0 – 1000 ppb	1 second

Instrumentation Summary and Field Conditions February 9, 2018

Two manually operated, hi-volume air samplers are installed at both the Courtice WPCP (predominantly upwind) and Rundle Road (predominantly downwind) Stations to collect metals in total suspended particulate (TSP), polycyclic aromatic hydrocarbons (PAHs), and dioxins and furans. Sampling for these contaminants is conducted following the methodology and analyses described in the Ambient Monitoring Plan (Stantec, 2012), as presented in **Table 3-2**. Monitoring for metals in TSP is also conducted at the Fence Line Station. The samples were submitted to Maxxam Analytics Inc., a Canadian Association for Laboratory Accreditation Inc. (CALA) / Standards Council of Canada (SCC) accredited laboratory, for analysis.

Table 3-2 Summary of Non-Continuous Ambient Air Quality Monitors

Contaminant	Sampler	Filter Media	Lab Analysis	Sampling Schedule
TSP and metals	Tisch Environmental TE- 5170 mass-flow high volume sampler	Pre-weighed, conditioned Teflon coated glass fibre filters	Weighed for particulate loading and analysed using the Atomic Emission Spectroscopy / Inductively Coupled Plasma (AES/ICP) technique to determine metals content	24-hour sample taken every 6 days
PAHs	Tisch Environmental TE-	Dual chambered sampling module	Gas Chromatography / Mass Spectrometry	24-hour sample taken every 12 days
Dioxins and Furans	1000 mass-flow high volume air sampler	with a Teflon- coated glass fibre filter and a Poly-Urethane Foam (PUF) cartridge	(GC/MS)	24-hour sample taken every 24 days.

Horizontal wind speed, wind direction, atmospheric temperature, relative humidity, and rainfall are measured at the predominantly downwind Rundle Road Station. The meteorological sensors at the Rundle Road Station are mounted on an external 7.5 m aluminum tower. Atmospheric temperature, relative humidity, rainfall, and barometric pressure are measured at the predominantly upwind Courtice WPCP Station. Wind speed and wind direction data at the predominantly upwind location are measured on a 20 m tower and are provided by the Courtice Water Pollution Control Plant.

The meteorological equipment is summarized in **Table 3-3**.

Instrumentation Summary and Field Conditions February 9, 2018

Table 3-3 Summary of Meteorological Equipment

Parameter	Equipment
Wind Speed/Wind Direction	Met One Instruments Inc. Model 034B
Temperature/Relative Humidity	Campbell Scientific Model HMP60
Atmospheric Pressure	Campbell Scientific Model CS106
Rainfall	Texas Electronic TE525M

A Campbell Scientific CRX1000 data acquisition system (DAS) is used to collect continuous instrument monitoring data and status codes from the continuous ambient air quality monitors. Continuous station data is maintained in the data loggers, and data is viewed locally using a laptop and the relevant DAS software applications. Remote data transmission is accomplished by the periodic transmission of collected station air quality data via cellular phone.

3.2 INSTRUMENTATION ISSUES

There were no operations issues encountered during Q4 2017 for the three monitoring stations, as presented in **Table 3-4** to **Table 3-6**.

Table 3-4 Summary of Instrument Issues at the Courtice WPCP Station (Predominately Upwind)

Parameter	Issues	Time Frame	Remedial Action
SO ₂	None		
NOx	None		
PM _{2.5}	None		
TSP/Metals Hi-Vol	None		
PAH/ D/F Hi-Vol	None		
Other	None		

Table 3-5 Summary of Instrument Issues at the Rundle Road Station (Predominately Downwind)

Parameter	Issues	Time Frame	Remedial Action
SO ₂	None		
NO _X	None		
PM _{2.5}	None		
TSP/Metals Hi-Vol	None		
PAH/ D/F Hi-Vol	None		
Other	None		

Instrumentation Summary and Field Conditions February 9, 2018

Table 3-6 Summary of Instrument Issues at the Fence Line Station

Parameter	Issues	Time Frame	Remedial Action
TSP/Metals Hi-Vol	None		

3.3 INSTRUMENTATION RECOVERY RATES

Data recovery rates for each continuous monitor at the three monitoring stations during Quarter 4 (October to December 2017) are presented in **Table 3-7** to **Table 3-9**.

Table 3-7 Summary of Data Recovery Rates for the Courtice WPCP Station (Predominately Upwind) – October to December 2017

Parameter	Valid Measurement Hours	Data Recovery Rate (%)
SO ₂	2203	99.8% ^A
NO _X	2188	99.1% ^A
PM _{2.5}	2200	99.6% ^A
Temperature	2208	100.0% ^A
Rainfall	2208	100.0% ^A
Relative Humidity	2208	100.0% ^A
Pressure	2208	100.0% ^A
Wind Speed/Direction	2182	98.8% ^A
TSP/Metals	15 ^B	100%
PAHs	7 ^B	100%
Dioxins and Furans	3 B	100%

A. Includes any instrumentation issues summarized in Table 3-4, quarterly MOECC audit and monthly calibrations.

Table 3-8 Summary of Data Recovery Rates for the Rundle Road Station (Predominately Downwind) – October to December 2017

Parameter	Valid Measurement Hours	Data Recovery Rate (%)
SO ₂	2203	99.8% A
NO _X	2192	99.3% A
PM _{2.5}	2199	99.6% A
Temperature	2208	100.0% ^A
Rainfall	2208	100.0% ^A
Relative Humidity	2208	100.0% ^A

B. Number of filters/24-hour average samples.

Instrumentation Summary and Field Conditions February 9, 2018

Table 3-8 Summary of Data Recovery Rates for the Rundle Road Station (Predominately Downwind) – October to December 2017

Parameter	Valid Measurement Hours	Data Recovery Rate (%)
Wind Speed/Direction	2208	100.0% ^A
TSP/Metals	15 ^B	100 %
PAHs	7 ^B	100%
Dioxins and Furans	3 В	100%

A. Includes any instrumentation issues summarized in Table 3-5, quarterly MOECC audit, and monthly calibrations.

Table 3-9 Summary of Data Recovery Rates for the Fence Line Station – October to December 2017

Parameter	Valid Measurements ^B	Data Recovery Rate (%)
TSP/Metals ^A	15	100%

A. Includes any instrumentation issues summarized in Table 3-6.

3.4 CONTINUOUS MONITOR INTERNAL CALIBRATIONS

Summaries of the Courtice WPCP and Rundle Road Station SO₂ and NO_x monitor daily internal zero checks for Q4 2017 are presented in **Appendix A**. Daily internal zero checks are informal checks of an analyzer's response intended as a quick, convenient way to check for possible analyzer malfunction or calibration drift. They are not recommended as a basis for analyzer zero or span adjustments, calibration updates, or adjustment of ambient data (Environment Canada, 1995).

All internal zero calibrations of the SO₂ and NO_X analyzers at the Courtice WPCP and Rundle Road Stations were less than 5 ppb throughout Q4.

3.5 FIELD CONDITION OBSERVATIONS

During Q4 2017 activities in the vicinity of the ambient air monitoring stations were observed that had the potential to be affecting air quality levels during the period. These observations were noted by Stantec personnel during field visits.

Construction of Highway 418, which will connect with Highway 401 between Courtice Road and Crago Road was ongoing during this quarter. Highway 418 will provide a north-south link between Highway 401 and the Phase 2 expansion of Highway 407. The Highway 401/418 interchange will be located almost directly north of the DYEC. Throughout the quarter,

B. Number of filters/24-hour average samples.

B. Number of filters/24-hour average samples.

Instrumentation Summary and Field Conditions February 9, 2018

excavator/dump truck crews were observed working in a large area immediately north of the DYEC between Megawatt Drive and Highway 401. Major work observed included earthworks and Highway 401 overpass construction for on/off ramps connecting to Highway 418. Photographs of soil berms/ramps and overpass construction activities are provided in **Figure 3-1**, and **Figure 3-2**.

On the north side of Highway 401, the highway construction contractor has located a construction camp along Baseline Road about 1.5 km west of the Rundle Road Station. Heavy vehicle operations were observed in late November that likely contributed to elevated TSP measurements on November 27, 2017. A photo of the observed heavy vehicle operations is included in **Figure 3-3**, and was taken during a site visit on November 28, 2017.

During Q4, there was one period where waste feed to each boiler was halted. The times when these feed stops occurred are summarized in **Table 3-10**.

Table 3-10 Summary of Boiler Operational Status in Q4 2017

Boiler	Date	Time	Status
Boiler 1	November 26	12:19 – 15:34	Feed Stop
Boiler 2	November 26	12:19 – 14:53	Feed Stop

Instrumentation Summary and Field Conditions February 9, 2018

Figure 3-1 Looking North from Megawatt Drive of the Highway 401 and Highway 418 Construction (October 23, 2017)

Instrumentation Summary and Field Conditions February 9, 2018

Figure 3-2 Looking North from Megawatt Drive at Highway 401 and Highway 418 Construction (November 28, 2017)

Instrumentation Summary and Field Conditions February 9, 2018

Figure 3-3 Looking West from Rundle Road Station at Heavy Truck Operations on Adjacent Unpaved Road (November 28, 2017)

Summary of Ambient Measurements February 9, 2018

4.0 SUMMARY OF AMBIENT MEASUREMENTS

The following sections provide summaries of the validated data and the validation completed on each parameter.

4.1 METEOROLOGICAL DATA

A summary of the maximum, minimum, arithmetic mean, and standard deviation of the hourly average meteorological parameters measured at the two monitoring stations for the October to December 2017 period are presented in **Table 4-1**.

Table 4-1 Summary of Hourly Meteorological Measurements – October to December 2017

Parameter	Description	Courtice WPCP Station (Predominately Upwind)	Rundle Road Station (Predominately Downwind)	Units
	Maximum	21.6	22.1	0C
	Minimum	-23.6	-24.4	0C
	Mean (October)	12.8	12.3	0C
Temperature	Mean (November)	3.8	3.3	°C
	Mean (December)	-5.0	-5.6	°C
	Mean (Period)	3.9	3.3	0C
	Standard Deviation	9.2	9.4	°C
	Maximum	6.4	7.7	mm
	Minimum	0.0	0.0	mm
	Mean (October)	0.09	0.09	mm
Rainfall	Mean (November)	0.07	0.08	mm
	Mean (December)	0.03	0.04	mm
	Mean (Period)	0.06	0.07	mm
	Standard Deviation	0.36	0.41	mm
	Maximum	94.8	100.0	%
	Minimum	39.1	40.8	%
	Mean (October)	74.2	78.8	%
Relative Humidity	Mean (November)	70.0	75.6	%
	Mean (December)	69.0	73.5	%
	Mean (Period)	71.1	76.0	%
	Standard Deviation	12.5	14.0	%

Summary of Ambient Measurements February 9, 2018

Table 4-1 Summary of Hourly Meteorological Measurements – October to December 2017

Parameter	Description	Courtice WPCP Station (Predominately Upwind)	Rundle Road Station (Predominately Downwind)	Units
	Maximum	30.4	-	in Hg
	Minimum	28.8	-	in Hg
	Mean (October)	29.7	-	in Hg
Pressure ^A	Mean (November)	29.8	-	in Hg
	Mean (December)	29.7	-	in Hg
	Mean (Period)	29.7	-	in Hg
	Standard Deviation	0.3	-	in Hg
	Maximum	43.0	39.0	km/hr
	Minimum	0.1	0.3	km/hr
	Mean (October)	12.4	10.8	km/hr
Wind Speed B	Mean (November)	13.4	11.1	km/hr
	Mean (December)	13.5	12.4	km/hr
	Mean (Period)	13.1	11.4	km/hr
	Standard Deviation	7.2	7.3	km/hr

A. Pressure is not measured at the Rundle Road Station.

Wind roses showing the directionality and speed at each location are presented in **Figure 4-1**. The length of the radial barbs gives the total percent frequency of winds from the indicated direction, while portions of the barbs of different widths indicate the frequency associated with each wind speed category.

Winds over the three-month period at the Courtice WPCP Station occurred predominantly from southwesterly to north-northwesterly directions. Higher wind speeds occurred from southwestern direction.

At the Rundle Road Station, the wind rose over the three-month period shows winds predominantly occurring from southwesterly to westerly directions. Higher wind speeds occurred from the southwest relative to other directions.

Project No.: 160950528

4.2

B. Wind speed at Courtice WPCP Station measured at 20 m and at Rundle Road Station at 7.5 m.

Summary of Ambient Measurements February 9, 2018

Rundle Road Station (Predominately Downwind) Courtice WPCP Station (Predominately Upwind) at 20 at 7.5 m Above Ground m Above Ground NORTH NORTH 13% 12.3% EAST WES EAST WIND SPEED (m/s) WIND SPEED >= 10.00 7.00 - 10.00 >= 10.00 6.00 - 7.00 7.00 - 10.00 SOUTH 4.00 - 6.00 6.00 - 7.00 2.00 - 4.00 SOUTH 4.00 - 6.00 0.50 - 2.00 200-400 Calms: 0.39% 0.50 - 2.00 Calms: 0.39%

Figure 4-1 Wind Roses for October to December 2017

4.2 CAC AMBIENT AIR QUALITY MEASUREMENTS

A summary of the maximum, minimum, arithmetic mean, and standard deviation of the CAC pollutant concentrations measured at each station are presented in **Table 4-2**. Also presented in this table are the number of exceedances (if any occurred), of the relevant O. Reg. 419/05 Schedule 3 Standards, Ontario Ambient Air Quality Criteria (AAQC) or health-based criteria for each contaminant. All monitored contaminants were below their applicable criteria during the period from October to December 2017.

Nitric oxide (NO) has no regulatory criteria as discussed in Section 4.2.2 below. There are both hourly and daily AAQCs for NO₂ which are based on health effects of NO₂; therefore, the AAQCs were compared to measured NO₂ concentrations in this report. As there is no AAQC for NOx, no criteria comparisons were made as per MOECC request (MOECC 2017).

A comparison of the maximum measured data to their respective air quality criteria is presented graphically in **Figure 4-2**.

Stantec

Summary of Ambient Measurements February 9, 2018

Table 4-2 Summary of Ambient CAC Monitoring Data – October to December 2017

Pollutant	Averaging		Criteria / HHRA Based Criteria	Description		PCP Station tely Upwind)	Rundle Ro (Predominate	
rollolalli	Period	(ppb)	(µg/m³)	Description	Concentration (ppbv)	Concentration (µg/m³)	Concentration (ppbv)	Concentration (µg/m³)
				Maximum	84.6	233.6	7.9	21.4
				Minimum	0.0	0.0	0.0	0.0
				Mean (October)	3.7	10.1	0.6	1.6
	1	250	/00	Mean (November)	2.0	5.5	0.7	2.0
	I	250	690	Mean (December)	1.1	3.3	0.7	1.9
				Mean (Period)	2.3	6.3	0.6	1.8
				Standard Deviation	5.6	15.5	0.4	1.2
				# of Exceedances	0	0	0	0
SO ₂				Maximum	16.0	44.6	1.8	5.0
				Minimum	0.1	0.4	0.1	0.2
				Mean (October)	3.7	10.3	0.6	1.5
	24	100	275	Mean (November)	2.0	5.6	0.7	2.0
	24	100	275	Mean (December)	1.1	3.3	0.7	2.0
				Mean (Period)	2.3	6.4	0.6	1.8
				Standard Deviation	2.7	7.4	0.3	0.7
				# of Exceedances	0	0	0	0

Summary of Ambient Measurements February 9, 2018

Table 4-2 Summary of Ambient CAC Monitoring Data – October to December 2017

Pollutant	Averaging		Criteria / HHRA Based Criteria	Description		/PCP Station Itely Upwind)		ad Station ly Downwind)
Pollutant	Period	(ppb)	(µg/m³)	Description	Concentration (ppbv)	Concentration (µg/m³)	Concentration (ppbv)	Concentration (µg/m³)
				Maximum	-	30.9	-	27.6
				Minimum	-	0.2	-	0.1
				Mean (October)	-	4.2	-	4.0
PM _{2.5}	24	N/A	28 A	Mean (November)	-	3.8	-	4.3
PIVI2.5	24	IV/A	2071	Mean (December)	-	6.5	-	7.5
				Mean (Period)	-	4.8	-	5.3
				Standard Deviation	-	4.4	-	4.5
				# of Exceedances	-	N/A	-	N/A
				Maximum	37.3	79.2	42.9	90.8
				Minimum	0.0	0.0	0.0	0.0
				Mean (October)	5.9	11.5	5.2	10.2
	1	200	400	Mean (November)	5.9	11.9	6.1	12.3
	l I	200	400	Mean (December)	8.1	16.9	11.7	24.5
NO ₂				Mean (Period)	6.6	13.4	7.7	15.7
1102				Standard Deviation	6.2	12.7	6.2	12.9
				# of Exceedances	0	0	0	0
				Maximum	26.4	55.8	30.5	64.5
	24	100	200	Minimum	0.3	0.7	0.1	0.2
	24	100	200	Mean (October)	5.8	11.4	5.1	9.9
				Mean (November)	5.9	11.9	6.0	12.1

Summary of Ambient Measurements February 9, 2018

Table 4-2 Summary of Ambient CAC Monitoring Data – October to December 2017

Pollutant	Averaging		Criteria / HHRA Based Criteria	Description		PCP Station tely Upwind)	Rundle Ro (Predominate	ad Station ly Downwind)
Politicalii	Period	(ppb)	(µg/m³)	Description	Concentration (ppbv)	Concentration (µg/m³)	Concentration (ppbv)	Concentration (µg/m³)
				Mean (December)	8.2	17.0	11.7	24.5
				Mean (Period)	6.6	13.4	7.6	15.5
				Standard Deviation	3.8	7.8	4.9	10.3
				# of Exceedances	0	0	0	0
				Maximum	128.9	168.8	47.2	63.2
				Minimum	0.0	0.0	0.0	0.0
				Mean (October)	4.0	5.2	1.9	2.5
	1	N/A	N/A	Mean (November)	2.5	3.3	2.5	3.3
	l I	IV/A	IN/A	Mean (December)	2.4	3.2	1.7	2.3
				Mean (Period)	3.0	3.9	2.0	2.7
				Standard Deviation	8.6	11.3	3.3	4.4
NO ^B				# of Exceedances	N/A	N/A	N/A	N/A
INO				Maximum	25.1	33.5	7.1	9.4
				Minimum	0.0	0.0	0.2	0.3
				Mean (October)	4.1	5.2	1.9	2.4
	24	NI/A	NI/A	Mean (November)	2.5	3.4	2.4	3.2
	24	N/A	N/A	Mean (December)	2.4	3.2	1.8	2.4
				Mean (Period)	3.0	3.9	2.0	2.7
				Standard Deviation	4.2	5.5	1.4	1.9
				# of Exceedances	N/A	N/A	N/A	N/A

Summary of Ambient Measurements February 9, 2018

Table 4-2 Summary of Ambient CAC Monitoring Data – October to December 2017

Pollutant	Averaging		Criteria / HHRA Based Criteria	Donasis line		PCP Station tely Upwind)	Rundle Ro (Predominate	
Pollutant	Period	(ppb)	(µg/m³)	Description	Concentration (ppbv)	Concentration (µg/m³)	Concentration (ppbv)	Concentration (µg/m³)
				Maximum	146.9	295.2	63.9	129.1
				Minimum	0.0	0.0	0.0	0.0
				Mean (October)	9.8	19.4	7.1	13.9
	1	N/A	N/A	Mean (November)	8.2	16.7	8.5	17.2
	l l	IN/A	IN/A	Mean (December)	10.3	21.4	13.3	27.9
				Mean (Period)	9.4	19.2	9.6	19.6
				Standard Deviation	13.1	26.7	8.1	16.6
NOv				# of Exceedances	N/A	N/A	N/A	N/A
NOx				Maximum	39.4	80.9	35.5	74.9
				Minimum	1.0	2.0	0.2	0.3
				Mean (October)	9.7	19.2	6.9	13.5
	2.4	NI/A	NI/A	Mean (November)	8.2	16.7	8.3	16.8
	24	N/A	N/A	Mean (December)	10.3	21.5	13.4	28.0
				Mean (Period)	9.4	19.2	9.6	19.5
				Standard Deviation	7.2	14.8	5.5	11.6
				# of Exceedances	N/A	N/A	N/A	N/A

A. Canadian Ambient Air Quality Standard for Respirable Particulate Matter. The Respirable Particulate Matter Objective is referenced to the 98th percentile over 3 consecutive years.

B. NO has no regulatory criteria.

Summary of Ambient Measurements February 9, 2018

Figure 4-2 Comparison of NO₂ and SO₂ Ambient Air Quality Monitoring Data to Applicable Criteria

Detailed discussion for each measured contaminant is presented in the following sections.

4.2.1 Sulphur Dioxide (SO₂)

Data summaries are presented in **Appendix B** for sulphur dioxide for each station and month as well as time history plots of the hourly and 24-hour average SO_2 concentrations. For the hourly and 24-hour averages, the Ontario AAQCs of 250 ppb and 100 ppb (690 μ g/m³ and 275 μ g/m³) are shown with blue lines in the respective plot. As shown in these figures, measured ambient SO_2 concentrations at both stations were well below the Ontario AAQCs.

The maximum hourly and 24-hour average SO_2 concentrations measured at the Courtice WPCP Station during October to December 2017 were 84.6 and 16.0 ppb (234 and 44.6 μ g/m³) respectively, which are 33.8% and 16.0% of the applicable 1-hour and 24-hour Ontario AAQCs. The maximum hourly and 24-hour average SO_2 concentrations measured at the Rundle Road Station during this quarter were 7.9 and 1.8 ppb (21.4 and 5.0 μ g/m³) respectively, which are 3.2% and 1.8% of the applicable 1-hour and 24-hour Ontario AAQCs.

Pollution roses of hourly average SO_2 concentrations measured at the Courtice WPCP Station and Rundle Road Station are presented in **Figure 4-3**. The pollution rose plots present measured hourly average contaminant concentrations versus measured wind direction (over 10° wind sectors). Concentrations less than $5 \mu g/m^3$, which account for 79% of the measurements at the Courtice WPCP and 98% at the Rundle Road Station, have been removed from the plot to allow the distribution of maximum levels to be more clearly shown in the figure. For the Courtice WPCP

Stantec

Summary of Ambient Measurements February 9, 2018

Station, higher hourly concentrations were measured when winds were blowing from northwesterly and northeasterly directions. For the Rundle Road Station, higher hourly concentrations occurred for east-southeasterly and southwesterly winds.

The maximum hourly SO_2 concentration measured at the Courtice WPCP was 84.6 ppb (233.6 $\mu g/m^3$) and occurred on October 18, 2017 at 3:00. During this time, winds were blowing from the northwest for which the CN railway is upwind. The maximum hourly SO_2 concentration measured at the Rundle Road Station occurred on October 27, 2017 at 13:00, measuring 7.9 ppb (21.4 $\mu g/m^3$). During this time, winds were blowing from the east for which a CP railroad and Highway 401 were upwind.

The maximum 24-hour average SO_2 concentration at the Courtice WPCP station was 16.0 ppb (44.6 $\mu g/m^3$) and occurred on October 2, 2017. The wind direction during the 24-hour measurement was blowing from the north-northwest for which a CP railroad and Highway 401 are upwind. The maximum 24-hour average SO_2 concentration at the Rundle Road Station was 1.8 ppb (5.0 $\mu g/m^3$) and occurred on October 28, 2017. The wind direction during the 24-hour measurement at the Rundle Road Station was from the southeast for which a CP railroad and local roads were generally upwind of the station.

Summary of Ambient Measurements February 9, 2018

Figure 4-3 Pollution Roses of Measured Hourly Average SO₂ Concentrations – October to December 2017

4.2.2 Nitrogen Dioxide (NO₂)

Nitrogen oxides (NO_x) are almost entirely made up of nitric oxide (NO) and nitrogen dioxide (NO₂). Together, they are often referred to as NO_x. Most NO₂ in the atmosphere is formed by the oxidation of NO, which is emitted directly by combustion processes, particularly those at high temperature and pressure. Exposure to both NO and NO₂ can result in adverse health effects to an exposed population. NO₂ is the regulated form of NO_x. Similar to other jurisdictions (e.g., Alberta Environment, World Health Organization), the O. Reg. 419/05 Schedule 3 Standards for NO_x are based on health effects of NO₂, as health effects are seen at much lower concentrations of NO₂ than NO. In this report, because NO₂ is the regulated form of NO_x, the AAQC were compared to measured NO₂ concentrations.

Data summaries are presented in **Appendix C** for nitrogen dioxide for each station and month as well as time history plots of the hourly and 24-hour average NO₂ concentrations. For the hourly and 24-hour averages, the Ontario AAQCs of 200 ppb and 100 ppb (400 µg/m³ and 200 µg/m³)

Summary of Ambient Measurements February 9, 2018

are shown with blue lines on the respective plot. As shown in these figures, measured ambient NO₂ concentrations at both stations were well below the Ontario AAQCs.

The maximum hourly and 24-hour average NO_2 concentrations measured at the Courtice WPCP Station during this quarter were 37.3 and 26.4 ppb (79.2 and 55.8 $\mu g/m^3$) respectively, which are 18.7% and 26.4% of the applicable 1-hour and 24-hour Ontario AAQCs. At the Rundle Road Station, the maximum measured hourly and 24-hour average concentrations were 42.9 and 30.5 ppb (90.8 and 64.5 $\mu g/m^3$), which are 21.4% and 30.5% of the applicable 1-hour and 24-hour Ontario AAQCs.

Pollution roses of measured hourly average NO₂ concentrations are presented in **Figure 4-4**. To more clearly show the distribution of maximum levels in the figures, concentrations less than 10 µg/m³, which account for 54% of the measurements at the Courtice WPCP Station and 40% at the Rundle Road Station, have been removed from the plots. The measured hourly average concentrations at the Courtice WPCP Station were higher for winds from northwesterly directions. For the Rundle Road Station, higher measured hourly average concentrations occurred for winds blowing from the southwest and from the northeast.

The maximum measured hourly average NO_2 concentration at the Courtice WPCP was 37.3 ppb (79.2 μ g/m³) on December 14, 2017 at 22:00. During this hour, the wind at the Courtice WPCP Station was blowing from the northwest, for which Highway 401 and the CN Railroad were upwind. The measured hourly average NO_2 concentration at the MOECC Oshawa Station in the same hour was 11 ppb which is lower than that at the Courtice WPCP Station, suggesting the elevated hourly average concentration was due to local emissions sources.

The maximum measured hourly average NO_2 concentration at the Rundle Road Station was 42.9 ppb (90.8 μ g/m³) on December 14, 2017 at 20:00, at which time winds were blowing from the west-southwest. A CP railroad, Highway 401 and Highway 418 construction areas were upwind of the Rundle Road Station for this direction. At the same time, the measured NO_2 concentration at the MOECC Oshawa Station was 12 ppb, which is lower than that at the Rundle Road Station, suggesting the elevated hourly average concentration was due to local emissions sources.

The maximum measured 24-hour average NO_2 concentration at the Courtice WPCP Station of 26.4 ppb (55.8 μ g/m³) occurred on December 15, 2017. The wind direction during this measurement was from the west for which Highway 401 was upwind.

Summary of Ambient Measurements February 9, 2018

The maximum measured 24-hour average NO_2 concentration of 30.5 ppb (64.5 μ g/m³) at the Rundle Road Station also occurred on December 15, 2017. Winds were from the west for which a CP railroad, Highway 401 and Highway 418 construction activities are upwind. The measured 24-hour NO_2 concentration at the MOECC Oshawa Station for the same day was 25 ppb which is similar to the Courtice WPCP and Rundle Road Stations, suggesting the elevated 24-hour concentrations were due to regional emission sources.

The maximum measured hourly and 24-hour average NO₂ concentrations of 39 ppb and 25 ppb respectively at the MOECC Oshawa Station during this quarter were comparable to the maximum levels measured at the Courtice WPCP and Rundle Road Stations.

Figure 4-4 Pollution Roses of Measured Hourly Average NO₂ Concentrations – October to December 2017

Summary of Ambient Measurements February 9, 2018

4.2.3 Nitrogen Oxides (NO_X)

Data summaries are presented in **Appendix D** for nitrogen oxides for each station and month as well as time history plots of the hourly and 24-hour average NO_x concentrations.

As shown in **Table 4-2**, the maximum hourly average NO_x concentration measured at the Courtice WPCP Station was 147 ppb (295 μ g/m³) and the maximum 24-hour average NO_x concentration measured was 39.4 ppb (80.9 μ g/m³). At the Rundle Road Station, the maximum hourly and 24-hour average concentrations measured during this quarter were 63.9 and 35.5 ppb (129 and 74.9 μ g/m³).

Pollution roses of measured hourly average NO_x concentrations for the Courtice WPCP Station and the Rundle Road Station are presented in **Figure 4-5**. Concentrations less than 25 µg/m³, which account for 75% and 70% of the measurements at the Courtice WPCP and Rundle Road Stations, respectively, have been removed from the plots to allow the distribution of maximum levels to be more clearly shown in the figures. Higher measured hourly average NO_x concentrations at the Courtice WPCP Station occurred for winds blowing from northerly directions. At the Rundle Road Station, higher measured hourly average concentrations occurred for southwesterly and northeasterly wind directions.

The maximum measured hourly average NOx concentration at the Courtice WPCP Station was and 147 ppb (295 μ g/m³) and occurred on October 21, 2017 at 5:00. Winds were blowing from the north during this time, for which Highway 401 and local roads were upwind. The maximum measured hourly average NOx concentration at the Rundle Road Station was 63.9 ppb (129 μ g/m³) and occurred on November 9, 2017 at 9:00. Winds at the Rundle Road Station were from the northeast for which local roads and agricultural activities were upwind.

The maximum measured 24-hour average NOx concentrations at the Courtice WPCP and Rundle Road Stations of 39.4 and 35.5 ppb (80.4 and 74.9 µg/m³) were observed on November 9 and December 15, 2017, respectively. Winds at the Courtice WPCP were from the west, to which local roads and Highway 401 were upwind. Winds at the Rundle Road Station were also from the west on December 15, to which a CN Railroad, local businesses and local roads were upwind.

Summary of Ambient Measurements February 9, 2018

Figure 4-5 Pollution Roses of Measured Hourly Average NO_X Concentrations – October to December 2017

4.2.4 Particulate Matter Smaller than 2.5 Microns (PM_{2.5})

Data summaries and time history plots of measured 24-hour average concentrations are presented in **Appendix E** for PM_{2.5} for the Courtice WPCP and Rundle Road Stations. The maximum measured 24-hour average PM_{2.5} concentrations at the Courtice WPCP and the Rundle Road Stations were 30.9 μ g/m³ and 27.6 μ g/m³ during this quarter. It should be noted that since an exceedance of the criteria for PM_{2.5} requires the average of the 98th percentile levels in each of three consecutive calendar years to be greater than 28 μ g/m³ (CAAQS) or 30 μ g/m³ (HHRA criteria) whereas the PM_{2.5} measurement period at both stations in the report was three months, there is insufficient data in a quarter to determine with any certainty if exceedances of the CAAQS/HHRA criteria would occur. Discussion of PM_{2.5} measurements with respect to the CAAQS/HHRA criteria will be provided in the 2017 annual report, at which time sufficient data will have been collected to make comparisons.

Pollution roses showing the measured 24-hour average ambient PM_{2.5} concentrations versus direction are shown in **Figure 4-6** for both monitoring stations. Concentrations less than 10 µg/m³,

Summary of Ambient Measurements February 9, 2018

which account for 89% of the measurements at the Courtice WPCP Station and 90% at the Rundle Road Station, have been removed from the plot to allow the distribution of maximum levels to be more clearly shown in the figure. Higher measured 24-hour average concentrations occurred for northeasterly winds at the Courtice WPCP Station, and northerly and southwesterly winds at the Rundle Road Station.

The maximum measured 24-hour average PM_{2.5} concentrations at the Courtice WPCP and Rundle Road Stations occurred on December 4, 2017 measuring 30.9 and 27.6 μ g/m³ respectively. The maximum measured concentration at the Courtice WPCP Station occurred when winds were blowing from the northeast, for which Highway 401, local roads, and the DYEC are upwind. At the Rundle Road station, winds were blowing from the north-northeast, for which local roads and agricultural activities were upwind. The maximum measured 24-hour average PM_{2.5} concentration at MOECC's Oshawa Station for Q4 was 26.5 μ g/m³ and was measured on the same day, suggesting that the measurements at the Rundle Road and Courtice WPCP Stations were influenced by regional emission sources.

Figure 4-6 Pollution Roses of Measured 24-Hour Average PM_{2.5} Concentrations – October to December 2017

Summary of Ambient Measurements February 9, 2018

4.3 AMBIENT TSP / METALS CONCENTRATIONS

A summary of the maximum and minimum ambient TSP and metals concentrations (for a daily averaging period) are presented in **Table 4-3**. A detailed summary of the concentrations measured for each sample is presented in **Appendix G**.

The maximum measured concentrations of TSP and all metals with MOECC air quality criteria were well below their applicable 24-hour criteria (shown in **Table 4-3** below) at all three stations with the exception of one TSP measurement at the Rundle Road Station on November 27, 2017. The TSP concentration for this 24-hour sample was 94% above the applicable MOECC and HHRA criteria. The measured TSP concentrations at the Fenceline and Courtice WPCP Stations were not elevated on this day, suggesting a local emissions source may have been influencing the Rundle Road Station. Wind directions during this day were blowing from the west-northwest. The DYEC was not upwind of the Rundle Road Station for the wind direction and the continuous emissions monitoring system at the DYEC indicated opacity at 0% throughout this day from both boilers.

Photographs taken on November 22, 2017 and November 28, 2017 (one day after the sample collection day) indicated ongoing heavy truck traffic and idling along Rundle Road and dusty road conditions. The filter media had visibly heavier loading compared with the samples collected on the same day at the Courtice WPCP and Fenceline Stations. **Figure 3-3** provides a photograph of the truck traffic on November 28th and their proximity to the Rundle Road Station. A summary of the wind direction and potential source contributions for this measurement is presented in **Table 4-4**.

A notification of a potential exceedance was prepared by Stantec and submitted to the Region of Durham, York, MOECC, and the Medical Officer of Health, in accordance with Section 9 of the Ambient Air Quality Monitoring Plan (Stantec, 2012). A root cause analysis was completed and the potential impact on human health was evaluated by a toxicologist. Based on Stantec's review, the likely cause of the TSP exceedance was heavy truck traffic on roads near the Rundle Road Station. The measured TSP concentration is not expected to have resulted in an adverse effect on human health or the environment.

Summary of Ambient Measurements February 9, 2018

Table 4-3 Summary of Measured Ambient TSP/Metals Concentrations

		могоо		Courtice \	WPCP (Predomina	ately Upwind)	Rundle Ro	ad (Predominately	Downwind)		Fence Line	
Contaminant	Units	MOECC Criteria	HHRA Health Based Criteria	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances
Particulate	μg/m³	120	120	42.2	12.7	0	232	20.2	1	59.2	15.6	0
Total Mercury (Hg)	μg/m³	2	2	3.62E-05	6.39E-06 A	0	4.85E-05	5.94E-06 A	0	4.19E-05	6.12E-06 A	0
Aluminum (Al)	μg/m³	4.8	-	1.49E-01	4.66E-02	0	1.08E+00	5.96E-02	0	3.29E-01	5.53E-02	0
Antimony (Sb)	μg/m³	25	25	3.73E-03 A	3.20E-03 A	0	3.69E-03 A	2.97E-03 A	0	3.49E-03 A	3.05E-03 A	0
Arsenic (As)	μg/m³	0.3	0.3	2.24E-03 A	1.92E-03 A	0	2.21E-03 A	1.78E-03 A	0	2.10E-03 A	1.83E-03 A	0
Barium (Ba)	μg/m³	10	10	1.84E-02	3.32E-03	0	3.20E-02	6.12E-03	0	2.61E-02	6.04E-03	0
Beryllium (Be)	μg/m³	0.01	0.01	3.73E-04 A	3.20E-04 A	0	3.69E-04 A	2.97E-04 A	0	3.49E-04 A	3.05E-04 A	0
Bismuth (Bi)	μg/m³	-	-	2.24E-03 A	1.92E-03 A	-	2.21E-03 A	1.78E-03 A	-	2.10E-03 A	1.83E-03 A	-
Boron (B)	μg/m³	120	-	4.26E-03	1.92E-03 A	0	4.22E-03	1.78E-03 A	0	5.71E-03	1.83E-03 A	0
Cadmium (Cd)	μg/m³	0.025	0.025	7.45E-04 A	6.39E-04 A	0	7.37E-04 A	5.94E-04 A	0	2.31E-03	6.10E-04 A	0
Chromium (Cr)	μg/m³	0.5	-	1.86E-03 A	1.60E-03 A	0	4.51E-03	1.49E-03 A	0	7.65E-03	1.53E-03 A	0
Cobalt (Co)	μg/m³	0.1	0.1	7.45E-04 A	6.39E-04 A	0	7.37E-04 A	5.94E-04 A	0	6.99E-04 A	6.10E-04 A	0
Copper (Cu)	μg/m³	50	-	5.22E-02	3.45E-03	0	5.51E-02	5.76E-03	0	3.75E-02	4.42E-03	0
Iron (Fe)	μg/m³	4	-	5.21E-01	1.32E-01	0	2.17E+00	2.28E-01	0	9.47E-01	2.15E-01	0
Lead (Pb)	μg/m³	0.5	0.5	1.09E-02	9.59E-04 A	0	1.30E-02	9.76E-04 A	0	8.66E-03	9.32E-04 A	0
Magnesium (Mg)	μg/m³	-	-	2.43E-01	5.84E-02	-	1.76E+00	9.76E-02	-	5.66E-01	8.52E-02	-
Manganese (Mn)	μg/m³	0.4	-	2.21E-02	4.16E-03	0	7.74E-02	6.31E-03	0	4.06E-02	8.20E-03	0
Molybdenum (Mo)	μg/m³	120	-	1.12E-03 A	9.59E-04 A	0	3.53E-03	9.55E-04 A	0	3.49E-03	9.19E-04 A	0
Nickel (Ni)	μg/m³	0.2	-	1.12E-03 A	9.59E-04 A	0	2.69E-03	8.91E-04 A	0	2.29E-03	9.16E-04 A	0
Phosphorus (P)	μg/m³	-	-	5.16E-02	7.99E-03 A	-	1.13E-01	8.67E-03 A	-	5.33E-02	8.73E-03 A	-
Selenium (Se)	μg/m³	10	10	3.73E-03 A	3.20E-03 A	0	3.69E-03 A	2.97E-03 A	0	3.49E-03 A	3.05E-03 A	0
Silver (Ag)	μg/m³	1	1	1.86E-03 A	1.60E-03 A	0	1.84E-03 A	1.49E-03 A	0	1.75E-03 A	1.53E-03 A	0
Strontium (Sr)	μg/m³	120	-	5.00E-03	1.36E-03	0	7.54E-02	3.58E-03	0	1.38E-02	2.38E-03	0
Thallium (TI)	μg/m³	-	-	3.73E-03 A	3.20E-03 A	-	3.69E-03 A	2.97E-03 A	-	3.49E-03 A	3.05E-03 A	-
Tin (Sn)	μg/m³	10	10	3.73E-03 A	3.20E-03 A	0	3.69E-03 A	2.97E-03 A	0	3.49E-03 A	3.05E-03 A	0
Titanium (Ti)	μg/m³	120	-	9.59E-03	3.20E-03 A	0	6.46E-02	3.25E-03 A	0	2.08E-02	3.06E-03 A	0
Vanadium (V)	μg/m³	2	1	1.86E-03 A	1.60E-03 A	0	3.43E-03	1.49E-03 A	0	1.75E-03 A	1.53E-03 A	0
Zinc (Zn)	μg/m³	120	-	2.46E-01	1.35E-02	0	2.95E-01	1.10E-02	0	1.83E-01	1.07E-02	0
Zirconium (Zr)	μg/m³	20	-	1.86E-03 A	1.60E-03 A	0	1.84E-03 A	1.49E-03 A	0	1.75E-03 A	1.53E-03 A	0
Total Uranium (U)	µg/m³	1.5	-	1.68E-04 A	1.44E-04 A	0	1.66E-04 A	1.34E-04 A	0	1.57E-04 A	1.37E-04 A	0

A. Measured concentration was less than the laboratory method detection limit.

Summary of Ambient Measurements February 9, 2018

Table 4-4 Source Contribution Analysis – Quarter 4 2017 TSP Exceedance

Date	Station	% above the MOECC TSP Criterion	Wind Direction (blowing from)	Potential Source Contributions
27-Nov-17	Rundle Road	96%	West- Northwesterly	Over the course of November 27th, the wind directionality varied from blowing from westerly to north-easterly directions with an average wind direction of north-northwesterly. The DYEC is not upwind of the Rundle Road Station for these wind directions. Heavy truck traffic next to the Rundle Road Station was observed before and after the
				sampling date. The truck traffic was expected to be the likely cause of the TSP exceedance.

4.4 AMBIENT PAH CONCENTRATIONS

A summary of the maximum and minimum ambient PAH concentrations (for a daily averaging period) are presented in **Table 4-5**. In this summary, both individual PAHs as well as a total PAH concentration are reported. A detailed summary of the concentrations measured for each sample is presented in **Appendix H**.

The maximum measured concentrations of the PAHs with MOECC AAQCs were below their applicable 24-hour criteria, with the exception of one (1) benzo(a)pyrene (B(a)P) measurement collected at the Courtice WPCP station on December 9 and two (2) B(a)P measurements collected at the Rundle Road Station on November 15 and December 9, 2017.

The current Ontario 24-hour B(a)P AAQC was introduced in 2011 and levels above this recently enacted AAQC are commonly measured throughout Ontario. B(a)P measurement data available from the National Air Pollutant Surveillance (NAPS) network for Ontario in 2013 (for Simcoe, Toronto, and Hamilton), all had maximum levels above the AAQC (varying between 136% - 6,220% of the criteria). Available NAPS data for Ontario in 2012 (for Windsor, Toronto, and Hamilton) showed maximum B(a)P levels at these stations that varied between 716% - 2,920% of the Ontario AAQCs. In 2011, NAPS data available for seven Ontario stations (Windsor, Toronto, Etobicoke, Hamilton, Simcoe, Pt. Petrie, and Burnt Island) showed exceedances at six of the seven stations, with only the remote Burnt Island Ontario station reporting a maximum level below the MOECC AAQC. In 2010, all of these stations, including the Burnt Island station, measured B(a)P levels above the AAQC.

B(a)P is a byproduct of a wide variety of natural and man-made combustion processes (including motor vehicles, natural gas, wood, refuse, oil, forest fires, etc.) and is widely present in the environment (including being present in soil and water).

Stantec

Summary of Ambient Measurements February 9, 2018

The B(a)P sample collected at the Courtice WPCP Station exceeded the Ontario AAQC by 15%. The B(a)P samples collected at the Rundle Road Station on November 15 and December 9, 2017 exceeded the Ontario AAQC by 50% and 120% respectively. The B(a)P samples were however, well below the MOECC Schedule 6 Upper Risk Threshold, the MOECC O. Reg. 419/05 24-hour average guideline, and the HHRA health based criterion. Summaries of the wind direction and potential source contributions for these measurements are presented in **Table 4-5**.

Based on the air quality assessments completed during the Environmental Assessment Study and the Environmental Compliance Approval application for the DYEC, the facility will not be a significant contributor of B(a)P. Therefore, ambient B(a)P levels are not expected to be substantially impacted by the operation of the DYEC.

4.19

Summary of Ambient Measurements February 9, 2018

Table 4-5 Summary of Measured Ambient PAH Concentrations

			HHRA	Courtice WP	CP (Predomin	ately Upwind)	Rundle Roc	ıd (Predominat	ely Downwind)
Contaminant	Units	MOECC Criteria	Health Based Criteria	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances
		0.05 A				1			2
Benzo(a)pyrene	ng/m³	5 ^B	1	5.77E-02	8.00E-03	0	1.10E-01	9.45E-03	0
		1.1 ^C				0			0
1-Methylnaphthalene	ng/m³	12,000	-	6.73E+00	1.99E+00	0	9.51E+00	2.58E+00	0
2-Methylnaphthalene	ng/m³	10,000	-	1.14E+01	3.20E+00	0	1.77E+01	4.11E+00	0
Acenaphthene	ng/m³	-	-	3.86E+00	5.26E-01	-	8.49E+00	8.17E-01	-
Acenaphthylene	ng/m³	3,500	-	2.99E-01 ^F	6.83E-02 ^F	0	1.18E+00	7.22E-02 ^F	0
Anthracene	ng/m³	200	-	2.99E-01	6.83E-02 ^F	0	4.01E-01	7.14E-02 ^F	0
Benzo(a)anthracene	ng/m³	-	-	1.10E-01 ^F	6.83E-02 ^F	-	1.13E-01 ^F	7.14E-02 ^F	-
Benzo(a)fluorene	ng/m³	-	-	2.19E-01 ^F	1.37E-01 ^F	-	2.27E-01 ^F	1.43E-01 ^F	-
Benzo(b)fluoranthene	ng/m³	-	-	1.10E-01 ^F	6.83E-02 ^F	-	4.36E-01	7.14E-02 ^F	-
Benzo(b)fluorene	ng/m³	-	-	2.19E-01 ^F	1.37E-01 ^F	-	2.27E-01 ^F	1.43E-01 ^F	-
Benzo(e)pyrene	ng/m³	-	-	2.19E-01 ^F	1.37E-01 ^F	-	2.27E-01 ^F	1.43E-01 ^F	-
Benzo(g,h,i)perylene	ng/m³	-	-	1.10E-01 ^F	6.83E-02 ^F	-	1.13E-01 A	7.14E-02 ^F	-
Benzo(k)fluoranthene	ng/m³	-	-	1.10E-01 ^F	6.83E-02 ^F	-	1.13E-01 A	7.14E-02 ^F	-
Biphenyl	ng/m³	-	-	3.57E+00	1.07E+00	-	4.83E+00	1.28E+00	-
Chrysene	ng/m³	-	-	1.10E-01 ^F	6.83E-02 ^F	-	1.13E-01 ^A	7.14E-02 ^F	-
Dibenz(a,h)anthracene D	ng/m³	-	-	1.10E-01 ^F	6.83E-02 ^F	-	1.13E-01 A	7.14E-02 ^F	-
Dibenzo(a,c) anthracene + Picene ^D	ng/m³	-	-	2.19E-01 ^F	1.37E-01 ^F	-	2.27E-01 A	1.43E-01 ^F	-

Summary of Ambient Measurements February 9, 2018

Table 4-5 Summary of Measured Ambient PAH Concentrations

			HHRA	Courtice WP	CP (Predomin	ately Upwind)	Rundle Roc	ıd (Predominal	ely Downwind)
Contaminant	Units	MOECC Criteria	Health Based Criteria	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances
Fluoranthene	ng/m³	-	-	9.92E-01	3.14E-01	-	2.07E+00	3.94E-01	-
Indeno (1,2,3-cd)pyrene	ng/m³	-	-	1.10E-01 ^F	6.83E-02 ^F	-	1.13E-01 A	7.14E-02 ^F	-
Naphthalene	ng/m³	22,500	22,500	3.16E+01	1.20E+01	0	5.09E+01	1.46E+01	0
o-Terphenyl	ng/m³	-	-	2.19E-01 ^F	1.37E-01 ^F	-	2.27E-01 A	1.43E-01 ^F	-
Perylene	ng/m³	-	-	2.19E-01 ^F	1.37E-01 ^F	-	2.27E-01 A	1.43E-01 ^F	-
Phenanthrene	ng/m³	-	-	4.54E+00	1.10E+00	-	1.01E+01	1.63E+00	-
Pyrene	ng/m³	-	-	5.12E-01	6.83E-02 ^F	-	8.97E-01	7.14E-02 ^F	-
Tetralin	ng/m³	-	-	2.27E+00	9.04E-01	-	1.95E+00	1.05E+00	-
Total PAH ^E	ng/m³	-	-	6.10E+01	2.30E+00	-	9.11E+01	3.00E+01	-

A. Ontario Ambient Air Quality Criteria. The standard for benzo(a)pyrene (B(a)P) is for B(a)P as a surrogate for PAHs.

Project No.: 160950528

4.21

B. O. Reg. 419/05 Schedule 6 Upper Risk Thresholds.

C. O. Reg. 419/05 24 Hour Guideline.

D. Based on laboratory analyses, dibenzo(a,c)anthracene co-elutes with dibenz(a,h)anthracene. Picene elutes after dibenz(a,h)anthracene.

E. The reported total PAH is the sum of all analyzed PAH species.

F. Measured concentration was less than the laboratory method detection limit.

Summary of Ambient Measurements February 9, 2018

Table 4-6 Source Contribution Analysis – Quarter 4 2017 B(a)P Exceedances

Date	Station	% above the MOECC B(a)P Criterion	Wind Direction (blowing from)	Potential Source Contributions
15-Nov-17	Rundle Road	50%	East-southeast	Highway 401, St. Mary's Cement, and the CN railroad are located upwind of the Rundle Road Station. Potential sources could be vehicle, locomotive, or other combustion exhaust emissions.
0 Dec 17	Courtice WPCP	15%	Northeast	Highway 401, local roads, the CN railroad are located upwind of the Courtice WPCP Station, as are agricultural and rural residential areas farther north. Potential sources could be vehicle or locomotive exhaust emissions, or agricultural activities.
9-Dec-17	Rundle Road	120%	Northeast	Land use in this direction is mainly agricultural with some residences. Potential sources could be agricultural activities, a residence with a poorly controlled combustion source operating, or vehicle exhaust.

Summary of Ambient Measurements February 9, 2018

4.5 AMBIENT DIOXINS AND FURANS CONCENTRATIONS

A summary of the maximum and minimum ambient dioxins and furans concentrations (for a daily averaging period) are presented in **Table 4-6**. In this summary, both individual dioxins and furans concentrations (pg/m³) as well as the total toxic equivalency concentration (TEQ) are reported. A detailed summary of the concentrations measured for each sample is presented in **Appendix I**.

The maximum measured toxic equivalent dioxins and furans concentrations at both stations were below the applicable 24-hour AAQC of 0.1 pg TEQ/m³ (as shown in **Table 4-6**).

Summary of Ambient Measurements February 9, 2018

Table 4-7 Summary of Measured Ambient Dioxins and Furans Concentrations

2		MOECC	HHRA Health	Courtice	WPCP (Predom	inately Upwind)	Rundle R	oad (Predominate	ely Downwind)
Contaminant	Units	Standards	Based Criteria	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances
2,3,7,8-Tetra CDD *	pg/m³			4.83E-03 A	3.70E-03 A		5.29E-03 A	4.36E-03 A	
1,2,3,7,8-Penta CDD	pg/m³			5.55E-03 A	4.41E-03 A		5.71E-03 A	4.65E-03 A	
1,2,3,4,7,8-Hexa CDD	pg/m³			5.41E-03 A	4.83E-03 A		1.02E-02	5.13E-03 A	
1,2,3,6,7,8-Hexa CDD	pg/m³			1.25E-02	4.97E-03 A		1.30E-02	1.08E-02	
1,2,3,7,8,9-Hexa CDD	pg/m³			1.83E-02	4.39E-03 A		1.80E-02	4.68E-03 A	
1,2,3,4,6,7,8-Hepta CDD	pg/m³			1.67E-01	1.05E-01		1.79E-01	1.17E-01	
Octa CDD	pg/m³			6.35E-01	1.38E-01 A		7.28E-01	3.14E-01	
Total Tetra CDD	pg/m³			4.83E-03 A	3.70E-03 A		5.29E-03 A	4.36E-03 A	
Total Penta CDD	pg/m³			6.82E-03 A	5.12E-03 A		7.27E-03 A	5.29E-03 A	
Total Hexa CDD	pg/m³			1.02E-01	5.74E-02		1.03E-01	5.80E-02	
Total Hepta CDD	pg/m³			3.57E-01	2.14E-01		3.72E-01	2.31E-01	
2,3,7,8-Tetra CDF **	pg/m³			1.36E-02	4.68E-03 A		1.77E-02	4.53E-03 A	
1,2,3,7,8-Penta CDF	pg/m³	-	_	5.13E-03 A	4.98E-03 A	N/A	5.29E-03 A	4.65E-03 A	N/A
2,3,4,7,8-Penta CDF	pg/m³			5.13E-03 A	4.98E-03 A		5.13E-03 A	4.65E-03 A	
1,2,3,4,7,8-Hexa CDF	pg/m³			4.53E-03 A	3.98E-03 A		1.08E-02	4.35E-03 A	
1,2,3,6,7,8-Hexa CDF	pg/m³			4.39E-03 A	3.84E-03 A		4.83E-03 A	4.07E-03 A	
2,3,4,6,7,8-Hexa CDF	pg/m³			4.97E-03 A	4.41E-03 A		5.44E-03 A	4.62E-03 A	
1,2,3,7,8,9-Hexa CDF	pg/m³			5.41E-03 A	4.30E-03 A		6.04E-03 A	4.62E-03 A	
1,2,3,4,6,7,8-Hepta CDF	pg/m³			3.22E-02	1.39E-02		2.03E-02	1.52E-02	
1,2,3,4,7,8,9-Hepta CDF	pg/m³			5.56E-03 A	4.58E-03 A		5.38E-03 A	4.35E-03 A	
Octa CDF	pg/m³			3.36E-02	1.68E-02		2.09E-02	1.81E-02 A	
Total Tetra CDF	pg/m³			1.36E-02	4.68E-03 A		1.77E-02	4.53E-03 A	
Total Penta CDF	pg/m³			1.76E-02	5.12E-03 A		1.80E-02	5.29E-03 A	
Total Hexa CDF	pg/m³			7.02E-03 A	4.16E-03 A	7	2.30E-02	9.52E-03	
Total Hepta CDF	pg/m³			4.91E-02	1.39E-02	7	2.03E-02	1.52E-02	
TOTAL TOXIC EQUIVALENCY B	pg TEQ/m³	0.1 1 ^C	-	1.90E-02	1.61E-02	0	1.98E-02	1.92E-02	0

A. Measured concentration was less than the laboratory method detection limit.

CDD - Chloro Dibenzo-p-Dioxin, ** CDF - Chloro Dibenzo-p-Furan.

B. Total Toxicity Equivalent (TEQ) concentration contributed by all dioxins, furans and dioxin-like PCBs calculated as per O. Reg. 419/05 methodology using corresponding WHO₂₀₀₅ toxic equivalency factors (TEFs) and a value of half the minimum detection limit (MDL) substituted for concentrations less than the MDL.

C. O. Reg. 419/05 Schedule 6 Upper Risk Thresholds.

Conclusions February 9, 2018

5.0 CONCLUSIONS

This quarterly report provides a summary of the ambient air quality data collected at the three monitoring stations located predominantly upwind and downwind in the vicinity of the DYEC for the period from October to December 2017.

The following observations and conclusions were made from a review of the measured ambient air quality monitoring data:

- 1. Measured concentrations of NO_2 , SO_2 and $PM_{2.5}$ were below the applicable evaluation criteria or human health risk assessment (HHRA) health-based criteria presented in **Table 2-2** of this report.
- 2. Since the Canadian Ambient Air Quality Standard (CAAQS) for PM_{2.5} is based on a 98th percentile level over 3 years, whereas the PM_{2.5} measurement period at both stations for this quarterly report was three months, there is insufficient data collected to determine with any certainty if exceedances of the CAAQS would occur. Therefore, no comparison of the measured PM_{2.5} data during this quarter to the CAAQS was conducted for this report, as it would not be scientifically accurate or representative.
- 3. The maximum measured concentrations of TSP and all metals with MOECC air quality Standards, were below their applicable Standards (as presented in **Table 2-3** in this report) with the exception of one TSP measurement at the Rundle Road Station on November 27, 2017 which exceeded the applicable criteria by 94%. As required by the Ambient Air Quality Monitoring Plan, a written notice of exceedance was submitted to the Region of Durham, Region of York, MOECC, and the local Medical Officer of Health. Stantec's root cause analysis determined that the likely cause of the TSP exceedance was truck activity occurring adjacent to the Rundle Road Station.
- 4. The maximum measured concentrations of PAHs with MOECC air quality Standards were well below their applicable criteria shown in **Table 2-4**, with the exception of one (1) 24-hour benzo(a)pyrene (B(a)P) concentration measured on December 9, 2017 at the Courtice WPCP Station, and two (2) B(a)P concentrations measured on November 15 and December 9 at the Rundle Road Station. Measured concentrations of B(a)P exceeded the applicable Ontario Ambient Air Quality Criteria (AAQC) by between 15% and 120%. The current Ontario 24-hour B(a)P AAQC was introduced in 2011 and levels above this AAQC are commonly measured throughout Ontario. The measurements were however, well below the MOECC Schedule 6 Upper Risk Threshold, the MOECC O. Reg. 419/05 24-hour average guideline, and the HHRA health based criterion.
- 5. The maximum measured toxic equivalent dioxin and furan concentration was below the applicable Standard presented in **Table 2-4.**

Stantec

Conclusions February 9, 2018

In summary, the measured concentrations of the air contaminants monitored were below their applicable MOECC Standards during the October to December 2017 monitoring period, with the exception of benzo(a)pyrene and TSP. Furthermore, all measured levels of the monitored contaminants were below their applicable HHRA health-based criteria except for TSP.

References February 9, 2018

6.0 REFERENCES

- Canadian Council of Ministers of the Environment (CCME), (2007). Guidance Document on Achievement Determination. Canada-Wide Standards for Particulate Matter and Ozone. Revised (PN1391) (978-1-896997-74-2 PDF).
- Canadian Council of Ministers of the Environment (CCME), (2012). Guidance Document on Achievement Determination. Canadian Ambient Air Quality Standards for Fine Particulate Matter and Ozone (PN 1483) (978-1-896997-91-9 PDF).
- Environment Canada, Environment Protection Service, Environmental Technology Advancement Directorate, Pollution Measurement Division, Environmental Technology Centre. (Originally published in 1995). National Air Pollution Surveillance Network Quality Assurance and Quality Control Guidelines (AAQD 2004-1), (Originally published in December 1995 as PMD 95-8
- Jacques Whitford, (2009). Final Environmental Assessment, December 4, 2009.
- Ontario Minister of the Environment and Climate Change(MOECC), (2010). Environmental Assessment Act, Section 9. Notice of Approval to Proceed with the Undertaking. Re: The Amended Environmental Assessment for Durham and York Residual Waste Study (EA File No: 04-EA-02-08).
- Ontario Ministry of the Environment and Climate Change (MOECC), (2012). Standards

 Development Branch, Ontario's Ambient Air Quality Criteria, April 2012. (PIBs 6570e01).
- Ontario Ministry of the Environment and Climate Change (MOECC), (2016). Air Contaminants Benchmarks List: Standards, Guidelines, and Screening Levels for Assessing Point of Impingement Concentrations of Air Contaminants (ACB List), December 2016.
- Ontario Ministry of the Environment and Climate Change (MOECC), (2017). Durham/York Energy from Waste Project DYEC Ambient Air Monitoring 2017 First and Second Quarterly Reports, Notice of Approval, Condition 11, November 3, 2017.
- Stantec Consulting Limited, (2009). Final Environmental Assessment, Appendix C12: Site Specific Human Health and Ecological Risk Assessment Technical Study Report, December 4, 2009.
- Stantec Consulting Limited, (2012). Ambient Air Quality Monitoring Plan Durham York Residual Waste Study, May 8, 2012.

Appendix A SO2 and NOx Instrument Daily Internal Zero Calibration Summaries February 9, 2018

Appendix A SO₂ AND NO_X INSTRUMENT DAILY INTERNAL ZERO CALIBRATION SUMMARIES

Figure A-1 Daily NOx/NO₂/NO Internal Zero Calibrations - Courtice WPCP Station

Notes

- Auto-calibrations occur every 25 hours

Figure A-2 Daily SO₂ Internal Zero Calibrations – Courtice WPCP Station

Notes:

Auto-calibrations occur every 25 hours.

Figure A-3 Daily NOx/NO₂/NO Internal Zero Calibrations -Rundle Road Station

Notes:

- Auto-calibrations occur every 25 hours

Figure A-4 Daily SO₂ Internal Zero Calibrations - Rundle Road Station

Notes:

Auto-calibrations occur every 25 hours

Appendix B SO2 Data Summaries and Time History Plots February 9, 2018

Appendix B SO₂ DATA SUMMARIES AND TIME HISTORY PLOTS

											0	SO ₂ - C ctober pb)	OURTICE	2017																	
	Hour																														
Day	6.3		4.2	2.1	300 4.3	0.3	500 5.8	600 13.6	700 2.6	2.8	900 4.8	1000 3.8	1100 2.5	1.2	1300 0.7	1400 0.4	1500 0.5	1600 0.5	0.3	1800 42.1	1900 28.8	2000 14.4	2100 29.8	2200 28.1	2300 11.8		42.1			Hrs>250	Days>100
2	30.3		4.2 7.5	14.1	27.7	38.3	27.1	28.2	18.9	2.8	1.2	0.9	0.5	0.4	0.7	0.4	0.5	0.5	0.3	0.6	0.3	0.5	1.8	0.6	2.8	24 24	38.3	0.3	8.8 9.4	0	0
3	1.6		1.0	1.5	0.5	9.4	5.3	8.0	11.8	2.0	0.9	0.7	0.5	0.4	0.4	0.3	0.2	0.3	0.2	0.2	2.7	5.2	6.2	7.9	1.5	24	11.8	0.2	2.9	0	0
4	9.6		4.5	1.1	0.8	0.6	0.6	0.5	0.4	0.5	0.6	0.6	0.6	0.4	0.4	0.3	0.3	0.4	0.4	0.2	0.1	0.1	0.1	0.1	0.1	24	9.6	0.1	1.0	0	0
5	2.8		0.4	1.5	0.3	0.3	0.5	3.1	1.4	0.6	0.5	0.5	0.7	2.2	1.1	0.8	0.6	0.4	0.2	0.2	0.2	0.1	0.3	38.1	33.0	24	38.1	0.1	3.7	0	0
6	35.4	4 1	9.3	15.9	17.7	6.6	1.4	8.6	1.4	1.1	2.7	0.8	0.6	0.5	0.6	0.6	0.6	0.6	0.6	6.3	1.2	1.2	0.6	0.8	0.9	24	35.4	0.5	5.2	0	0
7	0.8	8	0.7	0.7	0.4	0.3	0.2	0.3	0.3	0.6	0.4	0.4	0.6	0.4	0.5	0.6	0.5	0.4	0.3	0.3	0.4	0.4	0.4	0.4	0.4	24	0.8	0.2	0.4	0	0
8	0.4	4	1.1	1.5	0.6	0.5	0.4	0.5	0.6	0.8	0.7	0.6	0.4	0.4	0.4	0.6	0.9	0.4	0.3	0.3	0.4	1.8	4.9	4.3	1.9	24	4.9	0.3	1.0	0	0
9	0.5	5	0.4	0.4	0.4	0.3	0.8	0.6	2.9	0.5	2.3	2.9	2.2	1.2	0.7	0.5	0.3	0.0	0.3	0.3	1.7	7.3	10.8	7.2	7.6	24	10.8	0.0	2.2	0	0
10	2.0		1.9	0.6	0.4	10.0	19.5	14.2	1.9	1.2	0.9	0.9	0.6	0.5	0.4	0.4	0.3	0.3	0.7	0.9	0.9	0.7	0.3	0.8	2.8	24	19.5	0.3	2.6	0	0
11	6.5		5.7	2.4	0.6	0.4	0.2	0.3	0.3	0.2	0.2	0.6	3.8	0.5	1.9	0.4	0.6	1.3	4.6	3.8	0.4	0.2	0.5	0.2	0.1	24	6.5	0.1	1.5	0	0
12	0.1		0.1	0.3	0.1	0.2	0.2	0.2	0.1	0.0	0.3	1.7	10.4	5.1	10.1	14.3	0.8	0.6	0.2	0.2	0.2	0.1	0.1	0.1	0.1	24	14.3	0.0	1.9	0	0
13	0.1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.8	2.8	1.3	3.8	2.6	10.5	1.2	0.6	0.4	24	10.5	0.1	1.1	0	0
14	0.3		0.4 0.4	0.3	0.1 0.5	0.1 0.4	0.1	0.1 0.2	0.8 0.5	1.1 0.5	0.8 0.5	0.9	0.6 0.4	0.8 0.4	0.7 0.4	0.6 0.4	0.6 0.4	0.6	0.9 0.4	6.1 0.5	0.8 0.8	0.4	0.4	0.4	0.3	24 24	6.1 0.8	0.1	0.8	0	0
16	0.2		0.4	1.2	20.1	12.1	0.4 0.8	1.4	1.4	0.5	2.5	0.4 4.2	1.0	0.4	0.4	0.4	0.4	0.4 1.1	13.0	23.9	20.6	37.0	16.1	6.5	13.3	24	37.0	0.2	7.5	0	0
17	6.7		7.8	12.0	11.3	18.9	15.0	14.4	3.2	3.6	2.3	1.6	1.0	1.2	0.4	0.5	0.4	0.6	0.6	0.4	0.4	0.8	0.9	0.4	0.4	24	18.9	0.4	4.4	0	0
18	0.1		0.0	56.9	84.6	6.2	2.0	41.2	4.2	3.2	2.4	3.3	4.1	4.1	1.7	0.9	0.6	0.4	0.4	0.4	0.4	0.2	0.4	0.4	1.1	24	84.6	0.1	10.4	0	0
19	1.8		5.0	18.0	1.7	0.9	0.8	0.7	0.6	0.6	0.5	0.8	0.7	0.7	0.8	0.7	0.5	0.4	0.2	0.2	0.1	0.3	0.2	0.3	0.2	24	45.0	0.1	3.2	0	0
20	0.1	1	0.1	0.2	1.1	0.9	19.1	37.0	6.5	1.1	0.7	0.6	0.5	1.5	2.0	1.0	0.8	0.6	0.4	0.3	0.2	0.1	0.3	1.7	1.6	24	37.0	0.1	3.3	0	0
21	1.2	2 2	6.4	62.5	29.5	38.8	46.1	22.6	12.5	6.5	2.3	1.7	1.2	1.0	0.9	1.2	0.8	0.6	4.2	6.7	1.6	16.6	19.8	30.9	15.7	24	62.5	0.6	14.6	0	0
22	13.8	8	1.7	1.5	1.7	5.5	1.1	4.0	0.8	0.8	1.0	0.8	0.8	0.7	0.6	0.9	0.6	2.2	14.0	4.4	1.0	0.6	0.6	0.5	2.0	24	14.0	0.5	2.6	0	0
23	3.4	4	0.5	0.4	0.3	0.4	0.3	0.2	0.3	0.2	0.3	0.3	0.4	0.4	15.3	1.5	0.7	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.2	24	15.3	0.2	1.2	0	0
24	0.7		0.4	0.3	0.3	0.4	0.4	0.4	0.4	0.6	0.5	0.9	0.8	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.4	0.2	0.2	0.2	0.3	24	0.9	0.2	0.4	0	0
25	0.3		0.5	0.4	0.6	0.5	0.5	0.6	0.9	1.0	1.1	0.8	0.7	0.8	1.1	1.0	1.0	0.8	1.0	1.0	0.5	0.3	24.5	22.5	25.9	24	25.9	0.3	3.7	0	0
26	14.9		4.6	24.7	4.0	2.3	3.9	18.1	13.3	1.1	1.0	0.7	0.6	0.7	0.6	0.7	0.4	0.3	0.3	0.4	3.9	1.5	9.2	3.7	13.3	24	24.7	0.3	5.6	0	0
27	15.2		2.0	17.5	57.5	44.9	4.2	1.4	1.5	4.2	6.4	1.3	C	С	1.8	1.2	1.0	0.8	0.7	1.7	6.1	8.9	2.2	1.0	1.0	22	57.5	0.7	8.3	0	0
28	0.7		0.6	0.6	0.7	5.2	0.9	1.1	0.8	0.7	1.4	0.8	0.5	0.5	0.4	0.4	0.5	0.4	0.4	0.5	0.4	0.3	0.3	0.4	0.4	24	5.2	0.3	0.8	0	0
29	0.3		1.3 0.7	6.9 0.7	7.1 0.7	13.6 0.6	20.0 0.7	2.2 0.7	1.5 0.5	1.4 0.5	3.7 0.5	5.6 0.5	5.5 0.5	6.8 0.7	5.3 0.8	3.4 0.8	2.7 0.6	2.7	1.7 0.6	0.7 0.5	0.9 0.5	1.3 0.7	0.8 0.7	0.7 0.5	0.7	24 24	20.0	0.3	4.0 0.6	0	0
30	0.4		0.7	0.7	0.7	0.6	0.7	1.0	0.5	0.5	0.5	0.5	0.5	0.7	0.8	0.8	0.6	0.6 0.2	0.6	0.3	0.5	0.7	0.7	0.5	10.0	24	0.8 10.0	0.4	0.0	0	0
Count	31		31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	31	742	10.0	0.2	0.3		
Maximum	35.4		5.0	62.5	84.6	44.9	46.1	41.2	18.9	6.5	6.4	5.6	10.4	6.8	15.3	14.3	2.7	2.8	14.0	42.1	28.8	37.0	29.8	38.1	33.0	24					
Minimum	0.1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.0	0.2	0.2	0.1	0.1	0.1	0.1	0.1	22					
Average	5.1		6.4	8.0	8.9	7.1	5.8	7.3	3.0	1.3	1.4	1.3	1.4	1.2	1.7	1.2	0.6	0.7	1.6	3.5	2.5	3.6	4.3	5.2	4.9						
Parcentile			10		20		30		40		50		60		70		80		90		95		99		100			Maximur	m Hourly		84.6
Percentiles	•		10		20		30		40		50		60		70		80		90		95		99		100				um Daily		14.6
Data			0.2		0.4		0.4		0.5		0.7		0.9		1.4		3.2		11.2		19.8		41.7		84.6			Monthly			3.7
Notes		C - Calib	bration /	Span Cycl	e N	A - No Data	Available	Т-	Test	A-	MOE Audit	N	l - Equipmei	nt Malfunct	ion / Down	R ·	Rate of Ch	ange													

										No	SO ₂ - C vember pb)	OURTICE	2017																	
_	Hour																													
Day	5.2	1.0	200 1.2	300 0.9	1.2	2.3	8.2	700 18.2	800 22.6	900 6.2	3.3	2.0	1200 1.0	1300 0.6	0.7	1500 2.4	1600 1.0	1.2	1800 1.4	1900 1.0	0.9	2100 0.5	2200 0.5	2300 0.6	24	22.6	0.5	Average 3.5	Hrs>250	Days>100
2	1.1	1.2	3.2	0.7	0.4	0.4	0.5	0.4	0.6	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.4	0.4	0.4	0.4	0.5	24	3.2	0.3	0.6	0	0
3	0.4	2.0	0.9	0.4	0.3	0.2	0.2	0.2	0.3	0.3	0.2	0.1	0.2	0.1	0.2	0.2	0.2	0.2	0.0	2.9	4.5	11.6	23.4	6.7	24	23.4	0.0	2.3	0	0
4	11.1	14.2	19.6	18.3	13.5	4.0	0.9	0.5	0.5	0.4	0.3	0.2	0.6	1.8	0.4	8.2	6.2	4.8	1.5	13.3	17.2	14.1	22.4	13.8	24	22.4	0.2	7.8	0	0
5	2.0	0.8	0.6	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.4	1.0	0.5	0.4	0.4	0.4	0.4	24	2.0	0.3	0.5	0	0
6	0.7	0.4	0.4	0.4	0.4	0.3	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.1	0.2	0.1	2.1	4.7	24	4.7	0.1	0.5	0	0
7	10.4	11.9 14.4	13.6	17.1	6.5	7.9	6.2	0.7	0.5 4.4	0.7	0.7	0.5 0.4	0.4	0.3	0.3	0.3 1.3	0.3	0.2	0.2	0.2	0.2	0.6	1.7	8.8	24	17.1	0.2	3.8	0	0
8	3.7 3.7	15.3	6.0 10.3	7.2 32.4	5.1 16.9	4.5 17.2	12.0 6.0	15.8 8.2	14.9	1.8 4.3	0.9 1.7	2.1	2.8	1.4	2.0 1.0	1.6	0.9 0.8	0.8 0.8	1.0 0.8	0.8	5.2 0.3	10.5 0.2	10.9 0.2	9.2 0.4	24 24	15.8 32.4	0.4	5.0 6.0	0	0
10	0.5	0.3	0.2	0.2	0.4	0.4	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.0	0.0	0.0	0.0	0.0	0.6	0.2	0.0	24	0.9	0.0	0.0	0	
11	3.0	5.6	4.8	5.5	8.3	9.6	11.1	7.7	2.6	0.2	0.2	0.1	0.2	0.3	1.0	0.2	0.0	0.0	0.0	0.2	0.5	0.5	0.6	0.2	24	11.1	0.0	2.6	0	0
12	3.7	6.0	2.1	4.8	3.9	6.0	5.0	0.6	1.0	1.9	0.6	0.4	0.4	0.4	0.6	1.0	1.1	2.2	1.6	1.1	1.0	1.1	10.1	13.3	24	13.3	0.4	2.9	0	0
13	2.1	1.1	1.1	0.6	3.3	7.9	10.9	5.4	6.2	6.0	3.1	5.3	2.0	1.1	0.7	0.9	1.0	1.0	1.0	18.8	16.0	16.3	8.6	10.3	24	18.8	0.6	5.4	0	0
14	2.2	10.6	3.2	11.7	9.7	4.1	9.8	8.9	6.9	6.1	1.2	1.2	1.1	1.2	1.1	1.1	1.1	1.0	0.8	0.7	1.1	8.4	5.3	4.3	24	11.7	0.7	4.3	0	0
15	2.6	5.6	1.8	1.4	0.7	0.5	0.4	0.5	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.7	0.5	0.5	0.4	0.8	0.5	0.5	0.6	0.7	24	5.6	0.3	0.9	0	0
16	0.6 0.1	0.5 0.1	0.6 0.1	0.6	0.4	0.4	0.5 0.0	0.4	0.4	0.4	0.6	0.4 0.1	0.6 0.3	0.4 0.1	0.5	0.5	0.6	0.5 0.3	0.3	0.1	0.2	0.1	0.2	0.1	24 24	0.6 0.4	0.1	0.4	0	0
17	0.1	0.1	0.1	0.0	0.1	0.0 0.4	0.0	0.0	0.2	0.0	0.0	0.1	0.5	0.1	0.1 0.8	0.2	0.4 0.6	0.3	0.5	0.5	0.2	0.4 2.4	0.3 4.3	3.1	24	4.3	0.0	0.2	0	0
19	0.7	0.7	0.7	0.6	0.5	0.5	0.7	0.5	0.4	0.5	0.6	0.6	0.7	0.7	0.5	0.4	0.3	0.2	0.3	0.2	0.2	0.2	0.3	0.3	24	0.7	0.2	0.5	0	0
20	0.2	0.4	0.2	0.2	0.2	0.3	0.3	0.2	0.2	0.4	0.4	0.5	0.6	0.6	0.5	0.6	0.6	0.5	0.5	0.4	0.3	0.3	0.4	0.4	24	0.6	0.2	0.4	0	0
21	0.4	0.5	0.6	0.7	0.6	0.6	0.6	0.5	0.6	0.6	0.7	0.6	0.6	0.7	0.7	0.5	0.5	0.7	0.6	0.6	0.5	0.3	0.2	0.2	24	0.7	0.2	0.5	0	0
22	0.2	0.2	0.2	0.1	0.2	0.2	0.3	0.4	0.4	0.6	0.6	0.4	0.3	0.4	0.4	0.3	0.3	0.2	0.2	0.1	0.0	4.3	2.4	6.4	24	6.4	0.0	0.8	0	0
23	4.4	11.5	6.9	6.2	5.8	7.5	5.3	0.9	1.4	2.5	1.5	0.8	0.6	0.8	1.0	0.7	0.6	0.5	0.4	0.4	0.6	0.8	1.2	1.0	24	11.5	0.4	2.6	0	0
24	1.3	1.5	1.4	1.6	1.9	2.3	2.4	1.9	1.3	1.1	1.0	0.7	0.8	1.3	1.1	0.9	0.8	0.7	0.6	8.5	2.6	1.0	0.9	0.9	24	8.5	0.6	1.6	0	0
25	1.6 0.2	6.0 0.2	0.9	0.8	0.7 0.4	0.7 0.2	1.0 0.3	0.7 0.8	0.6	0.5 0.2	0.5 0.2	0.5 0.1	0.5 0.2	0.4	0.4	0.4	0.3 0.2	0.4	0.3 1.7	0.2 1.2	0.2 0.9	0.2 0.8	0.2 0.7	0.2 0.7	24 24	6.0 1.7	0.2	0.7	0	0
27	0.2	0.2	0.2	0.2	0.4	0.2	0.3	0.4	0.4	0.4	0.4	0.1	0.4	0.1 C	0.2 C	1.3	2.7	1.7	0.8	0.7	1.2	1.1	1.5	0.7	22	2.7	0.1	0.4	0	0
28	1.5	3.0	1.6	0.6	0.7	0.6	0.8	0.7	0.9	1.0	1.1	1.2	1.0	0.8	0.8	0.9	0.8	0.6	0.6	0.6	0.7	0.6	0.9	0.8	24	3.0	0.6	0.9	o	0
29	0.8	0.5	0.6	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.4	0.4	0.4	1.1	1.8	1.5	0.8	1.2	3.6	0.8	0.9	24	3.6	0.3	0.8	0	0
30	1.3	1.3	0.5	0.4	0.5	0.6	0.4	0.4	0.6	0.7	0.7	0.8	0.9	0.9	1.5	0.9	0.9	0.9	0.9	0.8	0.9	1.0	0.8	0.6	24	1.5	0.4	0.8	0	0
Count	30	30	30	30	30	30	30	30	30	30	30	30	30	29	29	30	30	30	30	30	30	30	30	30	718				0	0
Maximum	11.1	15.3	19.6	32.4	16.9	17.2	12.0	18.2	22.6	6.2	3.3	5.3	2.8	1.8	2.0	8.2	6.2	4.8	1.7	18.8	17.2	16.3	23.4	13.8	24					
Minimum	0.1	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.0	22					
Average	2.2	3.9	2.8	3.8	2.8	2.7	2.9	2.6	2.3	1.3	0.8	0.7	0.6	0.6	0.6	0.9	0.8	0.8	0.7	1.9	2.0	2.8	3.4	3.0						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximur	m Hourly		32.4
																								-50				um Daily		7.8
Data		0.2		0.3		0.4		0.5		0.6		0.7		1.0		1.8		6.0		10.5		18.0		32.4			Monthly	Average		2.0
Notes	С	- Calibration	n / Span Cyc	le N	A - No Data	Available	т-	Test	A-	MOE Audit	N	l - Equipmei	nt Malfunct	ion / Down	R-	- Rate of Ch	nange													

										De	SO ₂ - C cember pb)	OURTICE	2017																	
D	Hour	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	C	ximum Mi			Hrs>250	D 100
Day 1	0.5	0.5	0.5	0.5	0.4	0.4	0.8	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.5	7.0	4.1	4.0	1.6	2.5	1.1	24	7.0	0.3	1.2	0	Days>100
2	2.7	0.9	0.7	1.1	1.8	1.6	2.6	0.8	0.8	1.2	1.1	1.0	0.9	0.9	1.1	0.9	1.0	1.3	20.6	4.3	3.0	2.5	1.6	2.1	24	20.6	0.7	2.4	0	0
3	1.9	2.5	1.6	1.7	4.6	1.8	2.2	1.0	0.9	1.7	0.9	0.8	0.9	1.9	3.1	3.1	3.1	2.0	1.8	4.3	1.5	2.5	3.3	7.1	24	7.1	0.8	2.3	0	0
4	1.9	4.7	0.7	2.6	1.7	3.8	0.8	2.0	0.9	0.8	0.6	0.8	1.0	0.6	0.5	0.9	0.7	0.8	0.8	0.9	1.1	1.2	1.1	1.1	24	4.7	0.5	1.3	0	0
5	1.0	1.0 0.7	0.9 0.8	0.9 0.7	0.7 0.7	0.7	0.8 0.8	0.7 0.7	0.6 0.7	0.6 0.6	0.7 0.7	0.8 0.6	0.9 0.6	1.0 0.7	0.8	0.6	0.6	0.7 0.6	1.1 0.7	0.8 0.8	0.8 0.8	0.8 0.5	0.7 0.5	0.8 0.5	24 24	1.1 0.9	0.6 0.5	0.8	0	0
7	0.9	0.7	0.8	0.7	0.7	0.6 0.5	0.8	0.7	0.7	0.5	0.7	0.6	4.5	20.7	0.6	0.6	0.6 0.5	0.6	0.7	1.0	0.8	0.6	0.8	0.5	24	20.7	0.5	1.6	0	0
8	0.6	0.8	0.8	0.8	0.6	0.6	0.8	0.7	0.6	0.6	0.5	0.7	0.7	0.5	0.6	0.6	0.5	0.8	0.6	0.6	0.7	0.9	1.5	2.0	24	2.0	0.5	0.8	0	0
9	1.8	1.6	1.5	2.2	4.5	20.1	3.3	0.8	0.8	0.8	0.7	0.8	0.8	0.8	0.8	0.8	0.8	0.8	1.1	1.6	1.7	1.7	1.2	0.8	24	20.1	0.7	2.2	0	0
10	0.6	0.6	0.6	0.6	0.1	0.5	0.6	0.5	0.4	0.4	0.5	0.6	0.6	0.7	0.9	0.7	0.6	0.6	0.7	0.9	0.8	0.8	1.0	1.5	24	1.5	0.1	0.7	0	0
11	2.1	1.2	1.3	1.1	0.8	0.5	0.5	0.6	0.7	1.0	1.7	1.8	0.7	0.7	1.1	0.6	0.6	0.4	0.5	0.6	2.7	0.7	0.7	0.6	24	2.7	0.4	1.0	0	0
12	0.6	0.7	0.6	0.6	0.6	1.0	1.3	1.4	0.8	0.6	1.0	A	0.7	1.0	1.3	1.4	1.2	1.1	1.0	0.9	0.9	0.7	0.6	0.6	23	1.4	0.6	0.9	0	0
13	0.6 3.3	0.5 3.2	0.6 2.8	0.5 0.9	0.5 0.5	0.5	0.5 0.4	0.4 0.4	0.5 0.5	0.6	0.5	0.6 0.4	0.5 0.4	0.5 0.8	0.6 1.2	0.6 1.0	0.6	0.6	1.9 0.4	2.3 0.7	2.3 0.9	2.1 1.0	4.7 0.8	2.3 0.8	24 24	4.7 3.3	0.4	1.1 0.9	0	0
14	0.8	0.8	1.7	1.4	0.5	0.5 0.7	1.0	1.2	1.6	0.4 1.9	0.4 1.9	1.5	1.2	1.1	1.1	1.0	0.3 0.9	1.1	1.2	1.2	0.9	0.8	1.0	1.2	24	1.9	0.3	1.2	0	0
16	0.8	0.9	0.6	0.7	0.7	0.6	0.5	0.5	0.7	0.6	0.4	0.4	0.5	0.4	0.0	0.2	1.2	0.5	2.0	1.6	5.1	6.6	1.1	0.5	24	6.6	0.0	1.1	0	0
17	0.9	0.5	0.6	0.4	1.9	1.3	1.0	0.9	0.2	0.5	1.4	1.1	2.0	9.1	2.8	0.8	0.6	0.4	0.3	0.5	0.7	0.4	0.3	0.4	24	9.1	0.2	1.2	0	0
18	0.4	0.3	0.4	1.7	0.6	1.6	1.2	1.1	1.2	0.8	1.9	2.3	5.1	3.8	1.6	4.5	5.8	5.7	4.2	0.9	0.9	1.0	1.2	1.1	24	5.8	0.3	2.1	0	0
19	1.1	1.2	1.1	1.1	1.3	1.0	0.9	1.0	0.9	0.9	0.9	0.8	0.8	0.9	0.9	1.1	0.8	0.8	1.0	0.8	1.0	1.0	0.6	0.7	24	1.3	0.6	0.9	0	0
20	0.5	0.6	0.5	0.5	0.4	0.3	0.3	0.4	0.4	0.3	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.7	2.2	0.7	3.9	24	3.9	0.3	0.6	0	0
21	6.4	3.7 0.3	4.8	3.3	3.0 0.3	6.8	4.3 0.3	4.4 0.3	0.6	0.7	1.1	1.2 0.3	1.2 0.5	0.9	1.0	6.6 1.5	1.3	0.5 3.3	0.4 3.4	0.4	0.5 0.7	0.5	0.4 0.4	0.3	24	6.8 3.4	0.3	2.3	0	0
22	0.3 1.1	1.3	0.3 2.8	0.4 2.9	4.4	0.3 2.7	1.2	0.8	0.3	0.3 0.7	0.3 1.9	1.5	0.5	0.7 0.6	0.8	0.6	2.0 0.6	1.0	1.0	1.0 0.7	0.7	0.3 0.7	0.4	0.5 0.7	24 24	4.4	0.5	0.8 1.3	0	0
24	1.0	1.0	0.7	0.4	0.4	0.6	0.6	1.6	6.6	2.9	1.6	0.5	1.6	1.7	1.0	3.4	1.9	0.5	0.4	0.4	0.4	0.4	0.5	0.4	24	6.6	0.4	1.3	0	0
25	0.6	0.5	0.9	0.6	0.6	0.6	0.5	0.4	0.4	0.5	0.4	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.4	0.4	0.4	0.4	0.3	24	0.9	0.3	0.4	0	0
26	0.4	0.4	0.4	0.2	0.3	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	24	0.4	0.1	0.2	0	0
27	0.2	0.1	0.1	0.1	0.1	0.1	1.1	0.8	0.6	0.2	0.3	0.5	0.8	1.1	1.0	1.0	0.5	0.3	0.6	0.9	0.5	0.2	0.1	0.1	24	1.1	0.1	0.5	0	0
28	0.0	0.0	0.5	0.8	1.0	0.9	0.9	0.7	0.4	0.4	2.6	2.0	1.9	2.7	2.7	3.7	7.2	7.6	5.1	2.2	1.1	0.9	2.4	1.9	24	7.6	0.0	2.1	0	0
29	2.6	1.5	0.4	0.8	0.6	0.5	0.6	0.3	0.7	0.9	0.6	0.6	0.4	0.9	3.7	2.5	0.6	1.3	0.8	0.9	0.7	0.3	0.3	0.5	24	3.7	0.3	1.0	0	0
30	0.4	0.4 0.2	0.4	0.4	0.6 0.2	0.6 0.2	0.6 0.1	0.7 0.1	0.8	1.0 0.1	1.1 0.1	0.8 0.1	0.6 0.1	0.5 0.1	0.4	0.4	0.4 0.1	0.4	0.3	0.3	0.2	0.2	0.1	0.2	24 24	1.1 0.3	0.1	0.5	0	0
Count	31	31	31	31	31	31	31	31	31	31	31	30	31	31	31	31	31	31	31	31	31	31	31	31	743	0.5	0.0	0.1	- 0	
Maximum	6.4	4.7	4.8	3.3	4.6	20.1	4.3	4.4	6.6	2.9	2.6	2.3	5.1	20.7	3.7	6.6	7.2	7.6	20.6	4.3	5.1	6.6	4.7	7.1	24					
Minimum	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.1	23					
Average	1.2	1.1	1.0	1.0	1.1	1.7	1.0	0.9	0.8	0.8	0.9	0.8	1.0	1.8	1.0	1.3	1.2	1.2	2.0	1.2	1.2	1.1	1.0	1.1						
Percentiles		10		20		30	•	40	•	50	•	60	•	70		80	•	90	•	95		99		100			Maximun	n Hourly		20.7
Data		0.3		0.4		0.5		0.6		0.7		0.8		1.0		1.3		2.3		3.7		6.9		20.7			Maximu Monthly			2.4 1.1
Notes	С	- Calibration	/ Span Cyc	le N	A - No Data	Available	Т-	Test	A-	MOE Audit	N	I - Equipmei	nt Malfunct	ion / Down	R-	- Rate of Ch	nange													

											SO₂ - R ctober	undle Roa	d 2017																	
											pb)		2017																	
	Hour																													
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Max			Average	Hrs>250	Days>100
1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	1.5	2.5	2.1	2.0	1.2	0.8	0.5	0.6	0.7	0.5	0.3	0.3	0.2	0.2	0.2	0.2	24	2.5	0.1	0.6	0	0
2	0.2	0.2	0.3	0.2	0.3	0.1	0.3	0.3	0.4	0.7	0.8	1.4	0.6	1.3	0.5	0.3	0.4	0.3	0.3	0.3	0.4	0.2	0.2	0.2	24	1.4	0.1	0.4	0	0
3	0.2 0.2	0.2 0.4	0.2 0.5	0.2	0.1	0.1 0.5	0.2 0.6	0.2	0.3	0.3 0.7	0.4 0.7	0.4 0.7	0.4 0.6	0.4 0.6	0.4 0.5	0.5 0.5	0.6 0.6	0.9 0.5	0.3	0.2	0.2	0.3 0.3	0.3	0.3	24 24	0.9 0.7	0.1	0.3	0	0
5	0.2	0.4	0.3	0.4	0.4	0.3	0.3	0.4	0.0	0.7	0.7	0.7	1.6	1.1	0.9	0.7	0.7	0.5	0.4	0.4	0.3	0.3	0.3	0.3	24	1.6	0.2	0.5	0	
6	0.3	0.0	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.5	0.7	0.9	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.4	0.5	0.9	24	0.9	0.0	0.5	0	0
7	0.5	0.7	0.6	0.5	0.7	0.5	0.4	0.5	0.4	0.5	0.6	2.4	1.9	2.2	1.2	1.0	0.8	0.6	0.7	0.7	0.7	0.7	0.8	0.6	24	2.4	0.4	0.8	0	0
8	0.7	0.7	0.6	0.7	0.7	0.5	0.6	0.7	0.8	0.7	0.7	0.6	0.5	0.7	0.9	1.0	0.5	0.5	0.6	0.4	0.4	0.5	0.5	0.5	24	1.0	0.4	0.6	0	0
9	0.4	0.4	0.5	0.7	0.5	0.5	0.4	0.5	0.5	0.5	0.4	0.4	0.4	0.5	0.7	0.6	0.5	0.5	0.4	0.4	0.3	0.4	0.3	0.3	24	0.7	0.3	0.5	0	0
10	0.3	0.3	0.3	0.3	0.3	0.4	0.8	0.6	0.4	0.5	0.6	0.6	0.6	0.4	0.3	0.3	0.4	0.5	0.6	0.5	0.5	0.4	0.3	0.2	24	0.8	0.2	0.4	0	0
11	0.2	0.3	0.3	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	24	0.3	0.0	0.1	0	0
12	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.1	1.1	1.8	0.2	0.2	0.2	24	1.8	0.0	0.2	0	0
13	0.0	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.2	0.2	0.1	0.2	2.1	0.4	0.3	0.4	0.3	0.3	0.3	0.3	0.2	0.2	0.2	24	2.1	0.0	0.3	0	0
14	0.3	0.2	0.2	0.1	0.2	0.2	0.2	0.4	0.7	0.6	0.5	0.5	0.4	0.4	0.4	0.5	0.3	0.3	0.3	0.3	0.4	0.3	0.3	0.3	24	0.7	0.1	0.3	0	0
15	0.3 0.2	1.1 0.1	3.8 0.1	0.8 0.1	0.6 0.1	0.5 0.2	0.6 0.2	0.6 0.1	0.6 0.1	0.7 0.1	0.5 0.1	0.5 0.1	0.5 0.1	0.6 0.3	0.6 0.1	0.5	0.5 0.0	0.4 0.0	0.4	0.6 0.0	0.4 0.0	0.3	0.2 0.1	0.2	24 24	3.8 0.3	0.2	0.7	0	0
17	0.2	0.0	0.0	0.0	0.1	0.2	0.2	0.1	0.1	1.0	0.7	0.6	0.1	0.6	0.1	0.1	0.0	0.4	0.0	0.3	1.1	0.8	0.1	0.4	24	1.1	0.0	0.1	0	0
18	0.3	0.3	0.0	0.2	0.3	0.6	0.7	0.8	1.5	1.8	2.6	3.5	3.9	1.8	0.9	0.7	0.5	0.4	0.4	0.4	0.2	0.3	0.3	0.4	24	3.9	0.2	1.0	0	0
19	0.4	0.2	0.4	0.3	0.3	0.3	0.4	0.5	0.5	0.5	0.7	0.8	0.8	0.8	0.7	0.5	0.3	0.3	0.2	0.1	0.1	0.1	0.2	0.2	24	0.8	0.1	0.4	0	0
20	0.1	0.3	0.2	0.3	0.1	0.1	0.1	0.1	0.2	0.6	0.4	0.4	1.5	1.6	0.8	0.3	0.4	0.3	0.3	0.3	0.2	0.2	0.3	0.6	24	1.6	0.1	0.4	0	0
21	0.7	0.4	0.4	0.3	0.1	0.1	0.1	0.2	1.1	2.8	2.3	0.8	0.8	1.0	1.0	0.9	0.5	0.3	0.3	0.3	0.2	0.2	0.2	0.3	24	2.8	0.1	0.6	0	0
22	0.2	0.4	0.4	0.2	0.2	0.2	0.1	0.2	0.3	0.5	1.0	1.2	0.9	0.7	0.6	0.4	0.4	0.7	0.7	0.5	0.4	0.5	0.4	0.3	24	1.2	0.1	0.5	0	0
23	0.3	0.2	0.3	0.2	0.2	0.0	0.2	0.2	0.4	0.3	0.3	0.3	0.3	0.3	1.4	1.0	2.5	0.7	0.5	1.3	0.7	1.9	3.4	1.6	24	3.4	0.0	0.8	0	0
24	0.6	0.4	0.5	0.5	0.6	0.6	0.4	0.3	0.5	0.6	0.8	0.8	0.6	0.5	0.3	0.4	0.4	0.4	0.3	0.4	0.3	0.3	0.3	0.3	24	0.8	0.3	0.5	0	0
25	0.3	0.4	0.3	0.5	0.5	0.5	0.6	0.7	0.8	1.0	8.0	0.6	0.7	1.1	1.0	0.9	0.8	0.9	0.8	0.5	0.3	0.2	0.3	0.3	24	1.1	0.2	0.6	0	0
26	0.2	0.2	0.2	0.1	0.1	0.1	0.4	0.2	0.1	0.2	0.3	1.4	C	1.0	1.0	0.9 4.9	0.8	0.8	0.8	0.8	0.9	0.9	0.9	1.1	22	1.1	0.1	0.5	0	0
27	1.1	0.9	0.9	0.8 0.9	0.7 1.2	0.6 1.0	0.7 1.2	0.7 1.1	0.8	0.8 1.7	1.1	1.4	3.3 1.0	7.9 0.8	4.9 0.7	0.8	1.6	1.1 0.9	1.0 0.9	1.0 0.8	0.9 0.8	0.9 0.8	1.1 0.8	1.1 0.8	24 24	7.9 1.7	0.6 0.7	1.7	0	0
28	1.1 0.9	1.1 0.8	1.1 0.8	0.9	0.8	0.8	0.8	0.8	1.1 0.7	0.8	1.4 0.8	1.1 0.9	0.9	0.8	0.7	0.8	0.9 0.8	0.9	0.9	0.8	0.8	0.8	0.8	0.8	24	0.9	0.7	1.0 0.8	0	0
30	1.0	0.8	1.1	1.1	1.1	1.0	1.1	1.0	1.0	1.0	0.8	0.9	1.1	1.1	1.1	1.1	1.0	1.0	1.0	0.8	1.0	1.1	1.0	0.9	24	1.1	0.7	1.0	0	n
31	0.9	0.9	0.9	0.9	1.0	1.1	1.1	1.2	1.3	1.4	1.1	0.9	0.8	0.8	0.8	0.7	0.6	0.6	0.6	1.0	1.3	0.9	1.0	1.0	24	1.4	0.6	1.0	o	0
Count	31	31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	31	742					
Maximum	1.1	1.1	3.8	1.1	1.2	1.1	1.2	1.2	1.5	2.8	2.6	3.5	3.9	7.9	4.9	4.9	2.5	1.1	1.0	1.3	1.8	1.9	3.4	1.6	24					
Minimum	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	22					
Average	0.4	0.4	0.5	0.4	0.4	0.4	0.4	0.4	0.6	0.8	0.8	0.9	0.9	1.1	0.8	0.7	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5						
Percentiles		10		20		30		40		50		60	-	70		80		90		95	-	99	-	100			Maximum	1 Hourly		7.9
																											Maximu	ım Daily		1.7
Data		0.1		0.2		0.3		0.4		0.4		0.6		0.7		0.8		1.1		1.3		3.1		7.9			Monthly A	Average		0.6
Notes	(- Calibration	/ Span Cyc	le N	A - No Data	Available	Т-	Test	A-	MOE Audit	N	l - Equipmei	nt Malfunct	ion / Down	R-	Rate of Ch	ange											-		

										No	SO ₂ - R vember pb)	Rundle Road 2017																		
D	Hour	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	C 14	aximum M			Hrs>250	D 100
Day 1	0.9	0.9	0.8	0.7	0.7	1.1	1.1	1.0	1.1	1.6	2.1	1.6	1.2	0.9	0.9	1.4	0.8	0.8	0.8	0.7	0.7	0.6	0.6	0.7	24	2.1	0.6	1.0	Hrs>250	Days>100
2	0.6	0.7	0.7	0.8	1.1	1.1	1.2	0.8	0.9	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.8	0.8	0.8	0.9	0.8	0.9	24	1.2	0.6	0.8	0	0
3	0.8	0.7	0.7	0.6	0.7	0.6	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.6	0.5	0.4	0.5	0.4	0.4	0.4	0.4	24	0.8	0.4	0.6	0	0
4	0.4	0.4	0.4	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.6	0.5	0.5	0.5	0.4	0.5	0.6	0.5	0.5	0.5	0.7	0.6	24	0.7	0.3	0.5	0	0
5	0.6	0.7	0.8	0.8	0.8	0.8	0.7	0.7	0.7	0.8	0.6	0.5	0.7	0.8	0.8	0.8	0.7	0.7	0.7	0.8	0.9	0.8	0.8	0.9	24	0.9	0.5	0.7	0	0
5	0.9 0.4	0.7 0.5	0.7 0.5	0.7 0.4	0.6 0.5	0.7 0.5	0.6 0.5	0.6 0.6	0.6 0.5	0.6 0.7	0.6 0.8	0.6 0.8	0.6 0.5	0.6 0.5	0.5 0.5	0.5 0.6	0.5 0.6	0.5 0.5	0.5 0.5	0.4 0.4	0.5 0.5	0.5 0.5	0.5 0.4	0.5 0.5	24 24	0.9 0.8	0.4 0.4	0.6	0	0
8	0.4	0.3	0.4	0.4	0.3	0.5	0.5	0.8	1.1	0.7	1.1	0.6	0.5	0.3	1.6	1.3	0.0	0.3	0.9	0.4	0.5	0.5	0.6	0.5	24	1.6	0.4	0.7	0	0
9	0.6	0.6	0.6	0.6	0.5	0.5	0.6	0.9	1.0	1.3	0.9	1.4	1.9	1.4	1.0	1.4	1.0	0.9	1.0	0.6	0.6	0.6	0.6	0.8	24	1.9	0.5	0.9	0	0
10	0.9	0.6	0.5	0.4	0.6	0.6	0.8	0.6	0.5	0.3	0.3	0.3	0.4	0.3	0.3	0.6	0.3	0.2	0.4	0.3	0.2	0.2	0.2	0.3	24	0.9	0.2	0.4	0	0
11	0.0	0.1	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.3	0.4	0.6	1.4	1.0	0.8	0.6	0.6	0.7	0.4	24	1.4	0.0	0.4	0	0
12	0.4	0.5	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.6	0.8	0.7	1.7	1.6	1.1	1.7	1.6	1.2	1.2	0.9	0.6	0.6	24	1.7	0.3	0.8	0	0
13	0.9	0.8	0.9	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.7	0.7	0.6	0.6	0.6	0.8	0.7	0.4	0.5	0.4	0.4	0.5	24	0.9	0.4	0.6	0	0
14	0.4 0.5	0.4	0.3 0.5	0.5 0.5	0.4	0.5 0.4	0.4 0.5	0.6 0.6	0.7 0.6	0.8 0.6	0.7 0.6	0.9 0.6	1.1 0.6	2.2 0.6	2.6 0.6	1.2	1.0 1.3	0.8 3.9	0.5 1.3	0.6 1.1	0.7 1.0	0.5 0.9	0.5 0.9	0.6	24 24	2.6 3.9	0.3	0.8	0	0
16	0.5	0.4	0.5	0.5	0.4	0.4	0.8	0.6	0.6	0.8	0.6	0.8	0.6	0.6	0.6	0.8	0.8	0.6	0.6	0.6	0.5	0.5	0.9	0.8	24	0.9	0.4	0.9	0	0
17	0.3	0.3	0.3	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.5	0.5	0.6	0.5	0.5	0.5	0.6	0.6	0.7	0.6	0.6	0.7	24	0.7	0.3	0.4	o	0
18	0.7	0.7	0.9	0.9	0.8	0.7	0.6	0.8	0.8	0.7	0.8	0.8	0.8	0.8	0.9	0.8	0.8	1.0	0.9	1.0	1.2	1.0	1.0	0.9	24	1.2	0.6	0.8	0	0
19	1.0	0.9	0.8	0.8	0.9	0.8	0.8	0.8	0.6	0.7	0.8	0.7	0.8	0.8	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.6	0.6	0.5	24	1.0	0.5	0.7	0	0
20	0.6	0.5	0.5	0.5	0.5	0.7	0.7	0.6	0.6	0.6	0.7	0.8	0.8	0.9	0.8	0.9	0.8	0.8	0.7	0.6	0.6	0.6	0.7	0.7	24	0.9	0.5	0.7	0	0
21	0.8	0.8	0.9	0.9	0.9	0.9	0.8	0.9	0.9	0.9	0.9	0.9	0.9	1.0	1.0	0.8	0.8	0.8	1.0	0.8	0.7	0.6	0.6	0.6	24	1.0	0.6	8.0	0	0
22	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.6 0.7	0.7	0.8	0.8	0.7	0.5	0.6	0.8	0.7 1.0	0.5	0.5	0.4	0.4 0.6	0.3	0.3	0.3	0.3	24	0.8	0.3	0.5	0	0
24	0.4 1.3	0.4 1.5	0.3 1.4	0.4 1.5	0.4 1.5	0.4 1.7	0.4 2.0	1.7	1.1 1.6	2.1 1.4	1.8 1.5	1.1 1.3	1.0 1.2	1.1 1.6	1.2 1.3	1.0	0.9 1.1	0.8 1.0	0.6 0.8	0.8	0.9 0.8	1.1 1.0	1.2 1.0	1.1	24 24	2.1 2.0	0.3	0.9 1.3	0	0
25	1.0	0.8	0.9	1.0	1.0	0.9	1.1	1.0	0.9	0.9	0.9	0.9	0.9	0.8	0.8	0.7	0.6	0.6	0.6	0.6	0.6	0.5	0.6	0.6	24	1.1	0.5	0.8	0	0
26	0.6	0.5	0.4	0.4	0.5	0.5	0.5	0.7	0.5	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.6	1.4	1.4	1.1	1.0	0.9	0.9	24	1.4	0.4	0.6	0	0
27	0.8	0.6	0.5	0.5	0.5	0.6	0.5	0.4	0.4	0.5	0.4	0.5	0.5	0.9	0.8	0.8	0.6	0.5	0.4	0.5	0.3	0.3	0.3	0.3	24	0.9	0.3	0.5	0	0
28	0.3	0.3	0.4	0.5	0.3	0.3	0.3	0.4	0.6	0.9	1.0	1.1	1.0	0.9	0.9	0.9	0.8	0.7	0.6	0.6	0.6	0.6	0.8	0.8	24	1.1	0.3	0.7	0	0
29	0.8	0.6	0.6	0.5	0.5	0.4	0.5	0.8	0.6	0.5	0.4	0.4	0.6	С	0.5	0.6	0.6	0.4	0.1	0.4	0.5	0.5	0.4	0.4	23	0.8	0.1	0.5	0	0
30	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.7	0.9	0.7	0.7	0.7	0.9	0.9	0.9	1.0	1.0	0.9	0.7	0.9	1.0	0.8	0.8	0.6	24	1.0	0.5	0.8	0	0
Count	30	30	30	30	30	30	30	30	30	30	30	30	30	29	30	30	30	30	30	30	30	30	30	30	719				J	
Maximum	1.3	1.5	1.4	1.5	1.5	1.7	2.0	1.7	1.6	2.1	2.1	1.6	1.9	2.2	2.6	1.6	1.3	3.9	1.6	1.4	1.2	1.1	1.2	1.1	24					
Minimum	0.0	0.1	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.2	0.1	0.3	0.2	0.2	0.2	0.3	23					
Average	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.7	0.8	0.8	0.9	0.9	0.7	0.8	0.7	0.7	0.7	0.6	0.6	0.6						
Percentiles	•	10		20	•	30	•	40		50		60		70		80	•	90		95	•	99	•	100		•	Maximur	m Hourly		3.9
. creenules		10		20		30		40		30		00		70		00		50		,,,		,,,		100				um Daily		1.3
Data		0.4		0.5		0.5		0.6		0.6		0.7		0.8		0.9		1.0		1.3		1.8		3.9			Monthly			0.7
Notes	С	- Calibration	/ Span Cycl	le N	A - No Data	Available	Τ-	Test	A-	MOE Audit	N	1 - Equipme	nt Malfunct	ion / Down	R-	Rate of Cl	nange													

											De	SO ₂ - Ri cember pb)	undle Roa	d 2017																	
	Hou																														
Day	1	0.6	0.6	0.6	0.6	400 0.5	500 0.5	0.7	700 0.6	0.7	900 0.6	0.6	1100 0.6	1200 0.6	1300 0.6	0.6	1500 0.6	1600 0.6	1700 0.3	1800 0.3	1900 0.4	0.5	2100 0.5	0.6	2300 0.5	Count Ma 24	ximum Mi 0.7	0.3	Average 0.6	Hrs>250	Days>100
	2	0.6	0.6	0.6	0.5	0.6	0.6	0.5	0.5	0.5	0.6	0.6	0.7	0.9	1.0	1.1	0.9	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.7	24	1.1	0.5	0.7	0	0
	3	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.7	0.6	0.6	0.6	0.7	1.2	1.5	1.7	1.8	1.4	1.0	0.8	0.6	0.7	0.6	0.6	24	1.8	0.5	0.8	0	0
	4	0.6	0.5	0.4	0.5	0.5	0.4	0.5	0.6	0.7	0.7	0.6	0.6	0.6	0.5	0.6	0.6	0.7	0.8	1.6	2.3	1.4	1.2	1.1	1.1	24	2.3	0.4	0.8	0	0
	5	0.8	0.8	0.8	8.0	0.8	0.8	0.9	0.8	0.9	0.8	8.0	0.9	0.8	0.9	0.9	1.5	1.5	0.8	0.9	0.8	0.8	0.9	0.8	0.9	24	1.5	0.8	0.9	0	0
	6	0.7	0.7	0.8	0.7	0.8	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.7	0.8	0.9	0.8	0.7	0.7	0.6	24	0.9	0.6	0.8	0	0
	7	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.8	C	0.8	0.7	0.8	0.7	0.7	0.7	0.6	0.7	0.7	0.6	0.7	0.7	23	0.8	0.6	0.7	0	0
	8	0.3 1.3	0.6 1.1	0.6 1.3	0.7 1.2	0.7 1.0	0.7 0.9	0.8 0.7	0.8 0.8	0.7 0.8	0.7 0.8	0.7 0.8	0.7 0.8	0.8 0.8	0.7 0.8	0.6 1.0	0.6	0.7 0.8	0.8	0.7 0.8	0.7 1.1	0.8 1.2	0.9 1.0	1.2 0.9	1.5 0.6	24 24	1.5 1.3	0.3	0.8	0	0
	10	0.8	0.7	0.7	0.7	0.6	0.6	0.7	0.6	0.6	0.5	0.5	0.7	0.6	0.8	0.8	0.7	0.8	0.7	0.8	0.8	0.7	0.8	0.6	0.5	24	0.8	0.5	0.5	0	0
	11	0.7	0.8	0.7	0.7	0.6	0.5	0.5	0.5	0.6	0.8	0.8	0.7	0.6	0.7	1.9	0.8	1.4	1.0	0.6	0.6	0.6	0.5	0.4	0.6	24	1.9	0.4	0.7	0	0
	12	0.8	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.8	1.2	1.1	1.0	Α	1.2	1.2	1.0	1.0	1.0	0.8	0.8	0.7	0.6	0.5	23	1.2	0.5	0.8	0	0
	13	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.7	0.6	0.6	0.6	0.6	0.6	0.5	0.6	0.6	0.7	0.6	0.6	0.6	0.5	0.6	0.5	0.5	24	0.7	0.5	0.6	0	0
	14	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.7	1.1	0.9	0.5	0.5	0.5	0.5	0.8	0.6	0.5	0.5	24	1.1	0.5	0.6	0	0
	15	0.5	0.5	0.4	0.4	0.4	0.5	0.5	0.7	1.2	1.3	1.3	1.2	1.1	0.9	1.0	0.9	0.8	0.8	1.1	1.2	1.0	0.6	0.7	0.8	24	1.3	0.4	0.8	0	0
	16	0.9	0.7	0.8	0.9	0.8	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.3	0.3	24	0.9	0.2	0.5	0	0
	17	0.3	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.4 0.5	0.5 0.6	0.4 1.1	0.3 0.9	0.2 1.1	0.3 1.3	0.3 1.2	0.3 1.2	0.2 1.1	0.2 1.0	0.3 1.3	0.3 1.1	0.3 1.2	24 24	0.5 1.3	0.2	0.3	0	0
	19	1.2	1.2	1.2	1.1	1.4	1.2	1.1	1.2	1.1	1.2	1.2	1.1	1.0	0.9	0.9	0.9	0.9	1.1	0.9	0.8	1.0	0.9	0.9	0.9	24	1.4	0.8	1.1	0	0
	20	0.8	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.7	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.6	0.5	0.5	0.4	0.4	0.9	24	0.9	0.4	0.6	0	0
	21	1.1	0.9	0.8	1.1	1.1	1.0	0.7	0.6	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	24	1.1	0.4	0.6	0	0
	22	0.4	0.4	0.5	0.5	0.6	0.6	0.5	0.5	0.5	0.4	0.6	0.6	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.5	24	0.6	0.4	0.5	0	0
	23	0.4	0.4	0.6	0.6	0.6	0.7	0.5	0.5	0.6	0.7	0.7	0.7	0.8	0.8	0.7	0.7	0.9	0.8	0.6	0.6	0.7	0.7	0.7	0.7	24	0.9	0.4	0.7	0	0
	24	0.7	0.8	0.7	0.6	0.5	0.5	0.5	0.4	0.5	0.4	0.4	0.5	0.5	0.6	0.6	0.6	0.6	0.7	0.5	0.6	0.6	0.6	0.7	0.7	24	0.8	0.4	0.6	0	0
	25	0.7	0.7	0.7	0.7	0.8	0.7	0.7	0.6 0.4	0.5 0.5	0.7 0.5	0.7	0.7 0.4	0.6	0.6	0.6	0.4	0.6	0.6 0.3	0.6	0.5	0.5	0.5	0.4	0.4	24	0.8	0.4	0.6	0	0
	27	0.4	0.5 0.3	0.5 0.3	0.4	0.4	0.4	0.3	0.4	0.5	0.5	0.4	0.4	0.4	0.3	0.4 0.7	0.3	0.4	0.3	0.3	0.0 0.6	0.2 0.5	0.2	0.2	0.2 0.2	24 24	0.5 0.8	0.0	0.4	0	0
	28	0.2	0.2	0.5	0.6	1.0	0.9	0.8	0.5	0.3	0.4	3.1	1.8	1.6	2.2	2.3	2.7	2.7	3.6	2.6	1.4	1.0	0.8	1.2	1.2	24	3.6	0.2	1.4	0	0
	29	1.1	0.7	0.4	0.4	0.4	0.3	0.3	0.4	0.3	0.4	0.3	0.4	0.4	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.4	24	1.1	0.3	0.4	0	0
	30	0.4	0.5	0.4	0.5	0.5	0.6	0.5	0.6	0.7	0.9	1.0	0.8	0.7	0.7	0.6	0.5	0.6	0.5	0.5	0.4	0.4	0.4	0.4	0.4	24	1.0	0.4	0.6	0	0
	31	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.2	0.1	0.1	0.2	0.2	0.2	0.4	0.3	0.3	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	24	0.4	0.1	0.3	0	0
Count		31	31	31	31	31	31	31	31	31	31	31	30	31	30	31	31	31	31	31	31	31	31	31	31	742					
Maximu		1.3	1.2	1.3	1.2	1.4	1.2	1.1	1.2	1.2	1.3	3.1	1.8	1.6	2.2	2.3	2.7	2.7	3.6	2.6	2.3	1.4	1.3	1.2	1.5	24					
Minimu		0.2	0.2	0.2 0.6	0.2	0.2 0.6	0.2	0.2 0.6	0.2 0.6	0.1 0.6	0.1 0.6	0.2	0.2 0.7	0.2	0.3 0.7	0.3 0.8	0.2	0.2 0.8	0.2 0.8	0.3 0.7	0.0 0.7	0.2 0.7	0.2 0.6	0.2	0.2	23					
Average		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.7	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.7	0.7	0.7	0.0	0.0	0.6						
Percent	iles		10		20		30		40		50		60		70		80		90		95		99		100			Maximur			3.6
Data			0.3		0.4		0.5		0.6		0.6		0.7		0.7		0.8		1.1		1.2		2.0		3.6			Maximi Monthly	um Daily Average		1.4 0.7
Notes		C -	Calibration	/ Span Cycle	e N	A - No Data	Available	Т-	Test	A-	MOE Audit	M	l - Equipmei	nt Malfunct	ion / Down	R -	- Rate of Ch	nange													

Figure B-1 Time History Plots of Measured Hourly Average and 24 Hour Average SO₂ Concentrations – Courtice (WPCP) Station

Figure B-2 Time History Plots of Measured Hourly Average and 24 Hour Average SO₂ Concentrations – Rundle Road Station

Appendix C NO2 Data Summaries and Time History Plots February 9, 2018

Appendix C NO₂ DATA SUMMARIES AND TIME HISTORY PLOTS

Project No.: 160950528 C.1

										o	NO ₂ - Co october pb)	OURTICE	2017																	
_ '	Hour					500													1800											
Day 1	2.8	1.3	2.4	300 1.7	400 3.5	5.3	600 5.7	700 6.3	800 5.4	900 6.4	1000 4.7	1100 3.3	1200 1.8	1300 0.8	0.3	1500 0.6	1600 0.8	0.2	15.2	1900 26.2	2000	2100 13.6	2200 13.0	2300 10.7	24	26.2	0.2	6.4	Hrs>200	Days>100
2	10.8	9.0	12.7	13.7	15.7	19.6	21.0	24.7	11.1	3.7	1.4	0.3	0.0	0.4	0.2	0.8	3.2	2.9	15.7	16.6	19.8	17.6	13.3	14.5	24	24.7	0.0	10.4	0	0
3	9.3	7.7	9.4	10.6	14.7	14.0	18.2	18.7	10.9	3.3	1.5	1.6	1.8	1.2	1.2	1.1	1.0	1.8	9.3	15.6	26.4	24.6	22.6	22.7	24	26.4	1.0	10.4	0	0
4	19.4	13.8	2.9	1.1	1.2	1.2	1.2	1.7	1.5	1.6	1.5	1.1	1.2	1.7	1.4	1.5	1.6	2.1	2.4	3.3	4.1	3.7	3.3	2.3	24	19.4	1.1	3.2	0	0
5	5.3	5.9	16.2	14.0	10.9	14.0	15.7	9.7	7.9	4.7	3.5	3.0	3.5	2.3	1.3	1.1	1.2	6.6	12.9	10.1	9.1	7.8	11.4	21.5	24	21.5	1.1	8.3	0	0
6	18.8	13.6	12.6	11.8	13.0	12.6	14.6	14.2	13.1	10.1	9.7	5.8	2.2	3.0	4.5	4.9	4.8	5.4	9.1	15.3	12.1	9.9	2.4	4.1	24	18.8	2.2	9.5	0	0
7	3.6	3.3	6.8	3.4	4.1	1.7	1.3	1.0	0.3	1.3	1.7	9.3	7.6	3.6	1.0	0.8	0.6	0.9	1.0	1.1	1.0	1.6	0.9	0.5	24	9.3	0.3	2.4	0	0
8	0.6 4.8	0.9 3.2	0.8 2.3	0.7 1.7	0.6 0.3	0.4 3.1	1.0 2.1	1.0 5.8	1.0 2.1	1.2 2.1	1.3 1.7	1.2 0.6	0.8 0.1	0.8 0.4	0.3	0.5	0.7 0.1	0.6	5.8 0.1	1.8 0.7	1.5 8.9	2.9 25.6	4.9 20.5	9.0 15.2	24 24	9.0 25.6	0.3	4.3	0	0
10	11.0	10.9	5.3	3.8	7.4	15.3	17.7	16.0	6.2	6.7	10.5	6.8	5.9	6.6	5.2	1.9	4.2	5.9	8.4	4.5	4.9	4.1	20.5	0.9	24	17.7	0.1	7.2	0	- 0
11	2.0	1.3	1.0	1.3	3.0	2.3	4.2	5.6	4.2	3.4	3.2	3.1	2.8	3.1	2.4	2.5	2.2	3.6	1.5	1.7	2.6	2.3	2.0	3.6	24	5.6	1.0	2.7	0	0
12	1.8	1.7	2.2	2.4	3.1	3.4	4.1	3.5	2.6	3.0	4.5	9.9	4.2	10.8	10.5	0.9	2.8	1.8	1.0	0.4	0.3	1.0	0.9	1.1	24	10.8	0.3	3.2	0	d
13	1.0	0.7	0.6	0.6	0.8	1.1	1.0	1.3	1.7	1.2	1.4	1.3	1.5	1.4	3.0	9.8	12.3	13.1	11.0	9.2	11.5	13.0	5.0	1.9	24	13.1	0.6	4.4	0	0
14	1.7	1.5	1.2	1.0	0.8	0.8	3.5	12.2	11.1	11.7	12.6	12.4	12.9	12.1	12.1	9.0	9.8	12.3	16.5	6.6	4.1	2.0	2.8	1.5	24	16.5	0.8	7.2	0	0
15	2.2	2.4	1.7	1.5	1.6	1.6	1.8	1.7	1.5	0.9	1.1	0.6	0.7	0.6	0.4	1.9	1.6	1.2	1.4	1.7	0.9	0.6	0.3	0.3	24	2.4	0.3	1.3	0	0
16	0.9	0.1	0.3	1.9	3.0	5.9	7.2	2.5	1.6	1.1	1.8	1.6	0.9	1.2	1.1	0.8	3.3	8.1	20.0	18.6	17.1	15.6	11.5	10.1	24	20.0	0.1	5.7	0	0
17	10.2	8.7	10.4	11.8	11.3	11.3	11.9	15.0	16.0	10.3	1.7	1.2	1.2	1.0	0.9	0.4	0.6	0.7	1.2	1.4	2.7	4.0	3.7	4.0	24	16.0	0.4	5.9	0	0
18	8.1 3.3	29.8 3.3	24.5 4.9	24.7 3.7	23.2 1.3	27.4 1.4	27.5 1.4	22.5 1.8	17.3 1.8	14.2 1.8	7.2 2.5	6.2 1.8	6.1 1.8	3.5 2.1	1.2 2.7	1.0 2.8	0.9 3.0	1.0 6.8	1.0 8.2	1.0 3.7	1.4 4.6	2.2 4.5	2.8 11.6	2.8 21.2	24 24	29.8 21.2	0.9 1.3	10.7	0	0
20	13.4	11.7	9.8	6.5	22.3	25.5	29.2	22.1	16.4	10.9	10.7	9.2	6.6	5.0	2.7	2.4	1.6	1.0	0.6	0.4	0.5	1.7	2.0	6.1	24	29.2	0.4	9.1	0	
21	12.9	22.7	21.0	18.2	17.8	17.8	14.4	14.7	16.9	4.8	4.2	4.0	4.7	2.8	2.4	3.6	5.0	9.6	15.1	5.1	10.9	10.4	10.3	11.6	24	22.7	2.4	10.9	0	0
22	7.4	4.3	3.8	6.4	8.9	4.7	6.6	5.5	3.5	1.8	1.8	1.4	1.3	1.4	2.6	2.1	7.1	8.5	7.9	2.9	4.2	6.8	1.9	1.2	24	8.9	1.2	4.3	0	0
23	2.3	1.6	1.3	5.3	13.7	5.0	7.0	4.4	3.5	3.2	3.0	2.4	4.4	10.8	3.8	2.7	1.1	1.2	4.5	1.6	1.3	1.7	1.1	0.2	24	13.7	0.2	3.6	0	0
24	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.4	0.9	1.2	0.5	0.3	0.4	0.3	0.3	0.4	0.5	0.5	0.5	0.4	0.3	0.6	0.6	24	1.2	0.0	0.4	0	0
25	0.4	0.8	0.9	0.9	1.1	1.5	1.3	0.9	0.9	1.2	1.0	1.3	1.2	1.5	1.6	1.6	1.5	1.7	6.1	14.4	19.8	15.9	11.3	14.5	24	19.8	0.4	4.3	0	0
26	17.7	16.0	15.5	17.0	13.2	14.9	17.9	20.9	11.3	9.7	4.3	3.8	9.2	10.9	6.0	2.6	3.8	7.4	7.0	10.8	13.7	14.5	12.7	14.8	24	20.9	2.6	11.5	0	0
27	13.8	11.4	12.0	11.2	11.6	9.9	9.9	9.4	7.9	7.7	1.5	С	C	4.3	3.4	3.0	6.0	6.8	10.2	17.2	21.0	11.1	4.7	3.0	22	21.0	1.5	8.9	0	0
28	1.6	1.9	1.9	3.6	7.2 5.1	10.5	5.0 5.3	4.2 6.0	4.2 5.6	4.6	8.7	4.7	5.8 3.0	4.8	5.8	10.8	5.5	3.8	7.5 5.0	7.9 2.8	5.6	4.4	5.7 1.5	7.5	24	10.8	1.6	5.6	0	0
29	5.1 1.4	5.6 1.0	9.1 1.5	4.3 1.4	1.6	4.1 2.4	3.1	3.6	2.5	8.1 2.5	3.7 2.6	4.0 1.9	3.0	3.9 4.7	4.0 4.4	3.6 5.5	3.6 8.3	3.7 8.5	8.0	2.8 8.1	2.2 5.9	1.8 5.9	4.7	1.4 3.8	24 24	9.1 8.5	1.4 1.0	4.3	0	0
31	3.1	3.1	2.8	2.3	2.3	3.0	3.3	3.1	3.2	3.5	2.0	2.9	2.2	2.0	2.4	4.4	6.8	8.4	12.1	7.6	9.3	5.9	21.8	22.5	24	22.5	2.0	5.9	0	0
Count	31	31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	31	742		0	5.5		
Maximum	19.4	29.8	24.5	24.7	23.2	27.4	29.2	24.7	17.3	14.2	12.6	12.4	12.9	12.1	12.1	10.8	12.3	13.1	20.0	26.2	26.4	25.6	22.6	22.7	24					
Minimum	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.3	0.9	1.0	0.3	0.0	0.4	0.2	0.3	0.1	0.2	0.1	0.4	0.3	0.3	0.3	0.2	22					
Average	6.3	6.4	6.4	6.1	7.2	7.8	8.5	8.4	6.2	4.8	3.8	3.6	3.3	3.5	2.9	2.8	3.4	4.4	7.3	7.1	8.0	7.7	6.9	7.6						
Percentiles		10		20	-	30		40	-	50	-	60		70		80	-	90	-	95		99		100			Maximur	m Hourly		29.8
Data		0.8		1.2		1.7		2.4		3.5		4.7		7.2		10.8		14.6		18.2		25.2		29.8			Maxim Monthly	um Daily Average		11.5 5.9
Notes	С	- Calibration	n / Span Cyc	le N	A - No Data	Available	Т-	- Test	А	- MOE Audit	: М	I - Equipme	nt Malfunct	ion / Down	R-	- Rate of Ch	nange													

										No	NO ₂ - Co vember pb)	OURTICE	2017																	
Day	Hour	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count M	aximum M	linimum	Average	Hrs>200	Dave>100
Day 1	17.1	6.3	5.5	3.9	4.3	5.8	18.3	20.2	20.0	16.6	6.7	4.1	3.5	2.7	2.4	5.3	11.3	12.0	9.8	11.0	16.9	13.4	10.1	11.4	24	20.2	2.4	9.9	0	0 0
2	11.2	11.2	11.2	5.4	3.5	5.4	11.0	8.7	6.5	2.6	3.0	2.9	2.9	2.2	2.3	2.5	2.7	2.6	3.0	3.0	2.6	2.2	2.0	2.8	24	11.2	2.0	4.7	0	0
3	4.8	4.6	3.9	4.4	5.8	6.8	10.4	8.1	6.5	3.6	2.4	2.7	2.3	1.9	1.7	2.5	2.2	3.4	5.4	8.9	19.5	19.4	15.2	9.7	24	19.5	1.7	6.5	0	0
4	9.3	6.6	4.2	5.6	5.1	5.9	6.2	3.5	3.3	2.2	2.2	1.6	1.8	2.4	2.1	4.9	5.0	4.7	4.2	10.8	11.3	12.9	14.0	9.9	24	14.0	1.6	5.8	0	0
5	3.2 1.8	2.1 2.6	2.1 2.2	2.1 1.7	2.0 2.1	2.4 1.9	2.6 2.5	2.1 3.0	6.2 3.8	2.4 2.5	3.5 2.5	4.4 2.6	3.7 2.5	7.6 2.5	6.0 2.2	4.6 3.8	1.8 4.2	1.9 5.6	3.3 4.8	1.7 6.1	1.9 8.0	2.0 6.4	1.6 7.8	1.2 6.3	24 24	7.6 8.0	1.2 1.7	3.0 3.7	0	0
	4.4	4.9	3.5	4.2	6.7	8.4	13.9	11.6	6.5	3.4	4.0	1.3	0.7	0.7	0.5	0.6	0.5	0.5	1.2	0.1	0.9	4.7	17.0	14.8	24	17.0	0.5	4.8	0	0
8	19.0	19.1	17.7	14.2	16.4	23.5	22.8	23.9	20.2	10.0	10.2	4.0	2.5	1.9	3.9	2.9	3.3	3.3	3.9	4.2	19.3	27.4	19.8	18.3	24	27.4	1.9	13.0	0	0
9	16.7	20.2	18.5	15.9	20.1	20.7	19.6	28.0	26.1	23.7	8.8	5.7	7.0	5.4	4.3	4.9	3.9	4.3	6.2	2.8	2.9	1.9	2.9	1.2	24	28.0	1.2	11.3	0	0
10	2.4	2.4	2.1	1.8	2.0	3.2	4.7	5.2	3.4	2.4	2.7	1.9	1.9	2.4	2.3	2.5	3.2	6.2	9.4	8.7	7.6	13.1	14.0	12.7	24	14.0	1.8	4.9	0	0
11	8.9	3.2	2.4	1.3	2.6	5.4	5.9	4.9	3.6	2.7	3.6	0.6	1.0	1.5	2.6	0.8	0.5	0.4	0.5	0.6	1.1	1.2	1.5	1.5	24	8.9	0.4	2.4	0	0
12	5.6	4.8	4.4	3.1	4.1	4.8	6.1	7.2	6.3	6.3	6.6	4.1	2.6	2.7	2.9	4.0	4.0	4.6	3.5	2.8	2.7	2.4	9.1	13.7	24	13.7	2.4	4.9	0	0
13	9.9	3.1	1.9	1.7	4.2	11.0	12.5	18.9	18.2	12.6 17.7	14.1	7.8	8.7	10.4	8.9	8.7 2.0	9.2	9.6	6.9	7.2	20.2	26.5	22.2	20.6	24	26.5	1.7	11.4	0	0
14	16.3 18.1	14.7 17.1	17.0 5.1	18.8 6.1	18.1 2.7	16.6 2.6	17.2 2.7	18.1 3.7	18.9 2.5	2.4	8.5 2.1	5.6 1.9	3.9 2.5	3.3 2.3	2.6 2.4	4.7	2.4 3.4	3.0 2.7	7.6 3.0	4.1 4.4	2.8 3.2	10.3 3.0	19.7 2.8	17.8 2.9	24 24	19.7 18.1	2.0 1.9	11.1 4.3	0	0
16	3.1	3.0	3.7	4.2	3.2	2.9	3.4	3.8	4.0	4.8	5.3	4.1	3.5	3.4	2.8	3.1	3.1	3.5	2.8	2.0	2.7	2.2	2.0	2.2	24	5.3	2.0	3.3	0	0
17	1.5	2.0	1.4	1.6	2.0	3.6	9.8	10.5	5.2	2.6	1.8	2.4	3.2	4.3	7.6	9.3	7.9	4.6	4.7	4.4	4.1	3.1	3.0	2.8	24	10.5	1.4	4.3	0	0
18	3.3	3.1	2.8	2.9	2.5	2.5	2.4	2.1	2.3	2.7	2.9	3.5	4.7	2.7	9.6	14.8	5.8	3.0	3.3	2.9	4.8	6.7	3.3	2.8	24	14.8	2.1	4.0	0	0
19	1.9	1.6	1.7	1.3	1.2	1.0	1.2	1.5	1.1	1.7	1.3	1.2	2.0	1.6	2.2	1.9	2.2	1.8	2.3	2.6	4.4	4.8	2.7	4.3	24	4.8	1.0	2.1	0	0
20	2.1	1.8	2.7	3.6	5.8	3.5	3.6	4.7	5.7	4.8	6.3	6.5	8.8	8.3	9.5	9.5	12.2	11.6	4.0	2.9	3.2	2.7	2.3	2.0	24	12.2	1.8	5.3	0	0
21	2.2	2.2	2.0	1.9	1.8	1.6	1.7	1.8	2.1	1.9	1.6	2.0	2.2	2.7	2.9	2.9	3.3	3.9	4.5	4.0	8.6	9.9	5.9	4.0	24	9.9	1.6	3.2	0	0
22	3.9 7.1	5.1 9.7	2.2 18.7	3.1 16.5	2.9 18.8	3.6 17.2	3.4 21.0	3.8 9.3	3.3 6.9	2.8 9.1	2.3 7.5	1.5 5.0	1.8 5.2	2.5 5.2	3.4 4.4	3.6 4.1	3.0 3.4	3.5 4.9	4.5 5.7	6.3 7.6	6.1 10.0	13.8 10.0	8.1 10.5	7.5 8.4	24 24	13.8 21.0	1.5 3.4	4.3 9.4	0	0
24	8.8	10.5	9.9	9.6	9.2	8.9	8.1	5.8	5.7	4.6	3.7	3.7	3.2	3.0	3.3	4.8	3.8	3.8	3.5	9.5	7.2	3.5	3.7	3.5	24	10.5	3.0	5.9	0	0
25	3.1	2.7	2.5	1.9	1.9	1.9	2.3	2.4	4.2	4.9	8.3	4.4	2.0	1.8	1.8	2.1	3.8	3.1	4.9	5.8	2.2	3.1	1.7	1.2	24	8.3	1.2	3.1	0	0
26	1.8	1.3	1.2	1.1	1.1	1.0	1.3	1.6	1.9	1.6	2.0	1.5	2.2	2.9	3.8	2.2	3.1	2.6	2.8	4.2	7.2	6.5	6.6	6.9	24	7.2	1.0	2.8	0	0
27	8.7	2.7	1.5	1.8	1.6	2.3	3.3	6.2	6.8	3.5	2.8	2.5	2.1	С	С	4.9	7.2	8.1	9.5	8.1	11.2	13.7	11.5	11.9	22	13.7	1.5	6.0	0	0
28	13.2	14.6	8.4	1.6	3.3	2.3	4.5	3.8	5.8	5.4	3.7	3.7	3.0	2.6	1.9	2.4	2.5	2.0	2.5	2.0	1.9	1.6	1.7	2.3	24	14.6	1.6	4.0	0	0
29	4.9	4.4	5.5	4.2	5.0	4.1	5.3	11.5	5.6	2.4	2.8	2.6	3.3	2.1	3.3	3.7	9.6	24.6	24.5	16.3	14.6	15.3	19.0	10.4	24	24.6	2.1	8.5	0	0
30	16.8	17.4	0.6	1.1	1.2	1.5	1.5	1.9	2.2	2.1	2.5	3.1	3.5	5.3	14.9	10.7	8.2	16.1	17.7	11.8	12.6	11.6	11.3	8.7	24	17.7	0.6	7.7	0	0
Count	30	30	30	30	30	30	30	30	30	30	30	30	30	29	29	30	30	30	30	30	30	30	30	30	718			i	U	
Maximum	19.0	20.2	18.7	18.8	20.1	23.5	22.8	28.0	26.1	23.7	14.1	7.8	8.8	10.4	14.9	14.8	12.2	24.6	24.5	16.3	20.2	27.4	22.2	20.6	24					
Minimum	1.5	1.3	0.6	1.1	1.1	1.0	1.2	1.5	1.1	1.6	1.3	0.6	0.7	0.7	0.5	0.6	0.5	0.4	0.5	0.6	0.9	1.2	1.5	1.2	22					
Average	7.7	6.8	5.5	4.9	5.4	6.1	7.6	7.9	7.2	5.5	4.5	3.3	3.3	3.4	4.1	4.5	4.6	5.4	5.7	5.6	7.4	8.5	8.4	7.5						
Percentile		10		20	•	30	•	40		50		60		70	•	80	•	90		95		99		100			Maximur	m Hourly		28.0
Data		1.8		2.2		2.6		3.1		3.7		4.7		6.2		9.1		14.1		18.3		23.7		28.0			Maxim	um Daily		13.0 5.9
Notes		- Calibration	n / Span Cyc		A - No Data		Т-	- Test	А	- MOE Audit	M		nt Malfunct																	

										De	NO ₂ - Co cember pb)	OURTICE	2017																	
Day	Hour	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count M:	aximum N	linimum	Average	Hrs>200	Dave>100
Day 1	4.0	6.5	7.9	7.1	7.1	9.5	9.8	13.3	14.3	11.7	7.1	3.9	2.8	3.7	3.6	4.5	8.4	9.2	14.0	17.1	17.1	23.8	20.6	17.9	24	23.8	2.8	10.2	0	0
2	15.6	15.5	14.5	5.8	14.4	15.6	15.1	14.5	13.7	12.2	10.7	11.0	9.6	8.2	6.5	10.0	9.7	7.0	10.5	18.5	19.3	19.6	20.8	16.7	24	20.8	5.8	13.1	0	0
3	15.6	15.2	16.2	13.5	11.0	11.1	9.7	11.6	10.1	8.8	8.7	7.1	7.0	7.6	8.7	10.1	12.8	14.9	21.0	21.0	20.0	17.7	13.7	14.9	24	21.0	7.0	12.8	0	0
4	13.6 3.4	12.3 3.7	13.3 4.1	13.5 3.1	15.3 2.8	17.1 2.5	17.5 2.8	15.9 2.0	16.7 1.6	13.6 2.1	10.2 1.6	9.1 0.6	C C	C C	C C	8.7	10.6 8.7	6.7 8.2	4.8 6.9	4.1 5.6	4.3 5.9	3.9 4.9	3.6 6.9	3.0 6.7	20 21	17.5 8.7	3.0 0.6	10.4 4.4	0	0
6	6.5	9.0	4.6	4.3	3.7	3.3	3.7	3.8	4.3	5.5	6.2	5.8	5.9	6.7	7.4	7.0	6.4	4.9	6.1	8.4	12.0	11.0	10.3	9.7	24	12.0	3.3	6.5	0	0
7	8.3	7.9	8.6	9.7	10.4	9.7	12.3	13.2	15.4	14.8	12.9	11.3	6.6	5.8	2.4	3.5	5.2	5.8	7.2	6.8	7.1	7.6	7.9	7.6	24	15.4	2.4	8.7	0	0
8	7.3	4.1	6.4	2.9	0.9	1.2	0.8	1.1	1.6	2.4	2.6	2.0	1.9	1.2	1.4	1.0	1.0	2.0	2.8	2.4	3.7	5.2	7.4	8.4	24	8.4	0.8	3.0	0	0
9	10.1	12.0	7.5	8.3	13.2	15.8	19.0	3.5	3.7	4.2	3.0	2.8	2.8	С	С	С	С	С	11.1	11.3	13.0	18.6	19.1	20.7	19	20.7	2.8	10.5	0	0
10	20.8	18.8	5.6	1.1	0.6	2.1	1.0 4.7	1.8	2.0	2.6	1.9	2.0	1.2 C	2.2 C	3.5	3.6	4.9	5.1	4.6	5.2	6.1	9.3	3.9	0.8	24	20.8	0.6	4.6	0	0
11	0.7 6.2	1.1 7.1	0.3 6.0	0.3 5.1	0.0 6.1	1.4 6.7	7.2	4.0 8.4	3.7 10.3	1.2 9.5	1.2 7.8	0.9 A	A	3.0	4.5 2.3	1.6 2.5	1.1 4.6	1.5 7.2	1.5 4.1	2.0 5.8	11.8 4.4	8.3 4.2	5.8 5.6	5.5 3.6	22 22	11.8 10.3	0.0 2.3	2.9 5.8	0	0
13	2.4	2.3	1.8	2.0	2.2	2.9	4.2	3.9	3.8	3.7	2.9	2.2	2.2	2.0	3.3	5.9	13.3	20.2	20.9	9.4	6.6	4.2	3.6	4.2	24	20.9	1.8	5.4	0	0
14	5.6	2.5	1.7	1.7	3.1	3.1	4.4	9.8	5.9	3.6	3.1	2.3	4.0	3.8	6.5	5.0	8.4	17.2	18.0	31.6	25.8	36.1	37.3	36.3	24	37.3	1.7	11.5	0	0
15	36.1	36.4	35.1	30.8	28.3	28.6	31.3	34.5	34.7	32.8	31.4	28.0	18.7	4.5	5.7	3.1	2.7	13.8	10.5	11.1	14.1	13.1	12.2	8.4	24	36.4	2.7	21.1	0	0
16	7.0	8.2	5.0	5.5	8.9	10.0	13.9	11.2	2.9	1.7	1.8	1.9	2.3	1.6	2.0	3.3	6.0	11.0	23.8	16.6	13.4	17.1	18.1	12.6	24	23.8	1.6	8.6	0	0
17	18.7 4.4	15.7 4.1	14.8 4.2	16.2 6.7	8.4 6.2	3.8 9.4	3.8 13.7	4.6 11.1	5.4 16.1	3.1 16.9	4.0 18.9	4.4 20.2	5.6 26.1	10.0 26.4	6.0 26.7	3.9 29.0	4.9 32.6	6.2 30.8	6.3 27.8	6.3 18.3	5.8 9.9	4.7 11.5	5.0 10.1	4.1 7.4	24 24	18.7 32.6	3.1 4.1	7.2 16.2	0	0
19	7.1	7.4	8.1	6.7	5.9	4.3	4.9	5.7	4.9	5.6	5.2	6.2	6.8	7.3	8.3	11.3	10.7	7.2	14.5	9.2	11.4	17.7	6.3	8.1	24	17.7	4.1	7.9	0	0
20	4.4	3.9	3.8	4.7	3.5	3.8	4.1	2.6	3.5	2.2	3.4	2.8	2.5	2.7	3.7	3.7	3.5	3.4	3.9	3.4	4.0	2.8	3.2	3.6	24	4.7	2.2	3.5	0	0
21	2.6	3.4	2.4	2.6	1.8	3.4	3.2	9.1	12.3	6.8	7.6	6.3	6.1	6.6	5.6	9.1	4.5	10.6	11.2	8.6	10.0	8.0	8.5	4.7	24	12.3	1.8	6.5	0	0
22	4.5	5.6	3.8	6.8	3.9	3.6	3.8	2.8	2.7	3.0	3.5	3.8	5.6	4.3	4.4	5.2	5.7	5.4	5.4	6.8	6.1	5.1	6.6	5.7	24	6.8	2.7	4.7	0	0
23	5.2 7.1	5.3 12.1	4.3 18.5	5.3 12.3	4.2 6.6	5.9 10.8	5.6 18.8	7.4 8.3	10.8 7.3	11.0 4.3	6.2 4.2	8.9 3.2	12.9 3.2	11.2 3.8	13.1 3.3	17.1 6.8	21.3 6.6	27.8 2.8	27.5 1.6	27.0 1.5	21.2 2.0	8.1 1.6	6.6 1.5	7.5 1.4	24 24	27.8 18.8	4.2 1.4	11.7 6.2	0	0
25	1.2	1.3	1.2	1.1	1.0	1.0	1.8	4.8	6.0	4.1	2.0	1.9	1.9	1.8	1.6	2.1	2.3	3.6	3.5	2.9	3.9	3.5	3.5	3.6	24	6.0	1.0	2.6	0	0
26	3.0	2.6	2.5	3.2	3.1	3.5	4.1	5.4	7.8	5.2	3.5	2.8	2.3	2.1	2.1	2.3	3.4	3.9	6.1	8.7	9.1	8.7	10.8	9.7	24	10.8	2.1	4.8	0	0
27	10.8	10.2	8.4	8.9	9.9	7.8	18.8	29.8	27.5	10.0	5.0	1.7	1.1	2.1	2.2	1.9	3.3	4.0	4.7	5.5	7.7	7.7	6.6	5.8	24	29.8	1.1	8.4	0	0
28	4.8	5.7	8.4	10.3	16.2	20.5	14.9	10.5	7.4	5.9	3.6	3.2	1.7	2.2	1.9	4.0	7.5	14.3	19.0	14.1	8.2	7.2	7.9	5.2	24	20.5	1.7	8.5	0	0
29	4.2	3.7	5.2	4.2	6.2	5.5	4.7 23.4	6.2 23.1	5.5	7.0	6.7	6.1	4.7	7.3	7.1	6.2 5.6	6.2	7.6 5.3	8.2 5.4	7.2	10.1	16.7	21.6 2.2	25.9	24	25.9	3.7	8.1	0	0
30	15.8 1.6	11.0 2.1	16.8 2.5	14.0 1.9	18.8 2.1	20.7 3.6	5.1	4.4	20.2 4.0	21.9 2.3	19.3 1.7	14.0 1.6	10.6 1.5	5.8 1.4	4.8 1.6	3.0	6.5 3.9	12.6	14.4	3.4 3.3	2.1 2.4	3.2 1.5	2.2	2.4 2.7	24 24	23.4 14.4	2.1 1.4	11.5	0	0
Count	31	31	31	31	31	31	31	31	31	31	31	30	27	27	28	29	30	30	31	31	31	31	31	31	728	****	4.7	5.5		
Maximum	36.1	36.4	35.1	30.8	28.3	28.6	31.3	34.5	34.7	32.8	31.4	28.0	26.1	26.4	26.7	29.0	32.6	30.8	27.8	31.6	25.8	36.1	37.3	36.3	24					
Minimum	0.7	1.1	0.3	0.3	0.0	1.0	0.8	1.1	1.6	1.2	1.2	0.6	1.1	1.2	1.4	1.0	1.0	1.5	1.5	1.5	2.0	1.5	1.5	0.8	19					
Average	8.3	8.3	7.8	7.1	7.3	8.0	9.3	9.3	9.2	7.7	6.7	5.9	5.8	5.4	5.4	6.2	7.6	9.3	10.5	9.8	9.6	10.1	9.6	8.9						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximu	m Hourly		37.3
Data		2.0		2.9		3.8		4.7		5.9		7.2		9.1		12.2		17.5		21.3		34.1		37.3				um Daily Average		21.1 8.1
Notes		C - Calibratio	n / Span Cyc	le N	A - No Data	Available	T-	- Test	A	- MOE Audit	. М	l - Equipme	nt Malfunct	ion / Down	R -	- Rate of Cl	hange													

												NO₂ - R	undle Roa																		
												pb)		2017																	
	Hour											p2)																			
Day		0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Ma	aximum M	inimum	Average	Hrs>200	Days>100
:		0.1	0.0	0.5	0.0	0.4	0.0	0.2	0.5	4.0	5.0	3.9	3.1	2.1	1.7	0.3	0.6	1.6	2.2	3.3	2.8	2.2	1.9	1.5	1.4	24	5.0	0.0	1.6	0	0
		1.6 2.0	1.1 1.7	0.7	1.2	1.2 4.0	2.8	4.9	8.1 8.0	7.7 8.1	3.6 7.9	5.4	4.1 4.6	1.5	6.4	0.5	0.7	4.6	2.7	5.4 6.6	10.2	17.3 6.8	3.9	7.6	3.1	24 24	17.3 8.4	0.5	4.4	0	0
		1.7	7.6	1.8 12.2	6.5 3.9	6.0	3.8 9.7	7.6 12.2	10.7	8.8	5.8	8.4 7.1	6.9	6.3 9.5	8.3 9.4	5.3 8.3	2.4 6.6	3.3 6.3	7.6 2.7	0.0	5.6 0.2	0.8	3.2 0.0	3.0 0.0	1.2 0.0	24	12.2	1.2 0.0	5.2 5.6	0	0
		4.3	12.5	6.7	5.0	1.5	4.2	5.3	5.3	7.4	7.4	6.8	5.2	5.5	4.7	3.9	4.4	6.3	5.1	2.6	1.5	0.6	1.6	7.9	7.8	24	12.5	0.6	5.2	0	0
	6	5.5	5.1	3.6	2.1	2.2	2.7	6.7	8.0	7.3	4.5	9.2	11.4	10.3	6.5	5.0	5.7	6.7	10.3	7.9	7.1	9.8	10.4	8.7	8.5	24	11.4	2.1	6.9	0	C
	7	6.0	11.1	2.9	2.4	4.9	5.6	3.6	5.0	4.9	7.4	3.2	7.4	5.8	3.9	1.8	5.0	2.6	2.2	3.1	6.0	25.0	30.9	25.6	1.6	24	30.9	1.6	7.4	0	C
		3.3	8.7	5.8	2.0	1.4	1.1	0.8	1.3	1.7	1.5	1.8	1.7	1.0	1.4	0.7	1.1	1.4	1.6	3.7	2.0	3.1	8.1	5.8	9.7	24	9.7	0.7	3.0	0	C
	_	6.5	3.9	2.0	1.9	0.2	0.0	1.4	4.2	0.2	0.0	0.0	0.0	0.0	0.4	0.7	1.6	1.7	4.0	2.7	2.6	4.6	5.7	2.2	1.1	24	6.5	0.0	2.0	0	
10		1.0	0.6	0.0	0.0 1.0	0.2	5.2 0.0	12.2 0.1	17.0 0.8	7.2 1.8	6.3 0.2	13.1	9.6 0.0	11.2 0.3	6.5 0.2	0.7 0.1	0.5	0.9	0.8	0.9	0.5 0.0	0.3	0.0 2.6	0.0 1.8	0.0 1.6	24 24	17.0 2.6	0.0	3.9 0.5	0	0
1:		1.3	0.0	1.0	0.5	0.0	0.0	1.2	1.7	2.8	1.1	0.0 1.5	1.7	1.1	1.2	1.7	0.4	0.0	0.0 0.4	2.0	4.3	0.0 8.9	2.5	2.9	2.5	24	8.9	0.0	1.8	0	
1		2.9	3.7	3.3	4.3	3.6	4.4	3.9	4.9	8.9	4.9	6.9	4.7	3.4	8.5	5.6	6.0	5.1	4.5	4.3	2.2	4.3	8.9	7.5	5.9	24	8.9	2.2	5.1	0	
14		7.1	3.5	5.4	3.8	4.7	3.3	4.3	7.0	8.3	10.1	13.0	6.0	3.8	8.8	13.1	11.5	12.6	12.1	10.8	12.5	4.2	3.0	3.4	2.9	24	13.1	2.9	7.3	0	C
1	5	1.4	3.7	13.6	3.1	2.7	2.4	3.0	3.9	5.4	6.0	2.5	1.3	1.4	1.6	1.2	2.1	2.4	0.3	0.0	0.0	0.0	0.0	0.0	0.0	24	13.6	0.0	2.4	0	0
10	6	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.6	0.1	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.9	2.5	0.9	1.3	2.1	0.8	0.4	24	2.5	0.0	0.5	0	0
1		1.0	1.1	1.4	1.3	2.1	2.1	2.3	3.8	12.4	14.6	5.1	6.4	5.0	5.1	3.7	4.0	2.4	2.7	4.3	6.7	9.7	10.1	9.1	10.4	24	14.6	1.0	5.3	0	0
11		14.0 23.1	15.6 17.4	15.5 12.4	12.2 11.1	18.0 7.3	20.0 6.8	18.9 10.4	18.5 11.3	19.1 7.0	15.0 7.3	10.0 7.4	7.9 6.6	8.6 6.6	6.8 6.4	4.0 8.1	4.5 7.2	3.4 2.4	3.9 2.4	5.5 1.8	9.3 1.8	11.8 6.2	9.6 2.6	11.3 3.3	11.2 15.2	24 24	20.0 23.1	3.4 1.8	11.4 8.0	0	0
21		11.8	23.8	20.1	20.7	20.4	10.1	11.8	11.0	14.7	20.7	14.3	10.9	8.4	7.5	5.8	7.2	6.9	6.3	7.1	5.5	11.6	5.1	7.4	9.0	24	23.8	5.1	11.6	0	
2:		9.4	8.8	15.2	10.0	6.4	4.7	4.5	4.4	9.9	11.8	7.1	5.2	4.1	4.4	4.3	6.0	13.7	16.2	18.7	12.7	5.7	7.3	5.2	3.4	24	18.7	3.4	8.3	0	0
2		3.3	13.6	11.2	4.6	2.6	4.1	2.7	5.1	4.4	4.1	4.3	5.0	4.1	2.6	1.7	5.5	3.2	5.9	6.1	5.4	8.7	8.6	7.6	4.7	24	13.6	1.7	5.4	0	0
2	3	4.2	3.3	13.0	15.5	19.9	5.9	10.0	14.2	17.4	9.1	4.9	4.0	3.3	6.3	4.9	3.4	6.8	6.0	3.7	4.2	4.4	6.8	9.8	3.2	24	19.9	3.2	7.7	0	0
24		4.1	2.0	5.1	2.0	1.5	2.1	1.9	4.4	4.5	4.3	4.4	1.7	1.7	2.5	4.4	3.9	3.1	3.3	4.7	4.4	2.8	2.4	1.8	2.9	24	5.1	1.5	3.2	0	0
2		2.5	3.2	2.5	3.4	4.6	3.5	3.4	3.9	3.9	4.5	3.7	3.4	3.8	6.2	5.7	4.8	5.0	8.0	7.7	3.7	2.6	1.8	0.3	2.7	24	8.0	0.3	3.9	0	0
21		0.0	0.8	3.6	1.2	2.4	1.3 6.0	5.5 6.4	4.6	3.6 4.3	5.4	5.2	C	C	13.6	12.7	6.3 7.7	3.5	2.9	1.3 8.6	1.6	9.8	10.1	12.0	13.7	22	13.7	0.0	5.5 6.8	0	0
2.		9.4 4.1	6.3 4.2	6.2 3.1	3.5 8.2	3.6 20.0	12.5	7.8	5.1 7.3	14.9	6.3 9.3	7.8 9.4	4.4 3.1	6.9 4.6	11.0 3.9	8.0 5.6	8.7	4.8 8.0	4.6 4.5	10.7	11.2 5.9	6.3 4.1	7.8 2.7	8.5 4.8	8.4 3.2	24 24	11.2 20.0	3.5 2.7	7.1	0	
2		3.3	3.8	3.4	3.7	1.7	1.6	4.9	3.9	5.7	3.3	2.3	2.2	1.8	1.6	1.4	1.6	1.2	1.1	1.1	0.9	0.7	0.5	0.5	0.5	24	5.7	0.5	2.2	0	0
31		0.5	0.5	0.4	0.4	0.5	0.9	1.4	2.2	2.1	2.0	1.5	3.4	8.3	9.9	7.7	8.3	11.9	13.0	12.9	12.6	9.9	8.6	7.1	6.9	24	13.0	0.4	5.5	0	0
3:	1	6.0	4.6	5.1	4.0	4.1	5.7	7.6	7.3	6.2	6.2	4.5	3.9	4.4	4.6	5.4	5.8	2.7	3.7	6.4	11.9	15.5	17.2	14.7	15.7	24	17.2	2.7	7.2	0	0
Count		31	31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	31	742			T		
Maximum		23.1	23.8	20.1	20.7	20.4	20.0	18.9	18.5	19.1	20.7	14.3	11.4	11.2	13.6	13.1	11.5	13.7	16.2	18.7	12.7	25.0	30.9	25.6	15.7	24					
Minimum		0.0 4.6	0.0 5.6	0.0 5.7	0.0 4.5	0.0 4.8	0.0 4.3	0.1 5.4	0.5 6.3	0.1 6.9	0.0 6.3	0.0 5.6	0.0 4.5	0.0 4.5	0.0 5.2	0.0 4.3	0.0 4.3	0.0 4.4	0.0 4.6	0.0 5.0	0.0 5.0	0.0 6.4	0.0 6.0	0.0 5.9	0.0 5.1	22					
Average		4.0	5.0	3.7	4.5	4.8	4.3	3.4	0.3	0.9	0.3	3.0	4.5	4.5	5.2	4.3	4.3	4.4	4.0	3.0	3.0	0.4	0.0	3.9	5.1						
Percentile	es		10		20		30		40		50		60		70		80		90		95		99		100			Maximur	m Hourly		30.9
Data			0.4		1.4		2.3		3.4		4.3		5.1		6.5		8.1		11.3		14.0		20.3		30.9			Maxim	um Daily Average		11.6 5.2
Notes		C -	Calibration	/ Span Cvc		A - No Data		T-	Test	Δ	- MOE Audit	: М		nt Malfunct		R -	- Rate of Cl	nange													

											No	NO ₂ - Rovember	undle Roa	d 2017																	
	Hour																														
Day	_	0	100	200	300	400	500	600	700 10.2	800	900	1000	1100 5.6	1200 5.0	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300		aximum N			Hrs>200 I	Days>100
	1 13	.4	15.8 5.3	11.0 6.8	11.8 4.9	9.2 5.8	13.7 6.6	13.2 10.4	15.9	10.2 18.6	15.2 13.0	10.4 13.1	11.2	9.5	4.4 11.6	5.5 10.5	9.5 8.7	6.1 9.5	5.2 12.8	11.9 9.9	5.1 13.7	7.2 14.1	3.8 9.9	5.0 7.3	5.8 4.8	24 24	15.8 18.6	3.8 4.8	8.9 10.0	0	0
		.3	1.8	1.7	1.5	1.5	1.5	6.5	4.9	3.9	2.2	1.4	1.3	1.1	0.9	0.7	0.9	0.8	0.9	1.2	2.2	2.7	1.0	2.3	1.8	24	6.5	0.7	2.0	0	0
		.3	1.1	0.6	0.5	0.5	1.9	4.3	3.5	3.7	2.8	1.6	1.2	4.1	1.3	1.0	1.1	1.9	2.0	3.1	2.7	2.0	2.2	2.0	1.4	24	4.3	0.5	2.0	0	0
		.8	1.8	4.6	2.7	2.1	1.8	1.9	1.7	2.4	5.7	2.7	4.3	4.5	6.1	6.5	10.3	7.3	6.1	5.1	5.2	7.1	8.3	5.3	2.5	24	10.3	1.7	4.5	0	0
	6 2	.8	1.4	1.4	0.9	0.7	0.8	0.9	2.3	2.4	1.4	0.9	0.8	0.9	1.7	1.2	1.0	1.2	0.9	1.0	1.4	1.9	1.0	0.7	0.8	24	2.8	0.7	1.3	0	0
	7 0	.2	0.6	0.6	0.8	2.9	6.6	8.0	6.2	5.5	4.5	3.9	3.0	1.2	1.3	1.5	2.0	6.7	13.2	11.0	7.5	4.7	6.0	3.9	3.7	24	13.2	0.2	4.4	0	0
	8 2	.8	2.3	2.4	2.6	1.7	4.1	4.5	10.9	14.7	16.7	12.0	9.2	9.3	9.0	10.3	11.0	10.4	13.2	10.0	13.3	7.5	7.1	6.5	6.1	24	16.7	1.7	8.2	0	0
	_	.8	6.0	5.4	6.7	6.7	9.4	9.2	12.2	12.7	17.9	18.8	13.5	12.8	11.9	10.2	13.7	10.1	7.9	8.4	1.3	1.0	0.7	0.6	0.3	24	18.8	0.3	8.5	0	0
1		.2	0.3	0.2	0.2	0.3	0.3	0.4	1.0	1.3	0.9	1.1	1.0	2.0	1.0	1.3	1.2	1.8	3.2	5.8	4.2	3.5	3.6	3.7	3.5	24	5.8	0.2	1.8	0	0
1		.2	0.4	0.4	0.3	0.2	0.6	1.2	1.0	2.0	2.1	0.9	0.7	0.6	0.7	2.3	1.8	1.7	3.8	2.0	1.8	2.7	2.6	5.6	2.7	24	5.6	0.2	1.6	0	0
1		.5	2.2 7.9	2.7	2.2 7.3	2.1 4.2	2.8 3.7	6.0 3.6	5.9 6.5	4.0	4.1 11.9	3.9 10.1	4.2 7.3	3.8 6.0	4.9 9.7	8.8 13.2	7.7 11.8	8.9	8.2 15.6	7.2 16.1	6.2 9.4	6.6 9.5	8.1	7.4 10.4	5.5 6.6	24 24	8.9 16.1	2.1 3.6	5.3 9.2	0	0
1		.0	3.8	6.1 4.1	9.4	6.4	5.1	4.2	6.0	10.9 8.2	14.3	13.2	7.3 9.7	9.2	6.7	7.2	4.6	12.7 10.1	18.6	16.1	16.6	16.5	9.9 13.8	9.7	10.6	24	18.6	3.8	9.6	0	0
1		.6	8.3	8.3	7.9	6.1	8.8	10.6	8.9	7.5	5.2	6.1	5.4	5.3	4.0	6.2	11.3	8.6	14.6	7.3	7.9	9.1	5.9	6.4	5.3	24	14.6	4.0	7.7	0	0
1		.9	4.8	7.0	6.3	5.0	4.7	5.5	6.8	6.6	9.2	7.5	3.7	2.1	1.6	1.5	1.6	1.4	1.3	0.9	0.7	0.5	0.4	0.3	0.4	24	9.2	0.3	3.5	0	0
1		.3	0.2	0.1	0.3	0.3	0.5	0.8	2.0	1.7	1.1	1.2	1.7	5.2	7.9	8.7	11.3	13.4	10.6	16.2	15.2	13.3	6.7	7.0	6.7	24	16.2	0.1	5.5	0	0
1	8 4	.0	6.5	4.7	5.4	3.9	3.5	4.5	4.7	8.1	7.3	8.5	5.7	6.8	9.9	10.1	8.2	6.3	7.6	4.5	4.7	5.5	3.9	2.7	2.2	24	10.1	2.2	5.8	0	0
1	9 1	.4	1.1	1.1	1.0	0.5	0.4	0.5	0.4	0.5	0.4	0.4	0.2	0.5	1.0	0.7	0.6	0.8	0.8	0.7	0.8	1.3	1.1	1.3	1.4	24	1.4	0.2	0.8	0	0
2	0 0	.2	0.3	0.3	0.5	8.7	8.0	10.1	10.6	11.5	10.0	9.4	9.9	11.9	12.6	14.2	14.8	16.1	20.2	10.3	7.2	11.2	9.2	6.6	5.7	24	20.2	0.2	9.1	0	0
2	1 4	.7	5.0	6.2	4.4	4.7	5.5	4.6	4.8	4.5	6.2	6.6	5.5	4.2	5.0	5.7	6.1	7.1	7.8	8.8	9.2	8.2	4.6	2.6	1.3	24	9.2	1.3	5.6	0	0
2	2 1		1.3	0.9	0.8	0.6	1.2	1.9	3.8	4.8	4.3	3.4	6.6	2.6	3.2	9.0	5.6	3.9	1.6	0.7	1.3	1.6	1.5	1.7	2.8	24	9.0	0.6	2.8	0	0
2			12.2	14.0	8.7	5.6	6.1	5.8	16.3	24.1	19.1	15.2	13.4	10.9	11.0	13.4	9.9	10.0	10.0	10.7	11.2	13.6	15.4	16.2	14.3	24	24.1	5.6	12.2	0	0
2	4 14		14.2	15.9	13.1	19.4	15.1	14.3	16.0	11.2	13.4	6.8	8.9	6.6	8.1	6.2	10.5	6.8	7.6	9.3	14.3	11.9	9.0	10.2	10.0	24	19.4	6.2	11.4	0	0
2	5 9 6 0		10.0	10.6	4.0	5.6 0.7	4.6	6.8 0.3	5.8 0.5	12.5 0.7	15.8	15.6	7.3	3.9 1.7	2.8	1.9 5.6	1.9 3.4	3.3	1.4	2.3	5.9 5.7	1.4 9.8	1.7	1.0	0.7 10.0	24	15.8 10.0	0.7 0.3	5.7	0	0
2	7 10		1.0	0.5 0.6	0.3	0.7	0.3	0.5	2.2	2.9	1.1 3.0	1.3 2.1	1.1 3.5	2.3	4.2 7.2	4.1	4.0	4.7 3.5	4.4 3.9	4.1 10.6	12.2	4.5	8.6 6.2	8.5 3.6	4.7	24 24	12.2	0.3	3.3 4.0	0	0
2		.6	6.8	7.2	5.2	6.0	6.0	6.5	10.9	13.9	11.3	8.8	12.0	9.6	8.6	9.9	10.0	11.7	8.6	11.6	8.8	7.0	6.9	7.5	6.2	24	13.9	4.6	8.6	0	0
2		.8	2.8	4.5	3.5	3.8	3.7	5.8	21.4	12.5	5.4	6.0	7.5	4.6	0.0	J.J	4.3	6.4	10.5	6.4	3.1	3.0	3.0	3.1	9.5	22	21.4	2.8	6.3	0	0
3		.6	4.7	6.0	8.9	12.8	9.5	9.1	14.6	19.1	6.6	6.0	6.7	7.7	14.1	19.8	26.0	23.2	21.5	20.1	22.8	24.3	19.9	19.6	8.2	24	26.0	4.6	14.0	0	0
3	1																													0	0
Count	3	30	30	30	30	30	30	30	30	30	30	30	30	30	29	29	30	30	30	30	30	30	30	30	30	718					
Maximun	14	.9	15.8	15.9	13.1	19.4	15.1	14.3	21.4	24.1	19.1	18.8	13.5	12.8	14.1	19.8	26.0	23.2	21.5	20.1	22.8	24.3	19.9	19.6	14.3	24					
Minimum		.2	0.2	0.1	0.2	0.2	0.3	0.3	0.4	0.5	0.4	0.4	0.2	0.5	0.7	0.7	0.6	0.8	0.8	0.7	0.7	0.5	0.4	0.3	0.3	22					
Average	4	.7	4.4	4.5	4.1	4.3	4.6	5.4	7.3	8.1	7.7	6.6	5.7	5.2	5.9	6.8	7.2	7.2	8.1	7.8	7.4	7.1	6.1	5.6	4.9						
Percentile	es		10		20		30		40		50		60		70		80		90		95		99		100			Maximur	m Hourly		26.0
			-																										um Daily		14.0
Data			0.8		1.4		2.3		4.0		5.3		6.5		8.2		10.0		13.2		15.3		20.2		26.0				Average		6.1
Notes		C - Ca	libration ,	/ Span Cycl	e NA	A - No Data	Available	Т-	Test	А	- MOE Audit	. M	l - Equipme	nt Malfunct	ion / Down	R	- Rate of C	hange							!						

											NO ₂ - R	undle Roa	d																	
											ecember		2017																	
	Hour									(P	pb)																			
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Ma	ximum M	inimum	Average	Hrs>200	Days>100
1	4.7	5.1	7.4	6.0	6.2	6.5	18.4	14.3	16.1	17.2	6.7	6.0	4.2	5.3	6.5	14.0	16.7	18.5	13.0	10.6	12.6	13.3	11.2	8.8	24	18.5	4.2	10.4	0	C
2	8.7	11.8	8.9	9.5	7.5	7.6	7.7	7.6	7.8	6.3	7.5	8.2	7.3	7.1	7.6	11.1	14.9	10.4	10.7	12.0	10.3	11.4	11.6	11.4	24	14.9	6.3	9.4	0	0
3	10.1	9.1 5.1	7.6 5.9	7.2 4.3	8.3 4.2	7.8	8.3 9.9	7.2 13.8	9.3 16.8	9.5 16.9	6.9 11.2	8.5 8.4	8.8 9.6	8.5 8.2	9.6 8.2	12.3 9.5	14.8 10.1	16.3 11.5	22.1 16.8	14.7 17.8	9.6 12.3	8.3	6.1 14.1	5.9 12.5	24 24	22.1 17.8	5.9	9.9 10.3	0	0
5	4.9 12.9	18.4	15.2	10.8	9.4	5.6 9.3	13.5	11.6	14.7	11.8	9.6	10.1	6.7	7.3	6.8	9.5	10.1 C	11.5 C	4.6	3.8	4.5	9.6 3.5	4.2	3.6	24	18.4	4.2 3.5	9.2	0	
6	4.8	4.7	2.8	2.7	1.8	2.8	3.5	5.7	5.5	6.4	7.0	5.8	5.4	6.6	7.4	10.5	8.0	5.2	6.7	7.7	6.2	1.7	1.2	1.5	24	10.5	1.2	5.1	0	0
7	0.5	0.3	2.4	2.9	5.4	5.0	6.5	12.8	11.2	12.8	c	С	С	8.1	9.8	8.8	7.7	6.7	8.4	11.2	14.9	11.2	13.6	14.2	21	14.9	0.3	8.3	0	C
8	9.7	9.4	9.8	7.8	3.0	4.1	4.6	5.5	6.2	7.6	6.2	5.4	4.7	4.3	4.3	3.6	3.1	3.8	5.1	5.3	6.0	6.7	11.0	11.3	24	11.3	3.0	6.2	0	C
9	13.0	14.9	12.5	9.8	10.2	9.6	11.4	4.9	5.0	6.9	5.2	4.2	3.8	3.7	5.8	С	С	6.3	6.8	8.1	10.0	12.4	12.3	12.7	22	14.9	3.7	8.6	0	
10	15.9	14.4	3.5	0.5	0.5	1.4	0.9	0.5	1.4	1.3	2.7	3.2	2.4	2.9	4.9	5.1	6.3	8.8	6.7	6.6	8.4	10.0	0.0	0.0	24	15.9	0.0	4.5	0	0
11	0.0 12.1	0.0 4.3	0.0 4.5	0.0 4.0	0.0 2.9	0.0 2.8	0.0 3.4	0.6 3.3	1.6 4.6	0.9 7.4	0.8 14.3	2.2 15.9	2.7 3.5	3.4 A	C A	9.8	5.6 10.5	4.5 12.5	2.2 7.4	3.4 8.5	7.4 8.9	2.7 8.7	1.6 9.0	1.7 7.8	22 22	7.4 15.9	0.0 2.8	1.9 7.6	0	
12	7.1	7.4	4.5 8.1	8.1	8.2	9.6	9.2	12.9	20.1	16.9	15.1	16.3	14.9	13.2	9.9	11.9	15.6	18.3	19.1	14.5	11.8	9.9	8.9	7.8 8.9	24	20.1	7.1	12.3	0	
14	8.5	8.3	7.7	7.7	8.1	7.6	7.5	11.4	13.5	13.2	11.9	11.9	15.0	15.5	17.6	17.1	13.5	19.5	38.4	40.5	42.9	40.3	33.3	35.5	24	42.9	7.5	18.6	0	0
15	33.3	33.6	27.2	24.3	22.4	20.5	23.9	30.0	34.6	37.4	39.5	37.5	38.2	24.5	22.2	17.6	15.5	17.4	19.4	21.0	21.3	22.2	21.4	17.1	24	39.5	15.5	25.9	0	C
16	14.1	12.9	13.4	16.0	15.6	11.8	12.9	11.4	8.2	7.5	7.3	6.9	6.9	7.4	7.6	8.0	7.9	9.1	11.1	11.5	11.6	13.5	13.0	11.7	24	16.0	6.9	10.7	0	C
17	11.3	10.5	10.3	13.2	13.9	11.5	10.6	10.1	10.3	11.5	14.6	14.0	13.7	15.9	12.9	11.3	10.8	11.3	10.6	10.5	9.9	9.8	10.9	9.0	24	15.9	9.0	11.6	0	0
18	9.0	11.2	9.8	10.2	9.4	15.5	12.5	12.6	15.1	15.2	15.6	15.4	19.8	21.0	25.6	28.6	32.1	30.7	27.8	28.3	21.7	20.6	19.4	17.1	24	32.1	9.0	18.5	0	0
19	16.7 13.1	16.6 6.3	16.4 5.9	15.1 6.7	7.4	13.4 7.0	12.7 6.6	13.3 7.1	13.4 7.5	14.2 8.1	15.0	15.6 10.3	14.4	17.5 9.9	14.7 9.9	13.3 9.6	16.3 9.9	19.6 9.3	20.8 9.8	21.0 11.8	20.7 14.2	23.5 15.2	24.4 14.9	19.2 15.4	24	24.4 15.4	12.7 5.9	16.7 9.8	- 0	0
20	15.1	15.7	15.4	14.7	14.7	15.6	16.4	18.2	21.2	22.8	9.0 22.3	22.8	24.3	24.7	25.1	23.7	22.6	22.1	20.2	18.4	19.8	20.1	17.9	15.4	24	25.1	14.7	19.6	0	0
22	13.8	13.9	12.0	10.9	10.1	9.6	8.0	7.6	7.3	7.0	7.3	9.0	11.6	6.1	6.7	10.1	13.4	13.9	14.3	14.4	17.4	20.5	17.3	13.9	24	20.5	6.1	11.5	0	0
23	13.6	14.1	14.3	14.0	14.5	15.2	15.4	15.3	15.3	16.2	17.0	17.6	20.4	23.8	21.2	19.3	26.0	28.0	25.7	23.6	24.2	27.6	23.7	22.4	24	28.0	13.6	19.5	0	0
24	25.8	31.1	34.5	30.9	24.1	20.6	22.7	18.8	17.5	15.1	16.5	18.3	19.0	18.6	16.6	16.1	16.2	12.5	8.8	8.8	9.3	10.0	9.5	8.5	24	34.5	8.5	17.9	0	0
25	9.2	9.4	10.0	13.0	13.0	11.3	9.2	9.0	8.7	9.1	5.9	4.3	4.7	4.2	4.2	5.0	5.7	6.4	6.6	4.9	4.7	5.0	4.6	7.1	24	13.0	4.2	7.3	0	0
26	6.8	6.2	5.7	7.5	7.7	8.0	8.2	9.8	12.8	10.3	9.1	6.9	6.3	6.7	8.8	9.7	11.9	13.0	14.8	12.2	16.5	14.8	14.8	15.2	24	16.5	5.7	10.2	0	0
27	16.1	17.9	16.4	15.7	15.8	15.3	16.9	17.0	17.2	14.5	14.2	12.5	11.6	11.1	10.6	10.4	10.0	9.9	9.9	10.2	10.1	10.0	9.1	8.8	24	17.9	8.8	13.0	0	0
28	8.9 8.2	8.8 7.7	9.6 7.9	13.0 9.1	14.0 10.6	15.8 11.0	12.0 9.5	12.1 10.8	13.4 10.6	12.2 11.4	8.1 14.7	9.2 13.3	11.7 12.4	12.0 12.5	12.2 16.4	11.6 13.2	12.6 11.5	14.3 12.0	14.6 12.1	14.1 12.4	11.5 11.8	10.8 13.0	9.0 13.8	8.5 11.3	24 24	15.8 16.4	8.1 7.7	11.7 11.6	0	0
30	12.3	11.2	10.3	10.5	13.5	18.8	18.5	19.8	19.4	23.2	29.7	24.7	19.8	14.2	10.4	10.0	10.6	9.1	8.5	7.1	6.3	5.9	6.4	6.4	24	29.7	5.9	13.6	0	0
31	6.2	6.0	5.9	6.2	6.5	7.3	8.1	9.1	8.2	8.0	8.2	8.8	9.3	9.7	10.8	11.0	11.5	12.8	13.4	11.3	10.4	10.4	10.5	10.0	24	13.4	5.9	9.2	0	0
Count	31	31	31	31	31	31	31	31	31	31	30	30	30	30	29	28	29	30	31	31	31	31	31	31	732					
Maximum	33.3	33.6	34.5	30.9	24.1	20.6	23.9	30.0	34.6	37.4	39.5	37.5	38.2	24.7	25.6	28.6	32.1	30.7	38.4	40.5	42.9	40.3	33.3	35.5	24			J		
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	1.4	0.9	0.8	2.2	2.4	2.9	4.2	3.6	3.1	3.8	2.2	3.4	4.5	1.7	0.0	0.0	21					
Average	11.2	11.2	10.4	10.1	9.8	9.9	10.6	11.1	12.1	12.2	12.0	11.8	11.5	11.1	11.5	12.2	12.8	13.1	13.4	13.1	13.1	13.0	12.2	11.4				,		
Percentiles	_	10		20		30		40		50		60		70		80		90		95		99		100			Maximur	m Hourly		42.9
																											Maxim	um Daily		25.9
Data		4.5		6.6		8.0		9.3		10.5		12.0		13.9		15.8		20.1		24.2		36.8		42.9			Monthly	Average		11.6
Notes		C - Calibratio	n / Span Cy	cle N	A - No Data	Available	T ·	- Test	A	- MOE Audit	. N	l - Equipme	nt Malfunct	ion / Down	R ·	- Rate of C	hange							ı				l		

Figure C-1 Time History Plots of Measured Hourly Average and 24 Hour Average NO₂ Concentrations – Courtice (WPCP) Station

Figure C-2 Time History Plots of Measured Hourly Average and 24 Hour Average NO₂ Concentrations – Rundle Road Station

Appendix D NOX Data Summaries and Time History Plots February 9, 2018

Appendix D NO_X DATA SUMMARIES AND TIME HISTORY PLOTS

Project No.: 160950528 D.1

										o	NOx Co ctober pb)	OURTICE	2017														
F	lour																										
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Maximum Minim		
1	4.9	2.2	3.5	2.3	4.6	8.1	8.0	11.9	9.8	11.2	8.2	5.6	3.0	1.5	1.1	1.3	1.6	0.8	24.7	42.1	26.9	17.1	14.8	12.0		0.8 9.5	
2	12.7	10.2	14.4	19.6	18.3	25.6	37.7	47.3	17.7	6.4	2.6	1.0	0.9	1.2	0.7	1.6	4.6	4.0	19.9	18.3	25.0	21.3	14.8	17.8		0.7 14.3	
3	10.7	8.5	10.5	11.7	18.3	17.2	32.4	40.2	21.9	5.3	2.7	2.6	2.8	1.9	1.8	1.9	1.8	2.4	10.8	16.2	28.7	26.3	24.6	31.1		1.8 13.8	
4	25.2	17.9	3.5	1.5	1.8	1.6	1.6	2.5	2.2	2.3	2.2	1.9	1.6	2.3	2.1	2.2	2.2	2.8	3.5	4.0	4.8	4.6	4.1	3.2		1.5 4.2	
5	6.2	6.4	25.0	16.8	12.9	19.3	32.6	15.7	13.9	8.4	6.2	5.5	6.2	3.9	2.3	2.0	1.9	7.6	14.1	11.3	11.0	8.7	12.9	81.6		1.9 13.8	
6	55.3	29.7	20.7	16.6	23.7	19.8	28.0	24.9	22.5	19.3	17.0	8.6	3.6	4.4	6.2	6.4	6.0	6.0	10.7	18.7	13.2	11.0	3.1	4.8		3.1 15.8	
7	4.5	4.0	8.7	4.3	5.0	2.3	1.6	1.5	0.7	1.9	2.8	12.4	11.0	5.5	2.1	1.5	1.3	1.3	1.6	1.7	1.3	2.1	1.4	1.4		0.7 3.4	
8	1.1	1.4	1.4	1.4	1.3	0.9	1.4	1.5	1.7	1.7	2.1	2.3	1.4	2.0	1.0	1.5	1.3	1.3	7.6	2.5	2.1	3.6	6.1	13.9		0.9 2.6	
9	5.9	4.2	3.2	2.4	0.8	3.8	2.7	6.8	2.9	3.8	3.2	1.6	1.0	1.1	1.2	1.2	0.8	0.9	0.6	1.3	15.5	50.8	29.9	33.7		0.6 7.5	
10	17.1	17.5	6.6	4.6	8.6	40.7	66.7	43.9	10.3	12.1	21.3	12.3	8.7	10.0	7.8	3.3	5.9	8.6	10.9	5.8	6.1	5.0	3.1	1.8		1.8 14.1	
11	3.0	1.9	1.7	2.4	5.2	3.2	7.4	8.3	6.0	5.7	5.4	5.4	5.1	6.0	4.3	3.9	4.2	5.8	3.4	2.9	4.0	3.7	3.0	4.7		1.7 4.4	
12	2.9	2.7	3.4	3.7	4.8	4.7	6.0	5.7	4.9	6.9	9.9	23.2	9.1	22.9	20.7	2.2	5.0	3.3	2.1	1.3	0.9	1.6	1.4	1.7		0.9 6.3	
13	1.6	1.2	1.2	1.2	1.4	1.6	1.6	1.9	2.5	2.0	2.2	2.1	2.5	2.4	4.1	13.2	15.8	15.9	14.4	12.6	14.3	15.1	5.8	2.6		1.2 5.8	
14	2.3	2.0	2.0	1.7	1.4	1.5	4.1	15.1	14.9	17.4	17.2	21.4	22.6	17.0	15.1	11.0	11.5	14.1	19.3	7.2	4.7	2.7	3.5	2.1		1.4 9.7	
15	2.9	3.4	2.5	2.2	2.0	2.4	2.4	2.5	2.5	1.7	1.6	1.2	1.0	1.1	1.2	2.6	2.2	1.8	2.5	2.5	1.5	1.2	1.4	0.7		0.7 2.0	
16	2.3	0.9	1.1	3.4	3.7	7.1	10.4	5.5	3.1	2.5	3.3	3.0	2.5	3.0	3.0	2.2	7.0	10.9	35.7	52.3	49.0	55.0	32.3	28.9		0.9 13.7	
17	25.9	16.2	19.6	34.1	34.5	43.3	49.6	37.2	55.8	21.0	3.0	2.1	2.3	1.8	1.7	1.1	1.4	1.4	1.6	2.0	3.3	4.7	4.4	4.7		1.1 15.5	
18	9.3	36.5	33.7	40.6	29.7	41.9	60.5	43.7	30.7	25.3	11.8	9.3	9.3	5.4	1.8	1.7	1.6	1.5	1.5	1.5	1.8	3.0	3.7	3.5		1.5 17.0	
19	4.1	4.3	5.8	4.5	1.9	1.9	2.1	2.6	2.7	2.7	4.2	2.9	2.7	3.2	3.7	3.9	4.1	7.3	8.8	4.7	5.3	5.2	13.5	25.5		1.9 5.3	
20	14.4	12.6	11.1	7.3	53.3	40.1	84.8	51.4	33.7	18.7	17.7	15.1	10.8	8.1	4.2	3.7	2.6	1.7	1.1	1.2	1.1	2.4	2.6	6.8		1.1 16.9	
21	13.9	24.4	28.3	102.8	135.3	146.9	59.4	63.5	48.7	7.3	5.7	6.1	6.9	4.0	3.4	4.5	6.0	10.7	16.5	5.7	12.0	11.4	11.2	14.2		3.4 31.2	
22	9.3	5.0	4.7	7.4	11.8	5.6	8.2	7.1	5.1	2.9	2.5	2.1	1.9	2.1	3.6	3.3	9.7	9.5	9.0	3.8	5.7	8.0	2.6	1.9		1.9 5.5	
23	3.0	2.1	1.8	6.3	17.9	6.4	8.8	5.2	4.4	4.8	4.3	3.3	5.9	13.5	5.2	3.6	1.7	1.6	5.6	2.4	2.0	2.4	1.6	0.7		0.7 4.8	
24	0.8	0.4	0.6	0.5	0.6	0.8	1.0	0.4	1.1	1.9	2.0	1.6	1.0	1.2	1.1	1.1	1.2	1.0	1.1	1.2	0.9	1.1	1.1	1.1		0.4 1.0	
25	1.1	1.5	1.5	1.4	1.7	2.0	1.8	2.1	1.8	2.2	2.1	3.3	3.0	3.1	2.8	2.8	2.4	2.4	7.0	15.7	23.6	20.3	12.5	16.2		1.1 5.6	
26	32.4	25.0	24.6	26.9	17.1	23.3	40.5	52.0	21.1	18.3	7.8	7.2	15.6	15.8	7.8	3.6	4.6	8.9	9.8	12.4	16.4	19.4	30.5	38.0		3.6 20.0	
27	46.9	28.3	53.8	49.0	45.4	15.4	14.9	16.0	15.2	17.6	2.9	С	С	5.5	3.9	3.0	6.9	7.9	12.0	18.2	23.3	12.0	4.6	2.6		2.6 18.4	
28	1.3	1.6	1.8	3.4	7.7	10.0	4.8	3.9	4.0	4.8	10.5	5.2	6.9	5.4	6.2	11.3	5.4	3.4	7.4	7.8	5.3	4.2	5.7	8.9		1.3 5.7	
29	4.8	5.5	12.4	4.3	9.9	4.2	5.3	6.7	5.7	10.9	4.7	6.3	3.0	4.8	4.8	4.4	4.7	4.4	7.5	2.7	3.0	1.7	1.4	1.6		1.4 5.2	
30	1.3	0.8	1.8	1.3	1.5	2.3	3.0	3.7	2.9	2.8	3.3	2.3	4.3	5.0	4.6	5.5	8.6	8.8	7.9	8.0	5.6	5.9	4.6	3.8		0.8 4.1	
31	2.9	2.9	2.7	2.1	2.0	3.0	3.2	3.3	4.0	6.7	5.6	5.6	3.3	3.3	2.7	4.8	8.2	8.9	12.5	7.4	9.4	5.8	30.8	32.8		2.0 7.2	
Count	31	31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	31	742		
Maximum	55.3	36.5	53.8	102.8	135.3	146.9	84.8	63.5	55.8	25.3	21.3	23.2	22.6	22.9	20.7	13.2	15.8	15.9	35.7	52.3	49.0	55.0	32.3	81.6	24		
Vinimum	0.8	0.4	0.6	0.5	0.6	0.8	1.0	0.4	0.7	1.7	1.6	1.0	0.9	1.1	0.7	1.1	0.8	0.8	0.6	1.2	0.9	1.1	1.1	0.7	22		
Average	10.6	9.1	10.1	12.5	15.6	16.4	19.1	17.2	12.1	8.3	6.3	6.1	5.3	5.4	4.3	3.7	4.6	5.4	9.4	9.5	10.6	10.9	9.4	13.0			
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100		ximum Hourly laximum Daily	146.9 31.2
Data		1.4		1.9		2.5		3.3		4.6		6.0		9.0		14.8		24.7		37.2		60.1		146.9	Me	nthly Average	9.8
Notes	C-	- Calibratio) Span Cy	cle N	A - No Data	Available	T	- Test	A	- MOE Audit	М	- Equipme	nt Malfunct	ion / Down	R-	Rate of C	Change										

											NOx Covember	OURTICE	2017																
										(p	pb)																		
Day	Hour	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Ma	ximum Mi	inimum	Average	
1	19.9	6.0	5.3	3.6	3.9	5.7	30.5	42.2	54.2	39.9	8.8	4.6	4.2	2.8	2.5	5.6	13.4	13.4	10.8	11.7	19.8	14.7	10.6	12.9	24	54.2	2.5	14.5	
2	13.7	13.1	14.0	8.3	3.3	6.5	15.9	9.1	6.4	2.3	2.7	2.6	2.8	2.0	2.0	2.3	2.4	2.5	2.9	2.4	2.2	1.9	1.9	2.6	24	15.9	1.9	5.2	
3	7.2	5.0	3.8	4.2	5.7	6.7	10.0	8.3	8.2	4.8	2.9	3.4	2.9	2.6	1.9	2.9	2.7	3.3	5.7	8.7	21.4	42.2	26.9	14.0	24	42.2	1.9	8.5	
4	13.9	8.5	4.5	6.5	7.2	6.4	7.6	3.8	4.6	3.1	3.4	2.1	2.2	3.8	3.1	8.6	8.1	6.9	5.2	16.1	16.0	20.1	22.2	15.4	24	22.2	2.1	8.3	
5	4.1	2.1	2.2	1.8	1.7	2.4	2.7	1.9	7.5	3.4	4.4	5.3	4.1	9.0	6.9	5.7	1.4	1.7	3.1	1.4	1.7	1.7	1.2	0.8	24	9.0	0.8	3.3	
6	1.5	2.8	1.9	1.6	2.1	1.8	2.3	2.9	3.8 7.6	2.7	2.8	3.5	3.0	3.3	2.7	4.7	4.7	5.7	5.3	5.9	9.2	6.5	8.2	7.1	24	9.2	1.5	4.0	
,	4.4 32.9	5.2 47.4	3.3 38.7	4.3 25.3	7.9 23.8	8.7 33.8	15.3 39.5	16.0 96.9	7.6 51.7	4.3 16.5	5.9 16.2	1.4 5.5	0.3 3.0	0.2 2.1	0.1 4.6	0.0 3.2	0.0	0.1 2.8	0.7 3.6	0.5 4.1	0.3 47.8	6.2 64.4	26.7 55.7	17.3 54.0	24 24	26.7 96.9	0.0 2.1	5.7 28.2	
9	42.7	51.9	46.5	39.6	72.0	67.9	56.6	131.0	108.9	49.2	9.8	6.6	8.5	5.4	4.4	4.8	3.3 3.5	4.1	6.0	2.6	3.3	1.6	2.6	1.6	24	131.0	1.6	30.5	
10	2.9	2.5	1.8	1.7	1.9	3.6	5.2	6.8	4.5	3.5	3.8	2.6	2.5	3.1	2.8	2.8	3.2	6.3	9.6	8.7	7.5	13.2	15.8	13.1	24	15.8	1.7	5.4	
11	11.2	3.6	2.7	1.1	2.9	7.8	9.0	6.2	4.4	3.9	5.7	0.4	0.9	1.4	2.5	0.6	0.0	0.0	0.2	0.2	0.7	0.9	1.2	1.3	24	11.2	0.0	2.9	
12	6.1	6.3	4.5	3.0	5.3	5.1	5.8	7.3	6.6	7.2	8.7	5.0	3.2	2.9	3.0	3.9	3.8	4.3	3.3	2.6	2.3	2.0	10.8	14.6	24	14.6	2.0	5.3	
13	11.3	2.8	2.2	1.4	4.0	11.0	14.1	25.7	22.2	14.0	16.3	8.4	9.8	11.2	9.7	8.8	9.0	9.5	6.5	7.1	35.9	52.9	31.0	26.1	24	52.9	1.4	14.6	
14	19.4	16.3	18.7	26.8	37.8	32.5	41.8	63.5	67.1	37.9	10.6	6.9	4.5	3.6	2.6	1.7	2.0	2.9	8.9	4.1	2.5	23.9	37.7	33.6	24	67.1	1.7	21.1	
15	26.1	25.0	5.0	6.9	2.9	2.5	2.4	3.4	2.4	2.1	2.0	2.0	2.6	2.1	2.5	4.8	3.3	2.7	2.8	4.2	3.0	2.7	2.5	2.7	24	26.1	2.0	4.9	
16	2.8	3.0	3.6	3.9	2.9	3.4	3.2	3.8	4.4	5.7	7.4	5.0	4.2	4.2	3.6	3.5	3.4	3.8	3.4	2.0	3.2	2.0	2.3	2.4	24	7.4	2.0	3.6	
1/	1.5 3.0	2.4 2.9	1.3 2.4	1.6 2.4	2.0 2.4	3.8 2.2	11.2 2.0	13.4 2.0	6.5 2.0	3.6 2.6	1.8 2.7	3.1 3.5	4.5 4.9	5.9 2.5	9.8 11.3	10.9 18.1	8.0 6.2	4.2 2.8	4.5 3.1	4.1 2.8	3.8 4.9	2.7 6.8	2.9 3.2	2.8 2.8	24 24	13.4 18.1	1.3 2.0	4.8 4.1	
19	2.0	1.9	1.8	0.8	0.9	0.9	1.6	2.3	1.7	1.8	1.5	0.9	2.5	1.5	2.4	1.8	2.2	1.6	2.2	2.6	4.2	4.7	2.6	4.1	24	4.7	0.8	2.1	
20	2.1	2.1	3.0	3.5	5.5	3.0	3.1	4.6	6.2	6.0	8.6	8.5	10.5	11.3	12.1	11.3	12.7	11.8	4.0	2.6	2.9	2.5	2.3	1.8	24	12.7	1.8	5.9	
21	1.8	1.9	1.7	1.5	1.5	1.3	1.7	1.9	1.9	1.9	2.7	2.3	2.6	2.9	3.1	2.8	2.9	3.8	4.4	3.8	8.4	9.6	5.7	3.8	24	9.6	1.3	3.2	
22	3.8	5.2	2.0	3.2	2.9	3.5	3.1	3.9	3.5	3.5	2.7	2.6	2.6	3.3	4.4	4.3	2.9	3.4	4.5	6.3	6.2	14.4	8.7	8.3	24	14.4	2.0	4.5	
23	7.2	10.7	24.8	18.2	27.0	22.3	30.6	11.0	7.2	10.4	8.9	5.7	6.8	6.2	4.6	4.2	3.3	4.6	5.4	7.1	9.9	10.0	10.8	8.3	24	30.6	3.3	11.1	
24	8.8	10.5	10.0	9.4	9.1	8.6	7.7	5.4	5.9	5.1	4.4	4.6	3.8	3.7	3.7	5.0	3.4	3.7	3.1	12.9	7.1	3.3	3.4	3.1	24	12.9	3.1	6.1	
25	3.0	2.4	1.9	1.5	1.4	1.7	2.0	2.1	4.3	5.1	10.1	5.2	2.4	1.7	2.8	2.3	3.6	2.9	4.6	5.5	1.9	2.7	1.9	0.9	24	10.1	0.9	3.1	
26	1.8	1.0	1.1	0.9	0.6	0.7	1.0	1.6	1.7 9.0	1.4	2.0	1.4	2.0	2.8 C	3.6 C	2.6	3.1	2.3	2.7	4.0	6.9	6.3	6.4	6.7	24	6.9	0.6	2.7	
2/	8.4 15.3	2.6 16.4	1.2 10.6	1.6 2.1	1.3 3.7	2.0 2.5	3.6 5.0	7.1 4.1	7.6	4.5 7.7	4.0 5.5	3.6 5.1	2.6 4.1	3.6	2.4	7.5 3.1	9.1 2.7	10.0 2.6	11.6 2.8	9.8 2.1	12.6 2.0	14.9 1.6	13.0 1.8	13.6 2.3	22 24	14.9 16.4	1.2 1.6	7.0 4.9	
28	5.0	4.3	5.5	4.2	5.3	4.3	5.8	12.0	6.1	3.0	3.9	3.4	4.1	3.1	4.5	4.6	11.2	39.0	52.4	24.0	21.2	19.6	24.2	13.9	24	52.4	3.0	11.9	
30	21.8	27.7	1.0	1.3	1.4	1.6	1.4	2.0	2.3	2.8	2.7	3.6	4.0	5.8	20.7	11.6	8.7	17.0	18.1	12.9	13.3	12.1	11.8	9.1	24	27.7	1.0	8.9	
31	-		-	-				-		-			-		-	1	-	-	-	-			-				-		
Count	30	30	30	30	30	30	30	30	30	30	30	30	30	29	29	30	30	30	30	30	30	30	30	30	718				
Maximum	42.7	51.9	46.5	39.6	72.0	67.9	56.6	131.0	108.9	49.2	16.3	8.5	10.5	11.3	20.7	18.1	13.4	39.0	52.4	24.0	47.8	64.4	55.7	54.0	24				
Minimum	1.5	1.0	1.0	0.8	0.6	0.7	1.0	1.6	1.7	1.4	1.5	0.4	0.3	0.2	0.1	0.0	0.0	0.0	0.2	0.2	0.3	0.9	1.2	0.8	22				
Average	10.2	9.8	7.6	6.4	8.3	8.8	11.4	16.7	14.4	8.7	5.8	4.0	3.9	3.9	4.8	5.1	4.8	6.0	6.7	6.1	9.4	12.3	11.9	10.0					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximur	m Hourly	131.
																											Maxim	um Daily	30
Data		1.7		2.3		2.7		3.2		4.0		5.1		6.9		10.0		17.1		32.6		62.3		131.0			Monthly	Average	8.
Notes	С	- Calibration	n / Span Cyc	le N	A - No Data	Available	T	- Test	А	- MOE Audit		l - Equipme	nt Malfunct	tion / Down										-					-

											NOx C	OURTICE																	
											cember		2017																
	Hour									(p	pb)													1				1	
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Ma	ximum M	inimum	Average	
1	4.1	7.0	8.2	7.3	7.6	10.1	10.0	14.0	16.1	14.3	8.9	4.9	3.5	4.4	4.3	5.1	9.0	9.8	18.9	25.8	31.0	55.3	42.2	31.3	24	55.3	3.5	14.7	
2	22.7	18.0	18.0	6.4	20.6	24.9	19.4	21.0	19.9	20.3	17.4	16.1	15.0	12.1	9.4	12.0	10.5	7.5	15.6	24.7	24.4	30.6	29.8	19.8	24	30.6	6.4	18.2	
3	17.9 29.3	17.0 24.6	21.1 21.3	15.2 25.5	12.1 29.6	16.7 29.8	10.5 25.6	16.1 22.5	14.0 25.3	13.3 19.5	14.8 13.6	9.1 14.0	8.7 C	9.2 C	10.9 C	11.2	13.5 14.4	15.5 8.1	27.1 4.5	28.3 3.9	48.5 4.0	48.9 3.6	35.8 3.1	35.7 3.3	24 20	48.9 29.8	8.7 3.1	19.6 16.3	
5	3.4	3.7	3.8	23.3	2.6	1.9	2.5	1.5	1.4	1.8	1.3	0.0	c	C	c	9.9	9.7	9.1	7.8	6.2	6.6	5.5	7.7	7.5	21	9.9	0.0	4.6	
6	7.9	10.3	5.2	4.8	4.3	4.3	4.2	4.4	5.1	6.1	7.1	6.4	6.6	7.3	7.8	7.6	7.3	5.4	6.5	8.6	13.2	12.2	11.3	10.6	24	13.2	4.2	7.3	
7	9.1	9.6	9.7	10.7	11.3	10.7	13.5	14.7	17.2	16.6	14.4	12.5	7.7	112.3	3.6	4.6	5.8	6.3	7.8	7.4	7.5	8.5	8.5	7.9	24	112.3	3.6	14.1	
8	7.8	4.8	7.6	3.5	1.3	1.3	0.8	1.3	2.2	3.0	3.7	3.0	2.5	1.5	1.6	1.1	1.4	2.2	3.1	2.7	3.9	5.6	7.6	8.8	24	8.8	0.8	3.4	
9	10.6	12.4	7.7	9.1	14.1	19.1	32.7	3.8	4.2	5.1	3.8	3.9	4.5	С	С	С	С	С	12.1	12.3	13.7	19.9	20.6	22.2	19	32.7	3.8	12.2	
10	22.4	20.2	6.1	1.3	1.3	2.6	1.2	2.1	2.8	3.3	2.4	2.7	1.5	2.8	4.2	4.4	5.1	5.2	4.9	5.4	6.3	9.5	4.3	1.4	24	22.4	1.2	5.1	1
11	1.2 6.0	1.9 7.5	0.6 5.3	0.8 5.2	0.0 5.9	2.3 6.4	5.5 8.8	5.8 9.9	5.7 11.1	2.1 11.4	1.8 10.5	1.7 A	C A	C 3.2	4.7 2.8	0.8 2.3	0.2 4.0	1.0 6.7	0.8 3.5	1.1 4.8	12.5 3.5	11.3 3.4	5.3 4.9	5.0 2.7	22 22	12.5 11.4	0.0 2.3	3.3 5.9	
12	2.0	1.7	1.2	1.6	1.6	2.2	3.9	3.9	4.2	4.8	3.8	3.2	2.9	2.6	3.9	6.5	14.4	23.7	23.2	10.0	7.2	4.2	3.0	3.4	24	23.7	1.2	5.8	
14	6.5	1.8	1.1	0.8	2.4	2.7	4.4	10.8	8.4	4.9	4.4	3.2	6.3	6.0	9.4	5.6	7.9	16.7	17.6	32.7	26.0	54.8	59.8	51.2	24	59.8	0.8	14.4	
15	56.2	60.1	52.9	52.6	54.3	33.0	34.2	42.7	51.4	58.7	63.7	47.9	23.3	4.5	5.6	2.4	1.7	13.4	9.6	10.6	13.7	12.4	11.3	7.7	24	63.7	1.7	30.2	
16	6.3	7.6	4.2	4.7	8.5	9.3	13.5	12.2	2.4	1.3	2.3	1.6	2.7	1.4	1.9	3.7	6.4	11.3	27.8	21.0	13.6	18.3	19.3	12.7	24	27.8	1.3	8.9	
17	28.3	16.9	17.1	16.4	9.3	3.4	2.9	4.9	6.5	3.6	6.4	7.4	8.4	17.5	7.6	3.8	4.8	5.7	5.9	7.5	6.6	4.3	4.3	3.4	24	28.3	2.9	8.5	
18	3.9	3.3	3.7	6.1	5.6	9.1	14.6	11.5	18.4	22.1	26.2	30.6	52.6	52.7	51.1	62.9	87.8	83.6	62.3	24.7	9.3	10.8	9.2	6.5	24	87.8	3.3	27.9	
19	6.4 3.6	6.6 2.9	6.9 2.8	6.5 3.7	5.1 2.7	3.7 2.8	4.3 3.0	4.6 2.0	4.2 2.7	5.4 1.5	5.0 3.3	6.8 2.4	7.4 2.0	8.0 2.2	8.4 4.6	11.8 3.8	3.3	6.3 2.9	14.3 3.6	8.5 2.7	10.8	17.3 2.2	5.7 3.0	7.7 5.0	24	17.3 5.0	3.7 1.5	7.6 3.0	-+
20	1.9	3.3	2.8	2.4	1.0	2.8	2.7	10.0	13.1	7.3	9.4	7.6	8.2	8.1	5.9	11.7	4.1	13.1	12.0	8.7	11.1	7.7	8.1	4.4	24	13.1	1.0	7.0	
22	4.5	5.9	3.1	7.4	3.1	2.8	6.5	2.6	2.9	3.2	3.6	4.3	8.3	5.6	4.9	5.8	6.4	5.1	5.0	6.5	5.8	4.7	6.2	5.4	24	8.3	2.6	5.0	
23	4.4	4.9	3.4	5.4	3.2	5.6	4.9	6.8	10.7	12.9	6.6	10.3	16.7	13.6	14.9	21.2	27.1	65.2	40.7	38.5	26.0	7.6	6.1	6.8	24	65.2	3.2	15.1	
24	6.5	11.6	18.0	11.6	5.8	10.7	18.8	7.8	7.7	5.0	6.1	4.3	3.4	4.5	3.4	8.3	6.8	2.3	1.8	1.5	1.6	1.0	0.7	0.5	24	18.8	0.5	6.2	
25	0.4	0.4	0.4	0.1	0.2	0.3	1.1	3.8	5.3	4.2	1.8	1.7	1.8	1.7	1.2	1.5	1.5	2.9	2.8	2.5	3.1	2.7	2.9	2.5	24	5.3	0.1	2.0	
26	2.2	1.7	1.6	2.4	2.2	2.4	3.2	4.6	8.0	6.1	4.6	3.6	2.4	2.2	2.0	1.7	2.8	3.1	5.1	7.9	9.0	8.0	10.5	9.3	24	10.5	1.6	4.4	
27	10.5 4.7	9.9 6.2	7.8 8.2	8.6 9.9	9.6 16.3	7.4 21.8	20.2 18.0	47.6 14.0	45.9 8.2	16.0 8.4	7.9	2.1 4.9	1.0 2.2	3.0 3.3	2.5 1.9	1.8 4.3	3.2 7.7	3.7 16.3	4.7 22.5	5.6 16.0	9.9 10.1	9.3 7.1	7.5 10.7	6.0 5.9	24 24	47.6 22.5	1.0 1.9	10.5 9.8	
28	3.9	3.3	4.7	3.5	6.1	5.3	4.2	6.3	5.8	9.4	5.6 9.0	8.3	6.7	10.3	9.8	7.3	6.2	8.0	8.6	7.2	11.8	17.3	26.8	38.5	24	38.5	3.3	9.5	
30	18.7	11.2	21.8	14.0	20.2	21.6	25.5	29.1	25.9	36.8	32.6	23.3	15.7	6.8	5.4	5.9	7.0	5.1	4.9	2.8	1.3	3.6	1.5	1.6	24	36.8	1.3	14.3	
31	1.1	1.7	2.7	1.5	1.6	2.9	4.4	3.7	4.0	2.5	1.9	1.5	1.5	1.2	1.1	3.2	3.6	14.0	18.0	2.9	1.7	1.1	1.1	3.0	24	18.0	1.1	3.4	
Count	31	31	31	31	31	31	31	31	31	31	31	30	27	27	28	29	30	30	31	31	31	31	31	31	728				
Maximum	56.2	60.1	52.9	52.6	54.3	33.0	34.2	47.6	51.4	58.7	63.7	47.9	52.6	112.3	51.1	62.9	87.8	83.6	62.3	38.5	48.5	55.3	59.8	51.2	24				
Minimum	0.4	0.4	0.4	0.1	0.0	0.3	0.8	1.3	1.4	1.3	1.3	0.0	1.0	1.2	1.1	0.8	0.2	1.0	0.8	1.1	1.3	1.0	0.7	0.5	19				
Average	10.1	9.6	9.0	8.1	8.7	9.0	10.5	11.2	11.6	10.7	9.8	8.3	8.3	11.4	7.0	8.0	9.8	12.6	13.0	11.3	11.5	13.2	12.2	10.9					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximur	n Hourly	112.
																											Maxim	um Daily	30.
Data		1.7		2.8		3.8		4.9		6.3		7.8		10.0		14.1		22.6		32.7		60.0		112.3			Monthly	Average	10.
Notes	C	- Calibration	n / Span Cyc	le N	A - No Data	Available	T.	- Test	А	- MOE Audit	: М	- Equipme	nt Malfunc	tion / Down	R	- Rate of C	hange												

													undle Roa																	
												ctober pb)		2017																
	Hou	ır										/																		
Day		0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Max	imum Mi	inimum	Average	
	1	0.2	0.0	1.3	0.0	0.6	0.0	0.6	1.7	6.2	8.3	8.4	5.0	3.1	3.0	0.5	0.8	1.9	2.4	4.4	3.8	2.5	2.2	1.7	1.4	24	8.4	0.0	2.5	
	2	1.7	1.1	0.7	1.7	1.3	3.2	7.7	12.8	13.4	5.3	10.9	8.4	2.4	10.6	0.9	1.2	8.8	2.8	5.5	13.3	30.9	4.1	13.4	3.2	24	30.9	0.7	6.9	
	3	2.0 1.8	1.6 13.6	3.8	9.5 3.9	4.9	4.2	13.7 13.6	13.7 12.7	14.4	12.7	13.0	7.0 11.3	10.7 12.5	10.7 11.3	6.6 10.3	2.8 7.8	3.6 6.7	7.8 2.8	6.5 0.0	5.6	6.9 0.0	3.4	3.2 0.0	1.3	24	14.4	1.3 0.0	7.1 7.0	
	-4	4.8	17.3	14.6 7.7	5.2	6.2 1.7	10.5 7.3	7.4	9.1	10.4 13.2	7.6 13.2	9.7 12.1	9.3	9.4	7.9	5.9	5.9	7.7	5.5	3.2	0.2 1.7	0.0	0.0 1.7	9.9	0.0 11.2	24 24	14.6 17.3	0.0	7.5	
	6	6.7	5.8	11.9	3.7	3.7	2.9	9.8	11.8	11.4	7.3	14.0	16.0	16.6	8.2	5.8	6.6	7.4	11.2	8.3	7.2	12.1	10.1	8.7	9.7	24	16.6	2.9	9.0	
	7	6.0	20.2	2.9	2.4	4.9	5.7	3.7	6.9	6.1	8.4	3.8	9.1	7.5	5.4	2.3	5.9	2.6	2.2	3.1	8.8	28.5	38.4	30.7	1.6	24	38.4	1.6	9.0	
	8	3.6	11.8	7.4	2.9	1.6	1.2	0.8	1.4	2.3	2.0	2.3	2.4	1.8	2.3	1.1	1.4	1.6	1.5	3.7	2.2	3.5	12.0	6.0	17.6	24	17.6	0.8	3.9	
	9	9.6	4.6	2.0	2.0	0.1	0.0	1.5	7.2	0.2	0.0	0.0	0.0	0.0	0.4	1.0	1.9	1.7	4.0	2.6	2.5	5.1	6.8	2.5	1.4	24	9.6	0.0	2.4	
	10	1.2	0.7	0.0	0.0	0.2	13.8	46.7	33.3	13.2	10.0	22.0	16.7	16.2	9.5	1.3	0.7	1.5	1.1	1.0	0.5	0.4	0.0	0.0	0.0	24	46.7	0.0	7.9	
	11	0.0	0.0	0.0	1.9	0.0	0.0	0.4	1.2	6.1	0.6	0.0	0.3	0.5	0.4	0.6	0.7	0.1	0.3	0.0	0.0	0.7	6.9	7.1	5.6	24	7.1	0.0	1.4	
	12	3.3	0.0	1.2	0.5	0.8	0.9	1.5	2.3	7.9	2.0	3.2	2.8	1.8	1.7	2.1	0.4	0.9	0.6	5.3	5.3	11.4	3.0	3.5	3.2	24	11.4	0.0	2.7	
	13	3.3	6.4	3.8	5.5	4.2	4.8	4.6	7.8	14.3	5.8	11.3	5.9	4.6	10.7	6.1	7.0	5.8	4.8	4.7	2.5	4.4	13.5	8.3	6.1	24	14.3	2.5	6.5	
	14	10.5	3.6 4.0	7.8	3.9	4.9	3.4	4.4 2.9	7.7	10.1	13.8	17.1	8.1	5.3	11.4	15.9	13.5	14.0	12.4	12.4	13.7	4.3	3.1	3.5	3.4 0.0	24	17.1	3.1	8.7 2.9	
	16	1.3 0.0	0.0	19.2 0.0	3.1 0.0	2.8 0.0	2.3 1.1	1.7	4.2 1.8	8.4 1.6	8.1 1.1	2.8 1.1	1.6 2.7	1.6 0.1	1.7 0.0	1.3 0.3	2.1 0.3	2.4 0.1	0.3 1.1	0.0 3.6	0.0 1.3	0.0 2.4	0.0 2.9	0.0 1.4	0.5	24 24	19.2 3.6	0.0	1.0	
	17	0.0	1.5	1.5	2.5	2.5	9.4	6.0	12.4	31.7	31.5	8.8	10.7	8.0	7.7	5.3	5.3	2.9	3.1	4.8	8.0	10.3	10.3	9.2	11.0	24	31.7	0.0	8.6	
	18	14.9	16.2	21.6	19.3	20.1	22.2	23.1	35.2	34.1	24.8	15.3	11.8	12.8	10.1	5.1	5.2	3.9	4.0	5.6	9.6	14.3	9.9	14.9	11.9	24	35.2	3.9	15.2	
	19	32.6	18.4	18.7	14.5	7.4	7.5	12.2	15.1	9.3	10.9	10.6	9.4	9.2	8.5	10.3	9.1	2.7	2.8	1.9	2.0	6.5	2.8	3.7	18.6	24	32.6	1.9	10.2	
	20	14.0	28.4	22.9	25.1	21.8	11.7	20.6	18.2	23.8	38.4	23.1	16.8	13.3	10.9	7.8	9.7	9.3	6.7	7.4	5.9	12.2	5.1	7.5	9.1	24	38.4	5.1	15.4	
	21	9.4	8.8	23.7	13.3	8.7	5.2	8.8	8.9	17.4	17.8	8.9	6.6	5.0	5.3	4.8	6.6	15.0	16.4	19.2	13.9	5.7	7.6	5.3	3.4	24	23.7	3.4	10.2	
	22	3.4	22.6	16.1	5.2	2.8	7.3	2.9	7.2	5.8	5.4	5.3	6.1	5.2	3.1	1.8	6.7	3.3	5.9	6.0	5.3	8.7	8.5	7.5	5.9	24	22.6	1.8	6.6	
	23	4.2	3.2	15.9	16.1	20.8	6.4	13.1	16.8	27.8	10.9	5.8	4.6	3.8	8.6	5.4	3.6	7.0	8.6	3.6	4.2	5.1	7.2	11.9	3.2	24	27.8	3.2	9.1	
	24	4.0	1.9	7.5	2.2	1.6	2.3	2.1	5.3	6.5	7.1	6.3	2.7	2.6	3.3	5.0	4.3	3.6	3.8	5.2	6.0	3.1	3.0	2.2	3.7	24	7.5	1.6	4.0	
	25	3.2 0.0	4.4 1.1	2.9	6.0 1.4	7.5 2.3	4.8 1.7	4.8 16.7	5.7 8.1	6.3 6.3	7.9 9.0	7.4 9.8	6.5	7.5 C	10.7 19.9	11.4 17.6	6.8 8.3	5.7	9.0 3.5	8.1 1.6	3.9	4.0 14.5	2.0 15.7	0.3 16.5	2.8 35.3	24	11.4 35.3	0.3	5.8	
	27	28.0	19.6	4.5 20.2	9.3	4.8	8.4	9.0	7.0	7.3	11.6	9.8	5.9	10.1	19.9	11.2	9.9	4.0 5.4	4.8	8.9	2.0 12.6	6.6	8.1	11.6	8.8	22 24	28.0	4.8	9.1 10.7	
	28	4.5	4.4	3.4	8.1	30.8	13.1	8.2	11.0	21.7	10.4	11.6	4.0	5.8	5.0	6.5	9.6	8.7	4.9	11.1	6.3	4.3	2.9	5.8	3.5	24	30.8	2.9	8.6	
	29	3.7	4.3	3.7	3.8	1.9	2.0	5.5	4.3	11.7	3.9	3.2	3.1	2.5	2.2	1.9	2.2	1.8	1.5	1.5	1.2	1.0	0.8	0.8	0.6	24	11.7	0.6	2.9	
	30	0.7	0.7	0.8	0.6	0.9	1.2	2.3	3.4	3.3	3.2	2.7	5.1	10.8	12.6	10.6	10.5	13.8	15.6	14.6	15.4	14.3	10.4	8.0	8.4	24	15.6	0.6	7.1	
	31	7.3	5.2	6.3	4.8	5.2	9.6	12.1	12.9	11.9	14.6	11.2	8.5	9.4	8.4	8.4	8.5	3.6	4.3	7.4	13.1	18.7	20.5	15.6	16.3	24	20.5	3.6	10.2	
Count		31	31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	31	742			T	
Maxim		32.6	28.4	23.7	25.1	30.8	22.2	46.7	35.2	34.1	38.4	23.1	16.8	16.6	19.9	17.6	13.5	15.0	16.4	19.2	15.4	30.9	38.4	30.7	35.3	24				
Minimu		0.0	0.0	0.0	0.0	0.0	0.0	0.4	1.2	0.2	0.0	0.0	0.0	0.0	0.0	0.3	0.3	0.1	0.3	0.0	0.0	0.0	0.0	0.0	0.0	22				
Averag	e	6.0	7.5	8.2	5.8	5.7	5.6	8.7	9.9	11.7	10.1	8.7	6.9	6.7	7.4	5.6	5.3	5.1	5.0	5.5	5.7	7.8	7.2	7.1	6.7					
Percen	tiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximur	m Hourly	46.
Data			0.7		1.7		2.9		4.0		5.4		7.1		8.8		11.2		14.9		19.5		32.3		46.7			Maxim	um Daily Average	15. 7.
Notes		C-	- Calibration	/ Snan Cvc		A - No Data		Т-	Test	Α	- MOE Audit	. M		nt Malfunct		R	- Rate of C	hange												

											NOx R	undle Roa	d																
											vember pb)		2017																
	Hour									U-	(uqu																		
Day	(200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Maxi	mum Mini	imum	Average	
	23.5		16.7	18.4	11.8	20.3	18.0	20.7	35.5	35.9	17.9	7.7	6.7	5.6	6.5	19.6	7.4	5.7	16.7	5.7	10.8	4.1	5.5	6.1		35.9	4.1	14.6	
	7.5		9.1	5.3	6.6	7.3	11.2	18.8	33.2	15.5	17.1	13.1	10.8	14.0	11.8	9.6	10.4	13.3	10.3	14.7	16.7	10.8	7.8	5.2		33.2	5.2	11.9	
	2.5		1.8 1.2	1.8 1.0	1.6 0.8	1.9 2.5	9.0 6.4	6.5 6.8	5.5 5.7	3.6 7.8	2.2 3.4	2.2 2.1	1.9 11.8	1.5 2.1	1.5 1.6	1.6 1.6	1.3 2.5	1.3 2.6	1.6 8.4	4.1 4.8	3.5 2.5	1.4 2.6	4.9 2.6	2.7 1.7	24 24	9.0 11.8	1.3 0.8	2.8 3.6	
	2.1		7.1	3.0	2.4	2.1	2.4	2.0	3.1	7.6	3.1	5.0	6.4	6.7	7.6	11.4	7.7	6.6	6.0	6.0	9.5	9.0	7.4	2.9		11.4	2.0	5.4	
	3.0		1.6	0.9	1.0	1.0	1.3	3.5	3.5	2.8	1.8	1.8	1.7	3.5	2.2	1.7	2.1	1.4	1.5	1.9	2.3	1.3	0.9	1.4	24	3.5	0.9	1.9	
:	7 0.5	0.8	0.9	1.1	3.3	7.4	9.1	9.5	6.9	6.9	7.6	9.8	1.9	1.9	2.2	2.8	7.6	15.4	12.7	10.4	5.5	6.8	4.3	4.2	24	15.4	0.5	5.8	
	3.9	2.9	2.8	3.1	2.2	6.9	7.4	33.0	61.8	31.5	20.5	15.5	15.9	15.2	16.8	17.3	13.3	16.3	11.5	14.6	8.3	8.8	7.5	6.7	24	61.8	2.2	14.3	
	6.8		6.6	12.6	7.7	12.1	11.8	35.6	39.3	63.9	28.4	23.2	18.7	16.2	13.4	17.9	12.2	9.1	9.5	1.6	1.3	1.0	1.0	0.7		63.9	0.7	14.9	
10	0.5		0.6	0.5 0.7	0.7 0.4	0.7	1.0 1.7	2.3 1.5	3.1	2.4 3.9	2.2	2.5	4.5 1.2	2.3 1.2	3.7 3.4	1.9	3.0	3.7 4.4	6.6 2.4	4.6 2.3	3.9 5.5	4.3	4.2 8.1	3.9 3.2	24 24	6.6 8.1	0.5 0.4	2.7	
1:	1.6		0.5 3.1	2.7	2.5	0.9 3.2	7.6	6.4	4.7	5.0	1.5 5.2	1.1 6.0	5.4	8.1	3.4 12.5	2.2 8.6	2.1 9.4	4.4 8.6	7.5	6.5	5.5 8.2	3.0 8.6	7.8	5.9		12.5	2.5	6.2	
1	11.8		6.8	7.9	4.8	4.6	4.2	9.3	15.1	15.6	13.3	9.5	7.2	14.7	15.8	13.7	14.1	16.0	17.0	10.3	11.2	11.2	11.2	8.0		17.0	4.2	10.9	
1	5.2		4.4	15.7	7.4	5.8	6.4	18.1	24.6	35.4	23.7	13.4	13.0	9.2	9.3	5.6	11.4	22.4	21.3	28.7	27.9	19.2	12.3	14.1		35.4	4.2	14.9	
1	9.3	8.7	8.7	8.4	6.6	11.0	12.1	10.9	9.3	8.9	8.4	7.2	6.8	7.6	7.7	13.4	9.7	19.4	8.2	9.0	16.5	6.9	7.9	6.5	24	19.4	6.5	9.5	
10	5.7	5.6	11.6	7.8	7.1	6.6	8.7	9.5	10.7	15.3	13.0	5.9	3.2	2.4	2.7	2.7	2.2	1.8	1.4	1.0	0.9	0.7	0.7	0.8		15.3	0.7	5.3	
1	7 0.4		0.3	0.4	0.6	1.1	1.7	3.3	2.9	1.9	2.3	3.0	9.2	14.7	12.2	13.9	14.2	11.1	17.0	16.2	16.9	7.5	7.8	7.5		17.0	0.3	6.9	
11	4.6 9 1.6		5.3 1.2	11.9 1.2	4.4 0.6	3.9 0.7	4.8 0.8	5.2 0.6	8.6 1.1	8.1 0.9	12.8 0.7	6.5 0.6	7.4 1.0	12.1 1.4	11.2 1.1	8.9 0.9	6.8 1.4	11.5 1.1	4.9 1.1	5.0 1.2	8.6 1.5	4.2 1.4	2.8 1.7	2.3 1.7	24 24	12.8	2.3 0.6	7.1 1.1	
21	0.6		0.6	0.8	9.4	8.5	11.9	13.5	15.0	14.3	14.4	14.8	16.6	19.0	20.7	20.7	19.3	28.5	13.3	8.1	15.2	12.3	7.6	7.5		28.5	0.6	12.2	
2:	5.7		9.3	5.2	5.5	6.5	5.5	8.4	5.7	9.0	9.9	8.5	6.4	7.4	9.1	8.2	8.4	8.7	10.1	9.8	8.6	5.2	3.0	1.8		10.1	1.8	7.2	
2	2 1.8	1.6	1.2	1.0	1.1	1.6	2.6	6.5	10.4	10.1	7.3	12.4	7.3	9.0	19.7	13.5	5.8	2.3	1.2	1.7	2.0	2.0	2.0	3.2	24	19.7	1.0	5.3	
2:	8.6	13.6	14.6	9.4	6.0	6.4	6.4	31.1	34.9	27.1	22.8	22.2	14.9	16.3	18.4	12.6	14.2	13.6	12.4	12.1	15.3	16.9	17.8	16.1		34.9	6.0	16.0	
24	17.4		18.9	14.3	22.7	16.7	18.7	19.9	17.1	19.2	11.2	15.3	9.5	12.9	9.4	15.0	7.9	9.5	9.8	15.0	14.7	9.7	10.9	12.1		22.7	7.9	14.3	
2:	9.8		11.2	4.5	7.3	5.0	8.0 0.7	8.4	15.9	22.6 1.6	22.4	12.1	6.3	4.3	3.0	2.6 4.0	3.9	1.7 4.9	2.7	6.4 6.3	1.6 10.3	2.2	1.2	1.1 10.4		22.6 10.4	1.1 0.6	7.3	
21	1.0 7 10.8		0.9 0.9	0.7 0.9	1.0 0.8	0.6 1.0	1.0	0.9 4.4	1.1 5.3	8.1	1.9 5.0	1.7 9.3	2.3 5.2	5.1 12.5	6.5 8.1	7.8	5.3 6.2	4.9	4.6 11.4	14.7	4.9	9.1 11.7	8.9 4.0	5.2		14.7	0.8	3.8 6.1	
2	5.0		11.8	5.8	6.4	6.5	7.3	12.5	21.4	18.0	14.6	22.6	17.7	12.3	14.9	14.4	14.2	9.9	13.0	10.1	8.1	8.1	9.3	6.9		22.6	5.0	11.6	
2:	8.8		5.2	4.2	4.1	4.4	8.7	37.2	21.2	11.3	13.5	13.7	10.0	c	С	10.2	14.9	13.2	7.5	3.7	3.8	3.5	3.5	10.5		37.2	3.2	9.8	
31	5.1	5.1	6.4	14.4	14.4	12.0	11.5	24.0	38.2	9.7	7.5	8.1	11.7	17.7	32.3	41.1	38.1	23.9	21.8	29.1	33.5	24.8	24.2	10.1	24	41.1	5.1	19.4	
Count	30	30	30	30	30	30	30	30	30	30	30	30	30	29	29	30	30	30	30	30	30	30	30	30	718			-	
Maximum	23.5	24.0	18.9	18.4	22.7	20.3	18.7	37.2	61.8	63.9	28.4	23.2	18.7	19.0	32.3	41.1	38.1	28.5	21.8	29.1	33.5	24.8	24.2	16.1	24				
Minimum	0.4		0.3	0.4	0.4	0.6	0.7	0.6	1.1	0.9	0.7	0.6	1.0	1.2	1.1	0.9	1.3	1.1	1.1	1.0	0.9	0.7	0.7	0.7	22				
Average	5.7	5.2	5.7	5.5	5.0	5.6	6.9	12.3	15.4	14.1	10.5	9.2	8.1	8.9	9.8	10.2	9.2	9.8	9.1	8.9	9.3	7.3	6.6	5.7					
Percentile	s	10		20		30		40		50		60		70		80		90		95		99		100		N	Maximun	Hourly	63.
	-	10				50				30		00				55		30		33				100			Maximu	,	19.
Data		1.2		2.0		3.2		5.2		6.8		8.4		10.4		13.4		17.3		22.6		35.8		63.9		P	Monthly		8.
Notes		C - Calibrati	on / Span Cy	ycle	NA - No Data	Available	Т-	Test	А	- MOE Audit	: N	I - Equipme	nt Malfunct	ion / Down	R-	- Rate of Cl	hange											-	

											NOx Recember	undle Roa	d 2017																
ı	lour																												
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count M	aximum N	linimum	Average	
1	5.3	6.1	8.2	6.6	7.0	7.0	22.0	19.3	25.8	23.9	11.1	9.9	7.5	9.8	13.5	19.6	18.0	19.8	15.2	12.8	16.7	18.3	15.6	12.9	24	25.8	5.3	13.8	
2	14.2	25.3	18.7	11.7	8.6	16.2	9.3	10.9	10.5	9.0	10.7	10.8	10.1	9.7	10.6	13.7	16.6	11.4	11.6	13.0	11.9	12.7	12.4	19.3	24	25.3	8.6	12.9	
3	10.9	10.1	8.7	8.0	8.9	8.2	8.7	8.5	21.2	14.5	9.9	11.5	11.4	10.9	11.9	14.3	15.6	16.8	23.3	15.1	11.3	15.7	7.6	7.3	24	23.3	7.3	12.1	
4	6.0	5.4	8.0	5.0	5.3	6.1	10.7	23.1	27.8	37.3	13.8	10.1	12.0	9.6	9.5	10.1	10.7	12.4	20.7	20.7	14.6	10.2	14.8	18.1	24	37.3	5.0	13.4	
5	13.6	21.4	17.2	13.1	10.1	10.0	14.1	12.2	18.4	14.8	13.7	14.0	8.3	9.7	9.4	С	C	C	6.0	4.7	6.1	4.3	4.8	4.1	21	21.4	4.1	10.9	
6	5.8	5.4	3.8	3.7	2.0	3.5	5.4	8.7	11.3	11.3	12.4	12.4	12.2	12.4	11.4	14.7	10.5	6.9	8.2	8.3	6.6	1.6	1.3	1.6	24	14.7	1.3	7.6	
7	0.8	0.5	3.0	3.3	5.9	5.2	7.9	16.3	15.2	18.0	C	С	С	13.5	15.7	13.7	10.7	7.4	9.1	12.1	16.4	12.5	15.6	15.7	21	18.0	0.5	10.4	
8	10.7	10.9	10.3	8.4	3.3	4.3	6.4	8.7	9.7	11.1	10.0	9.4	7.1	7.0	6.2	5.9	4.6	4.2	5.7	5.6	6.3	7.1	11.5	11.3	24	11.5	3.3	7.7	
9	13.0	15.2	12.9	10.1	10.2	13.5	12.8	5.4	5.6	10.3	7.7	5.4	5.1	4.9	8.9	С	С	6.7	7.0	8.3	10.2	12.8	12.6	13.0	22	15.2	4.9	9.6	
10	16.3	14.9	3.6	0.6	0.7	1.6	0.9	0.6	1.6	1.7	3.2	4.1	2.9	3.6	5.7	5.8	6.4	9.2	7.0	7.0	8.6	10.2	0.0	0.0	24	16.3	0.0	4.8	
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.3	4.3	2.4	2.9	4.4	5.5	5.0	С	С	6.9	4.9	2.3	3.5	9.2	2.8	1.5	1.8	22	9.2	0.0	2.8	
12	22.5	5.5	6.6	5.0	3.0	3.1	3.6	3.8	5.4	10.0	26.5	28.9	5.5	Α	Α	10.6	11.2	13.1	7.7	8.8	9.3	9.0	9.3	8.2	22	28.9	3.0	9.9	
13	7.5	7.7	8.6	8.5	8.6	10.1	9.7	14.4	22.5	18.6	16.3	18.0	16.0	14.1	11.0	13.4	16.9	19.1	20.2	15.2	12.3	10.4	9.3	9.4	24	22.5	7.5	13.2	
14	8.8	8.7	8.1	7.9	8.5	8.1	7.8	12.3	15.0	14.3	12.7	12.6	16.5	16.7	18.9	18.2	14.0	20.4	44.0	46.4	58.5	48.9	35.4	38.8	24	58.5	7.8	20.9	
15	36.3	36.6	30.1	27.1	24.6	21.8	25.2	32.2	41.1	48.9	57.5	47.5	45.7	26.5	23.8	18.3	16.4	17.9	20.1	21.7	21.9	23.0	22.2	17.6	24	57.5	16.4	29.3	
16	14.5	13.2	13.7	16.4	15.9	12.1	13.3	11.8	8.4	7.5	7.8	7.2	7.2	7.5	7.8	8.2	8.3	9.4	11.5	11.8	12.1	14.3	13.8	12.2	24	16.4	7.2	11.1	
17	12.0	11.1	11.1	14.1	14.6	11.9	11.4	10.6	10.8	12.4	15.9	15.1	14.6	17.5	13.5	11.9	11.3	11.8	11.0	10.9	10.1	10.2	11.4	9.4	24	17.5	9.4	12.3	
18	9.4	11.6	10.1	10.7	9.7	17.3	13.0	13.2	15.7	16.5	16.8	16.2	21.5	23.3	29.9	37.6	57.3	51.9	48.3	55.3	26.5	24.2	22.5	19.3	24	57.3	9.4	24.1	
19	19.1	19.1	18.4	16.4	16.0	15.0	13.9	14.5	14.7	15.9	17.8	18.4	16.4	20.5	16.1	14.4	17.7	20.7	21.9	22.1	21.9	24.9	26.1	20.1	24	26.1	13.9	18.4	
20	13.8	6.7	6.2	7.0	7.7	7.4	7.0	7.6	7.9	8.4	9.6	10.8	11.3	10.5	10.6	10.2	10.4	9.9	10.3	12.3	15.0	16.2	15.9	16.6	24	16.6	6.2	10.4	
21	16.8	16.9	16.4	15.5	15.8	16.6	17.5	19.6	22.6	24.9	23.8	24.7	26.5	26.8	27.2	25.5	24.3	23.4	21.1	19.4	21.1	21.3	18.9	16.6	24	27.2	15.5	21.0	
22	14.5	14.5	12.5	11.4	10.6	10.2	8.5	8.0	7.7	7.3	7.6	9.4	12.2	6.5	6.9	10.7	14.1	14.6	15.0	15.1	18.8	22.9	18.3	14.6	24	22.9	6.5	12.2	
23	14.2	14.8	15.1	14.8	15.3	16.1	16.1	16.3	16.3	17.4	18.3	18.9	22.8	27.3	23.1	20.9	34.8	46.3	35.5	25.5	26.4	29.4	24.7	23.3	24	46.3	14.2	22.2	
24	26.8	32.6	37.3	33.2	25.3	21.7	24.2	19.8	18.8	16.1	17.4	19.4	20.0	19.7	17.3	17.0	17.0	13.2	9.5	9.3	10.0	10.7	10.1	9.1	24	37.3	9.1	19.0	
25	9.8	9.9	10.7	14.0	13.9	12.0	9.8	9.5	9.2	9.5	6.3	4.8	5.3	4.7	4.7	5.5	6.1	6.7	7.1	5.4	5.0	5.3	4.8	7.5	24	14.0	4.7	7.8	
26	7.1	6.6	5.9	7.9	8.1	8.4	8.4	10.3	13.6	11.2	10.1	7.6	7.1	7.3	9.7	10.4	12.4	13.7	15.4	12.9	17.4	15.5	15.5	16.0	24	17.4	5.9	10.8	
27	17.0	19.0	17.3	16.5	16.8	16.2	18.2	18.4	18.6	15.5	15.3	13.4	12.5	11.7	11.3	11.2	10.8	10.5	10.5	10.7	10.9	10.9	9.7	9.4	24	19.0	9.4	13.8	
28	9.6	9.5	10.2	13.9	14.9	16.8	12.8	13.0	14.4	13.2	9.2	10.0	12.4	12.7	12.8	12.1	13.3	15.0	15.7	15.0	12.1	11.4	9.6	8.9	24	16.8	8.9	12.4	
29	8.5	8.1	8.4	9.3	11.1	11.4	9.8	11.2	11.1	12.0	15.5	14.0	13.1	13.2	17.3	14.0	11.9	12.6	12.4	12.9	12.3	13.7	14.4	12.3	24	17.3	8.1	12.1	
30	12.8	11.7	10.5	10.8	14.1	19.6	19.2	20.7	20.8	27.7	37.2	27.2	21.1	14.9	10.9	10.5	11.0	9.5	8.7	7.4	6.3	6.0	6.7	6.5	24	37.2	6.0	14.7	
31	6.7	6.3	6.2	6.7	6.8	7.6	8.6	9.5	8.6	8.5	8.6	9.1	9.8	10.2	11.2	11.7	12.1	13.5	14.2	12.0	11.0	10.9	11.1	10.4	24	14.2	6.2	9.6	
ount	31	31	31	31	31	31	31	31	31	31	30	30	30	30	29	28	29	30	31	31	31	31	31	31	732			2.2	
Maximum	36.3	36.6	37.3	33.2	25.3	21.8	25.2	32.2	41.1	48.9	57.5	47.5	45.7	27.3	29.9	37.6	57.3	51.9	48.3	55.3	58.5	48.9	35.4	38.8	24				
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	1.6	1.7	2.9	4.1	2.9	3.6	4.7	5.5	4.6	4.2	2.3	3.5	5.0	1.6	0.0	0.0	21				
Average	12.4	12.4	11.5	10.9	10.4	10.9	11.5	12.7	14.7	15.2	14.9	14.2	13.3	12.9	13.3	13.9	14.9	15.1	15.4	14.9	14.7	14.4	13.1	12.6					
	12.11		11.5	10.5	20.4	10.5	-1	12.7	2-1.7	13.2	14.5		13.3	12.5	13.3	13.3	14.3		10.4	14.5	4-1.7	****	13.1						
ercentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximur	n Hourly um Daily	58.5 29.3
ata		5.4		7.5		9.2		10.4		11.6		13.3		15.2		17.5		22.5		26.9		48.1		58.5			Monthly	,	13.3
otes	C	- Calibratio	n / Span Cy	cle N	A - No Data	Available	Т	- Test	A	- MOE Audit	. M	- Equipme	nt Malfunct	ion / Down	R	- Rate of C	Change												

Figure D-1 Time History Plots of Measured Hourly Average and 24 Hour Average NO_X Concentrations – Courtice (WPCP) Station

Figure D-2 Time History Plots of Measured Hourly Average and 24 Hour Average NOx Concentrations – Rundle Road Station

Appendix E PM2.5 Data Summaries and Time History Plots February 9, 2018

Appendix E PM_{2.5} DATA SUMMARIES AND TIME HISTORY PLOTS

Project No.: 160950528 E.1

										o	M _{2.5} - Coctober g/m³)	OURTICE	2017																
н	our					500																							
Day	1.4	100 0.8	1.0	300 1.0	1.2	1.3	1.4	700 0.8	800 0.7	900 1.1	0.8	1.1	1200 0.8	1300 1.1	1400 1.1	1500 1.0	1600 1.6	1.3	1800 4.2	7.2	2000 10.4	2100 10.1	2200 8.6	2300 7.0	24	10.4	0.7	Average 2.8	
2	5.0	3.6	3.4	3.7	4.0	4.1	5.3	5.6	2.4	1.6	1.7	1.0	1.1	1.2	1.1	1.3	1.1	1.1	2.5	2.7	3.1	2.3	2.3	2.1	24	5.6	1.0	2.6	
3	3.4	4.3	4.8	5.4	5.4	5.7	8.8	5.9	3.1	0.7	0.9	1.4	2.2	2.8	3.4	3.3	2.8	3.6	4.1	5.3	6.4	5.1	5.2	5.6	24	8.8	0.7	4.2	
4	5.8	4.7	3.0	2.5	2.7	2.7	2.7	2.6	2.5	2.1	2.3	2.7	2.8	4.7	3.9	4.5	5.1	2.6	0.6	1.2	1.5	1.2	1.2	1.3	24	5.8	0.6	2.8	
5	1.4	1.8	3.1	2.8	2.5	3.2	4.6	2.7	1.9	0.7	0.9	1.0	2.1	2.0	1.6	1.5	0.9	0.3	0.5	0.8	0.6	1.0	1.7	5.0	24	5.0	0.3	1.9	
6	5.3	5.4	6.6	6.9	7.3	6.6	6.5	5.9	4.8	3.3	1.6	1.6	1.3	1.8	4.2	5.3	6.2	6.8	7.4	6.9	8.6	8.2	2.4	2.6	24	8.6	1.3	5.1	
7	3.2	3.5	3.5	4.1	6.4	7.4	6.4	4.3	2.2	1.7	2.5	6.0	9.2	9.3	8.0	5.4	4.3	4.0	4.4	4.7	4.9	5.5	5.4	4.6	24	9.3	1.7	5.0	
8	3.6	3.1	2.9	3.2	1.3	0.3	0.4	0.5	0.5	0.4	0.5	0.4	0.6	0.5	0.2	0.4	0.4	0.6	2.1	3.0	4.8	3.2	1.8	2.1	24	4.8	0.2	1.5	
9	3.2	2.2	1.7	2.0	2.1	1.1	0.7	0.5	0.2	0.3	0.2	0.2	0.2	0.2	0.5	0.5	0.4	0.3	0.3	0.3	1.0	3.6	4.4	7.0	24	7.0	0.2	1.4	
10	8.2 2.4	5.3 2.5	3.8 1.9	4.4 1.9	5.5 1.9	9.0 1.8	12.1 1.9	10.8 1.9	6.7	8.1 1.3	10.9 1.2	6.4 1.0	6.0 1.4	7.9 1.2	4.5 1.4	3.5 1.3	3.3 1.5	1.6 2.0	2.9 2.2	3.2 1.5	3.0 1.4	2.1 1.7	1.5 1.8	1.9 2.0	24 24	12.1 2.5	1.5 1.0	5.5 1.7	
11	2.4	2.5	2.5	2.9	2.9	2.8	2.7	2.7	1.4 3.2	3.5	3.9	4.7	4.2	5.6	6.3	5.4	6.0	6.4	7.3	6.3	1.4 5.8	6.0	5.1	4.9	24	7.3	2.1	4.4	
12	5.1	5.7	5.6	4.9	4.8	4.6	4.7	4.3	5.9	6.4	5.7	5.4	5.9	5.8	5.9	6.7	5.9	5.3	7.3 5.9	5.0	5.6	5.4	4.2	4.9	24	6.7	4.2	5.3	
14	3.8	3.8	3.7	3.4	3.3	3.1	4.6	10.0	11.4	11.1	10.8	12.5	12.3	11.7	12.5	11.5	8.9	8.8	11.0	8.0	5.3	3.4	4.7	4.3	24	12.5	3.1	7.7	
15	5.2	5.8	4.4	4.9	5.6	5.5	5.3	4.5	5.3	6.9	8.5	9.2	9.8	9.5	9.7	3.1	0.6	0.2	0.2	0.2	0.2	0.2	0.2	0.2	24	9.8	0.2	4.4	
16	0.2	0.2	0.2	0.2	0.4	0.5	1.2	0.7	0.4	0.6	1.0	1.2	1.0	1.0	0.8	0.7	0.8	1.2	3.2	4.0	5.7	5.8	5.0	6.2	24	6.2	0.2	1.8	
17	6.5	6.2	5.6	5.1	5.7	7.2	7.8	5.9	5.4	3.0	1.5	2.0	2.0	2.5	2.9	2.5	2.8	3.2	3.4	3.9	4.6	5.0	4.9	5.7	24	7.8	1.5	4.4	
18	4.4	6.3	7.6	9.0	8.5	9.3	10.7	11.0	7.7	6.6	4.4	5.4	5.7	5.2	4.1	3.5	4.4	4.5	5.1	6.2	7.1	7.7	9.9	13.6	24	13.6	3.5	7.0	
19	18.1	22.2	16.5	6.5	5.1	4.4	3.7	3.4	3.6	3.9	4.8	5.7	5.9	6.7	6.7	5.1	4.3	4.6	4.1	3.8	3.7	4.0	4.8	4.1	24	22.2	3.4	6.5	
20	3.5	5.5	5.9	7.4	6.9	3.8	5.9	5.4	3.3	1.9	2.3	2.5	3.4	3.4	2.8	3.2	2.6	2.3	2.3	2.2	2.4	2.7	3.2	5.3	24	7.4	1.9	3.8	
21	9.4	10.2	12.0	28.9	36.4	35.8	14.9	17.3	15.3	8.3	8.7	7.4	5.3	4.9	6.4	5.6	7.8	11.5	12.6	10.9	14.6	13.5	13.5	12.4	24	36.4	4.9	13.5	
22	11.5	11.4	11.0	11.5	11.6	11.5	11.0	10.0	7.3	4.6	5.0	5.7	5.6	6.8	6.5	5.7	8.1	9.5	8.8	8.9	10.1	10.8	9.8	9.8	24	11.6	4.6	8.8	
23	10.5	11.1	11.4	13.2	14.4	14.2	14.0	13.2	10.5	8.1	6.8	7.0	7.0	9.1	7.0	6.5	6.8	5.8	6.6	4.2	2.9	3.3	3.4	1.1	24	14.4	1.1	8.3	
24	0.5	1.2	0.9	0.6	0.5	0.5	0.4	0.2	0.2	0.2	0.6	0.7	0.4	0.9	1.5	1.7	1.8	2.1	2.0	2.1	1.9	2.0	2.3	2.4	24	2.4	0.2	1.2	
25	3.4	4.0	2.3	2.1	1.3	1.6	1.6	1.5	1.4	1.5	1.8	2.0	1.9	1.7	2.0	2.4	2.2	2.9	3.3	4.6	5.5	5.0	3.5	3.3	24	5.5	1.3	2.6	
26	5.5	7.5	8.3	8.9	5.4	4.4	5.4	6.4	2.2 3.2	1.6	0.7	0.9 C	1.9 C	3.3	1.9	1.1	0.8	1.3	2.1	3.7	4.0	4.3	4.9	6.3	24	8.9	0.7 0.6	3.9	
27	6.5	5.2 0.5	9.0 0.5	7.4 1.0	6.0 3.2	4.9 8.7	3.3 7.2	3.3 3.6	6.4	3.2 6.8	2.6 4.7	0.2	0.2	1.4 0.2	1.1 0.2	1.1	1.4	1.0 0.2	0.9 0.4	0.8 0.8	0.9 1.4	0.6 2.3	0.6 2.6	0.6 3.4	22 24	9.0 8.7	0.8	3.0	
28	0.6 3.5	3.4	4.4	4.4	3.8	3.0	3.2	3.3	2.7	3.0	3.6	2.8	2.4	3.1	3.3	3.0	0.4 2.2	2.1	2.0	1.8	0.8	0.2	0.2	0.2	24	4.4	0.2	2.3	
30	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.4	2.4	4.3	3.6	3.5	1.9	2.1	2.8	4.0	4.7	4.1	1.9	1.0	24	4.7	0.2	1.6	
31	1.0	0.7	0.6	0.5	0.3	0.5	0.6	0.6	0.9	1.4	0.9	0.7	0.4	0.2	0.2	0.3	0.2	0.2	0.5	0.6	0.8	1.1	2.2	3.3	24	3.3	0.2	0.8	
Count	31	31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	31	742				
Maximum	18.1	22.2	16.5	28.9	36.4	35.8	14.9	17.3	15.3	11.1	10.9	12.5	12.3	11.7	12.5	11.5	8.9	11.5	12.6	10.9	14.6	13.5	13.5	13.6	24				
Minimum	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	22				
Average	4.7	4.9	4.8	5.2	5.4	5.5	5.1	4.8	4.0	3.3	3.3	3.3	3.5	3.9	3.7	3.3	3.1	3.2	3.7	3.8	4.3	4.2	4.0	4.3					
Percentiles	-	10		20		30	-	40	-	50		60		70		80	-	90		95		99		100			Maximun	n Hourly	36.4
Data		0.5		1.1		1.8		2.5		3.3		4.3		5.3		6.3		8.8		11.0		15.1		36.4			Maximu Monthly	um Daily Average	13. 4.
Notes	C	- Calibration	ı / Span Cyc	le N	A - No Data	Available	T-	- Test	A	- MOE Audit	М	- Equipme	nt Malfunct	ion / Down	R -	- Rate of Ch	nange												-

										No	PM _{2.5} - Co vember g/m³)	OURTICE	2017																
Н	lour																												
Day 1	3.3	3.0	3.2	300 3.8	400 4.5	500 7.2	7.3	700 7.8	800 10.4	900 8.0	1000 5.2	1100 2.6	1200 3.1	2.8	2.7	1500 4.1	1600 2.5	1700 1.6	1800 1.8	1900 1.7	2000 1.9	2100 1.8	2200 2.5	2300 2.6	Count Ma 24	ximum Mi 10.4	1.6	Average 4.0	
2	3.4	3.8	5.2	1.7	1.2	1.5	1.8	1.7	1.2	0.6	0.7	0.9	1.3	2.3	2.8	3.7	5.8	7.2	7.4	8.3	9.6	10.5	10.9	8.7	24	10.9	0.6	4.3	
3	0.2	0.2	0.2	0.2	0.2	1.2	2.6	3.1	4.0	3.8	2.8	1.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.5	1.8	2.5	2.5	2.4	24	4.0	0.2	1.3	
4	1.2	1.0	1.3	1.0	0.6	0.7	0.3	0.2	0.4	0.2	0.4	0.2	0.3	0.9	0.3	0.8	0.7	0.7	1.0	2.5	1.9	2.0	2.0	2.0	24	2.5	0.2	0.9	
5	1.8	2.8	4.6	5.1	4.7	5.6	4.2	2.4	1.2	0.7	0.5	0.6	0.9	1.3	1.3	0.9	0.6	0.6	1.2	1.5	1.8	1.7	0.6	0.2	24	5.6	0.2	2.0	
6	0.6	1.2	0.5	0.2	0.2	0.2	0.2	0.6	0.9	0.5	0.5	0.6	0.7	0.2	0.4	0.6	0.9	1.0	0.9	1.1	1.3	1.1	1.1	0.8	24	1.3	0.2	0.7	
7	1.0	1.2	1.1	1.5	1.6	1.4	2.1	2.0	2.2	0.9	1.3	0.9	0.8	0.9	0.8	0.7	1.1	1.4	1.3	1.4	1.2	2.3	8.0	6.7	24	8.0	0.7	1.8	
8	8.6	11.2	9.6	8.1	6.1	4.4	4.9	7.5	5.6	2.3	2.5	1.2	1.4	2.4	2.3	2.4	2.9	3.5	3.7	4.1	6.0	10.5	13.1	11.7	24	13.1	1.2	5.7	
9	11.7	0.3	10.3 0.4	10.4	10.6	10.6	11.0	13.4	15.2	14.9	13.6	10.8	11.1	10.5	8.5	5.6 0.2	3.9	4.7	4.6	0.0	0.0	0.0	0.0	0.3	24	15.2	0.0	8.1 0.9	
10	0.3 1.2	0.3	0.4	0.6 0.8	0.9 0.7	1.6 0.8	2.2 0.7	2.2 0.8	1.7 0.8	1.2 0.7	1.3 0.3	0.6	0.2	0.3	0.2	0.2	0.2	0.3	0.5 0.2	0.5 0.2	0.7	1.3 0.2	1.8 0.2	2.2 0.5	24	2.2 1.2	0.2	0.9	
12	0.9	1.1	1.1	0.8	1.2	1.6	2.4	2.7	4.5	6.3	7.0	6.5	5.0	4.4	4.5	5.4	4.8	5.8	4.8	5.2	5.5	4.6	8.9	9.4	24	9.4	0.2	4.4	
13	6.6	4.5	4.2	3.1	3.0	4.6	4.9	5.1	6.0	5.2	5.0	4.5	7.4	8.5	9.5	9.4	9.1	9.4	7.7	9.1	12.6	19.5	19.2	16.2	24	19.5	3.0	8.1	
14	16.4	18.6	18.2	17.6	14.3	9.8	8.5	7.5	6.8	5.5	4.0	4.4	4.9	3.7	3.5	3.0	3.0	3.3	4.1	3.5	2.9	7.0	16.1	16.7	24	18.6	2.9	8.5	
15	14.2	12.5	8.0	8.5	7.4	6.4	8.1	7.1	6.6	5.3	4.1	4.6	5.2	5.3	5.5	5.2	5.2	5.8	4.5	3.8	2.8	2.0	2.5	1.6	24	14.2	1.6	5.9	
16	1.0	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	24	1.0	0.2	0.2	
17	0.2	0.3	0.3	0.2	0.5	0.8	1.1	1.5	1.2	1.0	1.2	1.4	1.9	1.9	2.9	4.2	6.5	7.9	7.0	5.8	6.9	8.2	7.5	6.3	24	8.2	0.2	3.2	
18	4.3	3.3	3.4	2.9	1.9	1.4	1.1	0.7	1.0	1.7	2.0	1.7	1.3	2.5	3.0	2.3	2.0	3.7	3.6	3.4	3.5	3.0	0.1	0.0	24	4.3	0.0	2.2	
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	1.0	1.4	1.5	1.4	1.9	24	1.9	0.0	0.3	
20	1.6	1.2	1.4	1.7	2.8	3.8	3.9	5.0	4.0	4.2	5.8	5.9	8.3	10.2	10.9	10.3	11.2	11.8	5.8	3.0	3.2	2.6	1.8	1.2	24	11.8	1.2	5.1	
21	1.5	1.9 2.0	1.8	1.6	1.3 1.2	1.2	1.1 0.9	1.1 0.9	1.9	2.6 2.5	2.9	3.5 1.9	3.7 2.2	4.1 2.5	4.8 3.0	5.1 3.1	4.9	5.3 1.7	5.5 2.6	5.5 2.6	6.5 1.8	6.0	2.4 5.3	1.6 3.2	24 24	6.5 5.3	1.1 0.9	3.2	
22	2.0 5.0	5.4	1.5 5.5	1.4 3.9	4.3	1.1 3.6	3.8	2.1	1.9 3.0	4.5	1.9 3.7	3.7	5.6	8.8	7.5	6.8	2.4 6.1	3.3	2.8	3.5	4.5	4.0 5.9	8.8	11.6	24	11.6	2.1	2.2 5.1	
24	12.3	12.2	11.9	11.8	12.1	12.6	13.5	12.1	9.0	6.9	8.7	7.1	4.4	3.3	3.9	4.5	3.4	2.2	2.3	2.5	2.1	1.4	1.5	1.7	24	13.5	1.4	6.8	
25	1.5	1.0	1.4	1.4	1.5	1.9	2.4	2.7	3.6	5.5	7.5	2.0	0.2	0.2	0.2	0.2	0.2	0.3	0.5	0.9	0.2	0.2	0.2	0.2	24	7.5	0.2	1.5	
26	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.5	0.5	0.5	0.3	0.2	0.3	0.7	0.9	0.8	1.4	3.3	9.4	5.7	6.1	5.6	5.5	5.2	24	9.4	0.2	2.0	
27	5.5	1.9	1.3	0.9	0.8	1.5	2.2	2.7	2.4	1.8	1.7	3.8	11.8	С	С	15.9	17.3	16.3	16.3	10.7	12.9	12.6	12.7	13.4	22	17.3	0.8	7.6	
28	21.7	41.9	16.7	6.0	7.4	11.9	12.7	13.4	13.5	11.5	7.9	4.3	1.8	1.5	1.2	1.2	1.9	2.8	2.8	2.6	2.6	2.6	3.3	4.4	24	41.9	1.2	8.2	
29	12.7	11.6	10.7	14.9	14.2	10.0	4.2	1.4	0.9	0.9	1.0	0.9	1.1	1.1	1.1	1.6	2.6	6.3	8.0	5.5	5.1	10.3	7.7	4.3	24	14.9	0.9	5.8	
30	5.1	5.2	1.9	2.2	2.6	2.9	5.1	6.7	5.4	4.3	4.6	5.3	5.1	5.2	7.8	7.8	9.8	21.7	28.6	21.0	15.1	9.2	6.2	2.8	24	28.6	1.9	8.0	
Count	30	30	30	30	30	30	30	30	30	30	30	30	30	29	29	30	30	30	30	30	30	30	30	30	718				
Maximum	21.7	41.9	18.2	17.6	14.3	12.6	13.5	13.4	15.2	14.9	13.6	10.8	11.8	10.5	10.9	15.9	17.3	21.7	28.6	21.0	15.1	19.5	19.2	16.7	24				
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	22				
Average	4.9	5.4	4.2	3.8	3.6	3.7	3.8	3.8	3.9	3.5	3.3	2.7	3.0	3.0	3.1	3.5	3.7	4.4	4.7	3.9	4.1	4.7	5.1	4.7					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximun	,	41.9
Data		0.2		0.6		1.1		1.6		2.4		3.4		4.8		6.5		10.3		12.7		18.5		41.9			Maximu Monthly	um Daily Average	8. 3.
Notes	С	- Calibration	n / Span Cyc	le N	A - No Data	Available	Т-	Test	A	- MOE Audit	M	l - Equipme	nt Malfunct	ion / Down															

										De	PM _{2.5} - Cecember ug/m³)	OURTICE	2017																
Day	lour	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Ma	ximum Mi	inimum	Average	
1	1.0	0.8	0.3	0.4	0.0	0.7	0.8	0.5	1.2	1.2	0.7	0.8	0.4	0.5	0.5	0.6	1.2	2.0	2.8	4.4	4.5	15.8	13.6	13.9	24	15.8	0.0	2.8	
2	14.7	10.7	8.4	7.6	9.6	11.2	11.3	12.4	14.2	14.3	14.2	14.6	13.4	12.0	9.2	9.1	12.2	15.9	18.3	25.7	27.3	26.4	23.8	23.1	24	27.3	7.6	15.0	
3	22.2	22.7	21.7	23.4	24.1	23.8	24.0	24.9	21.4	16.1	19.6	13.9	13.7	20.8	27.2	31.6	37.7	36.6	44.6	37.4	34.3	34.2	31.4	30.4	24	44.6	13.7	26.6	
4	29.3	28.7	27.4	25.2	25.7	27.6	28.6	29.6	30.2	29.4	29.9	32.0	24.9	27.8	25.6	23.3	21.9	19.8	14.0	10.4	8.6	8.6	8.7	8.9	24	32.0	8.6	22.7	
5	9.3	10.1	14.6	16.1	20.0	15.9	14.1	10.0	5.2	3.9	3.4	3.1	3.1	2.7	4.2	4.1	3.8	2.1	1.5	2.3	3.6	2.7	1.5	1.3	24	20.0	1.3	6.6	
6	1.8	1.4	2.1	2.2	2.6	2.4	3.0	3.0	2.5	1.3	1.1	0.8	0.9	0.8	1.1	1.7	2.6	3.5	4.8	5.8	5.4	3.4	2.9	2.8	24	5.8	0.8	2.5	
,	2.6 1.8	3.6 1.5	4.0 2.2	3.2 1.1	3.1 1.0	3.1 1.5	3.2 2.2	3.0 3.2	2.9 5.6	2.9 8.2	2.4 6.8	1.8 5.6	1.4 5.9	1.4 4.2	1.1 4.4	1.0 2.9	1.2 2.9	1.6 3.2	1.9 2.9	2.3 2.9	2.5 3.7	2.0 4.1	2.2 4.7	1.9 5.3	24 24	4.0 8.2	1.0 1.0	2.3 3.7	
9	4.8	4.5	5.1	6.3	5.6	5.8	7.9	11.0	13.8	14.2	12.5	10.3	8.3	6.5	6.5	5.7	4.7	6.1	7.2	8.5	11.3	15.3	18.0	18.8	24	18.8	4.5	9.1	
10	22.4	20.8	9.2	2.4	1.8	1.5	0.9	1.1	0.7	0.6	0.6	1.1	1.7	3.2	4.7	6.1	7.2	8.5	6.9	8.2	10.8	14.1	3.8	0.6	24	22.4	0.6	5.8	
11	0.7	0.8	0.8	0.7	0.7	0.7	0.9	1.0	1.1	0.6	0.7	0.5	C	C	1.5	0.6	0.5	0.8	0.9	1.7	4.5	2.7	3.0	3.6	22	4.5	0.5	1.3	
12	3.4	3.6	3.9	4.0	3.3	2.8	2.6	2.7	3.8	5.2	7.2	Α	Α	1.2	0.2	0.3	0.8	1.6	1.6	1.7	1.8	1.9	2.3	2.1	22	7.2	0.2	2.6	
13	1.9	1.7	1.7	1.6	1.6	1.6	1.5	1.7	2.6	4.8	4.0	2.9	1.6	1.1	1.1	1.5	2.6	4.1	5.0	3.9	2.8	2.0	1.9	2.3	24	5.0	1.1	2.4	
14	3.6	3.7	3.1	2.7	3.1	2.8	2.8	3.2	2.5	1.5	1.3	1.3	1.5	1.4	2.1	1.4	1.4	2.5	2.6	4.4	5.1	8.2	8.9	10.6	24	10.6	1.3	3.4	
15	9.8	11.2	10.5	11.9	13.4	9.6	8.8	10.0	11.2	12.3	14.1	12.0	6.5	3.9	6.1	4.8	3.1	7.8	14.4	19.3	21.6	17.3	12.5	6.1	24	21.6	3.1	10.7	
16	4.9	6.0	3.0	3.6	4.9	3.1	3.3	2.4	0.9	0.7	0.5	0.2	0.3	0.5	0.4	0.5	1.8	3.8	6.9	7.4	7.0	8.3	8.3	7.6	24	8.3	0.2	3.6	
17	4.8	4.5 4.4	8.0 5.4	5.4 9.0	4.0 6.5	3.3	2.2 13.5	1.9 9.0	1.6 14.2	1.3 11.2	1.2	1.7 10.7	2.9 14.8	13.9	3.9	2.0	1.8	2.2 23.6	2.9 24.1	2.3 16.7	2.2 14.6	1.8	1.8 26.7	2.1 23.0	24 24	13.9 26.7	1.2	3.3 14.9	
10	3.2 19.1	17.7	19.4	16.8	17.7	13.4 15.6	13.6	12.7	11.4	11.2	10.7 13.3	13.5	13.1	16.2 10.9	21.3 8.2	6.9	23.6 6.4	5.7	6.6	5.0	5.8	21.7 4.7	20.7	1.4	24	19.4	3.2 1.4	10.8	
20	0.4	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	1.2	0.2	0.2	0.2	0.3	0.2	0.3	0.8	1.0	1.0	1.1	1.0	1.1	1.8	24	1.8	0.2	0.5	
21	1.7	1.9	2.6	3.2	2.1	2.2	2.2	3.1	3.8	3.9	4.4	3.1	3.2	3.4	5.8	10.9	7.3	9.6	8.7	8.2	9.3	9.0	9.0	7.1	24	10.9	1.7	5.2	
22	4.3	3.4	4.3	5.4	3.8	2.9	2.7	2.5	2.9	3.6	3.8	4.6	3.6	3.5	3.5	4.9	3.3	3.6	4.0	4.2	5.1	5.4	6.9	10.1	24	10.1	2.5	4.2	
23	8.3	7.3	10.2	9.1	7.2	7.4	6.4	6.9	6.8	5.8	8.5	10.3	10.6	8.3	8.9	11.0	14.4	18.2	15.3	10.2	6.6	2.0	1.2	1.3	24	18.2	1.2	8.4	
24	1.4	3.0	3.6	2.4	1.9	2.8	3.9	1.5	0.9	0.3	0.0	0.0	0.0	0.0	0.0	0.5	0.6	0.7	0.4	0.3	0.5	0.5	0.6	0.6	24	3.9	0.0	1.1	
25	0.6	0.4	0.7	0.7	0.8	0.5	0.5	0.7	0.6	1.0	1.0	2.0	1.8	1.4	0.8	1.0	1.4	1.9	1.6	0.8	1.2	1.7	2.1	2.2	24	2.2	0.4	1.1	
26	2.3	2.3	2.4	2.0	2.3	2.4	2.2	1.8	3.0	3.6	3.4	3.7	2.7	2.5	3.0	3.2	3.3	3.0	2.5	3.7	4.4	3.7	4.4	4.8	24	4.8	1.8	3.0	
27	5.1	3.7	4.2	3.8	3.3	3.4	3.8	6.1	5.9	1.7	1.1	0.4	0.1	0.6	1.0	1.2	2.2	3.5	3.5	4.6	4.5	4.8	5.0	4.8	24	6.1	0.1	3.3	
28	2.7 2.6	1.8 1.5	2.3 1.8	2.3 1.5	2.5 1.8	2.8 2.2	2.9 2.4	2.4	2.2	1.7 3.7	1.6 3.3	1.7 1.5	0.6 1.6	1.0 3.0	0.7 3.8	0.8 4.7	1.5 5.2	3.6 6.3	4.5 5.4	5.4 4.4	2.9 4.3	2.8 4.8	2.4 6.8	2.4 7.0	24 24	5.4 7.0	0.6 1.5	2.3 3.5	
30	8.8	6.7	10.3	11.1	13.1	17.2	20.9	21.4	27.0	33.5	29.0	18.3	13.0	8.6	8.3	7.0	10.7	10.2	9.3	5.2	2.6	2.4	2.9	3.7	24	33.5	2.4	12.5	
31	3.6	2.9	3.2	3.1	3.9	3.1	3.1	2.3	1.8	0.9	0.8	0.8	0.6	0.5	0.3	0.3	1.0	3.6	5.0	3.1	2.2	1.9	2.0	2.3	24	5.0	0.3	2.2	
Count	31	31	31	31	31	31	31	31	31	31	31	30	29	30	31	31	31	31	31	31	31	31	31	31	740				
Maximum	29.3	28.7	27.4	25.2	25.7	27.6	28.6	29.6	30.2	33.5	29.9	32.0	24.9	27.8	27.2	31.6	37.7	36.6	44.6	37.4	34.3	34.2	31.4	30.4	24				
Minimum	0.4	0.2	0.2	0.2	0.0	0.2	0.2	0.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.3	0.7	0.4	0.3	0.5	0.5	0.6	0.6	22				
Average	6.5	6.2	6.3	6.1	6.2	6.2	6.3	6.3	6.6	6.5	6.5	5.8	5.2	5.4	5.3	5.5	6.1	7.0	7.5	7.1	7.2	7.6	7.2	6.9					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximur	m Hourly	44.6
Data		0.7		1.4		2.0		2.7		3.4		4.5		6.7		10.3		16.7		23.8		31.8		44.6			Maxim Monthly	um Daily Average	26.0 6.4
Notes	C	- Calibration	n / Span Cyc	le N	A - No Data	Available	T -	- Test	A	- MOE Audit	: N	I - Equipme	nt Malfunct	ion / Down	R	- Rate of Cl	nange												

											M _{2.5} - R	undle Roa	d 2017																
										(μ	g/m³)																		
	Hour																												
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Max			Average	
1	4.2	3.7	3.9	3.7	3.6	2.9	3.1	4.6	5.5	4.6	2.8	2.9	2.7	1.9	1.3	1.5	1.7	1.4	3.8	7.4	10.2	13.8	11.7	9.4	24	13.8	1.3	4.7	
2	9.5	8.9	7.5	7.2	7.1	6.7	7.9	11.3	6.9	3.6	4.0	2.5	1.7	2.1	1.3	1.5	1.9	2.7	4.4	5.5	6.3	4.9	4.8	4.2	24	11.3	1.3	5.2	
3	5.3	7.4 6.5	7.4 4.9	6.8 2.9	5.8 2.8	6.2 3.4	6.7 3.3	8.5	6.7 3.6	3.1 3.5	2.9 3.8	3.0 3.7	3.5 3.9	3.3 5.7	3.2 4.6	2.9 4.4	3.6 5.0	4.7 2.7	6.0 0.3	14.6 0.6	7.0 0.4	6.0 0.0	6.4 0.1	5.7 0.0	24 24	14.6 6.6	2.9 0.0	5.7 3.2	
4	6.6 0.6	1.8	1.9	2.9	2.8	4.5	5.4	3.2 5.6	10.3	5.4	4.1	3.1	3.9	3.3	2.5	3.4	3.1	0.9	1.4	2.4	2.7	7.7	9.3	9.0	24	10.3	0.6	4.1	
6	7.8	7.0	6.8	5.3	4.5	4.3	4.4	4.1	2.2	1.3	1.1	1.0	1.3	1.4	3.0	4.0	4.5	5.9	5.8	7.7	9.5	9.0	6.5	3.5	24	9.5	1.0	4.7	
7	5.1	5.0	3.1	3.8	4.8	7.3	7.5	5.1	2.4	1.8	2.0	4.0	7.2	8.2	8.1	4.6	2.6	2.4	2.6	3.2	3.8	4.2	4.7	3.3	24	8.2	1.8	4.5	
8	3.0	3.7	3.4	3.7	1.2	0.2	0.2	0.2	0.8	0.2	0.3	0.2	0.2	0.3	0.2	0.2	0.8	0.4	1.5	1.7	2.4	1.7	1.5	5.5	24	5.5	0.2	1.4	
9	5.9	4.3	3.9	2.9	1.9	0.7	0.3	0.2	0.2	0.3	0.2	0.2	0.6	0.3	0.2	0.5	1.0	1.0	0.3	0.5	0.7	0.9	0.7	0.4	24	5.9	0.2	1.2	
10	1.7	3.6	3.7	5.2	5.3	7.4	13.0	13.7	11.1	5.4	5.4	4.9	6.3	5.1	2.8	3.0	1.8	0.2	0.7	1.5	1.5	0.3	0.2	0.9	24	13.7	0.2	4.4	
11	1.9	1.1	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.4	0.4	0.2	0.2	0.3	0.2	0.2	24	1.9	0.2	0.3	
12	0.2	0.2	0.2	0.2	0.2	0.5	1.0	1.5	1.7	1.7	2.1	2.8	3.0	3.7	4.9	5.3	5.2	5.3	5.3	4.8	4.6	3.9	3.4	3.6	24	5.3	0.2	2.7	
13	3.9	4.8	4.4	4.3	4.5	5.0	4.5	5.4	5.3	4.2	4.5	3.9	4.0	5.2	4.8	5.6	6.6	7.6	7.9	6.7	6.4	7.3	4.7	4.1	24	7.9	3.9	5.2	
14	3.6	3.1	3.6	3.7	3.3	3.3	4.2	10.0	11.2	10.7	11.7	9.5	6.3	7.2	11.0	11.1	10.8	10.6	11.3	12.3	8.0	4.3	4.7	3.7	24	12.3	3.1	7.5	
15	4.1	4.6	3.4	3.5	4.0	4.0	4.1	4.0	4.1	4.6	5.7	6.4	6.8	6.5	6.5	1.8	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	6.8	0.0	3.1	
16	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.3	0.0	0.3	0.4	0.7	0.2	0.0	0.0	0.0	0.0	0.0	1.6	1.8	3.1	7.5	3.8	4.5	24	7.5	0.0	1.0	
17	5.7	4.8	5.2	5.7	4.1	5.5	6.7	6.5	8.9	5.5	2.4	2.7	3.0	3.2	3.7	3.2	3.3	4.0	4.6	5.7	5.3	6.3	5.5	5.5	24	8.9	2.4	4.9	
18	7.3	8.9	12.3	13.4	13.6	12.1	12.0	13.5	13.2	9.9	8.2	9.0	8.3	7.0	6.7	4.8	4.4	4.0	4.4	6.0	6.6	7.0	9.4	11.1	24	13.6	4.0	8.9	
19	11.9 4.8	10.0	8.3 7.0	5.2 9.0	3.7 6.6	3.4 4.5	3.6 6.3	3.4 4.8	3.1 5.0	3.0	3.5 2.7	3.8 2.5	4.9 5.3	6.2 3.7	5.8 2.5	5.6 2.1	4.8 2.6	4.8 2.7	3.5 2.8	3.5	3.3	2.7	3.3 4.6	5.7 9.4		11.9	2.7	4.9 4.6	
20	11.7	5.0 10.6	15.8	16.5	16.0	12.4	11.7	15.1	18.3	4.9 13.3	9.6	2.5 5.5	4.0	4.9	6.0	6.2	5.8	7.3	10.2	14.3	12.0	4.2 13.2	12.0	14.1	24 24	9.4 18.3	4.0	11.1	
22	12.6	9.9	9.1	8.6	9.4	9.1	10.3	11.2	8.8	6.8	4.7	5.1	5.6	5.9	5.4	5.7	7.0	8.8	10.2	10.4	9.9	9.6	8.5	7.6	24	12.6	4.7	8.4	
23	7.8	8.8	10.9	11.9	12.9	12.9	14.4	15.5	15.5	8.7	6.6	6.6	5.9	6.1	5.7	5.4	5.6	4.7	4.3	2.6	1.9	2.1	2.3	0.9	24	15.5	0.9	7.5	
24	0.3	0.4	0.5	0.5	0.2	0.2	0.1	0.2	0.2	0.1	0.1	0.1	0.3	0.5	0.2	0.4	0.7	0.7	0.8	0.7	0.6	0.7	0.8	1.2	24	1.2	0.1	0.4	
25	1.6	2.1	0.9	0.8	0.3	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.2	0.2	0.2	0.8	1.0	0.4	0.4	0.7	0.8	0.2	24	2.1	0.1	0.5	
26	0.1	0.3	1.2	1.5	0.8	0.5	4.0	6.4	2.7	1.1	0.7	С	c	4.6	1.8	1.5	0.7	0.4	0.6	0.6	1.8	1.1	1.0	2.8	22	6.4	0.1	1.7	
27	2.0	1.4	1.6	1.4	0.9	1.2	1.0	1.0	0.8	0.5	0.3	0.3	0.4	0.3	0.2	0.2	0.3	1.0	0.9	0.6	0.2	0.3	0.2	0.2	24	2.0	0.2	0.7	
28	0.2	0.2	0.2	0.9	3.2	9.7	8.2	1.8	7.5	8.0	6.3	0.2	0.2	0.2	0.2	1.6	1.6	0.2	0.4	0.9	1.7	2.1	2.8	3.4	24	9.7	0.2	2.6	
29	5.2	6.3	6.2	6.0	5.0	6.0	4.6	6.1	4.0	2.7	3.8	2.5	2.3	1.9	2.5	2.9	2.3	2.3	2.1	1.9	0.5	0.2	0.2	0.2	24	6.3	0.2	3.2	
30	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2	1.2	0.3	0.2	1.0	3.5	7.1	6.0	5.6	5.6	6.7	8.2	11.2	10.7	8.5	3.6	2.0	24	11.2	0.2	3.5	
31	3.3	1.2	1.1	0.9	0.5	1.3	2.0	2.0	3.2	3.4	3.2	2.3	2.5	1.7	1.1	1.9	0.6	0.4	1.2	2.1	3.6	3.5	3.3	3.8	24	3.8	0.4	2.1	I
Count	31	31	31	31	31	31	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	31	742				
Maximum	12.6	10.6	15.8	16.5	16.0	12.9	14.4	15.5	18.3	13.3	11.7	9.5	8.3	8.2	11.0	11.1	10.8	10.6	11.3	14.6	12.0	13.8	12.0	14.1	24				
Minimum	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.2	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22				
Average	4.5	4.4	4.5	4.5	4.2	4.4	4.9	5.3	5.3	3.8	3.3	3.0	3.3	3.5	3.3	3.1	3.1	3.1	3.5	4.4	4.2	4.3	3.9	4.1					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximum	Hourly	18.
Data		0.2		0.5		1.3		2.5		3.4		4.2		5.3		6.5		9.1		11.3		14.5		18.3			Maximu Monthly A		11.:
Notes	С	- Calibration	ı / Span Cvo		A - No Data		Т-	- Test	A	- MOE Audit	М	- Equipme	nt Malfunct		R ·	Rate of Ch	nange										7		

											PM _{2.5} - R	undle Roa	d 2017																
										(μ	g/m³)																		
- H	lour																												
Day	3.9	100 3.4	200 4.4	300 6.7	400 7.1	500 8.4	600 9.6	700 10.2	13.8	900 10.0	1000 5.1	1100 2.7	1200 3.0	1300 2.9	3.1	1500 4.9	1600 15.5	1700 3.9	1800 4.5	1900 4.3	3.8	2100 3.6	2200 3.7	2300 4.0	24	15.5	2.7	Average 5.9	
2	5.1	5.1	4.4	3.3	2.7	2.3	3.3	3.2	2.8	1.2	1.7	2.1	2.4	3.1	3.9	4.3	6.5	7.6	7.7	9.1	10.3	10.4	10.0	8.5	24	10.4	1.2	5.1	
3	0.5	0.6	0.3	0.6	0.7	1.4	3.1	3.0	2.8	3.1	2.8	1.3	0.2	0.5	0.2	0.2	0.4	0.2	0.2	0.3	0.7	0.6	1.4	2.7	24	3.1	0.2	1.2	
4	1.7	0.6	1.0	0.6	0.3	0.3	0.6	0.4	0.6	0.6	11.5	4.2	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.2	0.2	0.2	0.3	24	11.5	0.2	1.0	
5	0.6	0.8	1.7	2.5	2.9	3.1	3.3	2.1	1.6	1.2	1.1	1.4	1.9	2.0	2.3	2.8	1.9	2.5	3.2	3.0	3.4	3.2	2.6	0.6	24	3.4	0.6	2.2	
6	1.0	1.1	0.5	0.2	0.2	0.2	0.2	0.6	0.8	0.7	0.5	0.4	0.5	0.6	1.2	0.5	1.4	0.9	0.9	1.1	0.8	0.4	0.7	1.5	24	1.5	0.2	0.7	
7	1.2	1.2	0.9	1.2	2.9	2.1	3.6	4.7	2.3	1.4	0.9	0.9	0.8	0.8	0.7	0.7	1.1	3.4	3.5	2.6	4.1	7.9	7.6	6.0	24	7.9	0.7	2.6	
8	5.4 13.0	4.4 11.8	5.3 11.4	6.7 13.1	5.4 12.6	6.1 11.8	6.9 9.8	30.4 17.0	30.1 20.8	6.2 19.5	6.6 11.7	3.9 8.9	3.8 9.3	4.0 8.3	4.1 7.0	4.9 5.1	6.1 4.9	6.4 5.0	6.7 5.0	8.2 0.1	19.4 0.5	14.8 0.2	11.4 1.1	12.4 0.1	24 24	30.4 20.8	3.8 0.1	9.1 8.7	
10	0.2	0.1	0.1	0.3	0.4	0.6	1.1	1.7	1.8	1.9	10.2	12.5	11.1	9.9	10.7	8.9	9.7	13.3	15.7	20.4	38.7	11.4	10.3	12.0	24	38.7	0.1	8.5	
11	5.3	3.9	3.5	3.3	2.8	2.8	3.1	3.0	2.8	3.2	1.5	1.5	1.3	1.2	1.9	1.3	1.0	1.3	1.3	1.5	1.3	1.0	1.4	2.1	24	5.3	1.0	2.2	
12	3.5	5.0	4.4	3.8	3.9	3.8	4.0	3.7	3.4	3.0	3.8	2.9	2.8	1.8	1.9	1.8	2.3	3.4	3.2	3.2	3.3	7.1	6.6	5.3	24	7.1	1.8	3.7	
13	4.6	3.2	3.1	2.5	3.2	3.6	3.1	3.8	4.2	3.6	2.8	2.9	3.5	4.6	6.3	6.4	7.0	8.8	9.6	9.6	12.6	12.8	11.6	12.9	24	12.9	2.5	6.1	
14	9.7	10.1	12.2	12.4	11.6	11.0	7.8	6.1	7.5	6.6	4.6	4.1	4.2	4.1	3.4	2.7	3.5	3.5	4.2	7.3	9.2	9.3	10.7	10.5	24	12.4	2.7	7.3	
15	10.3	10.7	10.0	8.6	8.2	9.8	8.1	6.3	5.6	4.6	3.8	3.7	3.8	3.9	4.0	4.5	4.3	4.3	3.5	2.9	2.6	2.0	3.0	2.0	24	10.7	2.0	5.4	
16	1.7	1.2	1.0	0.7	0.0	0.0	0.0	0.1	0.7	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	1.7	0.0	0.2	
17	0.0	0.0 3.7	0.0	0.0	0.0	0.0	0.2	0.4	0.8 1.0	1.1	1.2	1.5	1.8	2.5	3.0	3.5	3.8	5.3	5.4	5.0	4.5	4.7	4.7	4.5	24	5.4	0.0	2.3 1.6	
18	3.4 0.0	0.0	3.9 0.0	3.3 0.0	2.3 0.0	1.8 0.0	2.0 0.0	1.3 0.0	0.0	0.7 0.0	0.9	0.8	0.2	0.9 0.0	2.3 0.0	1.2 0.0	0.7	1.6 0.6	1.8 0.0	2.4 1.3	1.8 1.0	1.1 3.0	0.0 1.4	0.0	24 24	3.9 3.0	0.0	0.3	
20	0.7	0.3	0.4	0.5	1.4	4.1	4.7	5.6	5.9	5.1	7.6	8.6	12.0	13.2	15.0	13.4	13.3	12.2	7.1	3.6	3.9	3.1	1.8	1.1	24	15.0	0.3	6.0	
21	1.4	1.1	0.9	0.8	0.7	0.6	0.5	0.5	0.4	0.0	0.0	0.2	0.5	0.7	1.2	1.5	3.3	4.7	5.6	5.4	6.3	6.8	6.9	2.1	24	6.9	0.0	2.2	
22	1.4	0.8	0.4	0.0	0.0	0.7	0.0	0.0	0.5	0.7	0.7	1.9	3.0	4.4	5.9	6.3	6.7	2.5	1.5	5.9	2.6	4.4	4.0	4.0	24	6.7	0.0	2.4	
23	4.4	5.1	5.6	5.0	5.1	4.2	6.6	10.6	9.0	10.8	9.2	7.1	7.8	10.1	9.1	7.8	8.0	6.1	4.8	5.1	7.0	8.9	12.5	14.6	24	14.6	4.2	7.7	
24	16.0	16.3	15.1	14.1	13.9	13.7	14.0	11.6	8.2	5.4	7.0	5.7	4.0	2.8	3.2	3.7	3.7	2.5	2.8	3.8	2.4	1.8	1.9	2.0	24	16.3	1.8	7.3	
25	2.1	2.3	1.9	1.8	2.0	2.3	2.5	3.2	5.5	6.8	9.5	3.3	0.5	0.3	0.3	0.3	1.7	3.6	4.2	1.5	2.3	2.4	0.8	0.2	24	9.5	0.2	2.6	
26	0.3	0.2	0.2	0.5	0.2	0.2	0.2	0.3	0.4	0.5	0.6	0.4	0.5	1.1	1.5	1.1	2.6	3.2	9.6	6.9	6.7	6.2	6.2	5.8	24	9.6	0.2	2.3 6.8	
27	6.3 5.1	2.4 7.3	1.9 8.6	1.6 8.2	1.4 5.5	1.6 6.0	1.9 6.1	5.1 7.8	10.9 7.6	8.7 5.5	7.4 3.6	10.8 2.5	7.3 1.7	10.5 1.6	7.9 2.4	9.9 2.6	11.4 3.4	9.6 3.4	12.6 3.0	8.3 2.9	6.9 2.6	7.5 2.4	5.4 2.9	5.1 2.9	24 24	12.6 8.6	1.4 1.6	4.4	
29	6.3	5.5	4.8	6.6	7.7	7.0	2.8	7.5	5.3	3.0	4.5	4.8	9.6	1.0 C	2.4 C	6.8	6.9	7.4	4.2	5.1	7.7	9.7	12.7	10.7	22	12.7	2.8	6.7	
30	7.9	7.9	5.7	4.9	4.1	4.1	6.5	8.4	8.7	5.7	5.5	6.2	6.2	7.4	9.7	11.6	12.1	17.7	22.0	20.4	16.9	11.0	8.9	4.5	24	22.0	4.1	9.3	
31																													
Count	30	30	30	30	30	30	30	30	30	30	30	30	30	29	29	30	30	30	30	30	30	30	30	30	718				
Maximum	16.0	16.3	15.1	14.1	13.9	13.7	14.0	30.4	30.1	19.5	11.7	12.5	12.0	13.2	15.0	13.4	15.5	17.7	22.0	20.4	38.7	14.8	12.7	14.6	24				
Minimum Average	0.0 4.1	0.0 3.9	0.0 3.8	0.0 3.8	0.0 3.6	0.0 3.8	0.0 3.9	0.0 5.3	0.0 5.5	0.0 4.0	0.0 4.2	0.0 3.6	0.0 3.5	0.0 3.6	0.0 3.9	0.0 4.0	0.0 4.8	0.0 4.8	0.0 5.1	0.0 5.1	0.0 6.1	0.0 5.3	0.0 5.1	0.0 4.6	22				
Average	4.1	3.7	3.0	3.0	3.0	3.0	3.7	3.3	ر.ر	4.0	4.2	3.0	3.3	5.0	3.7	4.0	4.0	4.0	3.1	3.1	0.1	3.3	3.1	4.0					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximur	n Hourly	38.
																								1				um Daily	9.
Data		0.2		0.7		1.4		2.4		3.2		4.1		5.4		7.4		10.3		12.6		19.5		38.7			Monthly	Average	4.4
Notes	C	- Calibration	/ Span Cyc	le N	A - No Data	Available	Т-	- Test	А	- MOE Audit	M	l - Equipme	nt Malfunct	ion / Down	R -	Rate of Ch	ange												-

											PM _{2.5} - R	undle Roa	d																
											cember		2017																
-	lour									(P	g/m³)																		-
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Maxi	imum Mir	nimum .	Average	
1	4.1	2.4	2.2	2.0	1.9	1.9	2.6	2.8	3.4	2.9	2.5	3.0	2.9	2.3	4.3	2.1	3.0	11.5	9.9	14.9	18.7	19.6	19.3	21.4	24	21.4	1.9	6.7	
2	17.4	18.1	14.1	11.2	14.0	13.7	10.7	11.6	13.5	14.5	15.0	14.4	13.2	10.7	9.2	10.8	13.8	14.0	21.1	28.3	28.6	23.2	25.7	21.1	24	28.6	9.2	16.2	
3	18.8	16.4	16.1	19.7	18.0	19.1	19.4	18.8	19.6	10.4	17.9	16.3	18.0	22.6	25.0	30.1	36.2	32.6	42.9	37.0	30.0	28.5	29.4	28.9	24	42.9	10.4	23.8	
4	28.8	25.8	23.8	23.3	22.8	21.1	20.8	14.1	27.5	27.2	22.1	29.2	27.3	27.7	24.4	21.5	21.5	21.1	16.1	12.3	9.8	10.0	10.5	10.6	24	29.2	9.8	20.8	
5	12.4 2.8	15.5 2.5	18.3 3.5	20.5 3.3	21.1 3.7	16.6 3.3	18.0 4.7	15.2 5.5	9.1 6.4	7.0 4.8	6.0 3.7	5.4 3.2	5.1 3.1	7.2 2.7	6.0 3.9	6.0 5.0	4.6	2.9 4.5	2.5 5.9	2.8 7.8	4.5 8.3	3.1 6.8	2.0 5.0	1.7 4.2	24 24	21.1 8.3	1.7 2.5	8.9 4.5	
7	3.7	4.1	4.1	3.3	3.6	3.8	3.8	6.0	5.4	4.8	3.7 C	3.2	3.1 C	2.7	2.8	3.5	4.4 4.1	2.0	2.1	3.0	3.7	2.8	3.3	3.4	24	6.0	2.0	3.6	
8	2.7	3.7	3.3	3.0	2.4	3.6	4.9	7.1	9.0	9.3	10.4	13.0	11.4	10.0	9.3	5.1	4.4	3.3	2.1	2.9	3.6	5.5	5.9	6.8	24	13.0	2.4	6.0	
9	7.5	8.4	10.5	11.6	9.9	10.0	12.2	18.7	19.5	19.6	14.1	11.8	9.8	7.6	7.5	6.9	4.8	8.4	8.5	9.7	35.0	16.6	53.5	17.0	24	53.5	4.8	14.1	
10	14.9	14.6	6.1	1.5	1.1	0.9	0.6	0.6	0.2	0.3	0.3	0.7	1.1	1.9	3.3	4.2	5.5	7.7	6.6	7.4	10.3	14.0	0.4	0.4	24	14.9	0.2	4.4	
11	0.6	0.5	0.4	0.3	0.4	0.3	0.4	0.9	1.2	1.4	1.1	1.3	1.6	1.9	5.1	1.5	5.0	3.2	1.4	2.9	3.2	2.6	2.8	3.7	24	5.1	0.3	1.8	
12	4.8	5.5	5.9	5.4	4.0	3.4	3.1	3.2	3.8	7.6	8.6	6.1	1.7	Α	Α	0.7	0.4	0.4	0.3	0.4	0.5	0.7	0.9	0.5	22	8.6	0.3	3.1	
13	0.4	0.6	0.4	0.2	0.2	0.2	0.2	3.1	4.9	1.2	0.4	0.6	0.3	0.2	0.2	0.4	0.9	2.6	3.0	2.2	1.5	1.2	1.6	1.8	24	4.9	0.2	1.2	
14	2.8	2.2	1.6	1.1	1.8	1.0	2.1	2.3	2.6	1.7	2.0	2.4	1.9	2.2	2.6	6.2	6.7	4.9	7.5	5.4	7.1	17.9	19.2	11.7	24	19.2	1.0	4.9	
15	11.6	11.7	11.4	16.0	16.6	16.5	17.7	12.1	10.4	11.0	12.0	9.4	9.6	4.1	7.6	5.9	4.2	7.5	14.4	21.0	23.6	21.6	12.8	7.3	24	23.6	4.1	12.3	
16	4.7	2.2	5.1	6.1	3.4	1.0	10.1	1.1	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.6	5.9	28.6	7.3	11.8	20.1	7.0	3.2	24	28.6	0.2	5.0	
17	2.4	4.2 2.5	9.4 3.2	7.4 4.4	6.2 5.3	4.5	3.9 10.3	2.4	6.1 10.8	2.1 17.9	0.6	0.7 13.6	1.3	1.0	1.0	1.1 23.5	1.1 27.4	2.2 29.4	2.6 30.5	2.5 23.4	2.2 21.0	1.8	1.9 39.4	2.1 38.0	24 24	9.4 39.4	0.6	2.9 17.4	
18	2.1 34.9	35.2	37.2	33.8	34.5	8.0 22.8	12.8	9.1 12.2	11.3	10.7	13.0 12.1	13.1	18.4 12.5	16.1 10.9	21.3 8.5	7.7	6.6	5.8	5.9	5.6	7.1	30.1 6.2	39.4	2.0	24	37.2	2.1	14.7	
20	0.8	0.6	0.5	0.4	0.3	0.3	0.3	0.3	0.3	1.5	0.6	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.6	0.6	0.6	0.8	24	1.5	0.3	0.5	
21	0.9	1.1	1.5	1.3	1.3	1.4	1.6	2.8	2.7	3.3	3.0	3.2	3.2	3.6	3.5	3.6	4.3	5.1	4.9	4.7	5.1	6.3	6.5	5.1	24	6.5	0.9	3.3	
22	2.6	1.9	2.4	3.4	2.3	2.0	1.8	1.9	1.9	2.0	1.9	1.8	2.0	2.2	2.8	3.2	2.7	3.5	4.3	5.6	6.1	7.3	7.9	11.6	24	11.6	1.8	3.5	
23	13.6	17.9	15.7	12.9	9.9	8.3	8.8	9.7	9.6	10.1	12.4	13.9	17.3	13.5	12.8	14.7	15.8	14.5	10.8	10.8	8.6	5.5	2.9	2.6	24	17.9	2.6	11.4	
24	3.1	4.7	5.8	4.1	3.4	4.1	4.3	2.2	3.3	2.5	1.3	1.1	0.8	0.7	0.8	1.2	3.6	2.0	1.9	2.0	2.2	2.2	2.2	2.2	24	5.8	0.7	2.6	
25	2.6	2.9	2.5	2.7	2.4	1.8	1.5	1.9	1.9	2.3	2.1	3.7	4.3	3.3	2.6	2.7	4.5	7.3	6.6	3.4	3.4	3.6	4.1	3.9	24	7.3	1.5	3.2	
26	3.3	3.4	4.0	3.9	3.2	3.4	3.6	3.7	4.5	5.2	5.1	4.2	4.0	4.1	3.7	3.9	5.1	5.2	6.0	6.1	7.4	8.6	7.5	7.2	24	8.6	3.2	4.8	
27	6.7	6.5	5.9	6.2	6.0	5.3	5.8	6.6	8.6	9.1	4.3	2.1	2.0	2.3	2.4	2.7	2.2	5.9	6.1	7.1	5.9	6.7	6.3	5.5	24	9.1	2.0	5.3	
28	4.8	3.7	4.1	4.8	4.7	5.1	5.4	5.0	7.7	4.8	5.1	6.2	5.4	4.9	4.0	2.8	4.2	6.3	8.0	9.4	6.2	5.5	4.8	4.7	24	9.4	2.8	5.3	
29	4.1	2.7	2.5	2.5 7.7	2.7 10.0	2.5	2.8 14.8	3.5 18.3	3.1 19.5	3.4	2.7	2.1 14.3	2.4 10.9	2.6 7.9	3.1 7.0	3.8	4.3	5.2	5.2	5.5 4.5	5.5	5.8	8.2 1.9	8.2 2.3	24	8.2	2.1	3.9	
30	10.0 3.1	5.0 2.5	6.4 3.1	3.5	3.3	11.7 3.1	3.1	3.0	3.0	25.1 2.1	24.8 1.8	14.3	1.8	1.3	2.3	6.5 1.6	10.0 2.2	9.6 10.4	11.6 12.1	4.5	2.3	2.0 2.6	4.0	4.2	24 24	25.1 12.1	1.9 1.3	10.2 3.4	
Count	3.1	31	31	3.3	3.3	31	31	3.0	3.0	31	30	30	30	30	30	31	31	31	31	31	31	31	31	31	739	14.1	1.3	3.4	
Maximum	34.9	35.2	37.2	33.8	34.5	22.8	20.8	18.8	27.5	27.2	24.8	29.2	27.3	27.7	25.0	30.1	36.2	32.6	42.9	37.0	35.0	30.1	53.5	38.0	24				
Minimum	0.4	0.5	0.4	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.4	0.4	0.3	0.4	0.5	0.6	0.4	0.4	21				
Average	7.5	7.4	7.5	7.3	7.1	6.5	6.8	6.6	7.5	7.3	6.9	6.6	6.5	6.0	6.2	6.1	6.9	7.9	9.4	8.4	9.2	9.3	9.7	7.9					
D		10		20		20		40		F0.				70		00		00		OF.		00		100			Manian	. Haushi	
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximum Maximu	,	53. 23.
Data		0.9		2.0		2.7		3.4		4.4		5.9		8.1		11.8		18.7		23.9		35.2		53.5			Monthly /		7.
Notes	C	- Calibration	n / Span Cyc	le N	A - No Data	Available	T.	- Test	A	- MOE Audit	. N	l - Equipme	nt Malfunct	ion / Down	R	- Rate of Cl	nange												

Figure E-1 Time History Plot of Measured 24 Hour Average PM_{2.5} Concentrations – Courtice WPCP Station

Figure E-2 Time History Plot of Measured 24 Hour Average PM_{2.5} Concentrations – Rundle Road Station

Appendix F Continuous Parameter Edit Logs February 9, 2018

Appendix F CONTINUOUS PARAMETER EDIT LOGS

Project No.: 160950528 F.1

ontact tation number:	Greg Crooks / Connie Lis	m / Brian Bylhouwer	Phone:					
tation number:				905-944-7777	E-mail:		gı	reg.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com
		N/A	Station Name:	Courtice WPCP Station ((Upwind)			
tation address:	Courtice Water Pollution	n Control Plant	Emitter Address:	The Region of Durham,	605 Rossland Rd	, Whitby, ON		
ollutant or parameter:	SO ₂	Instrument make & model:		Teledyne Monitor Labs	Sulphur Dioxide	Analyzer Model T100	Serial Number:	565
ata edit period	Start date:	1-Oct-17	End date:	31-Dec-17	'			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting	3	End	ing	Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
102	9-Jan-18	BB	Data review	18-Oct-17	03:00	18-Oct-17	04:00	An elevated SO ₂ level of 85 ppb was measured at the Courtice WPCP station without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured. Winds were west-northwesterly during this time. Potential emission sources in this direction include highway 401 or rail traffic. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
103	9-Jan-18	BB	Data review	21-Oct-17	02:00	21-Oct-17	04:00	An elevated SO ₂ level of 62 ppb was measured at the Courtice WPCP station without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured. Winds were west-northwesterly during this time. Potential emission sources in this direction include highway 401 or rail traffic. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
104	9-Jan-18	ВВ	Data review	27-Oct-17	03:00	27-Oct-17	04:00	An elevated SO ₂ level of 58 ppb was measured at the Courtice WPCP station without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured. Winds were north-northeasterly during this time. Potential emission sources in this direction include highway 401 or the Courtice WPCP. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
105	9-Jan-18	BB	Invalidate	27-Oct-17	11:00	27-Oct-17	12:00	Monthly Calibration
106	9-Jan-18	BB	Invalidate	27-Nov-17	13:00	27-Nov-17	14:00	Monthly Calibration
107	9-Jan-18	BB	Data review	9-Nov-17	03:00	9-Nov-17	05:00	An elevated SO ₂ level of 32 ppb was measured at the Courtice WPCP station without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured. Winds were northerly during this time. Potential emission sources in this direction include highway 401 or rail traffic. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
104	9-Jan-18	ВВ	Data review	9-Dec-17	04:00	9-Dec-17	06:00	An elevated SO ₂ level of 20 ppb was measured at the Courtice WPCP station without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured. Winds were northerly during this time. Potential emission sources in this direction include highway 401 or rail traffic. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
105	9-Jan-18	BB	Invalidate	12-Dec-17	11:00	12-Dec-17	11:00	Quarterly Audit
106	9-Jan-18	ВВ	Data review	10-Nov-17	17:00	10-Nov-17	20:00	Instances of repeating zero values in this timeframe were due to negative instrument zero drift less than -5 ppb and rounded to 0 ppb. As per the MOECC Ambient Monitoring Guideline, no drift correction was applied.
107	9-Jan-18	BB	Data review	25-Nov-17	20:00	26-Nov-17	01:00	g
108	17-Jan-18	ВВ	Data review	1-Nov-17	07:00	1-Nov-17	09:00	An elevated SO ₂ level of 23 ppb was measured at the Courtice WPCP station without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured. Winds were northwesterly during this time. Potential emission sources in this direction include highway 401 or rail traffic. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
109	17-Jan-18	ВВ	Data review	3-Nov-18	21:00	4-Nov-17	04:00	An elevated SO ₂ level of 23 ppb was measured at the Courtice WPCP station without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured. Winds were northwesterly during this time. Potential emission sources in this direction include highway 401 or rail traffic. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
110	17-Jan-18	BB	Invalidate	27-Nov-17	13:00	27-Nov-17	14:00	Monthly Calibration
111	17-Jan-18	BB	Invalidate	7-Dec-17	12:00	7-Dec-17	13:00	Monthly Calibration
	1		+	+		 		
				1	1			

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range
Test

Project Name	Durham York Energy Cent	re Ambient Air Monitoring Program	1					
Contact	Greg Crooks / Connie Lim	/ Brian Bylhouwer	Phone:	905-944-7777	E-mail:		gı	eg.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com
Station number:		N/A	Station Name:	Courtice WPCP Station (Upwind)			
Station address:	Courtice Water Pollution	Control Plant	Emitter Address:	The Region of Durham,	605 Rossland Rd	, Whitby, ON		
Pollutant or parameter:	NOx	Instrument make & model:		API Model 200E Chemilu			Serial Number:	675
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-17				Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting		Enc	ding	Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
51	9-Jan-18	BB	Invalidate	27-Oct-17	11:00	27-Oct-17	12:00	Monthly Calibration
52	9-Jan-18	BB	Invalidate	27-Nov-17	13:00	27-Nov-17	14:00	Monthly Calibration
53	9-Jan-18	BB	Invalidate	11-Dec-17	12:00	11-Dec-17	13:00	Monthly calibration
52	9-Jan-18	BB	Data review	21-Oct-17	03:00	21-Oct-17	06:00	An elevated NOx level of 147 ppb was measured at the Courtice WPCP station without a corresponding trend at the Rundle Road Station. Concentrations of SO ₂ were also elevated during this time, indicating a potential local combustion source. Winds were northerly during this time. Potential sources include agricultural activities, CN rail traffic or local roads. The data was deemed valid.
53	9-Jan-18 9-Jan-18	BB BB	Data review Data review	9-Nov-17 18-Dec-17	07:00 12:00	9-Nov-17 18-Dec-17	09:00 18:00	An elevated NOx level of 131 ppb was measured at the Courtice WPCP station without a corresponding trend at the Rundle Road Station. Concentrations of SO ₂ were also elevated during this time, indicating a potential local combustion source. Winds were northerly during this time. Potential sources include agricultural activities, CN rail traffic or local roads. The data was deemed valid. An elevated NOx level of 88 ppb was measured at the Courtice WPCP station. NOX was also elevated at the Rundle Road
								Station. SO ₂ concentrations were also elevated during this time indicating a combustion source. Winds were northerly during this time. Potential sources include agricultural activities, a CN rail traffic or local roads. The data was deemed valid.
55	9-Jan-18	BB	Data review	4-Dec-17	19:00	5-Dec-17	11:00	
56	9-Jan-18	BB	Data review	11-Dec-17	16:00	11-Dec-17	19:00	
57	9-Jan-18	BB	Data review	12-Dec-17	16:00	13-Dec-17	06:00	
58	9-Jan-18	BB	Data review	15-Dec-17	14:00	16-Dec-17	06:00	
59	9-Jan-18	BB	Data review	16-Dec-17	22:00	17-Dec-17	05:00	Instances of repeating zero values in this timeframe were due to negative instrument zero drift less than -5 ppb and
60	9-Jan-18	BB	Data review	16-Dec-17	22:00	18-Dec-17	05:00	rounded to 0 ppb. As per the MOECC Ambient Monitoring Guideline, no drift correction was applied.
61	9-Jan-18	BB	Data review	18-Dec-17	21:00	21-Dec-17	06:00	
62	9-Jan-18	BB	Data review	22-Dec-17	18:00	23-Dec-17	08:00	
63	9-Jan-18	BB	Data review	23-Dec-17	22:00	24-Dec-17	05:00	4
64	9-Jan-18	BB	Data review	24-Dec-17	20:00	27-Dec-17	05:00	4
65	9-Jan-18	BB	Data review	30-Dec-17	18:00	31-Dec-17	22:00	
66	9-Jan-18	BB	Invalidate	9-Dec-17	13:00	9-Dec-17	17:00	Calibration
67 68	9-Jan-18	BB BB	Invalidate	12-Dec-17	11:00 22:00	12-Dec-17 13-Oct-17	11:00 14:00	Quarterly Audit
69	10-Jan-18 10-Jan-18	BB BB	Data review Data review	12-Oct-17 24-Oct-17	22:00	13-Oct-17 25-Oct-17	05:00	-
70	10-Jan-18	BB	Data review	28-Oct-17	00:00	28-Oct-17	08:00	-
71	10-Jan-18	BB	Data review	31-Oct-17	01:00	31-Oct-17	06:00	
72	10-Jan-18	BB	Data review	1-Nov-17	02:00	1-Nov-17	05:00	-
73	10-Jan-18	BB	Data review	2-Nov-17	10:00	2-Nov-17	23:00	-
74	10-Jan-18	BB	Data review	5-Nov-17	17:00	6-Nov-17	00:00	-
75	10-Jan-18	BB	Data review	7-Nov-17	13:00	7-Nov-17	20:00	Instances of repeating zero values in this timeframe were due to negative instrument zero drift less than -5 ppb and
76	10-Jan-18	BB	Data review	11-Nov-17	16:00	11-Nov-17	23:00	rounded to 0 ppb. As per the MOECC Ambient Monitoring Guideline, no drift correction was applied.
77	10-Jan-18	BB	Data review	12-Nov-17	17:00	12-Nov-17	21:00	7
78	10-Jan-18	BB	Data review	15-Nov-17	20:00	16-Nov-17	04:00	1
79	10-Jan-18	BB	Data review	17-Nov-17	18:00	18-Nov-17	06:00	
80	10-Jan-18	BB	Data review	20-Nov-17	20:00	21-Nov-17	23:00	
81	10-Jan-18	BB	Data review	24-Nov-17	21:00	25-Nov-17	07:00	
82	10-Jan-18	BB	Data review	25-Nov-17	17:00	26-Nov-17	06:00	
83	17-Jan-18	BB	Invalidate	7-Dec-17	13:00	7-Dec-17	13:00	Calibration
84	17-Jan-18	BB	Invalidate	4-Dec-17	12:00	4-Dec-17	15:00	Calibration
85	17-Jan-18	BB	Invalidate	5-Dec-17	12:00	5-Dec-17	14:00	Calibration
						i —	1	

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Annual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range

Project Name	Durham York Energy Cent	tre Ambient Air Monitoring Program	1					
Contact	Greg Crooks / Connie Lim		Phone:	905-944-7777	E-mail:		gro	eg.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com
Station number:	Greg Grooks / Comme Emi	N/A	Station Name:	Courtice WPCP Station			<u> </u>	egeroonse state ceroni, commente state ceroni, state sy now her estate ceroni
Station address:	Courtice Water Pollution		Emitter Address:	The Region of Durham,	605 Rossland Rd	. Whitby. ON		
Pollutant or parameter:	PM _{2.5}	Instrument make & model:		Thermo Sharp 5030 Syn Particulate Monitor			Serial Number:	E-1569
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-17	·			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting		End	ing	Reason
2000				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
86	9-Jan-18	BB	Invalidate	12-Dec-17	11:00	12-Dec-17	11:00	Quarterly Audit
87	9-Jan-18	BB	Invalidate	27-Oct-17	11:00	27-Oct-17	12:00	Monthly Calibration
88	9-Jan-18	BB	Invalidate	27-Nov-17	13:00	27-Nov-17	14:00	Monthly Calibration
89	9-Jan-18	BB	Invalidate	11-Dec-17	12:00	11-Dec-17	13:00	Monthly calibration
90	9-Jan-18	BB	Data review	21-Oct-17	03:00	21-Oct-17	06:00	Elevated levels of up to 36 µg/m³ were measured without a corresponding trend at the Rundle or Oshawa Stations. Winds were northerly - potential emission sources in this direction include agricultural activities, highway 401, and CN rail traffic. The data was deemed valid.
91	9-Jan-18	BB	Data review	28-Nov-17	01:00	28-Nov-17	02:00	Elevated levels of up to 42 µg/m³ were measured without a corresponding trend at the Rundle or Oshawa Stations. Winds were northerly - potential emission sources in this direction include agricultural activities, highway 401, and CN rail traffic. The data was deemed valid.
92	9-Jan-18	BB	Data review	3-Dec-17	16:00	3-Dec-17	21:00	Elevated levels of up to 45 µg/m ³ were measured. Concentrations were also elevated at Rundle and Oshawa Stations. Winds were northerly - potential emission sources in this direction include agricultural activities and highway 401. The data was deemed valid.
93	24-Nov-17	TZ	Invalidate minute data	6-Oct-17	09:44	6-Oct-17	09:54	Zero check. Minute data invalidated
94	24-Nov-17	TZ	Invalidate minute data	13-Oct-17	11:06	13-Oct-17	11:11	Zero check. Minute data invalidated
95	24-Nov-17	TZ	Invalidate minute data	20-Oct-17	11:15	20-Oct-17	11:26	Zero check. Minute data invalidated
96	24-Nov-17	TZ	Invalidate minute data	23-Oct-17	12:31	23-Oct-17	12:36	Zero check. Minute data invalidated
97	9-Jan-18	BB	Zero correction	1-Oct-17	00:00	6-Oct-17	10:00	Offset of -1.2 µg/m³ applied due to zero drift.
98	10-Jan-18	BB	Invalidate minute data	1-Nov-17	11:45	1-Nov-17	11:55	Zero check. Minute data invalidated
99	10-Jan-18	BB	Invalidate minute data	6-Nov-17	12:40	6-Nov-17	12:55	Zero check. Minute data invalidated
100	10-Jan-18	BB	Invalidate minute data	10-Nov-17	13:09	10-Nov-17	13:26	Zero check. Minute data invalidated
101	10-Jan-18	BB	Invalidate minute data	17-Nov-17	12:13	17-Nov-17	12:26	Zero check. Minute data invalidated
102	10-Jan-18	BB	Invalidate minute data	23-Nov-17	12:03	23-Nov-17	12:16	Zero check. Minute data invalidated
103	10-Jan-18	BB	Invalidate minute data	28-Nov-17	11:58	28-Nov-17	12:06	Zero check. Minute data invalidated
104	10-Jan-18	BB	Invalidate minute data	8-Dec-17	13:00	8-Dec-17	13:10	Zero check. Minute data invalidated
105	10-Jan-18	BB	Invalidate minute data	18-Dec-17	11:24	18-Dec-17	11:34	Zero check. Minute data invalidated
106	10-Jan-18	BB	Invalidate minute data	22-Dec-17	10:44	22-Dec-17	10:57	Zero check. Minute data invalidated
107	10-Jan-18	BB	Invalidate minute data	28-Dec-17	11:47	28-Dec-17	12:22	Zero check. Minute data invalidated
108	10-Jan-18	BB	Zero correction	6-Nov-17	12:00	10-Nov-17	13:00	Offset of -0.6 µg/m³ applied due to zero drift.
109	10-Jan-18	BB	Zero correction	17-Nov-17	12:00	23-Nov-17	12:00	Offset of -0.7 µg/m³ applied due to zero drift.
110	10-Jan-18	BB	Zero correction	28-Nov-17	12:00	8-Dec-17	13:00	Offset of -0.6 µg/m³ applied due to zero drift.
111	10-Jan-18	BB	Zero correction	22-Dec-17	11:00	28-Dec-17	12:00	Offset of -0.4 μg/m³ applied due to zero drift.
112	10-Jan-18	BB	Data review	9-Oct-17	11:00	9-Oct-17	19:00	
113	10-Jan-18	BB	Data review	15-Oct-17	18:00	16-Oct-17	03:00	
114	10-Jan-18	BB	Data review	29-Oct-17	22:00	30-Oct-17	10:00	
115	10-Jan-18	BB	Data review	9-Nov-17	20:00	10-Nov-17	01:00	
116	10-Jan-18	BB	Data review	11-Nov-17	12:00	11-Nov-17	22:00	Repeating values were investigated. Measurements fluctuated, but appear as repeating due to round off.
117	10-Jan-18	BB	Data review	16-Nov-17	03:00	16-Nov-17	21:00	
118	10-Jan-18	BB	Data review	19-Nov-17	00:00	19-Nov-17	17:00	
119	10-Jan-18	BB	Data review	25-Nov-17	13:00	26-Nov-17	09:00	
120	10-Jan-18	BB	Data review	20-Dec-17	02:00	20-Dec-17	13:00	
					1			
		1	1		1			

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line

Marking data as out-of-range

Test

EDIT LOG TABLE

Project Name	Durham York Energy Cent	re Ambient Air Monitoring Program						
Contact	Greg Crooks / Connie Lim	/ Brian Bylhouwer	Phone:	905-944-7777	E-mail:		gre	g.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com
Station number:		N/A	Station Name:	Courtice WPCP Station				
Station address:	Courtice Water Pollution	Control Plant	Emitter Address:	The Region of Durham, 6	05 Rossland Rd,	Whitby, ON		
Pollutant or parameter:	Temperature	Instrument make & model:		Campbell Scientific Mod	el HMP60		Serial Number:	
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-17				Time Zone: EST
Edit #	Edit date	Editor's Name	Edit Action	Starting		En	ding	Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
		_						
						· · · · · · · · · · · · · · · · · · ·		

EDIT LOG TABLE

EDIT LOG TABLE								
Project Name	Durham York Energy Cent	re Ambient Air Monitoring Program	ı					
Contact	Greg Crooks / Connie Lim	/ Brian Bylhouwer	Phone:	905-944-7777	E-mail:		gre	g.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com
Station number:		N/A	Station Name:	Courtice WPCP Station				
Station address:	Courtice Water Pollution (Control Plant	Emitter Address:	The Region of Durham,	605 Rossland Rd,	Whitby, ON		
Pollutant or parameter:	Rainfall	Instrument make & model:		Texas Electronic TE525N	1		Serial Number:	
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-17				Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting		Enc	ling	Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
		·						

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range

EDIT LOG TABLE

Project Name	Durham York Energy Cent	re Ambient Air Monitoring Program						
Contact	Greg Crooks / Connie Lim	/ Brian Bylhouwer	Phone:	905-944-7777	E-mail:		gre	g.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com
Station number:		N/A	Station Name:	Courtice WPCP Station				
Station address:	Courtice Water Pollution	Control Plant	Emitter Address:	The Region of Durham, 6	05 Rossland Rd	, Whitby, ON		
Pollutant or parameter:	Relative Humidity	Instrument make & model:		Campbell Scientific Mod	el HMP60		Serial Number:	
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-17				Time Zone: EST
Edit #	tart date: 1-Oct-17 Edit date Editor's Name		Edit Action	Starting		Enc	ling	Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	

EDIT LOG TABLE

EDIT LOG TABLE	INCLE TO THE PROPERTY OF THE P										
Project Name	Durham York Energy Centre Ambient Air Monitoring Program										
Contact	Greg Crooks / Connie Lim / Brian Bylhouwer		Phone:	905-944-7777 E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com				
Station number:	N/A		Station Name:	Courtice WPCP Station							
Station address:	Courtice Water Pollution Control Plant		Emitter Address:	The Region of Durham, 605 Rossland Rd, Whitby, ON							
Pollutant or parameter:	Atmospheric Pressure Instrument make & model:			Campbell Scientific Model CS106			Serial Number:				
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-17				Time Zone : EST			
Edit #	Edit date	Editor's Name	Edit Action	Starting		Enc	ding	Reason			
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)				

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range

EDIT LOG TABLE

Project Name	Durham York Energy Centre Ambient Air Monitoring Program											
Contact	Lisa Heatherington Phone:			N/A	E-mail:	Lisa.Hetherington@Durham.ca						
Station number:	N/A		Station Name:	Courtice WPCP Station								
Station address:	Courtice Water Pollution Control Plant		Emitter Address:	The Region of Durham, 605 Rossland Rd, Whitby, ON								
Pollutant or parameter:	Wind Speed/Wind Instrument make & model:			N/A			Serial Number:					
	direction											
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-17				Time Zone : EST				
Edit #	Edit date	Editor's Name	Edit Action	Starting		Ending		Reason				
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)					
1	15-Jan-17	BB	Invalidate	3-Oct-17	02:00	3-Oct-17	02:00	Data not available from Courtice WPCP meteorological station				
2	15-Jan-17	BB	Invalidate	21-Nov-17	14:00	22-Nov-17	00:00	Data not available from Courtice WPCP meteorological station				
3	15-Jan-17	BB	Invalidate	23-Nov-17	01:00	23-Nov-17	14:00	Data not available from Courtice WPCP meteorological station				
								-				
		·						-				

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range

Project Name	Durham York Ene	rgy Centre Ambient Air Monitoring Program						
Contact	42892		Phone:	905-944-7777	E-mail:			4282
Station number:		45200	Station Name:	Rundle Road Station				
Station address:	Rundle Road / Ba	seline Road	Emitter Address:	The Region of Durha	m, 605 Rossland	Rd, Whitby, Of		
Pollutant or parameter:	SO ₂	Instrument make & model:		Teledyne Monitor La	bs Sulphur Diox	ide Analyzer	Serial Number:	565
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-1	7			Time Zone : EST
Edit#	Edit date	Editor's Name	Edit Action	Startin	g		Ending	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		
	10-Jan-18		Data Review	15-Nov-17	16:00	15-Nov-17	17:00	Elevated levels of up to 5 ppb were measured without a corresponding trend at the Courtice WPCP. Elevated NOx levels were also measured in the same
94		BB						time period suggesting a local combustion source. Winds were easterly during this time. Potential emission sources in this direction include Highway 401
								the CP railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed
								valid.
95	10-Jan-18	BB	Invalidate	26-Oct-17	11:00	26-Oct-17	12:00	Monthly Calibration
96	11-Jan-18	BB	Invalidate	29-Nov-17	13:00	29-Nov-17	13:00	Monthly Calibration
97	11-Jan-18	BB	Invalidate	7-Dec-17	11:00	7-Dec-17	11:00	Monthly Calibration
98	11-Jan-18	BB	Invalidate	26-Sep-17	11:00	26-Sep-17	12:00	Calibration
99	11-Jan-18	BB	Data Review	1-Oct-17	01:00	1-Oct-17	07:00	
100	11-Jan-18	BB	Data Review	1-Oct-17	19:00	2-Oct-17	01:00	
101	11-Jan-18	BB	Data Review	2-Oct-17	18:00	3-Oct-17	14:00	
102	11-Jan-18	BB	Data Review	4-Oct-17	21:00	5-Oct-17	10:00	
103	11-Jan-18	BB	Data Review	9-Oct-17	23:00	10-Oct-17	04:00	
104	11-Jan-18	BB	Data Review	11-Oct-17	00:00	13-Oct-17	06:00	
105	11-Jan-18	BB	Data Review	28-Oct-17	17:00	31-Oct-17	03:00	_
106	11-Jan-18	BB	Data Review	2-Nov-17	10:00	2-Nov-17	16:00	
107	11-Jan-18	BB	Data Review	3-Nov-17	08:00	4-Nov-17	15:00	_
108	11-Jan-18	BB BB	Data Review	6-Nov-17	07:00	7-Nov-17	06:00	-
109	11-Jan-18		Data Review	12-Nov-17	05:00	12-Nov-17	09:00	_
110	11-Jan-18	BB	Data Review	13-Nov-17	05:00	13-Nov-17	16:00	
111	11-Jan-18	BB	Data Review	15-Nov-17	08:00	15-Nov-17	14:00	
112	11-Jan-18	BB BB	Data Review	17-Nov-17	06:00	17-Nov-17	11:00 06:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient Monitori Guideline, no drift correction was applied
113 114	11-Jan-18 11-Jan-18	BB BB	Data Review Data Review	21-Nov-17 25-Nov-17	03:00	22-Nov-17 26-Nov-17	06:00 16:00	Guidenne, no drift correction was applied
114	11-Jan-18 11-Jan-18	BB BB	Data Review Data Review	25-Nov-17 1-Dec-17	09:00	26-Nov-17 1-Dec-17	16:00	
116	11-Jan-18	BB	Data Review Data Review	2-Dec-17	18:00	3-Dec-17	11:00	\dashv
117	11-Jan-18 11-Jan-18	BB	Data Review Data Review	2-Dec-17 6-Dec-17	07:00	7-Dec-17	09:00	
117	11-Jan-18 11-Jan-18	BB	Data Review Data Review	9-Dec-17	07:00	9-Dec-17	18:00	\dashv
119	11-Jan-18	BB	Data Review	14-Dec-17	03:00	14-Dec-17	12:00	
120	11-Jan-18	BB	Data Review	16-Dec-17	06:00	17-Dec-17	09:00	-
121	11-Jan-18	BB	Data Review	19-Dec-17	22:00	20-Dec-17	16:00	
122	11-Jan-18 11-Jan-18	BB	Data Review Data Review	21-Dec-17	09:00	20-Dec-17 24-Dec-17	00:00	
123	11-Jan-18	BB	Data Review	24-Dec-17	20:00	26-Dec-17	05:00	_
124	11-Jan-18	BB	Data Review	26-Dec-17	20:00	27-Dec-17	07:00	-
125	11-Jan-18	BB	Data Review	29-Dec-17	12:00	29-Dec-17	21:00	_
126	11-Jan-18	BB	Data Review	30-Dec-17	20:00	31-Dec-17	12:00	-

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data due to equipment malfunctions and power failures.
Invalidating data as out-of-range
Test

EDIT LOG TABLE

Project Name	Durham York Ene	ergy Centre Ambient Air Monitoring Program						
Contact	Greg Crooks / Co	nnie Lim / Brian Bylhouwer	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com
Station number:		45200	Station Name:	Rundle Road Station				
Station address:	Rundle Road / Ba	seline Road	Emitter Address:	The Region of Durha	m, 605 Rossland	Rd, Whitby, O	N	
Pollutant or parameter:	NOx	Instrument make & model:		API Model 200E Cher	miluminescence	Analyzer	Serial Number:	675
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-1	7		•	Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Startin	g		Ending	Reason
				Date (dd-mm-yy)	Hour (xx:xx)	Date (dd-mm-yy)	Hour (xx:xx)	
66	11-Jan-18	BB	Data review	7-Oct-17	19:00	7-Oct-17	23:00	An elevated NOx level of 38 ppb was measured, without a corresponding trend at the Oshawa or Courtice stations. Winds were south-southeasterly during this time. Potential emission sources in this direction include Highway 401, local roads and businesses. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
67	11-Jan-18	BB	Data review	2-Nov-17	07:00	2-Nov-17	09:00	An elevated NOx level of 33 ppb was measured, without a corresponding trend at the Oshawa or Courtice stations. Winds were northeasterly during this time. Potential emission sources in this direction include CP rail traffic, local roads and businesses. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
68	11-Jan-18	BB	Data review	30-Nov-17	06:00	30-Nov-17	08:00	An elevated NOx level of 38 ppb was measured, without a corresponding trend at the Oshawa or Courtice stations. Winds were south-southeasterly during this time. Potential emission sources in this direction include Highway 10d, local roads and businesses. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
69	11-Jan-18	BB	Invalidate	26-Oct-17	11:00	26-Oct-17	12:00	Monthly calibration
70	11-Jan-18	BB	Invalidate	29-Nov-17	13:00	26-Oct-17	14:00	Monthly calibration
71	11-Jan-18	BB	Invalidate	7-Dec-17	10:00	7-Dec-17	12:00	Monthly calibration
72	11-Jan-18	BB	Invalidate	5-Dec-17	15:00	5-Dec-17	17:00	Calibration
73	11-Jan-18	BB	Invalidate	7-Dec-17	10:00	7-Dec-17	12:00	Calibration
74	11-Jan-18	BB	Invalidate	9-Dec-17	15:00	9-Dec-17	16:00	Calibration
75	11-Jan-18	BB	Invalidate	11-Dec-17	14:00	11-Dec-17	15:00	Calibration
76	11-Jan-18	BB	Invalidate	12-Dec-17	13:00	12-Dec-17	14:00	Quarterly Audit
77	11-Jan-18	BB	Data review	10-Oct-17	22:00	11-Oct-17	02:00	
78	11-Jan-18	BB	Data review	15-Oct-17	19:00	16-Oct-17	04:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient Monitoring
79 80	11-Jan-18	BB BB	Data review Data review	10-Dec-17	23:00	11-Dec-17	06:00	Guideline, no drift correction was applied
80	11-Jan-18	BB	Data review	27-Dec-17	23:00	28-Dec-17	06:00	
					+			
		1		_	1			
		<u> </u>			1			
		1		_	1			
		1			1			
					1			
					1			
Evamples of Acceptable Edit Act	lone							

Examples of Acceptable Edit Actions:

Add offset of Delete hours Zero Correction

Zero Correction

Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range
Test

Project Name	Durham York Fi	nergy Centre Ambient Air Monitoring Program						
Contact		eg Crooks / Connie Lim / Brian Bylhouwer	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com
		-6 / / /	1					8-8
Station number:		45200	Station Name:	Rundle Road Station				
Station address:	Rundle Road / I		Emitter Address:	The Region of Durham				5.150
Pollutant or parameter:	PM _{2.5}	Instrument make & model:		Thermo Sharp 5030 S Real-time	synchronized Hy	oria Ambient	Serial Number:	E-1569
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-1				Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting			Ending	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
404	44.1 48			(dd-mm-yy)	07.00	(dd-mm-yy)	00.00	
104	11-Jan-17			8-Nov-17	07:00	8-Nov-17	08:00	Elevated levels of 30 µg/m³ were measured without a corresponding trend at the Courtice or Oshawa Stations. Winds were northerly during this time.
		BB	Data review					Potential emission sources in this direction include local roads and businesses, and agricultural activity. Minute data was reviewed and measurements were
								reasonably consistent throughout this time period. Therefore, the data was deemed valid.
105	11-Jan-17			10-Nov-17	10:00	10-Nov-17	23:00	Elevated levels of up to 39 μg/m³ were measured without a corresponding trend at the Courtice or Oshawa Stations. Winds were westerly during this time.
		BB	Data review					Potential emission sources in this direction include local roads and businesses, and agricultural activity. Minute data was reviewed and measurements were
		BB BB	Data review					
								reasonably consistent throughout this time period. Therefore, the data was deemed valid.
106	11-Jan-17			9-Dec-17	20:00	9-Dec-17	23:00	Elevated levels of up to 54 μg/m³ were measured without a corresponding trend at the Courtice or Oshawa Stations. Winds were westerly during this time.
		BB	Data review					
		BB BB	Data review					Potential emission sources in this direction include local roads and businesses, and agricultural activity. Minute data was reviewed and measurements were
								reasonably consistent throughout this time period. Therefore, the data was deemed valid.
107	11-Jan-17	BB	Invalidate	26-Oct-17	11:00	26-Oct-17	12:00	Monthly calibration
108	11-Jan-17	BB	Invalidate	29-Nov-17	13:00	29-Nov-17	14:00	Monthly calibration
109	11-Jan-17	BB	Invalidate	7-Dec-17	10:00	7-Dec-17	12:00	Monthly calibration
110	11-Jan-17	BB	Invalidate	12-Dec-17	13:00	12-Dec-17	14:00	Quarterly Audit
111	11-Jan-17	BB	Invalidate Minute Data	6-Oct-17	07:36	6-Oct-17	08:06	Zero check
112	11-Jan-17	BB	Invalidate Minute Data	13-Oct-17	12:14	13-Oct-17	12:20	Zero check
113	11-Jan-17	BB	Invalidate Minute Data	20-Oct-17	09:15	20-Oct-17	09:32	Zero check
114	11-Jan-17	BB	Invalidate Minute Data	23-Oct-17	14:36	23-Oct-17	14:50	Zero check
115	11-Jan-17	BB	Invalidate Minute Data	6-Nov-17	13:44	6-Nov-17	13;55	Zero check
116	11-Jan-17	BB	Invalidate Minute Data	10-Nov-17	10:32	10-Nov-17	10:36	Zero check
117	11-Jan-17	BB	Invalidate Minute Data	17-Nov-17	15:37	17-Nov-17	15:58	Zero check
118	11-Jan-17	BB BB	Invalidate Minute Data	23-Nov-17	08:33	23-Nov-17	08:46	Zero check
119	11-Jan-17	BB	Invalidate Minute Data	28-Nov-17	13:44	28-Nov-17	13:52 10:35	Zero check
120	11-Jan-17	BB BB	Invalidate Minute Data Invalidate Minute Data	8-Dec-17	10:26 09:02	8-Dec-17		Zero check
121 122	11-Jan-17 11-Jan-17	BB BB	Invalidate Minute Data Invalidate Minute Data	18-Dec-17 22-Dec-17	13:08	18-Dec-17 22-Dec-17	09:13 13:16	Zero check Zero check
122	11-Jan-17 11-Jan-17	BB	Invalidate Minute Data	22-Dec-17 28-Dec-17	10;15	28-Dec-17	10:25	Zero check Zero check
123	11-Jan-17 11-Jan-17	BB	Zero correction	28-Dec-17 1-Oct-17	00:00	6-Oct-17	07:00	Offset of 1.3 µg/m³ applied due to zero drift.
125	11-Jan-17	BB	Zero correction	13-Oct-17	12:00	23-Oct-17	14:00	Offset of 0.9 µg/m³ applied due to zero drift.
126	11-Jan-17	BB	Zero correction	6-Nov-17	14:00	23-Nov-17	14:00	Offset of 1.1 µg/m³ applied due to zero drift.
127	11-Jan-17	BB	Data review	11-Oct-17	05:00	12-Oct-17	04:00	onset of 212 pg/m upplied due to kero direct
128	11-Jan-17	BB	Data review	15-Oct-17	18:00	16-Oct-17	04:00	_
129	11-Jan-17	BB	Data review	25-Oct-17	08:00	25-Oct-17	16:00	\dashv
130	11-Jan-17	BB	Data review	30-Oct-17	02:00	30-Oct-17	07:00	_
131	11-Jan-17	BB	Data review	4-Nov-17	14:00	4-Nov-17	22:00	Repeating values were investigated. Measurements fluctuated, but appear as repeating due to round off.
132	11-Jan-17	BB	Data review	16-Nov-17	12:00	17-Nov-17	05:00	
133	11-Jan-17	BB	Data review	18-Nov-17	23:00	19-Nov-17	16:00	
134	11-Jan-17	BB	Data review	16-Dec-17	10:00	16-Dec-17	15:00	
135	11-Jan-17	BB	Data review	20-Dec-17	05:00	20-Dec-17	22:00	

Examples of Acceptable Edit Actions: Add offset of Delete hours Zero Correction Zero Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range
Test

EDIT LOG TABLE

EDIT LOG TABLE								
Project Name		ergy Centre Ambient Air Monitoring Program						
Contact	Gre	g Crooks / Connie Lim / Brian Bylhouwer	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com
Station number:		45200	Station Name:	Rundle Road Station				
Station address:	Rundle Road / B	aseline Road	Emitter Address:	The Region of Durhan	n, 605 Rosslan	d Rd, Whitby, Of	4	
Pollutant or parameter:	Temperature	Instrument make & model:		Campbell Scientific M	odel HMP60		Serial Number:	
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-17	1			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting			Ending	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		

EDIT LOG TABLE

Greg	Crooks / Connie Lim / Brian Bylhouwer	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com
	45200	Station Name:	Rundle Road Station				
Rundle Road / Ba	seline Road	Emitter Address:	The Region of Durham	n, 605 Rossland	Rd, Whitby, ON	I	
Rainfall	Instrument make & model:		Texas Electronic TE525	5M		Serial Number:	
Start date:	1-Oct-17	End date:	31-Dec-17				Time Zone : EST
Edit date	Editor's Name	Edit Action	Starting			Ending	Reason
			Date	Hour (xx:xx)	Date	Hour (xx:xx)	
			(dd-mm-yy)		(dd-mm-yy)		
R	Greg Rundle Road / Ba Rainfall Start date:	Rundle Road / Baseline Road Rainfall Instrument make & model: Start date: 1-Oct-17	Greg Crooks / Connie Lim / Brian Bylhouwer Phone: \$45200 Station Name: Rundle Road / Baseline Road Emitter Address: Rainfall Instrument make & model: \$1.00t.17 End date:	Greg Crooks / Connie Lim / Brian Bylhouwer Phone: 905-944-7777 45200 Station Name: Rundle Road Station Raundle Road / Baseline Road Rainfall Instrument make & model: Texa Electronic TES2: Start date: 1-Oct-17 End date: 31-Oct-17 Edit date Editor's Name Edit Action Date Date	Greg Crooks / Connie Lim / Brian Bylhouwer Phone: 905-944-7777 E-mail: 45200 Station Name: Rundle Road / Baseline Road Bainfail Instrument make & model: Start date: 1-0ct-17 Edit date Editor's Name Edit Action Starting Total Hour (xcxx) Hour (xcxx) Hour (xcxx)	Greg Crooks / Connie Lim / Brian Bylhouwer Phone: 905-944-7777 E-mail: 45200 Station Name: Rundle Road / Basseline Road Rainfail Start date: 1-Oct-17 Edit date Edit Cry Name Edit Action Starting Date Hour (xxxxx) Date	Greg Crooks / Connie Lim / Brian Bylhouwer Phone: 905-944-7777 E-mail: 45200 Station Name: Rundle Road Station Feeglon of Durham, 605 Rossland Rd, Whitby, ON Bainfail Instrument make & model: Start date: 1-Oct-17 Edit date Editor's Name Feld date: 1-Oct-17 Edit Action Starting Date Hour (xxxxx) Date Hour (xxxxx)

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range

EDIT LOG TABLE

Project Name	Durham York Ener	gy Centre Ambient Air Monitoring Program						
Contact	Greg (Crooks / Connie Lim / Brian Bylhouwer	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com
Station number:		45200	Station Name:	Rundle Road Station				
Station address:	Rundle Road / Bas	eline Road	Emitter Address:	The Region of Durhan	n, 605 Rosslan	d Rd, Whitby, ON	I	
Pollutant or parameter:	Relative Humidity	Instrument make & model:		Campbell Scientific M	lodel HMP60		Serial Number:	
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-17	7			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting	3		Ending	Reason
				Date (dd-mm-yy)	Hour (xx:xx)	Date (dd-mm-yy)	Hour (xx:xx)	

EDIT LOG TABLE

EDIT LOG TABLE								
Contact	Greg	Crooks / Connie Lim / Brian Bylhouwer	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, brian.bylhouwer@stantec.com
Station number:		45200	Station Name:	Rundle Road Station				
Station address:	Rundle Road / Ba		Emitter Address:	The Region of Durhan				
Pollutant or parameter:	Wind	Instrument make & model:		Met One Instruments	Inc. Model 034	IB	Serial Number:	
	Speed/Wind							
	Direction							
Data edit period	Start date:	1-Oct-17	End date:	31-Dec-17				Time Zone: EST
Edit #	Edit date	Editor's Name	Edit Action	Starting			Ending	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		
						·		

Examples of Acceptable Edit Actions:
Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range

QUARTERLY AMBIENT AIR QUALITY MONITORING REPORT FOR THE DURHAM YORK ENERGY CENTRE – OCTOBER TO DECEMBER 2017

Appendix G Metals Data Summary February 9, 2018

Appendix G METALS DATA SUMMARY

Project No.: 160950528 G.1

Metals and Total Particulates	C	ourtice WPCP S	Station																
Location Date		dd/mm/yyy	/y	04/10		Courtice 10/10/2017	Courtice 16/10/2017	Courtice 22/10/2017	Courtice 28/10/2017	Courtice 03/11/2017	Courtice 09/11/2017	Courtice 15/11/2017	Courtice 21/11/2017	Courtice 27/11/2017	Courtice 03/12/2017	Courtice 09/12/2017	Courtice 15/12/2017	Courtice 21/12/2017	Courtice 27/12/2017
Start Time Sample Duration Technician		hh:mm Hours		23	:00 3.49 TZ	0:00 23.53 TZ	0:00 23.16 TZ	0:00 23.89 TZ	0:00 23.6 TZ	0:00 23.66 TZ	0:00 23.8 TZ	0:00 23.56 17	0:00 24 TZ	0:00 23.18 TZ	0:00 23.69 17	0:00 23.6 TZ	0:00 23.53 17	0:00 23.79 TZ	0:00 23.79 17
Filter Number Analytical Report #				1709	91563 43129	17091933 B7M7642	17091937 B7N5362	17100461 B7N5362	17100464 B7O8839	17101253 B7O8839	17101256 B7Q0355	17102750 B7P9976	17102754 B7Q6105	17111529 B7Q8602	17111532 B7S0205	17112388 B7S2424	17112391 B7S7588	17120634 B7T0949	17120637 B801290
lotal Volumetric Flow		Am³/sample	е		38.74	1491.81	1409.45	1509.39	1495.03	1437.79	1459.79	1466.14	1564.31	1341.90	1478.69	1484.53	1382.27	1405.35	1408.90
Analytical Results Particulate		Units mg		26.7 <0.02	5.0 0.02	Value RDI 32.2 5 <0.02 0.00	19.1 5	Value RDL 44.6 5 <0.02 0.02	Value RDL 34.4 5.0 <0.02 0.02	Value RDL 20.9 5.0 <0.02 0.02	Value RDL 51.4 5.0 0.03 0.02	Value RDL 25.6 5.0 <0.02 0.02	Value RDL 19.9 5.0 <0.02 0.02	Value RDL 25.0 5.0 <0.02 0.02	Value RDL 62.4 5.0 0.02 0.02	Value RDL 35.2 5.0 <0.02 0.02	Value RDL 34.3 5.0 0.05 0.02	Value RDL 51.6 5.0 <0.02 0.02	Value RDL 28.4 5.0 <0.02 0.02
Total Mercury (Hg) Aluminum (Al) Antimony (Sb)		ha ha ha		134 <10	50 10	120 50 <10 10	180 50	188 50	108 50 <10 10	67 50 <10 10	218 50 <10 10	94 50 <10 10	111 50 <10 10	132 50 <10 10	179 50 <10 10	154 50 <10 10	70 50 <10 10	136 50 <10 10	<50 50 <10 10
Arsenic (As) Barium (Ba)		ha ha		<6.0 7.7	6.0	<6.0 6.0 27.5 1.0	<6.0	<6.0 6.0	<6.0 6.0 13.0 1.0	<6.0 6.0 10.3 1.0	<6.0 6.0 26.1 1.0	<6.0 6.4 1.0	<6.0 6.0 5.2 1.0	<6.0 6.0 10.3 1.0	<6.0 6.0 15.9 1.0	<6.0 6.0 16.9 1.0	<6.0 6.0 17.0 1.0	<6.0 6.0 7.6 1.0	<6.0 8.2 6.0 1.0
Beryllium (Be) Bismuth (Bi)		hâ hâ		<1.0 <6.0	1.0 6.0	<1.0 1.0 <6.0 6.0	<1.0	<1.0 1.0	<1.0 1.0 <6.0 6.0	<1.0 1.0 <6.0 6.0	<1.0 1.0 <6.0 6.0	<1.0 1.0 <6.0 6.0	<1.0 1.0 <6.0 6.0	<1.0 1.0 <6.0 6.0	<1.0 1.0 <6.0 6.0	<1.0 1.0 <6.0 6.0	<1.0 1.0 <6.0 6.0	<1.0 1.0 <6.0 6.0	<1.0 <6.0 1.0 6.0
Boron (B) Cadmium (Cd)		hā hā		<6.0 <2.0	6.0 2.0	<6.0 6.0 <2.0 2.0	<6.0	<6.0 6.0	<6.0 6.0 <2.0 2.0	<6.0 6.0 <2.0 2.0	<6.0 6.0 <2.0 2.0	<6.0 6.0 <2.0 2.0	<6.0 6.0 <2.0 2.0	<6.0 6.0 <2.0 2.0	6.3 6.0 <2.0 2.0	<6.0 6.0 <2.0 2.0	<6.0 6.0 <2.0 2.0	<6.0 6.0 <2.0 2.0	<6.0 <2.0 6.0 2.0
Chromium (Cr) Cobalt (Co)		hâ hâ		<5.0 <2.0	5.0 2.0	<5.0 5.0 <2.0 2.0	<5.0 5.0	<5.0 5.0	<5.0 5.0 <2.0 2.0	<5.0 5.0 <2.0 2.0	<5.0 5.0 <2.0 2.0	<5.0 5.0 <2.0 2.0	<5.0 5.0 <2.0 2.0	<5.0 5.0 <2.0 2.0	<5.0 5.0 <2.0 2.0	<5.0 5.0 <2.0 2.0	<5.0 5.0 <2.0 2.0	<5.0 5.0 <2.0 2.0	<5.0 5.0 <2.0 2.0
Copper (Cu) Iron (Fe)		hā hā		44.7 367	5.0 50	67.1 5.0 576 50			78.0 5.0 388 50	62.0 5.0 282 50	38.4 5.0 760 50	37.7 5.0 194 50	5.4 5.0 223 50	11.3 5.0 375 50	28.5 5.0 721 50	40.8 5.0 601 50	20.8 5.0 531 50	19.9 5.0 384 50	13.6 5.0 212 50
Lead (Pb) Magnesium (Mg)		hа		4.1 228	3.0 50	<3.0 3.0 205 50			3.6 3.0 190 50	<3.0 3.0 84 50	9.9 3.0 342 50	4.1 3.0 102 50	<3.0 3.0 166 50	<3.0 3.0 193 50	10.9 3.0 316 50	4.8 3.0 360 50	15.0 3.0 117 50	<3.0 3.0 148 50	<3.0 3.0 121 50
Manganese (Mn) Molybdenum (Mo)		hã		14.0 <3.0	1.0 3.0	18.7 1.0 <3.0 3.0			14.8 1.0 <3.0 3.0	6.4 1.0 <3.0 3.0	21.6 1.0 <3.0 3.0	6.1 1.0 <3.0 3.0	8.8 1.0 <3.0 3.0	12.0 1.0 <3.0 3.0	23.5 1.0 <3.0 3.0	21.1 1.0 <3.0 3.0	30.6 1.0 <3.0 3.0	8.2 1.0 <3.0 3.0	5.1 1.0 <3.0 3.0
Nickel (Ni) Phosphorus (P)		hā hā		<3.0 40	3.0 25	<3.0 3.0 77 25	<25 25	42 25	<3.0 3.0 28 25	<3.0 3.0 <25 25	<3.0 3.0 41 25	<3.0 3.0 <25 25	<3.0 3.0 <25 25	<3.0 3.0 25 25	<3.0 3.0 39 25	<3.0 3.0 29 25	<3.0 3.0 <25 25	<3.0 <25 3.0 25	<3.0 3.0 <25 25
Selenium (Se) Silver (Ag)		hâ hâ		<10 <5.0	10 5.0	<10 10 <5.0 5.0	<5.0 5.0	<5.0 5.0	<10 10 <5.0 5.0	<10 10 <5.0 5.0	<10 10 <5.0 5.0	<10 10 <5.0 5.0	<10 10 <5.0 5.0	<10 10 <5.0 5.0	<10 10 <5.0 5.0	<10 10 <5.0 5.0	<10 10 <5.0 5.0	<10 10 <5.0 5.0	<10 10 <5.0 5.0
Strontium (Sr) Thallium (TI)		hâ hâ		3.6 <10	1.0 10	4.9 1.0 <10 10	<10 10	<10 10	3.4 1.0 <10 10	2.9 1.0 <10 10	7.3 1.0 <10 10	2.0 <10 1.0 10	2.8 1.0 <10 10	6.2 <10 1.0	6.2 1.0 <10 10	5.4 1.0 <10 10	2.8 1.0 <10 10	6.3 1.0 <10 10	3.3 1.0 <10 10
Tin (Sn) Titanium (Ti)		hâ hâ		<10 <10	10 10	<10 10 12 10	<10 10	10 10	<10 10 <10 10	<10 10 <10 10	<10 10 14 10	<10 10 <10 10	<10 10 <10 10	<10 10 11 10	<10 10 13 10	<10 10 <10 10	<10 10 <10 10	<10 10 <10 10	<10 10 <10 10
Vanadium (V) Zinc (Zn) Zirconium (Zr)		hã		<5.0 35.9 <5.0	5.0 5.0 5.0	<5.0 5.0 58.3 5.0 <5.0 5.0	27.5 5.0	28.5 5.0	<5.0 5.0 35.4 5.0 <5.0 5.0	<5.0 5.0 19.4 5.0 <5.0 5.0	<5.0 5.0 84.3 5.0 <5.0 5.0	<5.0 5.0 29.8 5.0 <5.0 5.0	<5.0 5.0 21.7 5.0 <5.0 5.0	<5.0 5.0 18.9 5.0 <5.0 5.0	<5.0 5.0 54.0 5.0 <5.0 5.0	<5.0 5.0 94.3 5.0 <5.0 5.0	<5.0 5.0 340 5.0 <5.0 5.0	<5.0 5.0 39.6 5.0 <5.0 5.0	<5.0 5.0 23.1 5.0 <5.0 5.0
Total Uranium (U)		hâ hâ		<0.45	0.45	<0.45			<0.45	<0.45	<0.45	<0.45 0.45	<0.45 0.45	<0.45	<0.45	<0.45	<0.45 0.45	<0.45	<5.0 5.0 <0.45 0.45
		Quarter 4		4	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
Calculated Concentrations		Maximum																	
Particulate	μg/m³	42.20	12.72		0/2017 7.35	10/10/2017 21.58	16/10/2017 13.55	22/10/2017 29.55	28/10/2017 23.01	03/11/2017 14.54	09/11/2017 35.21	15/11/2017 17.46	21/11/2017 12.72	27/11/2017 18.63	03/12/2017 42.20	09/12/2017 23.71	15/12/2017 24.81	21/12/2017 36.72	27/12/2017 20.16
Total Mercury (Hg) Aluminum (Al)	μg/m³ μg/m³	3.62E-05 1.49E-01	6.39E-06 4.66E-02		DE-06 1E-02	6.70E-06 8.04E-02	7.09E-06 1.28E-01	6.63E-06 1.25E-01	6.69E-06 7.22E-02	6.96E-06 4.66E-02	2.06E-05 1.49E-01	6.82E-06 6.41E-02	6.39E-06 7.10E-02	7.45E-06 9.84E-02	1.35E-05 1.21E-01	6.74E-06 1.04E-01	3.62E-05 5.06E-02	7.12E-06 9.68E-02	7.10E-06 1.77E-02
Antimony (Sb)	μg/m³	3.73E-03	3.20E-03	3.25	5E-03	3.35E-03	3.55E-03	3.31E-03	3.34E-03	3.48E-03	3.43E-03	3.41E-03	3.20E-03	3.73E-03	3.38E-03	3.37E-03	3.62E-03	3.56E-03	3.55E-03
Arsenic (As) Barium (Ba)	ha/w ₃	2.24E-03 1.84E-02	1.92E-03 3.32E-03		5E-03 DE-03	2.01E-03 1.84E-02	2.13E-03 1.06E-02	1.99E-03 7.88E-03	2.01E-03 8.70E-03	2.09E-03 7.16E-03	2.06E-03 1.79E-02	2.05E-03 4.37E-03	1.92E-03 3.32E-03	2.24E-03 7.68E-03	2.03E-03 1.08E-02	2.02E-03 1.14E-02	2.17E-03 1.23E-02	2.13E-03 5.41E-03	2.13E-03 5.82E-03
Beryllium (Be) Bismuth (Bi)	μg/m³ μg/m³	3.73E-04 2.24E-03	3.20E-04 1.92E-03		5E-04 5E-03	3.35E-04 2.01E-03	3.55E-04 2.13E-03	3.31E-04 1.99E-03	3.34E-04 2.01E-03	3.48E-04 2.09E-03	3.43E-04 2.06E-03	3.41E-04 2.05E-03	3.20E-04 1.92E-03	3.73E-04 2.24E-03	3.38E-04 2.03E-03	3.37E-04 2.02E-03	3.62E-04 2.17E-03	3.56E-04 2.13E-03	3.55E-04 2.13E-03
Boron (B)	μg/m³	4.26E-03	1.92E-03	1.95	5E-03	2.01E-03	2.13E-03	1.99E-03	2.01E-03	2.09E-03	2.06E-03	2.05E-03	1.92E-03	2.24E-03	4.26E-03	2.02E-03	2.17E-03	2.13E-03	2.13E-03
Cadmium (Cd) Chromium (Cr)	µg/m³ µg/m³	7.45E-04 1.86E-03	6.39E-04 1.60E-03		DE-04 2E-03	6.70E-04 1.68E-03	7.09E-04 1.77E-03	6.63E-04 1.66E-03	6.69E-04 1.67E-03	6.96E-04 1.74E-03	6.85E-04 1.71E-03	6.82E-04 1.71E-03	6.39E-04 1.60E-03	7.45E-04 1.86E-03	6.76E-04 1.69E-03	6.74E-04 1.68E-03	7.23E-04 1.81E-03	7.12E-04 1.78E-03	7.10E-04 1.77E-03
Cobalt (Co) Copper (Cu)	μg/m³ μg/m³	7.45E-04 5.22E-02	6.39E-04 3.45E-03		DE-04 DE-02	6.70E-04 4.50E-02	7.09E-04 2.38E-02	6.63E-04 2.82E-02	6.69E-04 5.22E-02	6.96E-04 4.31E-02	6.85E-04 2.63E-02	6.82E-04 2.57E-02	6.39E-04 3.45E-03	7.45E-04 8.42E-03	6.76E-04 1.93E-02	6.74E-04 2.75E-02	7.23E-04 1.50E-02	7.12E-04 1.42E-02	7.10E-04 9.65E-03
Iron (Fe)	μg/m³	5.21E-01	1.32E-01	2.39	9E-01	3.86E-01	3.05E-01	3.67E-01	2.60E-01	1.96E-01	5.21E-01	1.32E-01	1.43E-01	2.79E-01	4.88E-01	4.05E-01	3.84E-01	2.73E-01	1.50E-01
Lead (Pb) Magnesium (Mg)	µg/m³ µg/m³	1.09E-02 2.43E-01	9.59E-04 5.84E-02		6E-03 BE-01	1.01E-03 1.37E-01	1.06E-03 1.03E-01	5.50E-03 1.50E-01	2.41E-03 1.27E-01	1.04E-03 5.84E-02	6.78E-03 2.34E-01	2.80E-03 6.96E-02	9.59E-04 1.06E-01	1.12E-03 1.44E-01	7.37E-03 2.14E-01	3.23E-03 2.43E-01	1.09E-02 8.46E-02	1.07E-03 1.05E-01	1.06E-03 8.59E-02
Manganese (Mn) Molybdenum (Mo)	μg/m³ μg/m³	2.21E-02 1.12E-03	4.16E-03 9.59E-04		DE-03 5E-04	1.25E-02 1.01E-03	7.45E-03 1.06E-03	1.19E-02 9.94E-04	9.90E-03 1.00E-03	4.45E-03 1.04E-03	1.48E-02 1.03E-03	4.16E-03 1.02E-03	5.63E-03 9.59E-04	8.94E-03 1.12E-03	1.59E-02 1.01E-03	1.42E-02 1.01E-03	2.21E-02 1.09E-03	5.83E-03 1.07E-03	3.62E-03 1.06E-03
Nickel (Ni)	μg/m³	1.12E-03	9.59E-04	9.75	5E-04	1.01E-03	1.06E-03	9.94E-04	1.00E-03	1.04E-03	1.03E-03	1.02E-03	9.59E-04	1.12E-03	1.01E-03	1.01E-03	1.09E-03	1.07E-03	1.06E-03
Phosphorus (P) Selenium (Se)	µg/m³	5.16E-02 3.73E-03	7.99E-03 3.20E-03		DE-02 5E-03	5.16E-02 3.35E-03	8.87E-03 3.55E-03	2.78E-02 3.31E-03	1.87E-02 3.34E-03	8.69E-03 3.48E-03	2.81E-02 3.43E-03	8.53E-03 3.41E-03	7.99E-03 3.20E-03	1.86E-02 3.73E-03	2.64E-02 3.38E-03	1.95E-02 3.37E-03	9.04E-03 3.62E-03	8.89E-03 3.56E-03	8.87E-03 3.55E-03
Silver (Ag)	μg/m³	1.86E-03	1.60E-03	1.62	2E-03	1.68E-03	1.77E-03	1.66E-03	1.67E-03	1.74E-03	1.71E-03	1.71E-03	1.60E-03	1.86E-03	1.69E-03	1.68E-03	1.81E-03	1.78E-03	1.77E-03
Strontium (Sr) Thallium (TI)	µg/m³ µg/m³	5.00E-03 3.73E-03	1.36E-03 3.20E-03		4E-03 5E-03	3.28E-03 3.35E-03	2.27E-03 3.55E-03	4.44E-03 3.31E-03	2.27E-03 3.34E-03	2.02E-03 3.48E-03	5.00E-03 3.43E-03	1.36E-03 3.41E-03	1.79E-03 3.20E-03	4.62E-03 3.73E-03	4.19E-03 3.38E-03	3.64E-03 3.37E-03	2.03E-03 3.62E-03	4.48E-03 3.56E-03	2.34E-03 3.55E-03
Tin (Sn) Titanium (Ti)	μg/m³ μg/m³	3.73E-03 9.59E-03	3.20E-03 3.20E-03		5E-03 5E-03	3.35E-03 8.04E-03	3.55E-03 3.55E-03	3.31E-03 6.63E-03	3.34E-03 3.34E-03	3.48E-03 3.48E-03	3.43E-03 9.59E-03	3.41E-03 3.41E-03	3.20E-03 3.20E-03	3.73E-03 8.20E-03	3.38E-03 8.79E-03	3.37E-03 3.37E-03	3.62E-03 3.62E-03	3.56E-03 3.56E-03	3.55E-03 3.55E-03
Vanadium (V)	μg/m³	1.86E-03	1.60E-03	1.62	2E-03	1.68E-03	1.77E-03	1.66E-03	1.67E-03	1.74E-03	1.71E-03	1.71E-03	1.60E-03	1.86E-03	1.69E-03	1.68E-03	1.81E-03	1.78E-03	1.77E-03
Zinc (Zn) Zirconium (Zr)	μg/m³ μg/m³	2.46E-01 1.86E-03	1.35E-02 1.60E-03		3E-02 2E-03	3.91E-02 1.68E-03	1.95E-02 1.77E-03	1.89E-02 1.66E-03	2.37E-02 1.67E-03	1.35E-02 1.74E-03	5.77E-02 1.71E-03	2.03E-02 1.71E-03	1.39E-02 1.60E-03	1.41E-02 1.86E-03	3.65E-02	6.35E-02 1.68E-03	2.46E-01 1.81E-03	2.82E-02 1.78E-03	1.64E-02 1.77E-03
Total Uranium (U)	µg/m³	1.68E-04	1.44E-04		6E-04	1.51E-04	1.60E-04	1.49E-04	1.50E-04	1.56E-04	1.54E-04	1.53E-04	1.44E-04	1.68E-03	1.69E-03 1.52E-04	1.52E-04	1.63E-04	1.60E-04	1.60E-04

Metals and Total	Rundle Road Station																														
Particulates																															
Location														Rui		Rur		Rur		Rur		Run				Run					
Date	dd/mm/yyyy	04/	10/2017	10/1	0/2017	16/1	0/2017	22/10	/2017	28/1	0/2017	03/1	1/2017	09/1	1/2017	15/11	/2017	21/11	1/2017	27/11	/2017	03/12	/2017	09/12	2/2017	15/12	/2017	21/12	/2017	27/12	2/2017
Start Time	hh:mm		0:00		0:00	C	0:00	0:			0:00		:00		:00		00		:00		00	0:0			:00	0:		0:0			00
Sample Duration	Hours	2	3.72		23.3		3.46	23			3.52		3.82		3.82		.86		1.39		.28	23.		23		23		23.			.82
Technician			TZ		TZ		TZ	ī	_		TZ		TZ		TZ		Z		ΓZ		Z	T			ΓZ	T	_	TZ	-		Z
Filter Number			091565		91931		91938		0459		00466		01251		01258		2749)2756		1527	1612		1711		1711		1612		1712	
Analytical Report #		B7	M3129	B7N	M7642	B71	N5362	B7N	5362	B7C	08839	B7C	08839	B7C	20355	B7P	9976	B7Q	6105	B7Q	8602	B7S0	1205	B7S2	2424	B7S7	588	B7T0	949	B80°	1290
Total Volumetric Flow	Am ³ /sample	16	83.06	158	86.66	14	99.79	151	6.14	152	23.72	153	36.89	149	90.52	151	1.74	150	9.31	148	4.99	1536	5.82	157	0.75	144	2.02	1356	.02	135	4.59
Analytical Results	Units	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL
Particulate	mg	67.4	5.0	84.8	5.0	50.5	5.0	55.5	5.0	43.3	5.0	31.0	5.0	90.8	5.0	43.3	5.0	52.5	5.0	345	5.0	152	5.0	75.2	5.0	46.4	5.0	36.0	5.0	29.4	5.0
Total Mercury (Hg)	μg	< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	0.02	0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	0.02	0.03	0.02	0.07	0.02	< 0.02	0.02	< 0.02	0.02
Aluminum (AI)	μg	273	50	395	50	275	50	280	50	176	50	134	50	448	50	209	50	373	50	1600	50	511	50	354	50	86	50	137	50	50	50
Antimony (Sb)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Arsenic (As)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Barium (Ba)	μg	12.0	1.0	32.2	1.0	15.7	1.0	20.5	1.0	15.5	1.0	9.4	1.0	28.1	1.0	11.7	1.0	14.0	1.0	47.5	1.0	22.3	1.0	20.7	1.0	21.6	1.0	10.9	1.0	6.0	1.0
Beryllium (Be)	μg	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0
Bismuth (Bi)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Boron (B)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	6.4	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	6.4	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Cadmium (Cd)	μg	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0
Chromium (Cr)	μg	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	6.6	5.0	6.3	5.0	<5.0	5.0	<5.0	5.0	6.5	5.0	<5.0	5.0	< 5.0	5.0
Cobalt (Co)	μg	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0
Copper (Cu)	μg	37.1	5.0	87.5	5.0	52.6	5.0	43.6	5.0	33.2	5.0	39.5	5.0	44.7	5.0	12.6	5.0	8.7	5.0	13.5	5.0	33.1	5.0	40.3	5.0	27.4	5.0	10.6	5.0	21.4	5.0
Iron (Fe)	μg	755	50	1060	50	620	50	765	50	600	50	351	50	1090	50	580	50	873	50	3220	50	1420	50	1000	50	592	50	418	50	137	50
Lead (Pb)	μg	4.1	3.0	3.1	3.0	<3.0	3.0	8.1	3.0	3.5	3.0	<3.0	3.0	10.1	3.0	4.5	3.0	4.8	3.0	5.2	3.0	9.9	3.0	5.2	3.0	18.7	3.0	<3.0	3.0	< 3.0	3.0
Magnesium (Mg)	μg	422	50	616	50	396	50	317	50	277	50	150	50	597	50	219	50	539	50	2620	50	974	50	690	50	167	50	203	50	147	50
Manganese (Mn)	μg	23.1	1.0	35.8	1.0	21.4	1.0	19.4	1.0	17.6	1.0	9.7	1.0	32.6	1.0	11.2	1.0	32.4	1.0	115	1.0	46.2	1.0	33.8	1.0	39.2	1.0	11.0	1.0	5.2	1.0
Molybdenum (Mo)	μg	3.1	3.0	5.6	3.0	4.5	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Nickel (Ni)	μg	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	4.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Phosphorus (P)	μg	62	25	108	25	41	25	59	25	34	25	32	25	50	25	39	25	48	25	168	25	81	25	46	25	<25	25	<25	25	<25	25
Selenium (Se)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Silver (Ag)	μg	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	<5.0	5.0	< 5.0	5.0	<5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
Strontium (Sr)	μg	11.0	1.0	25.1	1.0	13.6	1.0	10.6	1.0	7.3	1.0	5.5	1.0	17.1	1.0	8.3	1.0	13.3	1.0	112	1.0	28.2	1.0	15.4	1.0	5.9	1.0	8.5	1.0	4.4	1.0
Thallium (TI)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Tin (Sn)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Titanium (Ti)	μg	13	10	25	10	17	10	14	10	11	10	<10	10	26	10	12	10	21	10	96	10	33	10	18	10	<10	10	<10	10	<10	10
Vanadium (V)	μg	<5.0	5.0	<5.0	5.0	< 5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	5.1	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
Zinc (Zn)	μg	34.6	5.0	39.1	5.0	24.7	5.0	35.1	5.0	39.1	5.0	16.9	5.0	74.6	5.0	30.1	5.0	46.1	5.0	50.2	5.0	54.6	5.0	94.8	5.0	425	5.0	36.1	5.0	29.4	5.0
Zirconium (Zr)	μg	<5.0	5.0	<5.0	5.0	< 5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
Total Uranium (U)	μg	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45
Notes:	•																														

		Quarter 4		Rundle														
				47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
Calculated Concentrations	Units	Maximum	Minimum											5.	55			
	. 3			04/10/2017	10/10/2017	16/10/2017	22/10/2017	28/10/2017	03/11/2017	09/11/2017	15/11/2017	21/11/2017	27/11/2017	03/12/2017	09/12/2017	15/12/2017	21/12/2017	27/12/2017
Particulate	µg/m³	232.32	20.17	40.05	53.45	33.67	36.61	28.42	20.17	60.92	28.64	34.78	232.32	98.91	47.88	32.18	26.55	21.70
Total Mercury (Hg)	µg/m³	4.85E-05	5.94E-06	5.94E-06	6.30E-06	6.67E-06	6.60E-06	6.56E-06	6.51E-06	1.34E-05	6.61E-06	6.63E-06	6.73E-06	6.51E-06	1.91E-05	4.85E-05	7.37E-06	7.38E-06
Aluminum (AI)	µg/m³	1.08E+00	5.96E-02	1.62E-01	2.49E-01	1.83E-01	1.85E-01	1.16E-01	8.72E-02	3.01E-01	1.38E-01	2.47E-01	1.08E+00	3.33E-01	2.25E-01	5.96E-02	1.01E-01	3.69E-02
Antimony (Sb)	µg/m³	3.69E-03	2.97E-03	2.97E-03	3.15E-03	3.33E-03	3.30E-03	3.28E-03	3.25E-03	3.35E-03	3.31E-03	3.31E-03	3.37E-03	3.25E-03	3.18E-03	3.47E-03	3.69E-03	3.69E-03
Arsenic (As)	µg/m³	2.21E-03	1.78E-03	1.78E-03	1.89E-03	2.00E-03	1.98E-03	1.97E-03	1.95E-03	2.01E-03	1.98E-03	1.99E-03	2.02E-03	1.95E-03	1.91E-03	2.08E-03	2.21E-03	2.21E-03
Barium (Ba)	µg/m³	3.20E-02	6.12E-03	7.13E-03	2.03E-02	1.05E-02	1.35E-02	1.02E-02	6.12E-03	1.89E-02	7.74E-03	9.28E-03	3.20E-02	1.45E-02	1.32E-02	1.50E-02	8.04E-03	4.43E-03
Beryllium (Be)	µg/m³	3.69E-04	2.97E-04	2.97E-04	3.15E-04	3.33E-04	3.30E-04	3.28E-04	3.25E-04	3.35E-04	3.31E-04	3.31E-04	3.37E-04	3.25E-04	3.18E-04	3.47E-04	3.69E-04	3.69E-04
Bismuth (Bi)	µg/m³	2.21E-03	1.78E-03	1.78E-03	1.89E-03	2.00E-03	1.98E-03	1.97E-03	1.95E-03	2.01E-03	1.98E-03	1.99E-03	2.02E-03	1.95E-03	1.91E-03	2.08E-03	2.21E-03	2.21E-03
Boron (B)	µg/m³	4.22E-03	1.78E-03	1.78E-03	1.89E-03	2.00E-03	4.22E-03	1.97E-03	1.95E-03	2.01E-03	1.98E-03	1.99E-03	2.02E-03	1.95E-03	4.07E-03	2.08E-03	2.21E-03	2.21E-03
Cadmium (Cd)	µg/m³	7.37E-04	5.94E-04	5.94E-04	6.30E-04	6.67E-04	6.60E-04	6.56E-04	6.51E-04	6.71E-04	6.61E-04	6.63E-04	6.73E-04	6.51E-04	6.37E-04	6.93E-04	7.37E-04	7.38E-04
Chromium (Cr)	µg/m³	4.51E-03	1.49E-03	1.49E-03	1.58E-03	1.67E-03	1.65E-03	1.64E-03	1.63E-03	1.68E-03	1.65E-03	4.37E-03	4.24E-03	1.63E-03	1.59E-03	4.51E-03	1.84E-03	1.85E-03
Cobalt (Co)	µg/m³	7.37E-04	5.94E-04	5.94E-04	6.30E-04	6.67E-04	6.60E-04	6.56E-04	6.51E-04	6.71E-04	6.61E-04	6.63E-04	6.73E-04	6.51E-04	6.37E-04	6.93E-04	7.37E-04	7.38E-04
Copper (Cu)	µg/m³	5.51E-02	5.76E-03	2.20E-02	5.51E-02	3.51E-02	2.88E-02	2.18E-02	2.57E-02	3.00E-02	8.33E-03	5.76E-03	9.09E-03	2.15E-02	2.57E-02	1.90E-02	7.82E-03	1.58E-02
Iron (Fe)	µg/m³	2.17E+00	2.28E-01	4.49E-01	6.68E-01	4.13E-01	5.05E-01	3.94E-01	2.28E-01	7.31E-01	3.84E-01	5.78E-01	2.17E+00	9.24E-01	6.37E-01	4.11E-01	3.08E-01	1.01E-01
Lead (Pb)	µg/m³	1.30E-02	9.76E-04	2.44E-03	1.95E-03	1.00E-03	5.34E-03	2.30E-03	9.76E-04	6.78E-03	2.98E-03	3.18E-03	3.50E-03	6.44E-03	3.31E-03	1.30E-02	1.11E-03	1.11E-03
Magnesium (Mg)	µg/m³	1.76E+00	9.76E-02	2.51E-01	3.88E-01	2.64E-01	2.09E-01	1.82E-01	9.76E-02	4.01E-01	1.45E-01	3.57E-01	1.76E+00	6.34E-01	4.39E-01	1.16E-01	1.50E-01	1.09E-01
Manganese (Mn)	µg/m³	7.74E-02	6.31E-03	1.37E-02	2.26E-02	1.43E-02	1.28E-02	1.16E-02	6.31E-03	2.19E-02	7.41E-03	2.15E-02	7.74E-02	3.01E-02	2.15E-02	2.72E-02	8.11E-03	3.84E-03
Molybdenum (Mo)	µg/m³	3.53E-03	9.55E-04	1.84E-03	3.53E-03	3.00E-03	9.89E-04	9.84E-04	9.76E-04	2.01E-03	9.92E-04	9.94E-04	1.01E-03	9.76E-04	9.55E-04	1.04E-03	1.11E-03	1.11E-03
Nickel (Ni)	µg/m³	2.69E-03	8.91E-04	8.91E-04	9.45E-04	1.00E-03	9.89E-04	9.84E-04	9.76E-04	1.01E-03	9.92E-04	9.94E-04	2.69E-03	9.76E-04	9.55E-04	1.04E-03	1.11E-03	1.11E-03
Phosphorus (P)	µg/m³	1.13E-01	8.67E-03	3.68E-02	6.81E-02	2.73E-02	3.89E-02	2.23E-02	2.08E-02	3.35E-02	2.58E-02	3.18E-02	1.13E-01	5.27E-02	2.93E-02	8.67E-03	9.22E-03	9.23E-03
Selenium (Se)	µg/m³	3.69E-03	2.97E-03	2.97E-03	3.15E-03	3.33E-03	3.30E-03	3.28E-03	3.25E-03	3.35E-03	3.31E-03	3.31E-03	3.37E-03	3.25E-03	3.18E-03	3.47E-03	3.69E-03	3.69E-03
Silver (Ag)	μg/m³	1.84E-03	1.49E-03	1.49E-03	1.58E-03	1.67E-03	1.65E-03	1.64E-03	1.63E-03	1.68E-03	1.65E-03	1.66E-03	1.68E-03	1.63E-03	1.59E-03	1.73E-03	1.84E-03	1.85E-03
Strontium (Sr)	μg/m³	7.54E-02	3.58E-03	6.54E-03	1.58E-02	9.07E-03	6.99E-03	4.79E-03	3.58E-03	1.15E-02	5.49E-03	8.81E-03	7.54E-02	1.83E-02	9.80E-03	4.09E-03	6.27E-03	3.25E-03
Thallium (TI)	μg/m³	3.69E-03	2.97E-03	2.97E-03	3.15E-03	3.33E-03	3.30E-03	3.28E-03	3.25E-03	3.35E-03	3.31E-03	3.31E-03	3.37E-03	3.25E-03	3.18E-03	3.47E-03	3.69E-03	3.69E-03
Tin (Sn)	μg/m³	3.69E-03	2.97E-03	2.97E-03	3.15E-03	3.33E-03	3.30E-03	3.28E-03	3.25E-03	3.35E-03	3.31E-03	3.31E-03	3.37E-03	3.25E-03	3.18E-03	3.47E-03	3.69E-03	3.69E-03
Titanium (Ti)	µg/m³	6.46E-02	3.25E-03	7.72E-03	1.58E-02	1.13E-02	9.23E-03	7.22E-03	3.25E-03	1.74E-02	7.94E-03	1.39E-02	6.46E-02	2.15E-02	1.15E-02	3.47E-03	3.69E-03	3.69E-03
Vanadium (V)	μg/m³	3.43E-03	1.49E-03	1.49E-03	1.58E-03	1.67E-03	1.65E-03	1.64E-03	1.63E-03	1.68E-03	1.65E-03	1.66E-03	3.43E-03	1.63E-03	1.59E-03	1.73E-03	1.84E-03	1.85E-03
Zinc (Zn)	μg/m³	2.95E-01	1.10E-02	2.06E-02	2.46E-02	1.65E-02	2.32E-02	2.57E-02	1.10E-02	5.00E-02	1.99E-02	3.05E-02	3.38E-02	3.55E-02	6.04E-02	2.95E-01	2.66E-02	2.17E-02
Zirconium (Zr)	μg/m³	1.84E-03	1.49E-03	1.49E-03	1.58E-03	1.67E-03	1.65E-03	1.64E-03	1.63E-03	1.68E-03	1.65E-03	1.66E-03	1.68E-03	1.63E-03	1.59E-03	1.73E-03	1.84E-03	1.85E-03
Total Uranium (U)	μg/m³	1.66E-04	1.34E-04	1.34E-04	1.42E-04	1.50E-04	1.48E-04	1.48E-04	1.46E-04	1.51E-04	1.49E-04	1.49E-04	1.52E-04	1.46E-04	1.43E-04	1.56E-04	1.66E-04	1.66E-04

etals and Total rticulates cation te ut Time mple Duration chnician er Number		dd/mm/yyy hh:mm Hours		Fencelin 04/10/20 0:00 23.74 TZ 1709156	17	Fenceline 10/10/2017 0:00 23.85 TZ 17091932	16/1 0 2	nceline 10/2017 0:00 23.7 TZ 091936	1710	0/2017 00 .24 72 10460	Fence 28/10, 0:0 23. 12 17100	/2017 00 98 <u>7</u> 0465	Fenceline 03/11/201 0:00 24.59 TZ 17101252	7 0	Fenceline 19/11/2017 0:00 23.67 TZ 17101257	Fenceline 15/11/2017 0:00 23.75 TZ 17102751	Fence 21/11/ 0:0 23.1 17	2755	Fenceline 27/11/2017 0:00 23.91 TZ 17111528	03/	nceline 12/2017 0:00 24.3 TZ 111533	Fence 09/12/ 0:0 23: 17 17112	/2017 00 85 7 2387	0: 2 ⁴ T 1711	2/2017 00 4.2 7 2392	21/12 0: 23 1 1712	celine 2/2017 00 .62 77 20633	Fencel 27/12/2 0:00 23.8 TZ 171200
lytical Report #		. 3.		B7M312		B7M7642		N5362	B7N5		B7O8		B7O8839		B7Q0355	B7P9976	B7Q6		B7Q8602		7S0205	B7S2			7588		0949	B8012
Volumetric Flow lytical Results		Am ³ /sample	9	1631.93	RDL Val	1633.29 ue RDL	15 ^r	593.01 RDL	1638	8.45 RDL	1575 Volue	5.06 RDL	1609.22	RDL Valu	1541.80 ie RDL	1489.39 Value RDL	1505	.46 RDL	1537.77 Value RD		576.12 RDL	1517 Value	7.60 RDL	143	1.29 RDL	145	4.36 RDL	1434.
culate Mercury (Hg) inum (Al) nony (Sb) inic (As) m (Ba) Illum (Be) uth (Bi) r (B) milum (Cd) milum (Cd) milum (Cd) milum (Cr) ser (Cu) Fe) (Pb) nesium (Mg) ganese (Mn) bdenum (Mo) el (Ni) bdenum (Mo) el (Ni) milum (Se) (Ag) titum (Sr) um (II) n) um (II) um (II) didlum (V) (Zn) nilum (Zr) titranium (U) ss		119 119 119 119 119 119 119 119 119 119		179 <10 <10 <10.3 <1.0 <6.0 <6.0 <6.0 <5.0 <2.0 <5.0 <2.0 47.2 581 5.5 332 23.3 <3.0 <3.0 <10 <10 <10 <10 <10 <10 <10 <44.1	5.0 39 0.002	2 50 0 10 0 0 6.0 1.1 1.0 0 0 6.0 0 0 6.0 0 0 6.0 7 5.0 0 1 5.0 1 3.0 1 3.0 1 3.0 1 3.0 1 3.0 1 3.0 1 3.0 1 3.0 1 0 5.0 1 0 5.0	27.0 <0.02 127 <10 <6.0 18.6 <1.0 <6.0 <6.0 <2.0 <5.0 <2.0 37.7 521 <3.0 215 16.1 <3.0 <3.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5	5.0 0.02 50 10 6.0 6.0 6.0 6.0 6.0 6.0 5.0 2.0 5.0 50 3.0 3.0 3.0 3.0 5.0 1.0 1.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	50.1 0.03 269 <10 <6.0 14.4 <1.0 <6.0 <6.0 <5.0 <2.0 <5.0 <2.0 60.1 640 8.1 303 18.6 5.3 <3.0 49 <10 <5.0 9.2 <10 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.	5.0 0.02 50 10 6.0 1.0 1.0 6.0 6.0 6.0 6.0 5.0 2.0 5.0 5.0 5.0 3.0 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	36.7 <0.02 135 <10 <6.0 14.5 <10 <6.0 <6.0 <6.0 <6.0 <2.0 <47.4 451 4.0 226 18.3 4.1 3.6 34 <10 <2.0 <5.0 <4.0 <5.0 <4.0 <5.0 <5.0 <4.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5	5.0 0.02 50 10 6.0 1.0 6.0 6.0 6.0 2.0 5.0 20 5.0 50 10 3.0 50 1.0 10 10 10 10 10 10 10 10 10 1	89 <10 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.	5.0 91.3 0.02 0.04 5.0 0.06 6.0 40.3 1.0 41.0 6.0 46.0 6.0 46.0 6.0 46.0 6.0 8.7 2.0 42.0 6.0 87 2.0 42.0 6.0 87 2.0 42.0 6.0 87 2.0 42.0 6.0 87 6.0 99 6.0 87 6.0 87 6.0 87 6.0 99 6.0 87 6.0 99 6.0 87 6.0 99 6.0 87 6.0 99 6.0 90 6.0	50 00 00 00 00 00 00 00 00 00	79.7 5.0 <0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.02 .0.03 .0.04 .0.05 .0.04 .0.	38.8 <0.02 418 <10 6.0 9.1 <10 6.0 6.0 6.0 6.0 6.0 2.0 7.3 349 5.1 637 32.2 <3.0 4.0 6.7 <10 19 5.0 38.5 <5.0 <0.45	5.0 0.02 50 10 1.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 2.0 5.0 5.0 5.0 1.0 1.0 5.0 5.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	43.5 5.5 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5	184	5.0 0.022 50 10 6.0 1.0 1.0 6.0 6.0 2.0 5.0 2.0 5.0 3.0 3.0 3.0 3.0 1.0 10 10 10 10 10 10 10 10 10 10 10 10 10	41.0 0.02 207 <10 6.0 17.9 <1.0 6.0 6.0 6.0 3.5 5.0 2.0 19.7 692 4.9 476 28.0 3.0 <3.0 3.2 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10 6.9 <10	5.0 0.02 50 10 6.0 1.0 1.0 6.0 6.0 2.0 5.0 2.0 5.0 3.0 50 1.0 3.0 50 1.0 1.0 1.0 5.0 5.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	52.4 0.06 85 <10 <6.0 15.5 <1.0 <6.0 <5.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2	5.0 0.02 50 10 6.0 1.0 1.0 6.0 6.0 6.0 2.0 5.0 5.0 5.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	84.2	5.0 0.02 50 10 6.0 1.0 1.0 6.0 6.0 6.0 5.0 2.0 5.0 50 3.0 50 1.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 5.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	28.8 <0.02 53 <10 6.0 6.0 13.1 <1.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6
		Quarter 4		47		48		49		50	5.	1	52		53	54	55		56		57	58	3	5	59	6	50	61
ulated Concentrations	Units	Maximum		04/10/20	17	0/10/2017	16/1	0/2017	22/10	n/2017	28/10	/2017	03/11/201	70	9/11/2017	15/11/2012	21/11/	2017	27/11/20 17	.032	12/2017	09/12	/2017	15/12		21,/15		27/1 <u>2/</u> 2
ulate	Units µg/m³	59.22	15.60	04/10/20 26.23		10/10/2017 23.88	10	10/2017 16.95	22/10 30.	.58	28/10/ 23.	30	03/11/201 15.60		9/11/2017 59.22	15/11/2017 53.51	21/11/ 25.	77	27/11/2017 28.29		12/2017 42.51	09/12/ 27.0	02	36	.61	57	2/2017 .89	27/12/2 20.0
ulate Mercury (Hg)	Units µg/m³ µg/m³	59.22 4.19E-05	15.60 6.12E-06	26.23 6.13E-0	,	23.88 6.12E-06	6.2	16.95 28E-06	30. 1.83	.58 E-05	23. 6.35l	30 E-06	15.60 6.21E-06		59.22 2.59E-05	53.51 6.71E-06	25. ⁻ 6.64E	77 06	28.29 6.50E-06	6.	42.51 34E-06	27.0 1.32E	02 E-05	36 4.19	.61 E-05	57 6.88	.89 BE-06	20.0 6.97E-
ilate Iercury (Hg) um (Al)	Units µg/m³ µg/m³ µg/m³	59.22 4.19E-05 3.29E-01	15.60 6.12E-06 5.53E-02	26.23 6.13E-0 1.10E-0		23.88 6.12E-06 9.92E-02	16.2 7.9	16.95 28E-06 97E-02	30. 1.83 1.64	.58 E-05 E-01	23. 6.35l 8.57l	30 E-06 E-02	15.60 6.21E-06 5.53E-02		59.22 2.59E-05 3.29E-01	53.51 6.71E-06 1.81E-01	25. 6.64E 2.78E	77 -06 -01	28.29 6.50E-06 1.53E-01	6.	42.51 34E-06 17E-01	27. 1.32E 1.36E	02 E-05 E-01	36 4.19 5.94	.61 E-05 E-02	57 6.88 1.82	.89 BE-06 PE-01	20.0 6.97E- 3.70E-
allate Mercury (Hg) uum (Al) ony (Sb)	Units µg/m³ µg/m³	59.22 4.19E-05	15.60 6.12E-06	26.23 6.13E-0	,	23.88 6.12E-06	10 6.2 7.9 3.1	16.95 28E-06	30. 1.83	.58 E-05 E-01 E-03	23. 6.35l	30 E-06 E-02 E-03	15.60 6.21E-06		59.22 2.59E-05	53.51 6.71E-06	25. ⁻ 6.64E	77 06 01 03	28.29 6.50E-06	6. 1. 3.	42.51 34E-06	27.0 1.32E	02 E-05 E-01 E-03	36 4.19	.61 E-05 E-02 E-03	57 6.88 1.82 3.44	.89 BE-06	20.0 6.97E-
ulate Mercury (Hg) num (Al) ony (Sb) c (As)	Units µg/m³ µg/m³ µg/m³ µg/m³	59.22 4.19E-05 3.29E-01 3.49E-03	15.60 6.12E-06 5.53E-02 3.05E-03	26.23 6.13E-0 1.10E-0 3.06E-0	3	23.88 6.12E-06 9.92E-02 3.06E-03	10 6.2 7.9 3.1 1.8	16.95 28E-06 97E-02 14E-03	30. 1.83 1.64 3.05	.58 E-05 E-01 E-03 E-03	23. 6.358 8.578 3.178	30 E-06 E-02 E-03 E-03	15.60 6.21E-06 5.53E-02 3.11E-03		59.22 2.59E-05 3.29E-01 3.24E-03	53.51 6.71E-06 1.81E-01 3.36E-03	25. 6.64E 2.78E 3.32E	77 -06 -01 -03	28.29 6.50E-06 1.53E-01 3.25E-03	6. 1. 3.	42.51 34E-06 17E-01 17E-03	27. 1.32E 1.36E 3.29E	02 E-05 E-01 E-03 E-03	36 4.19 5.94 3.49 2.10	.61 E-05 E-02 E-03	57 6.88 1.82 3.44 2.06	.89 BE-06 PE-01 IE-03	20.0 6.97E- 3.70E- 3.49E-
ulate Mercury (Hg) num (Al) ony (Sb) c (As) n (Ba)	units ug/m³ ug/m³ ug/m³ ug/m³ ug/m³ ug/m³ ug/m³ ug/m³	59.22 4.19E-05 3.29E-01 3.49E-03 2.10E-03 2.61E-02 3.49E-04	15.60 6.12E-06 5.53E-02 3.05E-03 1.83E-03 6.04E-03 3.05E-04	26.23 6.13E-0 1.10E-0 3.06E-0 1.84E-0		23.88 6.12E-06 9.92E-02 3.06E-03 1.84E-03	10 6.2 7.9 3.1 1.8 1.1	16.95 28E-06 97E-02 14E-03 88E-03	30. 1.83 1.64 3.05 1.83 8.79 3.05	.58 EE-05 EE-01 EE-03 EE-03 EE-03	23. 6.35f 8.57f 3.17f 1.90f	30 E-06 E-02 E-03 E-03	15.60 6.21E-06 5.53E-02 3.11E-03 1.86E-03		59.22 2.59E-05 3.29E-01 3.24E-03 1.95E-03	53.51 6.71E-06 1.81E-01 3.36E-03 2.01E-03	25. 6.64E 2.78E 3.32E 1.99E	77 -06 -01 -03 -03	28.29 6.50E-06 1.53E-01 3.25E-03 1.95E-03	6. 1. 3. 1.	42.51 34E-06 17E-01 17E-03 90E-03	27.0 1.32E 1.36E 3.29E 1.98E	02 E-05 E-01 E-03 E-03 E-02	36 4.19 5.94 3.49 2.10	.61 PE-05 E-02 PE-03 PE-03	57 6.88 1.82 3.44 2.06 8.73 3.44	.89 BE-06 BE-01 BE-03 BE-03 BE-03	20.00 6.97E- 3.70E- 3.49E- 2.09E- 9.13E- 3.49E-
ulate fercury (Hg) num (Al) ny (Sb) c (As) ((Ba) mr (Be) h (Bl)	µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³	59.22 4.19E-05 3.29E-01 3.49E-03 2.10E-03 2.61E-02 3.49E-04 2.10E-03	15.60 6.12E-06 5.53E-02 3.05E-03 1.83E-03 6.04E-03 3.05E-04 1.83E-03	26.23 6.13E-0 1.10E-0 3.06E-0 1.84E-0 6.31E-0 3.06E-0 1.84E-0	; ; ;	23.88 6.12E-06 9.92E-02 3.06E-03 1.84E-03 1.84E-02 3.06E-04 1.84E-03	10 6.2 7.9 3.1 1.8 1.1 3.1	16.95 28E-06 97E-02 14E-03 88E-03 17E-02 14E-04 88E-03	30. 1.83 1.64 3.05 1.83 8.79 3.05 1.83	.58 :E-05 :E-01 :E-03 :E-03 :E-03 :E-04 :E-04	23. 6.35i 8.57i 3.17i 1.90i 9.21i 3.17i 1.90i	30 E-06 E-02 E-03 E-03 E-03 E-04 E-04	15.60 6.21E-06 5.53E-02 3.11E-03 1.86E-03 7.71E-03 3.11E-04 1.86E-03		59.22 2.59E-05 3.29E-01 3.24E-03 1.95E-03 2.61E-02 3.24E-04 1.95E-03	53.51 6.71E-06 1.81E-01 3.36E-03 2.01E-03 8.46E-03 3.36E-04 2.01E-03	25.1 6.64E 2.78E 3.32E 1.99E 6.04E 3.32E	777 6-06 6-01 6-03 6-03 6-03 6-04 6-04	28.29 6.50E-06 1.53E-01 3.25E-03 1.95E-03 8.97E-03 3.25E-04 1.95E-03	6. 1. 3. 1. 1. 3.	42.51 34E-06 17E-01 17E-03 90E-03 17E-02 17E-04 90E-03	27.1 1.32F 1.36F 3.29F 1.98F 1.18F 3.29F 1.98F	02 E-05 E-01 E-03 E-03 E-02 E-04 E-03	36 4.19 5.94 3.49 2.10 1.08 3.49 2.10	.61 E-05 E-02 E-03 E-03 E-02 E-04 E-04	57 6.88 1.82 3.44 2.06 8.73 3.44	.89 BE-06 EE-01 IE-03 .E-03 IE-03 IE-04 .E-04	20.00 6.97E- 3.70E- 3.49E- 2.09E- 9.13E- 3.49E- 2.09E-
ulate flercury (Hg) num (Al) nny (Sb) c (As) (Ba) im (Be) h (Bi)	µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³	59.22 4.19E-05 3.29E-01 3.49E-03 2.10E-03 2.61E-02 3.49E-04 2.10E-03 5.71E-03	15.60 6.12E-06 5.53E-02 3.05E-03 1.83E-03 6.04E-03 3.05E-04 1.83E-03 1.83E-03	26.23 6.13E-0 1.10E-0 3.06E-0 1.84E-0 6.31E-0 3.06E-0 1.84E-0		23.88 6.12E-06 9.92E-02 3.06E-03 1.84E-03 1.84E-02 3.06E-04 1.84E-03 1.84E-03	10 6.2 7.9 3.1 1.8 1.1 3.1 1.8	16.95 28E-06 97E-02 14E-03 88E-03 17E-02 14E-04 88E-03 88E-03	30. 1.83 1.64 3.05 1.83 8.79 3.05 1.83	.58 iE-05 iE-01 iE-03 iE-03 iE-03 iE-04 iE-03 iE-03	23. 6.35i 8.57i 3.17i 1.90i 9.21i 3.17i 1.90i	30 E-06 E-02 E-03 E-03 E-03 E-04 E-03 E-03	15.60 6.21E-06 5.53E-02 3.11E-03 1.86E-03 7.71E-03 3.11E-04 1.86E-03 1.86E-03		59.22 2.59E-05 3.29E-01 3.24E-03 1.95E-03 2.61E-02 3.24E-04 1.95E-03 1.95E-03	53.51 6.71E-06 1.81E-01 3.36E-03 2.01E-03 8.46E-03 3.36E-04 2.01E-03 2.01E-03	25. 6.64E 2.78E 3.32E 1.99E 6.04E 3.32E 1.99E	777 06 01 03 03 03 04 03 03	28.29 6.50E-06 1.53E-01 3.25E-03 1.95E-03 8.97E-03 3.25E-04 1.95E-03 1.95E-03	6. 1. 3. 1. 1. 3. 1.	42.51 34E-06 17E-01 17E-03 90E-03 17E-02 17E-04 90E-03 71E-03	27.1 1.32f 1.36f 3.29f 1.98f 1.18f 3.29f 1.98f	02 E-05 E-01 E-03 E-03 E-02 E-04 E-03 E-03	36 4.19 5.94 3.49 2.10 1.08 3.49 2.10 2.10	.61 IE-05 IE-02 IE-03 IE-03 IE-02 IE-04 IE-03 IE-03	57 6.88 1.82 3.44 2.06 8.73 3.44 2.06	.89 !E-06 !E-01 !E-03 :E-03 :E-04 :E-03 :E-04	20.0 6.97E 3.70E 3.49E 2.09E 9.13E 3.49E 2.09E
liate lercury (Hg) um (Al) nny (Sb) (As) (Ba) m (Be) n (B) n (B) um (Cd)	µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³	59.22 4.19E-05 3.29E-01 3.49E-03 2.10E-03 2.61E-02 3.49E-04 2.10E-03 5.71E-03 2.31E-03	15.60 6.12E-06 5.53E-02 3.05E-03 1.83E-03 6.04E-03 3.05E-04 1.83E-03 1.83E-03 6.10E-04	26.23 6.13E-0 1.10E-0 3.06E-0 1.84E-0 3.06E-0 1.84E-0 1.84E-0 6.13E-0		23.88 6.12E-06 9.92E-02 3.06E-03 1.84E-03 1.84E-02 3.06E-04 1.84E-03 1.84E-03 6.12E-04	1. 6.2 7.9 3.1 1.8 1.1 3.1 1.8 6.2	16.95 28E-06 97E-02 14E-03 88E-03 17E-02 14E-04 88E-03 88E-03 28E-04	30. 1.83 1.64 3.05 1.83 8.79 3.05 1.83 1.83	.58 iE-05 iE-01 iE-03 iE-03 iE-04 iE-03 iE-04	23. 6.35i 8.57i 3.17i 1.90i 9.21i 3.17i 1.90i 1.90i 6.35i	30 E-06 E-02 E-03 E-03 E-03 E-04 E-03 E-03 E-04	15.60 6.21E-06 5.53E-02 3.11E-03 1.86E-03 7.71E-04 1.86E-03 1.86E-03 6.21E-04		59.22 2.59E.05 3.29E.01 3.24E.03 1.95E.03 2.61E.02 3.24E.04 1.95E.03 1.95E.03 6.49E.04	53.51 6.71E-06 1.81E-01 3.36E-03 2.01E-03 8.46E-03 3.36E-04 2.01E-03 2.01E-03 6.71E-04	25. 6.64E 2.78E 3.32E 1.99E 6.04E 3.32E 1.99E 6.64E	777 06 01 03 03 03 04 03 03 03	28.29 6.50E-06 1.53E-01 3.25E-03 1.95E-03 3.25E-04 1.95E-03 1.95E-03 6.50E-04	6. 1. 3. 1. 3. 1. 5.	42.51 34E-06 17E-01 17E-03 90E-03 17E-02 17E-04 90E-03 71E-03 34E-04	27.4 1.32f 1.36f 3.29f 1.98f 1.18f 3.29f 1.98f 1.98f 2.31f	02 E-05 E-01 E-03 E-03 E-02 E-04 E-03 E-03 E-03	36 4.19 5.94 3.49 2.10 1.08 3.49 2.10 2.10 6.99	.61 IE-05 IE-02 IE-03 IE-03 IE-04 IE-03 IE-03 IE-03	57 6.88 1.82 3.44 2.06 8.73 3.44 2.06 6.88	.89 !E-06 !E-01 !E-03 :E-03 :E-04 :E-03 :E-03 :E-03	20.0 6.97E 3.70E 3.49E 2.09E 9.13E 3.49E 2.09E 2.09E 6.97E
late lercury (Hg) um (Al) syny (Sb) : (As) (Ba) m (Be) n (Bl) B) um (Cd) ium (Cr)	µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³	59.22 4.19E-05 3.29E-01 3.49E-03 2.10E-03 2.61E-02 3.49E-04 2.10E-03 5.71E-03 2.31E-03 7.65E-03	15.60 6.12E-06 5.53E-02 3.05E-03 1.83E-03 6.04E-03 3.05E-04 1.83E-03 6.10E-04 1.53E-03	26.23 6.13E-0 1.10E-0 3.06E-0 1.84E-0 6.31E-0 1.84E-0 1.84E-0 6.13E-0		23.88 6.12E-06 9.92E-02 3.06E-03 1.84E-03 3.06E-04 1.84E-03 1.84E-03 6.12E-04 3.49E-03	1. 6.2 7.9 3.1 1.8 1.1 3.1 1.8 6.2	16.95 28E-06 97E-02 14E-03 88E-03 17E-02 14E-04 88E-03 88E-03 28E-04	30. 1.83 1.64 3.05 1.83 8.79 3.05 1.83 1.83 6.10	.58 iE-05 iE-01 iE-03 iE-03 iE-04 iE-03 iE-03 iE-04	23. 6.35i 8.57i 3.17i 1.90i 9.21i 3.17i 1.90i 1.90i 6.35i 1.59i	30 E-06 E-02 E-03 E-03 E-04 E-04 E-03 E-04 E-04 E-04	15.60 6.21E-06 5.53E-02 3.11E-03 1.86E-03 7.71E-03 3.11E-04 1.86E-03 1.86E-03 6.21E-04		59.22 2.59E-05 3.29E-01 3.24E-03 1.95E-03 2.61E-02 3.24E-04 1.95E-03 1.95E-03 6.49E-04 5.64E-03	53.51 6.71E-06 1.81E-01 3.36E-03 2.01E-03 8.46E-03 3.36E-04 2.01E-03 2.01E-03 6.71E-04 7.65E-03	25. 6.64E 2.78E 3.32E 1.99E 6.04E 3.32E 1.99E 6.64E 1.66E	77 6-06 6-01 6-03 6-03 6-03 6-04 6-03 6-04 6-03 6-04 6-03	28.29 6.50E-06 1.53E-01 3.25E-03 1.95E-03 3.25E-04 1.95E-03 6.50E-04 1.63E-03	6. 1. 3. 1. 3. 3. 5. 6.	42.51 34E-06 17E-01 17E-03 90E-03 17E-02 17E-04 90E-03 71E-03 34E-04 59E-03	27.1 1.32f 1.36f 3.29f 1.98f 1.18f 3.29f 1.98f 2.31f 1.65f	02 E-05 E-01 E-03 E-03 E-02 E-04 E-03 E-03 E-03 E-03	36 4.19 5.94 3.49 2.10 1.08 3.49 2.10 2.10 6.99	.61 E-05 E-02 E-03 E-03 E-02 E-04 E-03 E-03 E-03 E-04	57 6.88 1.82 3.44 2.06 8.73 3.44 2.06 6.88 1.72	.89 8E-06 8E-01 8E-03 8E-03 8E-04 8E-03 8E-03 8E-04	20.0 6.97t 3.70t 3.49t 2.09t 9.13t 3.49t 2.09t 6.97t 1.74t
ulate Mercury (Hg) num (Al) ony (Sb) c (As) n (Ba) um (Be) th (Bi) nium (Cd) nium (Cr) it (Co) er (Cu)	µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³ µg/m³	59.22 4.19E-05 3.29E-01 3.49E-03 2.10E-03 2.61E-02 3.49E-04 2.10E-03 5.71E-03 2.31E-03	15.60 6.12E-06 5.53E-02 3.05E-03 1.83E-03 6.04E-03 3.05E-04 1.83E-03 1.83E-03 6.10E-04	26.23 6.13E-0 1.10E-0 3.06E-0 1.84E-0 3.06E-0 1.84E-0 1.84E-0 6.13E-0		23.88 6.12E-06 9.92E-02 3.06E-03 1.84E-03 1.84E-02 3.06E-04 1.84E-03 1.84E-03 6.12E-04	11 6.2 7.9 3.1 1.8 1.1 3.1 1.8 6.2 1.5 6.2	16.95 28E-06 97E-02 14E-03 88E-03 17E-02 14E-04 88E-03 88E-03 28E-04	30. 1.83 1.64 3.05 1.83 8.79 3.05 1.83 1.83	.58 iE-05 iE-01 iE-03 iE-03 iE-03 iE-04 iE-03 iE-04 iE-03 iE-04 iE-03	23. 6.35i 8.57i 3.17i 1.90i 9.21i 3.17i 1.90i 1.90i 6.35i	30 E-06 E-02 E-03 E-03 E-03 E-04 E-03 E-04 E-03 E-04 E-03	15.60 6.21E-06 5.53E-02 3.11E-03 1.86E-03 7.71E-04 1.86E-03 1.86E-03 6.21E-04		59.22 2.59E.05 3.29E.01 3.24E.03 1.95E.03 2.61E.02 3.24E.04 1.95E.03 1.95E.03 6.49E.04	53.51 6.71E-06 1.81E-01 3.36E-03 2.01E-03 8.46E-03 3.36E-04 2.01E-03 2.01E-03 6.71E-04	25. 6.64E 2.78E 3.32E 1.99E 6.04E 3.32E 1.99E 6.64E	77 6-06 6-01 6-03 6-03 6-03 6-04 6-03 6-04 6-03 6-04	28.29 6.50E-06 1.53E-01 3.25E-03 1.95E-03 3.25E-04 1.95E-03 1.95E-03 6.50E-04	6. 1. 3. 1. 1. 3. 1. 5. 6.	42.51 34E-06 17E-01 17E-03 90E-03 17E-02 17E-04 90E-03 71E-03 34E-04	27.4 1.32f 1.36f 3.29f 1.98f 1.18f 3.29f 1.98f 1.98f 2.31f	02 E-05 E-01 E-03 E-03 E-02 E-04 E-03 E-03 E-03 E-03 E-03	36 4.19 5.94 3.49 2.10 1.08 3.49 2.10 2.10 6.99	.61 E-05 E-02 E-03 E-03 E-02 E-04 E-03 E-03 E-03 E-04 E-03	57 6.88 1.82 3.44 2.06 8.73 3.44 2.06 6.88 1.72 6.88	.89 !E-06 !E-01 !E-03 :E-03 :E-04 :E-03 :E-03 :E-03	20.0 6.97E 3.70E 3.49E 2.09E 9.13E 3.49E 2.09E

Iron (Fe) Lead (Pb)

Nickel (Ni)

Phosphorus (P)

Selenium (Se)

Strontium (Sr)

Thallium (TI)

Titanium (Ti)

Vanadium (V)

Zirconium (Zr)

Tin (Sn)

Zinc (Zn)

Silver (Ag)

Magnesium (Mg)

Manganese (Mn)

Molybdenum (Mo)

µg/m³

µg/m³

μg/m³ μg/m³

µg/m³

µg/m³

μg/m³ μg/m³

μg/m³

µg/m³

μg/m³

µg/m³

µg/m³ µg/m³ µg/m³ µg/m³ 9.47E-01

8.66E-03

5.66E-01

4.06E-02

3.49E-03

2.29E-03

5.33E-02

3.49E-03

.75E-03

.38E-02

3.49E-03

3.49E-03

2.08E-02

1.75E-03

1.83E-01 1.75E-03 2.15E-01

9.32E-04

8.52E-02

8.20E-03

9.19E-04

9.16E-04

8.73E-03

3.05E-03

1.53E-03

2.38E-03

3.05E-03

3.05E-03

3.06E-03

1.53E-03

1.07E-02 1.53E-03 1.37E-04 3.56E-01

3.37E-03

2.03E-01

1.43E-02

9.19E-04

9.19E-04

3.13E-02

3.06E-03

1.53E-03

3.68E-03

3.06E-03

3.06E-03

3.06E-03

1.53E-03

2.70E-02

1.53E-03

4.19E-01

1.90E-03

1.76E-01

1.52E-02

2.20E-03

9.18E-04

5.33E-02

3.06E-03

1.53E-03

4.29E-03

3.06E-03

3.06E-03

9.18E-03

1.53E-03

2.37E-02 1.53E-03 1.38E-04 3.27E-01

9.42E-04

1.01E-02

9.42E-04

9.42E-04

2.39E-02

3.14E-03

1.57E-03

3.39E-03

3.14E-03

3.14E-03

3.14E-03

1.57E-03

1.86E-02

1.57E-03

1.35E-01

3.91E-01

4.94E-03

1.85E-01

1.14E-02

3.23E-03

9.16E-04

2.99E-02

3.05E-03

1.53E-03

5.62E-03

3.05E-03

3.05E-03

9.16E-03

1.53E-03

1.96E-02

1.53E-03

2.86E-01

2.54E-03

1.43E-01

1.16E-02

2.60E-03

2.29E-03

2.16E-02

3.17E-03

1.59E-03

2.92E-03

3.17E-03

3.17E-03

3.17E-03

1.59E-03

2.44E-02 1.59E-03 2.15E-01

9.32E-04

8.64E-02

8.20E-03

9.32E-04

9.32E-04

1.80E-02

3.11E-03

1.55E-03

2.67E-03

3.11E-03

3.11E-03

3.11E-03

1.55E-03

1.07E-02

1.55E-03

9.47E-01

7.85E-03

5.66E-01

3.71E-02

2.21E-03

9.73E-04

4.02E-02

3.24E-03

1.62E-03

1.23E-02

3.24E-03

3.24E-03

2.08E-02

1.62E-03

6.43E-02

1.62E-03 1.46E-04 6.45E-01

4.30E-03

3.66E-01

4.06E-02

3.49E-03

1.01E-03

2.55E-02

3.36E-03

1.68E-03

1.38E-02

3.36E-03

3.36E-03

8.73E-03

1.68E-03

2.09E-02

1.68E-03

2.32E-01

3.39E-03

4.23E-01

2.14E-02

9.96E-04

9.96E-04

1.79E-02

3.32E-03

1.66E-03

4.45E-03

3.32E-03

3.32E-03

1.26E-02

1.66E-03

2.56E-02

1.66E-03

3.76E-01

9.75E-04

2.42E-01

1.33E-02

9.75E-04

9.75E-04

2.67E-02

3.25E-03

1.63E-03

7.35E-03

3.25E-03

3.25E-03

1.04E-02

1.63E-03

2.02E-02

1.63E-03

4.36E-01

6.85E-03

2.14E-01

1.73E-02

9.52E-04

9.52E-04

2.79E-02

3.17E-03

1.59E-03

4.44E-03

3.17E-03

3.17E-03

8.88E-03

1.59E-03

4.17E-02 1.59E-03 1.43E-04 4.56E-01

3.23E-03

3.14E-01

1.85E-02

9.88E-04

9.88E-04

2.11E-02

3.29E-03

1.65E-03

4.55E-03

3.29E-03

3.29E-03

7.25E-03

1.65E-03

3.97E-02

1.65E-03

3.28E-01

8.66E-03

8.52E-02

1.89E-02

1.05E-03

1.05E-03

8.73E-03

3.49E-03

1.75E-03

2.38E-03

3.49E-03

3.49E-03

3.49E-03

1.75E-03

1.83E-01 1.75E-03 4.78E-01

1.03E-03

3.44E-01

1.73E-02

1.03E-03

1.03E-03

1.93E-02

3.44E-03

1.72E-03

1.25E-02

3.44E-03

3.44E-03

1.17E-02

1.72E-03

3.03E-02 1.72E-03 1.53E-01

1.05E-03

9.83E-02

3.35E-03

1.05E-03

1.05E-03

8.71E-03

3.49E-03

1.74E-03

2.58E-03

3.49E-03

3.49E-03

3.49E-03

1.74E-03

1.99E-02

1.74E-03

QUARTERLY AMBIENT AIR QUALITY MONITORING REPORT FOR THE DURHAM YORK ENERGY CENTRE – OCTOBER TO DECEMBER 2017

Appendix H PAHs Data Summary February 9, 2018

Appendix H PAHS DATA SUMMARY

Project No.: 160950528 H.1

Polycyclic Aromatic Hydrocarbons	Cou	ırtice WPCP S	tation														
				Cou	ırtice		rtice	Cou	ırtice	Cou	rtice		rtice	Cou		Cou	
Location Date		dd/mm/yyy			711Ce 1/2017	22/10			лисе /2017	15/11		27/11		9/12/		21/12	
Start Time		hh:mm	,		00	0:			:00	0:			00	0:0		0:0	
Sample Duration		hours			.99	23			1.84		.36		3.6	23.		23.	
Technician					Z		Z		ΓZ		Z		Z	T			Z
Filter Number					93-01	FDI1:			89-01	FJ43			49-01	FOW8		FOW8	
Maxaam ID Maxxam Job #				B7M	653	FJX B7N			N836 08818	FO1 B7P			л613 8634	FTE: B7S2		FUY B7T0	
Total Volumetric Flow		Am³/sample	2		1.21	341			6.07		0.60		1.68	351		344	
Analytical Results		Units	;	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL
Benzo(a)pyrene		μg		0.00493	0.00078	0.0169	0.00093	0.00293	0.00080	0.0149	0.0017	< 0.016	0.030	0.0203	0.030	0.0152	0.020
1-Methylnaphthalene		μg		2.43	0.10	1.78	0.15	0.85	0.10	1.03	0.15	0.66	0.10	1.52	0.15	1.06	0.10
2-Methylnaphthalene		μg		4.12	0.10	2.83	0.15	1.37	0.10	1.54	0.15	1.06	0.10	2.41	0.15	1.85	0.10
Acenaphthene Acenaphthylene		hã		1.30 <0.050	0.050 0.050	1.32 <0.075	0.075 0.075	0.414 <0.050	0.050 0.050	0.210 <0.075	0.075 0.075	0.206 <0.050	0.050 0.050	0.252 <0.075	0.075 0.075	0.181 0.103	0.050 0.050
Anthracene		ьà		0.108	0.050	< 0.075	0.075	<0.050	0.050	< 0.075	0.075	<0.050	0.050	< 0.075	0.075	< 0.050	0.050
Benzo(a)anthracene		μg		< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050
Benzo(a)fluorene		μg		< 0.10	0.10	< 0.15	0.15	< 0.10	0.10	< 0.15	0.15	< 0.10	0.10	< 0.15	0.15	< 0.10	0.10
Benzo(b)fluoranthene		μg		< 0.050	0.050	< 0.075	0.075	<0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050
Benzo(b)fluorene		μg		<0.10	0.10	< 0.15	0.15	<0.10	0.10	<0.15	0.15	<0.10	0.10	<0.15	0.15	<0.10	0.10
Benzo(e)pyrene		μg		<0.10 <0.050	0.10 0.050	<0.15 <0.075	0.15 0.075	<0.10 <0.050	0.10 0.050	<0.15 <0.075	0.15 0.075	<0.10 <0.050	0.10 0.050	<0.15 <0.075	0.15 0.075	<0.10 <0.050	0.10 0.050
Benzo(g,h,i)perylene Benzo(k)fluoranthene		hā hā		<0.050	0.050	<0.075	0.075	<0.050	0.050	<0.075	0.075	<0.050	0.050	<0.075	0.075	<0.050	0.050
Biphenyl		0.83	0.030	1.22	0.075	0.39	0.10	0.74	0.075	0.40	0.030	0.80	0.075	0.68	0.10		
Chrysene		< 0.050	0.050	< 0.075	0.075	<0.050	0.050	<0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050		
Dibenz(a,h)anthracene		ра На		< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050
Dibenzo(a,c) anthracene + Picene 1		μg		<0.10	0.10	< 0.15	0.15	<0.10	0.10	< 0.15	0.15	<0.10	0.10	< 0.15	0.15	<0.10	0.10
Fluoranthene		0.348	0.050	0.339	0.075	0.138	0.050	0.192	0.075	0.104	0.050	0.216	0.075	0.213	0.050		
Indeno(1,2,3-cd)pyrene		hā hā		< 0.050	0.050	< 0.075	0.075	<0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050
Naphthalene		9.76	0.072	9.59	0.11	4.55	0.072	7.56	0.11	3.98	0.072	11.1	0.11	6.93	0.072		
o-Terphenyl		<0.10 <0.10	0.10 0.10	<0.15 <0.15	0.15 0.15	<0.10 <0.10	0.10 0.10	<0.15 <0.15	0.15 0.15	<0.10 <0.10	0.10 0.10	<0.15 <0.15	0.15 0.15	<0.10 <0.10	0.10 0.10		
Perylene Phenanthrene		µg		1.64	0.050	1.55	0.15	0.590	0.050	0.543	0.15	0.364	0.050	0.591	0.15	0.603	0.050
Pyrene		μg		0.185	0.050	0.147	0.075	<0.050	0.050	0.105	0.075	< 0.050	0.050	< 0.075	0.075	0.144	0.050
Tetralin		μg		0.82	0.10	0.58	0.15	0.41	0.10	0.41	0.15	0.30	0.10	0.50	0.15	0.44	0.10
		Quarter 4															
				2	24	2	5	2	26	2	7	2	8	2	9	3	0
Calculated Concentrations																	
		Maximum	Minimum														
		IVIAXIIIIUIII															
				10/10	/2017	22/10	/2017	2/11	/2017	15/11	/2017	27/11		9/12/	/2017	21/12	2/2017
Benzo(a)pyrene	ng/m³	5.77E-02	8.00E-03		E-02		E-02		0E-03		E-02		PE-02	5.77		4.41	
1-Methylnaphthalene	ng/m³	6.73E+00	1.99E+00		E+00	5.21			E+00	2.86			E+00	4.321		3.08	
2-Methylnaphthalene	ng/m³	1.14E+01	3.20E+00		E+00 E+01	8.28			E+00		E+00		E+00	6.85		5.37	
Acenaphthene	ng/m³	3.86E+00	5.26E-01		E+00	3.86			E+00	5.82		6.21		7.16		5.26	
Acenaphthylene	ng/m³	2.99E-01	6.83E-02		E+00	1.10			3E-02	1.04		7.54		1.07		2.99	
Anthracene	ng/m³	2.99E-01 2.99E-01	6.83E-02						·U4	1.04		7.34	- 02	1.07		7.26	
Benzo(a)anthracene	ng/m						F-01	6.00	RF-02	1.04		7 5 4	F-02	1.07	F-01		
	ng/m ³				E-01 F-02		E-01 F-01		BE-02 RF-02	1.04	E-01		E-02 E-02	1.07			
	ng/m³	1.10E-01	6.83E-02	6.92	E-02	1.10	E-01	6.83	3E-02	1.04	E-01 E-01	7.54	E-02	1.07	E-01	7.26	E-02
Benzo(a)fluorene	ng/m³	1.10E-01 2.19E-01	6.83E-02 1.37E-01	6.92 1.38	E-02 E-01	1.10 2.19	E-01 E-01	6.83 1.37	BE-02 FE-01	1.04 2.08	E-01 E-01 E-01	7.54 1.51	E-02 E-01	1.07 2.13	E-01 E-01	7.26 1.45	E-02 E-01
Benzo(a)fluorene Benzo(b)fluoranthene	ng/m³ ng/m³	1.10E-01 2.19E-01 1.10E-01	6.83E-02 1.37E-01 6.83E-02	6.92 1.38 6.92	E-02 E-01 E-02	1.10 2.19 1.10	E-01 E-01 E-01	6.83 1.37 6.83	BE-02 7E-01 BE-02	1.04 2.08 1.04	E-01 E-01 E-01 E-01	7.54 1.51 7.54	E-02 E-01 E-02	1.07 2.13 1.07	E-01 E-01 E-01	7.26 1.45 7.26	E-02 E-01 E-02
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene	ng/m³ ng/m³ ng/m³	1.10E-01 2.19E-01 1.10E-01 2.19E-01	6.83E-02 1.37E-01 6.83E-02 1.37E-01	6.92 1.38 6.92 1.38	E-02 E-01 E-02 E-01	1.10 2.19 1.10 2.19	E-01 E-01 E-01 E-01	6.83 1.37 6.83 1.37	BE-02 7E-01 BE-02 7E-01	1.04 2.08 1.04 2.08	E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51	E-02 E-01 E-02 E-01	1.07 2.13 1.07 2.13	E-01 E-01 E-01 E-01	7.26 1.45 7.26 1.45	E-02 E-01 E-02 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e)pyrene	ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 2.19E-01	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01	6.92 1.38 6.92 1.38 1.38	E-02 E-01 E-02 E-01 E-01	1.10 2.19 1.10 2.19 2.19	E-01 E-01 E-01 E-01 E-01	6.83 1.37 6.83 1.37	8E-02 7E-01 8E-02 7E-01 7E-01	1.04 2.08 1.04 2.08 2.08	E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51	E-02 E-01 E-02 E-01 E-01	1.07 2.13 1.07 2.13 2.13	E-01 E-01 E-01 E-01 E-01	7.26 1.45 7.26 1.45	E-02 E-01 E-02 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e)pyrene Benzo(g),hi/)perylene	ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 2.19E-01 1.10E-01	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02	6.92 1.38 6.92 1.38 1.38 6.92	E-02 E-01 E-02 E-01 E-01 E-02	1.10 2.19 1.10 2.19 2.19 1.10	E-01 E-01 E-01 E-01 E-01 E-01	6.83 1.37 6.83 1.37 1.37 6.83	8E-02 7E-01 8E-02 7E-01 7E-01 8E-02	1.04 2.08 1.04 2.08 2.08	E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51 1.51 7.54	E-02 E-01 E-02 E-01 E-01	1.07 2.13 1.07 2.13 2.13 1.07	E-01 E-01 E-01 E-01 E-01 E-01	7.26 1.45 7.26 1.45 1.45 7.26	E-02 E-01 E-02 E-01 E-01 E-02
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(c)fluorene Benzo(e)pyrene Benzo(g,h.i)perylene Benzo(k)fluoranthene	ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 2.19E-01 1.10E-01 1.10E-01	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 6.83E-02	6.92 1.38 6.92 1.38 1.38 6.92 6.92	E-02 E-01 E-02 E-01 E-01 E-02 E-02	1.10 2.19 1.10 2.19 2.19 1.10	E-01 E-01 E-01 E-01 E-01 E-01 E-01	6.83 1.37 6.83 1.37 1.37 6.83 6.83	8E-02 7E-01 8E-02 7E-01 7E-01 8E-02 8E-02	1.04 2.08 1.04 2.08 2.08 1.04	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51 1.51 7.54 7.54	E-02 E-01 E-02 E-01 E-01 E-02	1.07 2.13 1.07 2.13 2.13 1.07 1.07	E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.26 1.45 7.26 1.45 1.45 7.26	E-02 E-01 E-02 E-01 E-01 E-02
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(c)fluorene Benzo(g,h,l)perylene Benzo(g,h,l)perylene Benzo(k)fluoranthene Biphenyl	ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 2.19E-01 1.10E-01 1.10E-01 3.57E+00	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 6.83E-02 1.07E+00	6.92 1.38 6.92 1.38 1.38 6.92 6.92 2.30	EE-02 EE-01 EE-02 EE-01 EE-01 EE-02 EE-02 EE-00	1.10 2.19 1.10 2.19 2.19 1.10 3.57	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	6.83 1.37 6.83 1.37 6.83 6.83	8E-02 7E-01 8E-02 7E-01 7E-01 8E-02 8E-02	1.04 2.08 1.04 2.08 2.08 1.04 1.04 2.05	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51 1.51 7.54 7.54	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02 E-00	1.07 2.13 1.07 2.13 2.13 1.07 1.07 2.27	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.26 1.45 7.26 1.45 1.45 7.26 7.26	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(c)pyrene Benzo(g,h,i)perylene Benzo(g)fluoranthene Biphenyl Chrysene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 2.19E-01 1.10E-01 1.10E-01 3.57E+00 1.10E-01	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 6.83E-02 1.07E+00 6.83E-02	6.92 1.38 6.92 1.38 1.38 6.92 6.92 2.30 6.92	EE-02 EE-01 EE-02 EE-01 EE-02 EE-02 EE-02 EE-00	1.10 2.19 1.10 2.19 2.19 1.10 1.10 3.57	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00 E-01	6.83 1.37 6.83 1.37 1.37 6.83 6.83 1.07 6.83	8E-02 7E-01 8E-02 7E-01 7E-01 8E-02 8E-02 7E+00	1.04 2.08 1.04 2.08 2.08 1.04 1.04 2.05	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51 1.51 7.54 7.54 1.21	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02	1.07 2.13 1.07 2.13 2.13 1.07 1.07 2.27(E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00 E-01	7.26 1.45 7.26 1.45 1.45 7.26 7.26 1.97l	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e)pyrene Benzo(g)hi)perylene Benzo(g)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 2.19E-01 1.10E-01 1.10E-01 3.57E+00 1.10E-01	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 6.83E-02 1.07E+00 6.83E-02 6.83E-02	6.92 1.38 6.92 1.38 1.38 6.92 6.92 2.30 6.92 6.92	EE-02 EE-01 EE-01 EE-01 EE-02 EE-02 EE-02 EE-02 EE-02	1.10 2.19 1.10 2.19 2.19 1.10 1.10 3.57 1.10	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00 E-01 E-01	6.83 1.37 6.83 1.37 6.83 6.83 1.07 6.83	8E-02 7E-01 8E-02 7E-01 7E-01 8E-02 8E-02 7E-00 8E-02 8E-02	1.04 2.08 1.04 2.08 2.08 1.04 1.04 2.05 1.04	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51 1.51 7.54 7.54 1.21 7.54	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02	1.07 2.13 1.07 2.13 2.13 1.07 1.07 2.27(1.07	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00 E-01 E-01	7.26 1.45 7.26 1.45 1.45 7.26 7.26 1.97l 7.26	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(g,h,l)perylene Benzo(g,h,l)perylene Benzo(g,h,l)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 2.19E-01 1.10E-01 1.10E-01 1.57E+00 1.10E-01 1.10E-01 2.19E-01	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 6.83E-02 1.07E+00 6.83E-02 6.83E-02 1.37E-01	6.92 1.38 6.92 1.38 1.38 6.92 6.92 2.30 6.92 6.92 1.38	EE-02 EE-01 EE-01 EE-01 EE-02 EE-02 EE-02 EE-02 EE-02	1.10 2.19 1.10 2.19 2.19 1.10 1.10 3.57 1.10 2.19	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00 E-01 E-01 E-01	6.83 1.37 6.83 1.37 6.83 6.83 1.07 6.83 6.83	8E-02 7E-01 8E-02 7E-01 7E-01 8E-02 8E-02 7E-00 8E-02 7E-01	1.04 2.08 1.04 2.08 2.08 1.04 1.04 2.05 1.04 2.05	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51 1.51 7.54 7.54 1.21 7.54 1.51	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02 E-02 E-02 E-02	1.07 2.13 1.07 2.13 2.13 1.07 1.07 2.27(1.07 1.07 2.13	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00 E-01 E-01 E-01	7.26 1.45 7.26 1.45 1.45 7.26 7.26 1.97l 7.26 7.26	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E+00 E-02 E-02 E-02
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(c),fluorene Benzo(c),rlu)perylene Benzo(c),fluoranthene Biphenyl Chrysene Dibenzo(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene	ng/m³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 2.19E-01 1.10E-01 1.10E-01 3.57E+00 1.10E-01 1.10E-01 2.19E-01 9.92E-01	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 6.83E-02 1.07E+00 6.83E-02 6.83E-02 1.37E-01 3.14E-01	6.92 1.38 6.92 1.38 1.38 6.92 6.92 2.30 6.92 1.38 9.63	EE-02 EE-01 EE-02 EE-01 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02	1.10 2.19 1.10 2.19 2.19 1.10 1.10 3.57 1.10 2.19 9.92	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00 E-01 E-01 E-01 E-01	6.83 1.37 6.83 1.37 6.83 6.83 1.07 6.83 6.83 1.37	8E-02 7E-01 8E-02 7E-01 8E-02 8E-02 8E-02 8E-02 8E-02 8E-02 7E-01	1.04 2.08 1.04 2.08 2.08 1.04 1.04 2.05 1.04 2.08 5.32	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51 1.51 7.54 7.54 1.21 7.54 1.51 3.14	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-01 E-01	1.07 2.13 1.07 2.13 2.13 1.07 1.07 2.27 1.07 1.07 2.13 6.14	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E+00 E-01 E-01 E-01 E-01	7.26 1.45 7.26 1.45 1.45 7.26 7.26 1.97l 7.26 7.26 1.45 6.19	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(c)fluorene Benzo(c)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene	ng/m³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 2.19E-01 1.10E-01 3.57E+00 1.10E-01 1.10E-01 2.19E-01 9.92E-01 1.10E-01	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 6.83E-02 6.83E-02 6.83E-02 6.83E-02 6.83E-02 6.83E-02 6.83E-02	6.92 1.38 6.92 1.38 1.38 6.92 6.92 2.30 6.92 6.92 1.38 9.63	EE-02 EE-01 EE-02 EE-01 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02 EE-01 EE-01	1.10 2.19 1.10 2.19 2.19 1.10 1.10 3.57 1.10 2.19 9.92 1.10	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-00 E-01 E-01	6.83 1.37 6.83 1.37 6.83 6.83 1.07 6.83 6.83 1.37 6.83	8E-02 7E-01 8E-02 7E-01 7E-01 8E-02 8E-02 7E-00 8E-02 8E-02 7E-01 7E-01 8E-02	1.04 2.08 1.04 2.08 2.08 1.04 1.04 2.05 1.04 1.04 2.05 5.32	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51 1.51 7.54 7.54 1.21 7.54 7.54 1.51 3.14 7.54	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01	1.07 2.13 1.07 2.13 2.13 1.07 1.07 2.27! 1.07 2.13 6.14	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-00 E-01 E-01	7.26 1.45 7.26 1.45 7.26 7.26 1.97! 7.26 7.26 1.45 6.19	E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-02
Benzo(a)fluorene Benzo(b)fluorenthene Benzo(b)fluorene Benzo(g),hi)perylene Benzo(g,h.i)perylene Benzo(g,h.i)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene	ng/m³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01 3.57E+00 1.10E-01 1.10E-01 2.19E-01 9.92E-01 1.10E-01 3.16E+01	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 6.83E-02 1.07E+00 6.83E-02 1.37E-01 3.14E-01 6.83E-02 1.20E+01	6.92 1.38 6.922 1.38 6.92 2.30 6.922 1.38 9.63 6.922 2.70	EE-02 EE-01 EE-02 EE-01 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02 EE-01 EE-01 EE-01 EE-02 EE-01	1.10 2.19 1.10 2.19 2.19 1.10 1.10 3.57 1.10 2.19 9.92 1.10 2.81	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	6.83 1.37 6.83 1.37 6.83 6.83 1.07 6.83 6.83 1.37 6.83	8E-02 7E-01 8E-02 7E-01 7E-01 8E-02 8E-02 8E-02 8E-02 7E-01 8E-02 7E-01 8E-02 8E-02	1.044 2.088 1.044 2.088 2.088 1.044 2.055 1.044 2.088 5.322 1.044 2.100	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.544 1.51 7.544 1.51 1.51 7.545 7.54 1.21 7.54 1.51 3.144 7.54	E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-02 E-01 E-02 E-01	1.07 2.13 1.07 2.13 2.13 1.07 1.07 2.27/ 1.07 2.13 6.14 1.07 3.16/	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.26 1.45 7.26 1.45 7.26 7.26 1.97l 7.26 7.26 1.45 6.19 7.26	E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-00 E-02 E-00 E-02 E-00 E-02 E-02
Benzo(a)fluorene Benzo(b)fluorente Benzo(b)fluorene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)fluoranthene Benzo(c)fluoranthene Biphenyl Chrysene Dibenzo(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl	ng/m³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 2.19E-01 9.92E-01 1.10E-01 2.19E-01 2.19E-01	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 6.83E-02 1.07E+00 6.83E-02 1.37E-01 3.14E-01 1.37E-01	6.922 1.388 6.929 1.388 6.929 2.300 6.922 1.388 9.633 6.922 2.700 1.388	EE-02 EE-01 EE-02 EE-01 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02 EE-01 EE-01 EE-02 EE-01 EE-02 EE-01	1.10 2.19 1.10 2.19 2.19 1.10 3.57 1.10 2.19 9.92 1.11 2.81 2.81	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	6.83 1.37 6.83 1.37 6.83 1.07 6.83 6.83 1.37 3.77 6.83 1.37	8E-02 7E-01 8E-02 7E-01 7E-01 8E-02 8E-02 8E-02 8E-02 8E-02 8E-01 8E-02 8E-01 8E-02 8E-01	1.04 2.08 1.04 2.08 2.08 1.04 2.05 1.04 2.05 5.32 1.04 2.10	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.544 1.51 7.545 1.51 1.51 7.545 7.545 7.545 7.545 1.51 3.144 7.545 1.20	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01	1.07 2.13 1.07 2.13 2.13 1.07 1.07 2.27/ 1.07 2.13 6.14 1.07 3.16/ 2.13	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.26 1.45 7.26 1.45 7.26 7.26 1.97l 7.26 7.26 1.45 6.199 7.26 2.01l	E-02 E-01 E-02 E-01 E-01 E-02 E-00 E-00 E-02 E-00 E-02 E-00 E-02 E-00 E-02 E-01 E-01 E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(g),fil)perylene Benzo(c)ynuoranthene Benzo(c)fluoranthene Benzo(k)fluoranthene Biphenyl Chrysene Dibenzo(a,c) anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene	ng/m³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 2.19E-01 9.92E-01 1.10E-01 2.19E-01 2.19E-01	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 1.07E+00 6.83E-02 1.37E-01 3.14E-01 6.83E-02 1.20E+01 1.37E-01	6.922 1.388 6.922 1.388 6.922 2.300 6.922 1.388 9.633 6.922 2.707 1.388 1.388	EE-02 EE-01 EE-01 EE-01 EE-01 EE-02 EE-02 EE-02 EE-02 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01	1.10 2.19 1.10 2.19 2.19 1.10 3.57 1.10 2.19 9.92 1.10 2.81 2.19 2.19	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	6.83 1.37 6.83 1.37 6.83 6.83 1.07 6.83 1.37 6.83 1.37 6.83	8E-02 7E-01 8E-02 7E-01 8E-02 8E-02 8E-02 8E-02 8E-02 8E-02 7E-01 8E-01 7E-01	1.04 2.08 1.04 2.08 2.08 1.04 1.04 2.05 1.04 2.08 5.32 1.04 2.100 2.08	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51 7.54 7.54 7.54 7.54 1.21 7.54 1.51 3.14 7.54 1.20 1.51	E-02 E-01 E-02 E-01 E-01 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.07 2.13 1.07 2.13 2.13 1.07 2.27 1.07 2.27 1.07 2.13 6.14 1.07 3.16 6.12 2.13	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.26 1.45 7.26 1.45 7.26 7.26 7.26 1.97 7.26 1.45 6.19 7.26 2.011 1.45 1.45	E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluorenthene Benzo(b)fluorene Benzo(c)juorene Benzo(c)fluorene Benzo(c)fluorenthene Benzo(c)fluorenthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene Phenanthrene	ng/m³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 2.19E-01 3.16E-01 2.19E-01 4.54E+00	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 6.83E-02 6.83E-02 1.37E-01 6.83E-02 1.20E-01 1.37E-01 1.37E-01 1.37E-01	6.922 1.38 6.923 1.388 6.922 6.922 2.30 6.922 6.922 2.70 1.388 1.388 4.54	EE-02 EE-01 EE-02 EE-01 EE-01 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02 EE-01 EE-02 EE-01	1.10 2.19 1.10 2.19 2.19 1.10 1.10 3.57 1.10 2.19 9.92 1.10 2.81 2.19 4.53	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	6.83 1.37 6.83 1.37 1.33 6.83 6.83 1.07 6.83 6.83 1.37 3.77 6.83 1.24	8E-02 7E-01 8E-02 7E-01 8E-02 8E-02 8E-02 8E-02 8E-02 8E-02 8E-01 7E-01 8E-02 8E-01 7E-01 8E-02 8E-01 8E-02 8E-01 8E-01 8E-02 8E-01 8E	1.04 2.08 1.04 2.08 2.08 1.04 1.04 2.05 1.04 2.08 5.32 1.04 2.10 2.08 2.08 2.08	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51 1.51 7.54 7.54 1.21 7.54 7.55 1.51 3.14 7.54 1.20 1.51	E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.07 2.13 1.07 2.13 2.13 1.07 1.07 1.07 1.07 2.27 1.07 1.07 3.16 2.13 2.13 2.13 1.68	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.26 1.45 7.26 1.45 7.26 7.26 7.26 7.26 7.26 6.19 7.26 2.011 1.45 1.45 1.45	E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-00 E-02 E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(c),fluorene Benzo(c),fluorene Benzo(c),fluorene Benzo(c),fluoranthene Biphenyl Chrysene Dibenzo(a,c) anthracene Dibenzo(a,c) anthracene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene Phenanthrene Pyrene	ng/m³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 2.19E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 2.19E-01 2.19E-01 2.19E-01 2.19E-01 2.19E-01	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 1.07E+00 6.83E-02 1.37E-01 3.14E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 0.83E-02	6.922 1.38 6.922 1.388 6.922 2.300 6.922 6.922 2.700 1.388 1.388 4.544 5.122	EE-02 EE-01 EE-02 EE-01 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02 EE-01 EE-02 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01	1.10 2.19 1.10 2.19 2.19 2.19 1.10 3.57 1.10 2.19 9.92 2.19 2.19 2.19 4.53 4.30	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	6.83 1.37 6.83 1.37 1.33 6.83 1.07 6.83 6.83 1.37 3.77 6.83 1.24 1.37 1.31 1.61 6.83	8E-02 7E-01 8E-02 7E-01 8E-02 8E-02 8E-02 8E-02 8E-02 8E-01 7E-01 8E-02 8E-01 7E-01 8E-02 8E-02 8E-02 8E-01 8E-02 8E-01 8E-02 8E-01 8E-02 8E-01 8E-02 8E-03 8E-03 8E-03 8E-04 8E-04 8E-05 8E-05 8E-05 8E-05 8E-06 8E-06 8E-06 8E-06 8E-07 8E-01 8E-01 8E-01 8E-02 8E-01 8E-02 8E-01 8E-03 8E-04 8E-01 8E-01 8E-02 8E-01 8E-02 8E-01 8E-03 8E-04 8E-05 8E-05 8E-06 8E-06 8E-06 8E-07 8E-07 8E-08 8E-08 8E-08 8E-09 8E	1.04 2.08 1.04 2.08 2.08 1.04 1.04 2.05 1.04 2.05 5.32 1.04 2.10 2.08 2.08 2.10 2.08	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 1.51 1.51 7.54 7.54 7.54 1.21 1.51 1.20 1.51 1.51 1.51 1.51	E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.07 2.13 1.07 2.13 2.13 1.07 1.07 2.27 1.07 2.13 6.14 1.07 3.16 2.13 2.13 1.68 1.68	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.26 1.45 7.26 1.455 7.26 7.26 7.26 7.26 1.45 6.19 7.26 2.011 1.45 1.45 1.45 1.45 1.45 1.45 1.45	E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-00 E-02 E-02 E-00 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01
Benzo(a)fluorene Benzo(b)fluorenthene Benzo(b)fluorene Benzo(c)pyrene Benzo(g,h,l)perylene Benzo(g,h,l)perylene Benzo(g,h,l)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2.3-cd)pyrene Naphthalene o-Terphenyl Perylene Phenanthrene	ng/m³	1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 2.19E-01 3.16E-01 2.19E-01 4.54E+00	6.83E-02 1.37E-01 6.83E-02 1.37E-01 1.37E-01 6.83E-02 6.83E-02 6.83E-02 1.37E-01 6.83E-02 1.20E-01 1.37E-01 1.37E-01 1.37E-01	6.922 1.38 6.922 1.388 6.922 2.30 6.922 1.38 9.63 6.92 2.70 1.38 4.54 5.122	EE-02 EE-01 EE-02 EE-01 EE-01 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02 EE-01 EE-02 EE-01	1.10 2.19 1.10 2.19 2.19 1.10 1.10 3.57 1.10 2.19 9.92 1.10 2.81 2.19 4.53	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	6.83 1.37 6.83 1.37 6.83 6.83 1.07 6.83 1.33 3.77 6.83 1.24 1.37 1.37 1.61 6.83	8E-02 7E-01 8E-02 7E-01 8E-02 8E-02 8E-02 8E-02 8E-02 8E-02 8E-01 7E-01 8E-02 8E-01 7E-01 8E-02 8E-01 8E-02 8E-01 8E-01 8E-02 8E-01 8E	1.04 2.08 1.04 2.08 2.08 1.04 1.04 2.05 1.04 2.05 5.32 1.04 2.10 2.08 2.08 2.10 2.08	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.54 1.51 7.54 7.54 7.54 7.54 7.54 1.51 3.14 1.20 1.51 1.51 1.50 1.51	E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.07 2.13 1.07 2.13 2.13 1.07 1.07 1.07 1.07 2.27 1.07 1.07 3.16 2.13 2.13 2.13 1.68	E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	7.26 1.45 7.26 1.45 7.26 7.26 7.26 7.26 7.26 6.19 7.26 2.011 1.45 1.45 1.45	E-02 E-01 E-01 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01

Note:

RDL = Reportable Detection Limit

1. These parameters have not been subjected to Maxxam's standard validation

2. Average sample flows were greater than 8.8cfm. As discussed with the

MOECC, these samplers are to run at their maximum allowable flow rate

Polycyclic Aromatic Hydrocarbons		Rundle Road Sta	ition														
Location				Rundle		Rundle		Rundle		Rundle		Rundle		Rundle		Rundle	
Date	dd/mm/yyyy)/2017	22/10/2017		3/11/2017		15/11/2017		27/11/2017		9/12/2017		21/12/2017		
Start Time	hh:mm			00	0:00		0:00		0:00 24.11		0:00		0:00		0:00		
Sample Duration Technician	hours			23.79 24.09 TZ TZ		24.36 TZ		24		23.11 TZ		23.66 17		24.46 T7			
Filter Number					94-01		31-01		88-01		01-01	FJY34		FOW815-01		FOW	_
Maxaam ID					652		(007		V835	FO		FQM			239	FUY	
Maxxam Job #					16937	B7N	5341	B7C	8818	B7P	9968	B7Q	8634	B7S:	2438	B7T0	
Total Volumetric Flow		Am³/sample		346	5.47	33	1.06	35	0.34	36	7.68	313	3.53	344	1.10	319	9.65
Analytical Results		Units		Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL
Benzo(a)pyrene 1-Methylnaphthalene		μg		0.0094 1.97	0.0026	0.0136 3.15	0.00098	0.00331 1.06	0.00047	0.0276 1.88	0.030 0.15	0.0109 0.81	0.020 0.10	0.0378 2.53	0.030	0.0139 1.24	0.020 0.10
2-Methylnaphthalene		hā hā		3.41	0.10	5.87	0.15	1.70	0.10	3.06	0.15	1.29	0.10	3.93	0.15	2.08	0.10
Acenaphthene		hà		1.39	0.050	2.81	0.075	0.570	0.050	0.855	0.075	0.256	0.050	0.450	0.075	0.347	0.050
Acenaphthylene		µg		< 0.050	0.050	< 0.075	0.075	0.106	0.050	< 0.075	0.075	0.092	0.050	0.405	0.075	0.113	0.050
Anthracene		μg		0.132	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	0.138	0.075	<0.050	0.050
Benzo(a)anthracene		μg		<0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	<0.050	0.050	< 0.075	0.075	<0.050	0.050
Benzo(a)fluorene Benzo(b)fluoranthene		hā hā		<0.10 <0.050	0.10 0.050	<0.15 <0.075	0.15 0.075	<0.10 <0.050	0.10 0.050	<0.15 <0.075	0.15 0.075	<0.10 <0.050	0.10 0.050	<0.15 0.150	0.15 0.075	<0.10 <0.050	0.10 0.050
Benzo(b)fluorene		hà		<0.10	0.10	<0.15	0.075	<0.10	0.10	<0.15	0.15	<0.00	0.10	<0.15	0.15	<0.10	0.10
Benzo(e)pyrene		μд		<0.10	0.10	< 0.15	0.15	< 0.10	0.10	< 0.15	0.15	< 0.10	0.10	< 0.15	0.15	< 0.10	0.10
Benzo(g,h,i)perylene		μg		< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	<0.050	0.050
Benzo(k)fluoranthene		μg		<0.050	0.050	<0.075	0.075	<0.050	0.050	<0.075	0.075	< 0.050	0.050	<0.075	0.075	<0.050	0.050
Biphenyl Chrysene		hā		0.63 <0.050	0.10 0.050	1.60 <0.075	0.15 0.075	0.45 <0.050	0.10 0.050	1.09 <0.075	0.15 0.075	0.47 <0.050	0.10 0.050	1.36 <0.075	0.15 0.075	0.75 <0.050	0.10 0.050
Dibenz(a,h)anthracene		hā hā		<0.050	0.050	<0.075	0.075	<0.050	0.050	<0.075	0.075	<0.050	0.050	<0.075	0.075	<0.050	0.050
Dibenzo(a,c) anthracene + Picene 1		hà		<0.030	0.10	<0.075	0.075	<0.030	0.10	<0.073	0.073	<0.10	0.030	<0.075	0.073	<0.10	0.10
Fluoranthene		hа		0.419	0.050	0.684	0.15	0.138	0.050	0.342	0.13	0.184	0.050	0.492	0.13	0.260	0.050
Indeno(1,2,3-cd)pyrene		μg		< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050
Naphthalene		μg		6.80	0.072	11.0	0.11	5.13	0.072	10.6	0.11	4.81	0.072	17.5	0.11	7.62	0.072
o-Terphenyl		μg		<0.10	0.10	<0.15	0.15	<0.10	0.10	<0.15	0.15	<0.10	0.10	<0.15	0.15	<0.10	0.10
Perylene		hã hã		<0.10 1.94	0.10 0.050	<0.15 3.34	0.15 0.075	< 0.10	0.10 0.050	< 0.15	0.15 0.075	<0.10	0.10 0.050	<0.15	0.15 0.075	<0.10 0.798	0.10 0.050
Phenanthrene Pyrene		hã hã		0.215	0.050	0.297	0.075	0.676 <0.050	0.050	1.36 0.198	0.075	0.510 0.138	0.050	1.51 0.291	0.075	0.798	0.050
Tetralin		hд		0.67	0.10	0.62	0.075	0.37	0.10	0.58	0.15	0.33	0.10	0.67	0.15	0.43	0.10
		Quarter 4		2	24	:	25	:	26	2	27	2	8	2	9	3	§0
Calculated Concentrations																	
	Units		Minimum														
	. 3)/2017)/2017		/2017		/2017	27/11			/2017	21/12	
Benzo(a)pyrene	ng/m³	0.1099	0.0094		E-02		E-02		5E-03		E-02	3.48			E-01		E-02
1-Methylnaphthalene	ng/m³	9.51E+00	2.58E+00		E+00		E+00		E+00	5.11		2.58			E+00	3.88	
2-Methylnaphthalene	ng/m³	1.77E+01	4.11E+00		E+00		E+01		E+00	8.32		4.111		1.14			E+00
Acenaphthene	ng/m ³	8.49E+00	8.17E-01		E+00		E+00		E+00		E+00	8.17		1.31		1.09	
Acenaphthylene	ng/m³	1.18E+00	7.22E-02		PE-02		BE-01		3E-01		E-01	2.93			E+00	3.54	
Anthracene Renze(a)anthracene	ng/m ³	4.01E-01	7.14E-02		E-01		BE-01		1E-02		E-01	7.97			E-01	7.82	
Benzo(a)anthracene	ng/m³ ng/m³	1.13E-01 2.27E-01	7.14E-02 1.43E-01		E-02 E-01		8E-01 E-01		1E-02 3E-01		E-01 E-01	7.97 1.59		1.09	E-01	7.82 1.56	
Benzo(a)fluorene Benzo(b)fluoranthene	ng/m³	4.36E-01	7.14E-02		E-01 E-02		E-01 BE-01		1E-02		E-01	7.97			E-01		E-01
Benzo(b)fluorantnene Benzo(b)fluorene	ng/m ng/m³	4.36E-01 2.27E-01	7.14E-02 1.43E-01		E-02 E-01		7E-01		1E-02 3E-01								
Benzo(e)pyrene	ng/m³	2.27E-01 2.27E-01	1.43E-01 1.43E-01		E-01		E-01 E-01		3E-01	2.04E-01 2.04E-01		1.59E-01		2.18E-01		1.56E-01	
1 1 1 E	ng/m³	2.27E-01 1.13E-01	7.14E-02		E-01 E-02							1.59E-01		2.18E-01		1.56E-01	
Benzo(g,h,i)perylene Benzo(k)fluoranthene	ng/m³	1.13E-01 1.13E-01	7.14E-02 7.14E-02		?E-02 ?E-02		13E-01 7.14E-02		1.02E-01		7.97E-02 7.97E-02		1.09E-01 1.09E-01		7.82E-02 7.82E-02		
	ng/m³	4.83E+00	1.28E+00		E+00		3E-01 7.14E-02			1.02E-01		7.97E-02			E+00	2.35	
Biphenyl Chrysene	ng/m³	4.83E+00 1.13E-01	7.14E-02		E+00 PE-02		4.83E+00 1.28E+00			2.96E+00		1.50E+00 7.97E-02			E+00 E-01	7.82	
Dibenz(a,h)anthracene	ng/m³	1.13E-01 1.13E-01	7.14E-02 7.14E-02		E-02 E-02		1.13E-01 1.13E-01		7.14E-02 7.14E-02		1.02E-01 1.02E-01		E-02 E-02	1.09		7.82	
Dibenz(a,r)anthracene Dibenzo(a,c) anthracene + Picene	ng/m³	2.27E-01	7.14E-02 1.43E-01		E-02 E-01		E-01		4E-02 3E-01			1.59			E-01		E-02 E-01
Fluoranthene	ng/m³	2.07E+00	3.94E-01		E+00		E+00		1E-01		2.04E-01 9.30E-01		E-01		E+00	8.13	
Indeno(1,2,3-cd)pyrene	ng/m³	1.13E-01	7.14E-02		E+00 PE-02		E+00 BE-01		1E-01 1E-02		E-01	7.97		1.43		7.82	
Naphthalene	ng/m³	5.09E+01	7.14E-02 1.46E+01		E+01		E+01		E+02 E+01		E+01	1.53			E+01	2.38	
o-Terphenyl	ng/m³	5.09E+01 2.27E-01	1.46E+01 1.43E-01		E+01 IE-01		E+01 E-01		3E-01		E+01 E-01	1.53			E+01 BE-01	2.38 1.56	
Perylene	ng/m³	2.27E-01 2.27E-01	1.43E-01 1.43E-01		E-01		E-01 E-01		3E-01		E-01	1.59			E-01	1.56	
Phenanthrene	ng/m ng/m³	2.2/E-01 1.01E+01	1.43E-01 1.63E+00		E+00		E+01		BE+00		E+00	1.63			E+00	2.50	
Pyrene	ng/m³	8.97E-01	7.14E-02	6.21			E+01 E-01		1E-02		E+00 E-01	4.40		8.46		5.29	
Tetralin	ng/m³	8.97E-01 1.95E+00	7.14E-02 1.05E+00		E+00		E+00		E+00		E+00	1.05			E+00	1.35	
Total PAH	ng/m³	9.11E+01	3.00E+01		E+00		E+00		E+00		E+00	3.00			E+00	4.48	
TOTAL I PALL	ng/III	7.11E+U1	J.UUE+UI	3.22	LFUI	9.11	LFUI	3.00	rLTU1	0.00	LIVI	3.00	LYVI	0.70	LIVI	4.48	_ 1 0 1

Note: RDL = Reportable Detection Limit

QUARTERLY AMBIENT AIR QUALITY MONITORING REPORT FOR THE DURHAM YORK ENERGY CENTRE – OCTOBER TO DECEMBER 2017

Appendix I Dioxins and Furans Data Summary February 9, 2018

Appendix I DIOXINS AND FURANS DATA SUMMARY

Project No.: 160950528

Dioxins and Furans											
Location											
Date	dd/mm/yyyy		22/10/2	017	15/11/2017			9/12/2017			
Start Time	hh:mm		0:00			0:00			0:00		
Sample Duration	hours		23.99			23.36		23.51			
Technician			TZ			TZ		0			
Filter Number			FDI132-		FJ4302-01			FOW815-01			
Maxaam ID			FJX00			FOT35			FTE24		
Maxxam Job #			B7N534	11		B7P996	88		B7S243	38	
Total Volumetric Flow	Am³/sample		341.8	5	360.60				351.7	5	
										WHO ₂₀₀₅ TEF	
Analytical Results	Units			_	0.0			0.4	0.4		
2,3,7,8-Tetra CDD *	pg	<3.3	3.3	1	<3.2	3.2	1	<2.6	2.6	1	
1,2,3,7,8-Penta CDD *	pg	<3.5	3.5	1	<4.0	4.0	1	<3.1	3.1	.1	
1,2,3,4,7,8-Hexa CDD *	pg	< 3.4	3.4	0.1	< 3.9	3.9	0.1	<3.4	3.4	0.1	
1,2,3,6,7,8-Hexa CDD *	pg	< 3.4	3.4	0.1	4.5	4.0	0.1	3.7	3.5	0.1	
1,2,3,7,8,9-Hexa CDD *	pg	<3.0	3.0	0.1	6.6	3.3	0.1	<3.1 (2)	3.1	0.1	
1,2,3,4,6,7,8-Hepta CDD *	pg	57.1	3.3	0.01	43.1	3.3	0.01	37.1	3.1	0.01	
Octa CDD *	pg	217	3.5	0.0003	134	3.5	0.0003	<97 (2)	97	0.0003	
Total Tetra CDD *	pg	<3.3	3.3		<3.2	3.2		<2.6	2.6		
Total Penta CDD *	pg	<3.5	3.5		<4.0	4.0		<4.8 (2)	4.8		
Total Hexa CDD *	pg	24.4	3.2		36.7	3.7		20.2	3.3		
Total Hepta CDD *	pg	122	3.3		85.8	3.3		75.2	3.1		
2,3,7,8-Tetra CDF **	pg	<3.2	3.2	0.1	<3.6	3.6	0.1	4.8	3.4	0.1	
1,2,3,7,8-Penta CDF **	pg	<3.5	3.5	0.03	< 3.7	3.7	0.03	<3.5	3.5	0.03	
2,3,4,7,8-Penta CDF **	pg	<3.5	3.5	0.3	< 3.7	3.7	0.3	<3.5	3.5	0.3	
1,2,3,4,7,8-Hexa CDF **	pg	<3.1	3.1	0.1	< 3.0	3.0	0.1	<2.8	2.8	0.1	
1,2,3,6,7,8-Hexa CDF **	pg	<3.0	3.0	0.1	< 2.9	2.9	0.1	< 2.7	2.7	0.1	
2,3,4,6,7,8-Hexa CDF **	pg	< 3.4	3.4	0.1	< 3.2	3.2	0.1	<3.1	3.1	0.1	
1,2,3,7,8,9-Hexa CDF **	pg	<3.7	3.7	0.1	< 3.1	3.1	0.1	< 3.4	3.4	0.1	
1,2,3,4,6,7,8-Hepta CDF **	pg	11.0	2.9	0.01	5.0	2.9	0.01	5.4	2.8	0.01	
1,2,3,4,7,8,9-Hepta CDF **	pg	<3.8	3.8	0.01	< 3.3	3.3	0.01	<3.8	3.8	0.01	
Octa CDF **	pg	11.5	3.5	0.0003	7.0	3.6	0.0003	5.9	2.3	0.0003	
Total Tetra CDF **	pg	<3.2	3.2		<3.6	3.6		4.8	3.4		
Total Penta CDF **	pg	<3.5	3.5		< 3.7	3.7		6.2	3.5		
Total Hexa CDF **	pg	<4.8 (1)	4.8		< 3.0	3.0		<3.2 (1)	3.2		
Total Hepta CDF **	pg	16.8	3.3		5.0	3.1		5.4	3.2		
Toxic Equivalency	pg										

Notes:
(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.
(2) EMPC / Merged Peak
(3) ER - 3 seconds - PCDD/DF analysis - Peak detected exceeds expected retention time (from internal standard) by greater than 3 seconds.

(4) Average sample flows were greater than 8.8cfm. As discussed with the MOECC, these samplers are to run at their maximum allowable flow rate

* CDD = Chloro Dibenzo-p-Dioxin ** CDF = Chloro Dibenzo-p-Furan

		Quarter 4				
				14	15	16
Calculated Concentrations						
2,3,7,8-Tetra CDD *	pg/m³	4.83E-03	3.70E-03	0.005	0.004	0.004
1,2,3,7,8-Penta CDD *	pg/m³	5.55E-03	4.41E-03	0.005	0.006	0.004
1,2,3,4,7,8-Hexa CDD *	pg/m³	5.41E-03	4.83E-03	0.005	0.005	0.005
1,2,3,6,7,8-Hexa CDD *	pg/m³	1.25E-02	4.97E-03	0.005	0.012	0.011
1,2,3,7,8,9-Hexa CDD *	pg/m³	1.83E-02	4.39E-03	0.004	0.018	0.004
1,2,3,4,6,7,8-Hepta CDD *	pg/m³	1.67E-01	1.05E-01	0.167	0.120	0.105
Octa CDD *	pg/m³	6.35E-01	1.38E-01	0.635	0.372	0.138
Total Tetra CDD *	pg/m³	4.83E-03	3.70E-03	0.005	0.004	0.004
Total Penta CDD *	pg/m³	6.82E-03	5.12E-03	0.005	0.006	0.007
Total Hexa CDD *	pg/m³	1.02E-01	5.74E-02	0.071	0.102	0.057
Total Hepta CDD *	pg/m³	3.57E-01	2.14E-01	0.357	0.238	0.214
2,3,7,8-Tetra CDF **	pg/m³	1.36E-02	4.68E-03	0.005	0.005	0.014
1,2,3,7,8-Penta CDF **	pg/m³	5.13E-03	4.98E-03	0.005	0.005	0.005
2,3,4,7,8-Penta CDF **	pg/m³	5.13E-03	4.98E-03	0.005	0.005	0.005
1,2,3,4,7,8-Hexa CDF **	pg/m³	4.53E-03	3.98E-03	0.005	0.004	0.004
1,2,3,6,7,8-Hexa CDF **	pg/m³	4.39E-03	3.84E-03	0.004	0.004	0.004
2,3,4,6,7,8-Hexa CDF **	pg/m³	4.97E-03	4.41E-03	0.005	0.004	0.004
1,2,3,7,8,9-Hexa CDF **	pg/m³	5.41E-03	4.30E-03	0.005	0.004	0.005
1,2,3,4,6,7,8-Hepta CDF **	pg/m³	3.22E-02	1.39E-02	0.032	0.014	0.015
1,2,3,4,7,8,9-Hepta CDF **	pg/m³	5.56E-03	4.58E-03	0.006	0.005	0.005
Octa CDF **	pg/m³	3.36E-02	1.68E-02	0.034	0.019	0.017
Total Tetra CDF **	pg/m³	1.36E-02	4.68E-03	0.005	0.005	0.014
Total Penta CDF **	pg/m³	1.76E-02	5.12E-03	0.005	0.005	0.018
Total Hexa CDF **	pg/m³	7.02E-03	4.16E-03	0.007	0.004	0.005
Total Hepta CDF **	pg/m³	4.91E-02	1.39E-02	0.049	0.014	0.015
Toxic Equivalency	pg/m³					
TOTAL TOXIC EQUIVALENCY	pg TEQ/m³	1.90E-02	1.61E-02	0.018	0.019	0.016
Calculated TEQ Concentrations	Units					
				22/10/2017	15/11/2017	09/12/2017
2,3,7,8-Tetra CDD *	pg TEQ/m³			0.005	0.004	0.004
1,2,3,7,8-Penta CDD	pg TEQ/m³			0.005	0.006	0.004
1,2,3,4,7,8-Hexa CDD	pg TEQ/m³			0.0005	0.0005	0.0005
1,2,3,6,7,8-Hexa CDD	pg TEQ/m³			0.0005	0.0012	0.0011
1,2,3,7,8,9-Hexa CDD	pg TEQ/m³			0.0004	0.0018	0.0004
1,2,3,4,6,7,8-Hepta CDD	pg TEQ/m ³			0.0017	0.0012	0.0011
Octa CDD	pg TEQ/m³			0.00019	0.00011	0.00004
Total Tetra CDD	pg TEQ/m³					
Total Penta CDD	pg TEQ/m³					
Total Hexa CDD	pg TEQ/m³					
Total Hepta CDD	pg TEQ/m³					
2,3,7,8-Tetra CDF **	pg TEQ/m³			0.0005	0.0005	0.0014
1,2,3,7,8-Penta CDF	pg TEQ/m³			0.0002	0.0002	0.0001
2,3,4,7,8-Penta CDF	pg TEQ/m³			0.002	0.002	0.001
1,2,3,4,7,8-Hexa CDF	pg TEQ/m³			0.0005	0.0004	0.0004
1,2,3,6,7,8-Hexa CDF	pg TEQ/m ³			0.0004	0.0004	0.0004
2,3,4,6,7,8-Hexa CDF	pg TEQ/m³			0.0005	0.0004	0.0004
1,2,3,7,8,9-Hexa CDF	pg TEQ/m³			0.0005	0.0004	0.0005
1,2,3,4,6,7,8-Hepta CDF	pg TEQ/m ³			0.00032	0.00014	0.00015
1,2,3,4,7,8,9-Hepta CDF	pg TEQ/m³			0.00006	0.00005	0.00005
Octa CDF	pg TEQ/m ³			0.000010	0.000006	0.000005
Total Tetra CDF	pg TEQ/m³					
Total Penta CDF	pg TEQ/m ³					
Total Hexa CDF	pg TEQ/m³					
IT-4-1114- ODE						l .
Total Hepta CDF TOTAL TOXIC EQUIVALENCY	pg TEQ/m ³ pg TEQ/m ³			0.018	0.019	0.016

Notes:

EDL = Estimated Detection Limit

* CDD = Chloro Diberazo-p-Dioxin, ** CDF = Chloro Diberazo-p-Furan

ITE = Toxic Equivalency Factor, ITC = Toxic Equivalency Quotient

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency

Factors for Dioxins and Dioxin-like Compounds

Dioxins and Furans	Rundle Road Station										
Location											
Date	dd/mm/yyyy	22/10/2017				15/11/2		9/12/2017			
Start Time	hh:mm		0:00			0:00			0.00		
Sample Duration	hours		24.09			24.11			23.66		
Technician			TZ			TZ		0			
Filter Number			FDI131-	01		FJ4301-	01		FOW815	5-01	
Maxaam ID			FJX00	7		FOT35	1		FTE23	9	
Maxxam Job #		B7N5341			B7P996	58	B7S2438				
Total Volumetric Flow	Am ³ /sample		331.0	5		367.68			344.10		
Analytical Results							WHO ₂₀₀₅ TEF			WHO ₂₀₀₅ TEF	
2,3,7,8-Tetra CDD *	pg	<3.5	3.5	1	<3.6	3.6	1	<3.0	3.0	1	
1,2,3,7,8-Penta CDD *	pg	<3.5	3.5	1	<4.2	4.2	1	<3.2	3.2	1	
1,2,3,4,7,8-Hexa CDD *	pg	<3.4	3.4	0.1	<3.8	3.8	0.1	3.5	3.4	0.1	
1,2,3,6,7,8-Hexa CDD *	pg	4.3	3.5	0.1	4.4	3.9	0.1	3.7	3.5	0.1	
1,2,3,7,8,9-Hexa CDD *	pg	<3.1	3.1	0.1	6.6	3.2	0.1	<5.7 (1)	5.7	0.1	
1,2,3,4,6,7,8-Hepta CDD *	pg	59.3	3.5	0.01	49.6	3.5	0.01	40.4	3.9	0.01	
Octa CDD *	pg	241	3.2	0.0003	167	3.4	0.0003	108	2.8	0.0003	
Total Tetra CDD *	pg	<3.5	3.5		<3.6	3.6		<3.0	3.0		
Total Penta CDD *	pg	<3.5	3.5		<4.2	4.2		<5.0 (2)	5.0		
Total Hexa CDD *	pg	19.2	3.3		37.7	3.6		28.9	3.3		
Total Hepta CDD *	pg	123	3.5		104	3.5		79.4	3.9		
2,3,7,8-Tetra CDF **	pg	<3.0	3.0	0.1	<4.6 (1)	4.6	0.1	6.1	3.1	0.1	
1,2,3,7,8-Penta CDF **	pg	<3.5	3.5	0.03	<3.7	3.7	0.03	<3.2	3.2	0.03	
2,3,4,7,8-Penta CDF **	pg	<3.4	3.4	0.3	<3.6	3.6	0.3	<3.2	3.2	0.3	
1,2,3,4,7,8-Hexa CDF **	pg	<3.3	3.3	0.1	<3.2	3.2	0.1	3.7	2.9	0.1	
1,2,3,6,7,8-Hexa CDF **	pg	<3.2	3.2	0.1	<3.1	3.1	0.1	<2.8	2.8	0.1	
2,3,4,6,7,8-Hexa CDF **	pg	<3.6	3.6	0.1	<3.4	3.4	0.1	<3.2	3.2	0.1	
1,2,3,7,8,9-Hexa CDF **	pg	<4.0	4.0	0.1	<3.4	3.4	0.1	<3.5	3.5	0.1	
1,2,3,4,6,7,8-Hepta CDF **	pg	<11 (1)	11	0.01	5.6	2.9	0.01	7.0	2.8	0.01	
1,2,3,4,7,8,9-Hepta CDF **	pg	<3.5	3.5	0.01	<3.2	3.2	0.01	<3.7	3.7	0.01	
Octa CDF **	pg	<12 (1)	12	0.0003	7.1	3.1	0.0003	7.2	2.5	0.0003	
Total Tetra CDF **	pg	<3.0 <3.5	3.0		4.6 4.2	3.5 3.6		6.1 6.2	3.1 3.2		
Total Penta CDF **	pg	<3.5 6.7	3.5		3.5	3.6		7.9	3.2		
Total Hexa CDF **	pg								3.1		
Total Hepta CDF **	pg	6.0	3.0		5.6	3.0		7.0	3.2		
Toxic Equivalency	pg			l						<u> </u>	

⁽¹⁾ Timer dial stopped just before the scheduled end was reached but the sample still ran for sufficient duration to be deemed valid.

* CDD = Chloro Dibenzo-p-Dioxin ** CDF = Chloro Dibenzo-p-Furan

		Quarter 4				
				14	15	16
					15/11/2017	
2,3,7,8-Tetra CDD *	pg/m³	5.29E-03	4.36E-03	0.005	0.005	0.004
1,2,3,7,8-Penta CDD *	pg/m³	5.71E-03	4.65E-03	0.005	0.006	0.005
1,2,3,4,7,8-Hexa CDD *	pg/m³	1.02E-02	5.13E-03	0.005	0.005	0.010
1,2,3,6,7,8-Hexa CDD *	pg/m³	1.30E-02	1.08E-02	0.013	0.012	0.011
1,2,3,7,8,9-Hexa CDD *	pg/m³	1.80E-02	4.68E-03	0.005	0.018	0.008
1,2,3,4,6,7,8-Hepta CDD *	pg/m³	1.79E-01	1.17E-01	0.179	0.135	0.117
Octa CDD *	pg/m³	7.28E-01	3.14E-01	0.728	0.454	0.314
Total Tetra CDD *	pg/m³	5.29E-03	4.36E-03	0.005	0.005	0.004
Total Penta CDD *	pg/m³	7.27E-03	5.29E-03	0.005	0.006	0.007
Total Hexa CDD *	pg/m³	1.03E-01	5.80E-02	0.058	0.103	0.084
Total Hepta CDD *	pg/m³	3.72E-01	2.31E-01	0.372	0.283	0.231
2,3,7,8-Tetra CDF **	pg/m³	1.77E-02	4.53E-03	0.005	0.006	0.018
1,2,3,7,8-Penta CDF **	pg/m³	5.29E-03	4.65E-03	0.005	0.005	0.005
2,3,4,7,8-Penta CDF **	pg/m³	5.13E-03	4.65E-03	0.005	0.005	0.005
1,2,3,4,7,8-Hexa CDF **	pg/m³	1.08E-02	4.35E-03	0.005	0.003	0.003
1,2,3,6,7,8-Hexa CDF **	pg/m³	4.83E-03	4.07E-03	0.005	0.004	0.004
2,3,4,6,7,8-Hexa CDF **	pg/m³	5.44E-03	4.62E-03	0.005	0.004	0.004
1,2,3,7,8,9-Hexa CDF **	pg/m³	6.04E-03	4.62E-03	0.006	0.005	0.005
1,2,3,4,6,7,8-Hepta CDF **	pg/m³	2.03E-02	1.52E-02	0.000	0.005	0.000
	pg/m³	5.38E-03	4.35E-02	0.005	0.015	0.020
1,2,3,4,7,8,9-Hepta CDF ** Octa CDF **		2.09E-02	4.35E-03 1.81E-02	0.005	0.004	
	pg/m³					0.021
Total Tetra CDF **	pg/m³	1.77E-02	4.53E-03	0.005	0.013	0.018
Total Penta CDF **	pg/m³	1.80E-02	5.29E-03	0.005	0.011	0.018
Total Hexa CDF **	pg/m³	2.30E-02	9.52E-03	0.020	0.010	0.023
Total Hepta CDF **	pg/m³	2.03E-02	1.52E-02	0.018	0.015	0.020
Toxic Equivalency	pg/m³	4 005 00	4 005 00	0.040		
TOTAL TOXIC EQUIVALENCY	pg TEQ/m³	1.98E-02	1.92E-02	0.019	0.020	0.019
	Units			22/10/2017	15/11/2017	09/12/2017
2,3,7,8-Tetra CDD *	pg TEQ/m³			0.005	0.005	0.004
1,2,3,7,8-Penta CDD	pg TEQ/m³			0.005	0.006	0.005
1,2,3,4,7,8-Hexa CDD	pg TEQ/m³			0.0005	0.0005	0.0010
1,2,3,6,7,8-Hexa CDD	pg TEQ/m³			0.0013	0.0012	0.0011
1,2,3,7,8,9-Hexa CDD	pg TEQ/m³			0.0005	0.0018	0.0008
1,2,3,4,6,7,8-Hepta CDD	pg TEQ/m³			0.0018	0.0013	0.0012
Octa CDD	pg TEQ/m³			0.00022	0.00014	0.00009
Total Tetra CDD	pg TEQ/m³					
Total Penta CDD	pg TEQ/m³					
Total Hexa CDD	pg TEQ/m³					
Total Hepta CDD	pg TEQ/m ³					
2,3,7,8-Tetra CDF **	pg TEQ/m³			0.0005	0.0006	0.0018
1,2,3,7,8-Penta CDF	pg TEQ/m³			0.0002	0.0002	0.0001
2,3,4,7,8-Penta CDF	pg TEQ/m³			0.002	0.001	0.001
1,2,3,4,7,8-Hexa CDF	pg TEQ/m ³			0.0005	0.0004	0.0011
1,2,3,6,7,8-Hexa CDF	pg TEQ/m ³			0.0005	0.0004	0.0004
2,3,4,6,7,8-Hexa CDF	pg TEQ/m ³			0.0005	0.0005	0.0005
	pg TEQ/m ³			0.0006	0.0005	0.0005
1,2,3,7,8,9-Hexa CDF		1		0.00017	0.00015	0.00020
	pg TEQ/m ³				0.00004	0.00005
1,2,3,4,6,7,8-Hepta CDF	pg TEQ/m ³ pg TEQ/m ³			0.00005		
1,2,3,4,6,7,8-Hepta CDF 1,2,3,4,7,8,9-Hepta CDF	pg TEQ/m³			0.00005 0.000005		
1,2,3,4,6,7,8-Hepta CDF 1,2,3,4,7,8,9-Hepta CDF Octa CDF	pg TEQ/m ³ pg TEQ/m ³			0.00005 0.000005	0.00004	0.000006
1,2,3,4,6,7,8-Hepta CDF 1,2,3,4,7,8,9-Hepta CDF Octa CDF Total Tetra CDF	pg TEQ/m³ pg TEQ/m³ pg TEQ/m³					
1,2,3,4,6,7,8·Hepta CDF 1,2,3,4,7,8,9·Hepta CDF Octa CDF Total Tetra CDF Total Penta CDF	pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³ pg TEQ/m ³					
1,2,3,4,6,7,8-Hepta CDF 1,2,3,4,7,8,9-Hepta CDF Octa CDF Total Tetra CDF	pg TEQ/m³ pg TEQ/m³ pg TEQ/m³					

Notes:
EDL = Estimated Detection Limit
*CDD = Chloro Dilbenzo-p-Dloxin, *CDD = Chloro Dilbenzo-p-Furan
IEF = Toxic Equivalency Factor, IEO = Toxic Equivalency Quotient
WHO(2005): He 2005 World Health Organization, Human and Mammalian Toxic
Equivalency Factors for Dloxins and Dioxin-like Compounds