Report: Covanta Durham York Renewable Energy Limited Partnership Durham York Energy Centre 2020 Compliance Emission Testing in Accordance with Amended Environmental Compliance Approval (ECA) No. 7306-8FDKNX Date: March 8, 2022 ### Report: Covanta Durham York Renewable Energy Limited Partnership Durham York Energy Centre 2020 Compliance Emission Testing in Accordance with Amended Environmental Compliance Approval (ECA) No. 7306-8FDKNX Submitted to: The Regional Municipality of Durham Mr. Gioseph Anello Works Department Manager, Waste Planning & Technical Services 605 Rossland Road East, Level 4 Tel: (905) 668-4113, Ext. 3445 PO Box 623, Whitby, Ontario L1N 6A3 E-mail: gioseph.anello@durham.ca Covanta Corporation Mr. Rick Kohler, Environmental Engineer 445 South Street Tel: (862) 345-5197 Morristown, NJ, USA 07960 E-mail: <u>rkohler@covanta.com</u> Site Location: Durham York Energy Centre 1835 Energy Drive Courtice, Ontario L1E 2R2 Prepared by: ORTECH Consulting Inc. Tina Sanderson, B.Sc. 804 Southdown Rd. Senior Project Manager, Emission Testing Mississauga, Ontario L5J 2Y4 Tel: (905) 822-4120, Ext. 522 E-mail: tsanderson@ortech.ca Reviewed by: ORTECH Consulting Inc. Hank Van Bakel, P.Eng., President 804 Southdown Rd. Tel: (905) 822-4120, Ext. 628 Mississauga, Ontario L5J 2Y4 E-mail: hvanbakel@ortech.ca Report No.: 22050 55 pages, 28 Appendices #### **Revision History** | Version | Date | Summary Changes/Purpose of Revision | | | |---------|------------------|--|--|--| | 1 | January 19, 2021 | None | | | | 2 | March 8, 2022 | Revised Aldehyde ad Acrolein Data – Analytical laboratory identified an error in the units shown in the report | | | | | | | | | #### NOTICE: This report was prepared by ORTECH Consulting Inc. (ORTECH) solely for the Client identified above and is to be used exclusively for the purposes set out in the report. The material in this report reflects the judgment of ORTECH based on information available to them at the time of preparation. Unless manifestly incorrect, ORTECH assumes information provided by others is accurate. Changed conditions or information occurring or becoming known after the date of this report could affect the results and conclusions presented. Unless otherwise required by law or regulation, this report shall not be shared with any Third Party without the express written consent of ORTECH. ORTECH accepts no responsibility for damages, if any, suffered by any Third Party which makes use of the results and conclusions presented in this report. ## **Table of Contents** | | | | Page | |----|------|--|------| | | EXEC | CUTIVE SUMMARY | 6 | | 1. | INTR | ODUCTION | 12 | | 2. | PRO | CESS DESCRIPTION | 13 | | | 2.1 | Control Equipment | 13 | | | 2.2 | Continuous Emission Monitoring Systems | | | 3. | SAM | PLING LOCATIONS | 15 | | 4. | SAM | PLING PROCEDURES | 16 | | | 4.1 | General | 16 | | | 4.2 | Particulate and Metals | 17 | | | 4.3 | Particle Size Distribution | 18 | | | 4.4 | Semi-Volatile Organic Compounds | 18 | | | 4.5 | Acid Gases | 19 | | | 4.6 | Volatile Organic Compounds | 20 | | | 4.7 | Aldehydes | 21 | | | 4.8 | Combustion Gases | 22 | | 5. | SAM | PLE RECOVERY AND ANALYSIS | 23 | | | 5.1 | Particulate and Metals | 23 | | | 5.2 | Particle Size Distribution | 24 | | | 5.3 | Semi-Volatile Organic Compounds | 25 | | | 5.4 | Acid Gases | 26 | | | 5.5 | Volatile Organics Train Recovery | 27 | | | 5.6 | Aldehydes | 27 | | 6. | INTE | RNAL AND EXTERNAL QA/QC PROGRAM | | | | 6.1 | General | 28 | | | 6.2 | Pre-Test Activities | 28 | | | 6.3 | Emission Testing QA/QC Results | | | | 6.4 | Sample Recovery, Handling and Custody | 30 | | | 6.5 | Analytical Results | | | | | 6.5.1 Metals Sample Analysis QA/QC | 31 | | | | 6.5.2 Acid Gas Sample Analysis QA/QC | 32 | | | | 6.5.3 Aldehyde Sample Analysis QA/QC | | | | | 6.5.4 SVOC Sample Analysis QA/QC | | | | | 6.5.5 Volatile Organic Compound Analysis QA/QC | 34 | # **Table of Contents** | | | | Page | |-----|-------|---|------| | 7. | RESUI | LTS AND DISCUSSION | 35 | | | 7.1 | Stack Gas Sampling Parameters | 35 | | | 7.2 | Stack Gas Physical Parameters | 35 | | | 7.3 | Volumetric Flowrate Data | | | | 7.4 | Particulate Emission Data | 36 | | | 7.5 | Acid Gases | 38 | | | 7.6 | Combustion Gas Emission Data | 39 | | | 7.7 | Metal Emission Data | 40 | | | 7.8 | Mercury Emission Data | 42 | | | 7.9 | Semi-Volatile Organic Emission Data | 42 | | | | 7.9.1 Dioxins and Furans Emission Data | 42 | | | | 7.9.2 Chlorobenzene and Chlorophenol Emission Data | 46 | | | | 7.9.3 Polycyclic Aromatic Hydrocarbon Emission Data | 47 | | | 7.10 | Aldehydes | 48 | | | 7.11 | Volatile Organic Emission Data | 48 | | 8. | DISPE | RSION MODELLING | 49 | | 9. | FACIL | ITY PROCESS DATA | 50 | | 10. | CONC | LUSIONS | 52 | # **List of Appendices** | APPENDIX 1 | Boiler No. 1 BH Outlet Data Tables | |-------------|--| | APPENDIX 2 | Boiler No. 2 BH Outlet Data Tables | | APPENDIX 3 | Pre-Test Plan Acceptance Letter and ECA No. 7306-8FDKNX | | APPENDIX 4 | Particulate and Metals Field Data Sheets | | APPENDIX 5 | Particle Size Distribution Field Data Sheets | | APPENDIX 6 | SVOC Data Sheets | | APPENDIX 7 | Acid Gas Field Data Sheets | | APPENDIX 8 | VOST Field Data Sheets | | APPENDIX 9 | Aldehydes Field Data Sheets | | APPENDIX 10 | ORTECH Sample Log/Chain of Custody Forms | | APPENDIX 11 | Particulate and Metals Train Recovery Data Sheets | | APPENDIX 12 | Inorganics Analytical Reports | | APPENDIX 13 | Particle Size Distribution Train Recovery Data Sheets | | APPENDIX 14 | SVOC Train Recovery Data Sheets | | APPENDIX 15 | SVOC Analytical Report | | APPENDIX 16 | Acid Gas Recovery Data Sheets | | APPENDIX 17 | VOST Analytical Report | | APPENDIX 18 | Aldehydes Recovery Data Sheet | | APPENDIX 19 | Aldehydes Analytical Report | | APPENDIX 20 | SVOC and VOST Proof Data | | APPENDIX 21 | ORTECH Equipment Calibration Data | | APPENDIX 22 | Particulate and Metals Test Emission Calculations | | APPENDIX 23 | Particle Size Distribution Test Emission Calculations | | APPENDIX 24 | Acid Gases Test Emission Calculations | | APPENDIX 25 | SVOC Test Emission Calculations | | APPENDIX 26 | ORTECH Total Hydrocarbon CEM Data | | APPENDIX 27 | Dispersion Modelling Results for the November 2020 Testing Program | | APPENDIX 28 | DYFC CFMS 1-Hour Average Data | #### **EXECUTIVE SUMMARY** **NOTE:** This report was updated on March 8, 2022. During the preparation of the 2021 compliance testing report (ORTECH Report No. 22085) an inconsistency was noted by ORTECH in regards to the units being used in the analytical reports for acetaldehyde, formaldehyde and acrolein. Upon review by ALS, the analytical laboratory, it was determined that the data for the 2021 compliance testing program was correct but there may have been an issue with the data reported for previous testing programs. ORTECH requested that all historical aldehyde data be reviewed by ALS to identify if an error in reporting had occurred. ALS determined that the units used to report the acetaldehyde, formaldehyde and acrolein data was incorrect for this, the 2020 compliance testing program. The data was previously reported as ng and should have been reported as µg and as a result the emission data for these parameters was previously under reported. ORTECH has revised this 2020 compliance testing report to correct the acetaldehyde, formaldehyde and acrolein emission data and dispersion modelling. As discussed below, this correction does not impact the compliance status of the facility. ORTECH Consulting Inc. (ORTECH) completed the annual compliance emission testing program at the Durham York Energy Centre (DYEC) located in Courtice, Ontario between November 9 and November 12, 2020. The emission testing program was performed to satisfy the requirements of the Ontario Ministry of the Environment, Conservation and Parks (MECP) Amended Environmental Compliance Approval (ECA) No. 7306-8FDKNX. Section 7(1) of the ECA states that "the owner shall perform annual source testing, in accordance with the procedures and schedule outlined in the attached Schedule E, to determine the rates of emissions of the test contaminants from the stack. The program shall be conducted not later than six months after the commencement date of operation of the facility/equipment and subsequent source testing programs shall be conducted once every calendar year thereafter". This program is the eleventh comprehensive Schedule E source testing program conducted at the facility. A list of the test programs conducted by ORTECH to date is provided below: | Test Program | Test Date | ORTECH Report No. | |-----------------|------------------------|-------------------| | 2015 Compliance | September/October 2015 | 21546 | | 2016 Voluntary | May 2016 | 21656 | | 2016 Compliance | October/November 2016 | 21698 | | 2017 Voluntary | May 2017 | 21754 | | 2017 Compliance | October 2017 | 21800 | | 2018 Voluntary | May/June 2018 | 21840 | | 2018 Compliance | September 2018 | 21880 | | 2019 Voluntary | June 2019 | 21936 | | 2019 Compliance | September 2019 | 21960 | | 2020 Voluntary | June 2020 | 22001 | | 2020 Compliance | November 2020 | 22050 | Source testing was performed on the Baghouse (BH) Outlet of Boiler No. 1 and BH Outlet of Boiler No. 2 for the test contaminants listed in Schedule D of the ECA. Triplicate emission tests were completed for particulate matter, metals, semi-volatile organic compounds, acid gases, volatile organic compounds, aldehydes and combustion gases at the BH Outlet of each Boiler. Triplicate emission tests were also completed for total hydrocarbons at the Quench Inlet of each Boiler. The contaminant groups included in the emission test program and the
reference test methods used are summarized below: | Test Groups | Reference Method | | | |---|---|--|--| | Particulate and Metals | US EPA Method 29 | | | | PM _{2.5} /PM ₁₀ and Condensable Particulate | US EPA Methods 201A and 202 | | | | Semi-Volatile Organic Compounds | Environment Canada Method EPS 1/RM/2 | | | | Volatile Organic Compounds | US EPA SW-846 Method 0030 (SLO VOST modification) | | | | Aldehydes | NCASI Method ISS/FP-A105.01 | | | | Halides and Ammonia | US EPA Method 26A | | | | Combustion Gases: | | | | | Oxygen and Carbon Dioxide | Facility CEM | | | | Carbon Monoxide | Facility CEM | | | | Sulphur Dioxide | Facility CEM | | | | Nitrogen Oxides | Facility CEM | | | | Total Hydrocarbons | ORTECH per US EPA Method 25A | | | Schedule C of ECA No. 7306-8FDKNX lists in-stack limits for the emissions of various compounds. Instack emissions limits are given for particulate matter, mercury, cadmium, lead, dioxins and furans and organic matter for comparison with the results from compliance source testing. In-stack emission limits are also given for hydrochloric acid, sulphur dioxide, nitrogen oxides and carbon monoxide calculated as the rolling arithmetic average of data measured by a continuous emission monitoring system (CEMS). Since relative accuracy and system bias testing was conducted in July 2020, the data recorded by the DYEC CEMS was used to assess against the in-stack emissions limits detailed in Schedule C of the ECA for hydrochloric acid, sulphur dioxide, nitrogen oxides and carbon monoxide. Note the DYEC CEMS data for the days when isokinetic testing was performed at each unit (November 9 to November 12, 2020) was used to determine the minimum, average and maximum concentrations of the combustion gases listed in the ECA. Concentration data measured by ORTECH on November 9, 2020 was used to assess against the total hydrocarbons (organic matter) in-stack emissions limit detailed in Schedule C of the ECA. Consistent with the approach commonly required by the MECP for compliance emission testing programs, the following results are conservative in the sense that when the analytical result is reported to be below the detection limit, the full detection limit is used to calculate emission data and is shown by a "<" symbol. Also, when one or both Boiler results are reported to be below the detection limit, the detection limit was used to conservatively estimate the total emission rate for the Main Stack. The MECP "Summary of Standards and Guidelines to Support Ontario Regulation 419/05 – Air Pollution – Local Air Quality", dated April 2012, provides an updated framework for calculating dioxin and furan toxicity equivalent concentrations which includes emission data for 12 dioxin-like PCBs. This document was replaced by "Air Contaminants Benchmarks List: standards, guidelines and screening levels for assessing point of impingement concentrations of air contaminants", with the most recent version published on April 27, 2018, however the dioxin and furan toxicity equivalent calculation methodology remains the same. The dioxins, furans and dioxin-like PCBs toxicity equivalent emission data was also calculated using half the detection limit for those compounds not detected. The half detection limit data was used to assess against the dispersion modelling Point of Impingement limit. The toxicity equivalent concentrations calculated using the full detection limit, for those compounds less than the reportable detection limit, were used to assess against the in-stack limit detailed in Schedule C of the ECA. The average results for the tests conducted at Boiler No. 1, along with the respective in-stack emission limits, are summarized in the following table: | Parameter | Test No. 1 | Test No. 2 | Test No. 3 | Average | In-Stack Limit | |--|------------|------------|------------|---------|----------------| | Total Power Output (MWh/day)* | - | - | - | 391 | - | | Average Combustion Zone Temp. (°C)* | - | - | - | 1230 | - | | Steam (tonnes/day)* | - | - | - | 806 | - | | MSW Combusted (tonnes/day)* | - | - | - | 199 | - | | NO _x Reagent Injection Rate (liters/day)* | - | - | - | 507 | - | | Carbon Injection (kg/day)* | - | - | - | 133 | - | | Lime Injection (kg/day)* | - | - | - | 4237 | - | | Filterable Particulate (mg/Rm³) (1) | 3.35 | 4.07 | 0.36 | 2.60 | 9 | | PM ₁₀ with Condensable (mg/Rm ³) (1) | <4.77 | <5.15 | <4.08 | <4.67 | - | | PM _{2.5} with Condensable (mg/Rm ³) (1) | <3.90 | <4.95 | <3.94 | <4.26 | - | | Hydrogen Fluoride (mg/Rm³) (1) | <0.097 | <0.10 | <0.11 | <0.10 | - | | Ammonia (mg/Rm³) ⁽¹⁾ | 0.55 | 0.67 | 0.61 | 0.61 | - | | Cadmium (μg/Rm³) ⁽¹⁾ | 0.093 | 0.075 | 0.058 | 0.075 | 7 | | Lead (μg/Rm ³) ⁽¹⁾ | 0.48 | 0.34 | 0.29 | 0.37 | 50 | | Mercury (μg/Rm³) ⁽¹⁾ | 0.55 | 0.35 | 0.13 | 0.34 | 15 | | Antimony (µg/Rm³) (1) | 0.092 | 0.046 | <0.040 | <0.059 | - | | Arsenic (μg/Rm³) (1) | <0.046 | <0.045 | <0.040 | <0.044 | - | | Barium (μg/Rm³) ⁽¹⁾ | 1.55 | 1.38 | 1.81 | 1.58 | - | | Beryllium (μg/Rm³) ⁽¹⁾ | <0.046 | <0.045 | <0.040 | <0.044 | - | | Chromium (µg/Rm³) (1) | 1.41 | 1.00 | 0.65 | 1.02 | - | | Cobalt (μg/Rm³) (1) | <0.046 | <0.045 | 0.069 | <0.053 | - | | Copper (µg/Rm³) (1) | 5.25 | 5.22 | 5.16 | 5.21 | - | | Molybdenum (μg/Rm³) ⁽¹⁾ | 5.60 | 5.34 | 4.79 | 5.24 | - | | Nickel (µg/Rm³) (1) | 1.31 | 2.34 | 0.97 | 1.54 | - | | Selenium (µg/Rm³) (1) | 1.33 | 1.84 | <0.20 | <1.12 | - | | Silver (μg/Rm³) ⁽¹⁾ | <0.046 | <0.045 | <0.040 | <0.044 | - | | Thallium (μg/Rm³) ⁽¹⁾ | 0.22 | 0.091 | <0.040 | <0.12 | - | | Vanadium (μg/Rm³) ⁽¹⁾ | <0.023 | <0.023 | <0.020 | <0.022 | - | | Zinc (µg/Rm³) (1) | 8.23 | 5.17 | 4.52 | 5.97 | - | | Dioxins and Furans (pg TEQ/Rm ³) (3) | <31.2 | <31.0 | <23.8 | <28.7 | 60 | | Total Chlorobenzenes (ng/Rm³) (1) | <761 | <942 | <848 | <850 | - | | Total Chlorophenols (ng/Rm³) (1) | <178 | <185 | <175 | <180 | - | | Total PAHs (ng/Rm ³) ⁽¹⁾ | <200 | <515 | <219 | <311 | - | | VOCs (μg/Rm³) ⁽¹⁾ | <308 | <267 | <305 | <293 | - | | Aldehydes (μg/Rm³) (1) | <79.9 | <60.5 | <78.5 | <73.0 | - | | Total VOCs (μg/Rm³) (1) (4) | <388 | <328 | <384 | <366 | - | | Quench Inlet Organic Matter (THC) (ppm, dry) (2) | 0.9 | 0.2 | 0.3 | 0.5 | 50 | ^{*} based on process data provided by Covanta ⁽¹⁾ dry at 25° C and 1 atmosphere, adjusted to 11% oxygen by volume ⁽²⁾ dry basis as equivalent methane (average of each 60 minute test with data recorded in 1-minute intervals) ⁽³⁾ calculated using the NATO/CCMS (1989) toxicity equivalence factors and the full detection limit for those isomers below the analytical detection limit, dry at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ⁽⁴⁾ Includes all components from the volatile organic compounds test list in the ECA (i.e. Volatile Organic Sampling Train and Aldehyde Sampling train components). The average results for the tests conducted at Boiler No. 2, along with the respective in-stack emission limits, are summarized in the following table: | Parameter | Test No. 1 | Test No. 2 | Test No. 3 | Average | In-Stack Limit | |--|------------|------------|------------|---------|----------------| | Total Power Output (MWh/day)* | - | - | - | 391 | - | | Average Combustion Zone Temp. (°C)* | - | - | - | 1311 | - | | Steam (tonnes/day)* | - | - | - | 805 | - | | MSW Combusted (tonnes/day)* | - | - | - | 202 | - | | NO _x Reagent Injection Rate (liters/day)* | - | - | - | 816 | - | | Carbon Injection (kg/day)* | - | - | - | 126 | - | | Lime Injection (kg/day)* | - | - | - | 4233 | - | | Filterable Particulate (mg/Rm³) (1) | 2.72 | 0.76 | 2.52 | 2.00 | 9 | | PM ₁₀ with Condensable (mg/Rm ³) (1) | <4.96 | <5.40 | <4.68 | <5.01 | - | | PM _{2.5} with Condensable (mg/Rm ³) (1) | <4.89 | <5.27 | <4.54 | <4.90 | - | | Hydrogen Fluoride (mg/Rm³) (1) | <0.10 | <0.10 | <0.10 | <0.10 | - | | Ammonia (mg/Rm³) (1) | 0.73 | 0.65 | 0.60 | 0.66 | - | | Cadmium (µg/Rm³) (1) | 0.054 | 0.034 | 0.078 | 0.056 | 7 | | Lead (µg/Rm³) (1) | 0.34 | 0.32 | 0.36 | 0.34 | 50 | | Mercury (μg/Rm³) (1) | 0.058 | <0.033 | <0.045 | <0.045 | 15 | | Antimony (μg/Rm ³) ⁽¹⁾ | <0.038 | 0.051 | <0.045 | <0.044 | - | | Arsenic (μg/Rm³) (1) | <0.038 | <0.045 | <0.045 | <0.042 | - | | Barium (µg/Rm³) (1) | 0.22 | 1.93 | 2.18 | 1.44 | - | | Beryllium (μg/Rm ³) ⁽¹⁾ | <0.038 | <0.045 | <0.045 | <0.042 | - | | Chromium (μg/Rm³) ⁽¹⁾ | 0.75 | 0.85 | 0.74 | 0.78 | - | | Cobalt (μg/Rm³) (1) | <0.038 | <0.045 | 0.066 | <0.050 | - | | Copper (µg/Rm ³) (1) | 5.00 | 5.11 | 5.14 | 5.09 | - | | Molybdenum (μg/Rm³) ⁽¹⁾ | 4.55 | 5.33 | 5.20 | 5.03 | - | | Nickel (µg/Rm³) (1) | 0.66 | 0.83 | 1.11 | 0.87 | - | | Selenium (μg/Rm ³) ⁽¹⁾ | <0.19 | 0.68 | <0.22 | < 0.37 | - | | Silver (μg/Rm³) ⁽¹⁾ | <0.038 | <0.045 | <0.045 | <0.042 | - | | Thallium (μg/Rm³) ⁽¹⁾ | <0.038 | 0.058 | 0.16 | <0.084 | - | | Vanadium (µg/Rm³) (1) | <0.019 | <0.022 | 0.061 | < 0.034 | - | | Zinc (μg/Rm³) ⁽¹⁾ | 3.75 | 5.36 | 5.67 | 4.93 | - | | Dioxins and Furans (pg TEQ/Rm ³) (3) | <6.90 | <8.31 | <6.59 | <7.26 | 60 | | Total Chlorobenzenes (ng/Rm³) (1) | <440 | <436 | <337 | <404 | - | | Total Chlorophenols (ng/Rm ³) (1) | <206 | <173 | <215 | <198 | - | | Total PAHs (ng/Rm ³) ⁽¹⁾ | <229 | <311 | <227 | <256 | - | | VOCs (μg/Rm³) ⁽¹⁾ | <317 | <400 | <345 | <354 | - | | Aldehydes (µg/Rm³) (1) | <110 | <81.1 | <102 | <97.7 | - | | Total VOCs (μg/Rm³) (1) (4) | <427 | <481 | <447 | <452 | - | | Quench Inlet Organic Matter (THC) (ppm, dry) (2) | 1.6 | 1.0 | 0.6 | 1.1 | 50 | ^{*} based on process data provided by Covanta ⁽¹⁾ dry at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ⁽²⁾ dry basis as equivalent methane (average of each 60 minute test with data recorded in 1-minute intervals) ⁽³⁾ calculated using the NATO/CCMS (1989) toxicity equivalence factors and
the full detection limit for those isomers below the analytical detection limit, dry at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ⁽⁴⁾ Includes all components from the volatile organic compounds test list in the ECA (i.e. Volatile Organic Sampling Train and Aldehyde Sampling train components). A summary of the minimum, average and maximum concentrations for the combustion gases measured by the DYEC CEMS with in-stack limits listed in the ECA is provided below for the two units. | Boiler No. | Parameter | Minimum | Average | Maximum | In-Stack Limit | |--------------|---|---------|---------|---------|----------------| | | Carbon Monoxide (mg/Rm ³) (1) | 7.8 | 11.4 | 16.8 | 40 | | Boiler No. 1 | Hydrogen Chloride (mg/Rm ³) (2) | 3.4 | 3.8 | 4.4 | 9 | | Boller No. 1 | Nitrogen Oxides (mg/Rm ³) (2) | 109 | 110 | 110 | 121 | | | Sulphur Dioxide (mg/Rm ³) (2) | 0 | 0.1 | 0.5 | 35 | | Boiler No. 2 | Carbon Monoxide (mg/Rm³) (1) | 10.8 | 14.1 | 20.8 | 40 | | | Hydrogen Chloride (mg/Rm ³) (2) | 2.8 | 3.2 | 3.7 | 9 | | | Nitrogen Oxides (mg/Rm³) (2) | 110 | 110 | 111 | 121 | | | Sulphur Dioxide (mg/Rm ³) (2) | 0 | 0.1 | 0.5 | 35 | - (1) 4-hour average measured by DYEC CEMS, dry at 25°C and 1 atmosphere adjusted to 11% oxygen by volume - (2) 24-hour average measured by DYEC CEMS, dry at 25°C and 1 atmosphere adjusted to 11% oxygen by volume The emission data measured at each Boiler BH Outlet during the testing program was combined and used to assess the emissions from the Main Stack against the current point of impingement criteria detailed in Ontario Regulation 419/05. The CALPUFF dispersion modelling (using Version 6.263 as requested by the MECP) for the November 2020 emission testing program was performed by Golder Associates. A summary of the results are provided in the tables appended to this report (Appendix 27) based on calculated ground level Point of Impingement (POI) concentrations for the average total Main Stack emissions. As shown in the tables, the calculated impingement concentrations for all of the contaminants were well below the relevant MECP standards. In summary, the key results of the emission testing program are: - The facility was maintained within the operational parameters defined by the amended ECA that constitutes normal operation during the stack test periods. Testing was conducted at a steam production rate of greater than 803 tonnes of steam per day for each Boiler (approximately 99.0% of maximum continuous rating). The maximum continuous rating for the facility is 1614.7 tonnes of steam per day for the two Boilers combined (33.64 tonnes of steam per hour or 807.4 tonnes per day for each Boiler). - The in-stack concentrations of the components listed in the ECA were all below the concentration limits provided in Schedule C of the ECA. - Using CALPUFF dispersion modelling techniques, the predicted maximum point of impingement concentrations, based on the average test results for both boilers, show DYEC to be operating well below all current standards in Regulation 419/05 under the Ontario Environmental Protection Act and other MECP criteria including guidelines and upper risk thresholds. Tables referenced in this report for the tests conducted at Boiler No. 1 and Boiler No. 2 are provided in Appendix 1 and Appendix 2, respectively. #### 1. INTRODUCTION ORTECH Consulting Inc. (ORTECH) completed the annual compliance emission testing program at the Durham York Energy Centre (DYEC) located in Courtice, Ontario between November 9 and November 12, 2020. The emission testing program was performed to satisfy the requirements of the Ontario Ministry of the Environment, Conservation and Parks (MECP) Amended Environmental Compliance Approval (ECA) No. 7306-8FDKNX. Section 7(1) of the ECA states that "the owner shall perform annual source testing, in accordance with the procedures and schedule outlined in the attached Schedule E, to determine the rates of emissions of the test contaminants from the stack. The program shall be conducted not later than six months after the commencement date of operation of the facility/equipment and subsequent source testing programs shall be conducted once every calendar year thereafter". This program is the eleventh comprehensive Schedule E source testing program conducted at the facility. A list of the test programs conducted by ORTECH to date is provided below: | Test Program | Test Date | ORTECH Report No. | |-----------------|------------------------|-------------------| | 2015 Compliance | September/October 2015 | 21546 | | 2016 Voluntary | May 2016 | 21656 | | 2016 Compliance | October/November 2016 | 21698 | | 2017 Voluntary | May 2017 | 21754 | | 2017 Compliance | October 2017 | 21800 | | 2018 Voluntary | May/June 2018 | 21840 | | 2018 Compliance | September 2018 | 21880 | | 2019 Voluntary | June 2019 | 21936 | | 2019 Compliance | September 2019 | 21960 | | 2020 Voluntary | June 2020 | 22001 | | 2020 Compliance | November 2020 | 22050 | Source testing was performed on the Baghouse (BH) Outlet of Boiler No. 1 and BH Outlet of Boiler No. 2 for the test contaminants listed in Schedule D of the ECA. Triplicate emission tests were also completed for total hydrocarbons at the Quench Inlet of each Boiler. Prior to commencing the test program, a Pre-Test Plan was submitted to the MECP detailing the sampling and analytical methodology, and operating scenario proposed for the source testing. Provided in Appendix 3 is a copy of the Pre-Test Plan acceptance letter received from the MECP, dated October 14, 2020, indicating acceptance of the proposed sampling strategy. A copy of the Amended Environmental Compliance Approval, including amendment notices, is also provided in Appendix 3. Triplicate emission tests were completed for each of the test parameters listed in Schedule D of the ECA between November 9 and November 12, 2020. #### 2. PROCESS DESCRIPTION DYEC is a thermal treatment facility with a maximum thermal treatment rate of 140,000 tonnes/year of municipal solid waste (MSW), as established by the Amended ECA. The maximum continuous rating (MCR) for the facility is defined as 218 tonnes per day, per unit, of MSW with a heat content of 13 MJ/kg per train. The steam production MCR is 33.64 tonnes per hour for each Boiler. The facility was built to operate on a continuous basis; 24 hours/day, seven days/weeks, 365 days/year. Waste may be delivered six days per week between 7:00 am to 7:00 pm. The proposed operating schedule may be adjusted depending on demand and facility needs within the established setup indicated in the ECA (i.e., waste can only be received from Monday to Saturday - excluding statutory holidays, and between 7:00 am and 7:00 pm - ECA's Condition 4(1)(b)). MSW arrives at the facility via covered refuse trucks and is deposited in a storage pit within the receiving building. Facility operators manage MSW by moving and mixing MSW within the storage pit with the overhead grapple cranes. The MSW is lifted from the pit by crane and fed into the fuel hopper for each thermal treatment train. The facility consists of two thermal treatment trains, each equipped with independently operated boilers/furnaces and air pollution control equipment. The treated exhaust gases are vented to a common 87.6 m stack and released to atmosphere. #### 2.1 Control Equipment Flue gasses pass through a dry recirculating type scrubber for acid control and a fabric filter for particulate control. A Selective Non-Catalytic Reduction System (SNCR) with ammonia injection is used for NO_X control. Powdered carbon is injected for mercury, and dioxin and furan control between the dry recirculating type scrubber and the fabric filter. #### 2.2 Continuous Emission Monitoring Systems Continuous Emissions Monitors are installed in the vertical ductwork between the economizer and dry recirculating type scrubber (location referred to as the Quench Inlet), and in the vertical ductwork between the fabric filter and the ID fan (location referred to as the BH Outlet). ### A summary of the CEMS installed at each location is provided below: | | | Analyzer | | | | | |------|-----------------|---------------------------|---------------------------|------------|----------------------|------------------------| | Unit | Location | Manufacturer | Model No. | Serial No. | Parameter | Range | | | | | | 2504 | CO (Low) | 0-500 ppm | | | | 5 · | | | CO (High) | 0-2000 ppm | | 1 | Quench
Inlet | Environmental SA | MIR 9000 | 2684 | HCl | 0-1500 ppm | | | iniet | | | | O ₂ (Dry) | 0-25% | | | | Ametek | RM CEM O ₂ /IQ | 10217710-2 | O ₂ (Wet) | 0-25% | | | | | | | NO _X | 0-500 ppm | | | | | | | SO ₂ | 0-200 ppm | | | | Environmental SA | MIR 9000 | 2686 | HCl | 0-100 ppm | | | | Environmental SA | IVIIK 9000 | 2080 | HF | 0-100 ppm | | | | | | | O ₂ (Dry) | 0-25% | | 1 | DII Outlet | | | | CO ₂ | 0-25% | | 1 | BH Outlet | Ametek | RM CEM O ₂ /IQ | 10217710-1 | O ₂ (Wet) | 0-25% | | | | Tethys | EXM400 | F130304 | NH ₃ | 0-50 ppm | | | | OSI | OFS-2000W | 13020629 | Flow | 0-40 m/s | | | | Teledyne | Light Hawk 560 | 5602492 | Opacity | 0-100% | | | | Environmental SA | Graphite 52M | 647 | THC | 0-100 ppm | | | | Environmental SA | Amesa | 1825-269 | Dioxin/Furan | 0-10 ng/m ³ | | | | Environmental SA MIR 9000 | MIR 9000 | 2685 | CO (Low) | 0-500 ppm | | | Quench
Inlet | | | | CO (High) | 0-2000 ppm | | 2 | | | | | HCl | 0-1500 ppm | | | | | | | O ₂ (Dry) | 0-25% | | | | Ametek | RM CEM O2/IQ | 10218084-1 | O ₂ (Wet) | 0-25% | | | | | | | NO _x | 0-500 ppm | | | | | | 2687 | SO ₂ | 0-200 ppm | | | | Environmental SA | MIR 9000 | | HCl | 0-100 ppm | | | | Elivirollillelital 3A | IVIIK 9000 | 2007 | HF | 0-100 ppm | | | | | | | O ₂ (Dry) | 0-25% | | 2 | BH Outlet | | | | CO ₂ | 0-25% | | 2 | BH Outlet | Ametek | RM CEM O2/IQ | 10218084-2 | O ₂ (Wet) | 0-25% | | | | Tethys | EXM400 | F130303 | NH ₃ | 0-50 ppm | | | | OSI | OFS-2000W | 13020633 |
Flow | 0-40 m/s | | | | Teledyne | Light Hawk 560 | 5602493 | Opacity | 0-100% | | | | Environmental SA | Graphite 52M | 648 | THC | 0-100 ppm | | | | Environmental SA | Amesa | 1825-284 | Dioxin/Furan | 0-10 ng/m ³ | #### 3. SAMPLING LOCATIONS The BH Outlet sampling ports are located on the vertical circular ductwork between the baghouse outlet and the ID Fan inlet. There are two 6-inch ports, located 90 degrees apart, at the same elevation and a single 4-inch port located approximately 0.8 m upstream of the 6-inch ports. The two 6-inch sampling ports were used for isokinetic sampling and the 4-inch ports were used for all non-isokinetic sampling. The BH Outlet duct has an inside diameter of 1.37 meters (54 inches) at the sampling ports. The two 6-inch ports are approximately 4.4 duct diameters (6.1 meters) downstream and 0.68 duct diameters (0.94 meters) upstream from the nearest flow disturbances. The Quench Inlet sampling ports are located on the circular ductwork between the Boiler Outlet and the Recirculating Type Dry Scrubber Inlet. There are two 6-inch ports, located 90 degrees apart, at the same height. The Quench Inlet duct has a diameter of 1.37 meters (54 inches) at the sampling ports. The ports are located approximately 3.8 duct diameters (5.2 meters) downstream and 4.7 duct diameters (6.4 meters) upstream from the nearest flow disturbances. The sampling ports are located at a "non-ideal" location as defined by the Ontario Source Testing Code. An "ideal" location is defined as being at least eight stack diameters downstream and at least two stack diameters upstream of flow disturbances. Cyclonic flow checks were performed by ORTECH at the BH Outlet and Quench Inlet sampling locations on each Boiler on September 22, 2015. The cyclonic flow checks were performed using an S-type pitot tube and manometer following the procedures detailed in Ontario Source Testing Code Method 1. Briefly, the pitot tube was positioned at each sampling point so that the planes of the face openings were parallel to the cross-sectional axis of the duct. The pitot tube was then rotated about its longitudinal axis until the manometer reading was zero. The absolute value of the rotational angle was recorded to the nearest degree at each point. The average of the recorded angles was calculated at each location. If the average angle is less than 15°, cyclonic flow is not present and sampling may proceed as normal. The results for the cyclonic flow checks are summarized below: | | | Average Angle | | |---------------------------|---------------------------|---------------|-----------------------| | Sampling Location | Performance Specification | (°) | Cyclonic Flow Present | | Boiler No. 1 Quench Inlet | Average <15° | 6.6 | No | | Boiler No. 2 Quench Inlet | Average <15° | 8.4 | No | | Boiler No. 1 BH Outlet | Average <15° | 8.8 | No | | Boiler No. 2 BH Outlet | Average <15° | 8.1 | No | In addition, reverse flow was not observed at any point at any of the four sample locations during the cyclonic flow checks or during any test. #### 4. SAMPLING PROCEDURES #### 4.1 General This section outlines the sampling procedures as well as pre-test and on site internal quality assurance/quality control (QA/QC) procedures which were utilized in the testing program. The procedures described in this section ensured that representative samples were collected and that the integrity of the collected samples was maintained. The use of these sampling procedures significantly reduced the possibility of sample contamination from external sources. Sample handling and documentation requirements were key factors in this program. Triplicate emission tests were completed for particulate matter, metals, semi-volatile organic compounds, acid gases, volatile organic compounds, aldehydes and combustion gases at the BH Outlet of each Boiler. Triplicate emission tests were also completed for total hydrocarbons at the Quench Inlet of each Boiler. The contaminant groups included in the emission test program and the reference test methods used are summarized below: | Test Groups | Reference Method | | |---|---|--| | Particulate and Metals | US EPA Method 29 | | | PM _{2.5} /PM ₁₀ and Condensable | US EPA Methods 201A and 202 | | | Particulate | | | | Semi-Volatile Organic Compounds | Environment Canada Method EPS 1/RM/2 | | | Volatile Organic Compounds | US EPA SW-846 Method 0030 (SLO VOST modification) | | | Aldehydes | NCASI Method ISS/FP-A105.01 | | | Halides and Ammonia | US EPA Method 26A | | | Combustion Gases: | | | | Oxygen and Carbon Dioxide | Facility CEM | | | Carbon Monoxide | Facility CEM | | | Sulphur Dioxide | Facility CEM | | | Nitrogen Oxides | Facility CEM | | | Total Hydrocarbons | ORTECH per US EPA Method 25A | | Since relative accuracy and system bias testing was performed in July 2020, the data recorded by the DYEC CEMS was used to assess against the in-stack emissions limits detailed in Schedule C of the ECA for hydrochloric acid, sulphur dioxide, nitrogen oxides and carbon monoxide. Note the DYEC CEMS data for the days when isokinetic testing was performed at each unit (November 9 to November 12, 2020) was used to determine the minimum, average and maximum concentrations of the combustion gases listed in the ECA. Concentration data measured by ORTECH on November 9, 2020 was used to assess against the total hydrocarbons (organic matter) in-stack emissions limit detailed in Schedule C of the ECA. #### 4.2 Particulate and Metals Particulate and metals were sampled using the sampling procedures outlined in US EPA Method 29. Major components of the sampling train were as follows: - A glass nozzle and probe liner assembly - A quartz fiber filter with a low metal background - The first impinger was initially empty to collect moisture - The second and third impingers initially contained 100 mL each of 5% nitric acid/10% hydrogen peroxide solution to collect metals - The fourth impinger was initially empty - The fifth and sixth impingers initially contained 100 mL each of 4% potassium permanganate/10% sulphuric acid solution to collect mercury - The seventh impinger contained silica gel Each test for particulate matter and metals involved the collection of stack gas sampled isokinetically at twelve points centered on equal areas along each of two traverses (at 90° to each other) of the BH Outlet duct. Each of the twenty-four points was sampled for 7.5 minutes for a total actual sampling time of one hundred and eighty minutes. At 2.5 minute time increments throughout each test the following information was measured and recorded on field data sheets: - Elapsed sampling time - Dry gas meter volume - Pitot tube pressure - Stack gas temperature - Probe, oven and impinger temperatures - Dry gas meter temperatures - Control module orifice pressure - Sampling pump vacuum The particulate and metals field data sheets are provided in Appendix 4. At the start and finish of sampling each traverse the sampling train was leak-checked. A valid leak-check as specified by the sampling method is a leakage rate of less than 0.00057 cubic meters per minute (m³/min) or 4% of the estimated sampling rate, whichever is less. All of the leak-checks, as detailed on the field data sheets, were acceptable. A blank train was prepared and samples recovered in a manner identical to the test sampling trains for each Boiler. #### 4.3 Particle Size Distribution Particle Size Distribution (PSD) tests were performed at each of the BH Outlet sample locations in accordance with the test procedures described in US EPA Method 201A using PM_{10} and $PM_{2.5}$ combined cyclone heads and US EPA Method 202. Sampling was conducted for approximately one hundred and twenty minutes at six points across each traverse of the duct using isokinetic dwell time sampling. At approximately ten minute time increments throughout each test the following information was measured and recorded on field data sheets: - Elapsed sampling time - Dry gas meter volume - Pitot tube pressure - Stack gas temperature - Probe, oven and impinger temperatures - Dry gas meter temperatures - Control module orifice pressure - Sampling pump vacuum Field data sheets for the PSD tests are provided in Appendix 5. A blank train was prepared and samples recovered in a manner identical to the test sampling trains for each Boiler. #### 4.4 Semi-Volatile Organic Compounds Semi-volatile organic compounds (SVOC), including dioxins and furans, polychlorinated biphenyls (PCBs), chlorobenzenes (CBs), chlorophenols (CPs) and polycyclic aromatic hydrocarbons (PAHs) were sampled at the BH Outlet of each Boiler using the sampling train and sampling procedures outlined in Environment Canada Report EPS 1/RM/2. Major components of the sampling train were as follows: - A glass nozzle and probe liner assembly - A clean and proven glass fiber filter - Amberlite XAD-2 sorbent resin was used in a trap to collect semi-volatile organics - The first impinger was initially empty - The second impinger contained 100 mL of ethylene glycol - The third impinger was initially empty - The fourth impinger contained silica gel All test train and auxiliary glassware were cleaned according to the methods as outlined in Environment Canada EPS 1/RM/2 except that the methods were modified by combining proofing extracts prior to analysis for the target analytes. Each test for semi-volatile organic compounds at the BH Outlet involved the collection of stack gas sampled isokinetically at twelve points centered on equal areas along each of two traverses (at 90° to each other) of the duct. Each of the twenty-four points was sampled for ten minutes for a total actual sampling time of two hundred and forty minutes. At five minute time increments the following information was measured and recorded on field data sheets: - Elapsed sampling time - Dry gas meter volume - Pitot
tube pressure - Stack gas temperature - Probe, oven and impinger outlet temperatures - XAD-2 trap outlet temperature - Dry gas meter temperatures - Control module orifice pressure - Sampling pump vacuum Field data sheets for the SVOC tests are provided in Appendix 6. At the start and finish of sampling each traverse, the sampling train was leak-checked. A valid leak-check as specified by the sampling method is a leakage rate of less than 0.00057 m³/min or 4% of the estimated average sampling rate, whichever is less. All of the leak-checks for the tests reported, as detailed on the field data sheets, were acceptable. A blank train was prepared in a manner identical to the test trains for each Boiler. It was assembled, transported and left at the sampling site for a period of time equal to the test trains. The blank train was treated at the sampling site in the same manner as the test trains and a gas volume was drawn through the blank train approximately equal to the leak-check volume for the test trains. #### 4.5 Acid Gases Hydrogen fluoride, hydrogen chloride and ammonia were sampled together using the sampling train and sampling procedures outlined in US EPA Method 26A. Major components of the test train were as follows: - A glass nozzle and probe liner assembly - The first and second impingers contained 100 ml of 0.1N H₂SO₄ - The third impinger was initially empty - The fourth impinger contained silica gel At five minute time increments throughout each test the following information was measured and recorded on field data sheets: - Elapsed sampling time - Dry gas meter volume - Pitot tube pressure - Stack gas temperature - Probe, oven and impinger temperatures - Dry gas meter temperatures - Control module orifice pressure - Sampling pump vacuum Field data sheets for the acid gases tests are provided in Appendix 7. At the start and finish of each test the sampling train was leak-checked. A valid leak-check as specified by the sampling method is a leakage rate of less than 0.00057 m³/min or 4% of the estimated average sampling rate, whichever is less. A blank train was prepared and samples recovered in a manner identical to the test sampling trains for each Boiler. #### 4.6 Volatile Organic Compounds Volatile Organic Compound (VOC) sampling was performed in accordance with US EPA SW-846 Method 0030 (SLO-VOST modification). Briefly, the sampling method involved withdrawing a sample of the stack gas through a heated glass lined sampling probe containing a glass wool plug to remove particulate material. The sample was then passed through a water cooled condenser and a Tenax GC adsorbent tube, as the primary volatile organic collection device. Condensate was collected in an initial condensate trap and the sample was then drawn through a second condenser and a combined secondary Tenax GC/charcoal adsorbent tube, as the secondary volatile organic collection device. The sampled gas stream then passed through a silica gel trap to remove any remaining traces of moisture prior to the rotameter, pump and dry gas meter. During each test, a single forty minute run was completed at an approximate flowrate of 0.5 L/min. A fourth run was also conducted and the tube pair was archived in case a sample was lost during desorption or analysis. The analytical results from the three runs performed were combined and used to calculate test average results for the respective source. At five minute time increments throughout sampling each pair of tubes, the following information was measured and recorded: - Elapsed sampling time - Dry gas meter volume - Stack gas temperature - Probe and first condenser outlet temperatures - Dry gas meter temperatures - Control module orifice pressure - Sampling pump vacuum The sampling train components were cleaned using the procedures in US EPA SW-846 Method 0030, Volatile Organic Sampling Train (VOST). Field data sheets for the VOST tests are provided in Appendix 8. Blank tube samples analyzed for the program included two pairs of field blank tubes, a trip blank pair of tubes and one laboratory blank pair of tubes. #### 4.7 Aldehydes Some of the compounds listed as VOC's (acetaldehyde, formaldehyde and acrolein) are more commonly classified as aldehydes. These compounds were captured in a separate test train in accordance with NCASI Method ISS/FP-A105.01. Major components of the test train were as follows: - A Teflon probe liner assembly was used. - The first, second and third impingers contained approximately 15 ml each of o-Benzylhydroxylamine (BHA). - The fourth impinger contained silica gel A single test for aldehydes involved the collection of gas sampled at a single point in the duct at a sampling flowrate of approximately 0.5 liters per minute for sixty minutes. At five minute time increments throughout each test, the following information was measured and recorded for the train: - Elapsed sampling time - Dry gas meter volume - Stack gas temperature - Probe, oven and impinger outlet temperatures - Dry gas meter temperature - Control module orifice pressure - Sampling pump vacuum Field data sheets for the aldehyde tests are provided in Appendix 9. #### 4.8 Combustion Gases In July 2020, relative accuracy and system bias testing was conducted on the Continuous Emission Monitoring Systems (CEMS) installed at the Quench Inlet and BH Outlet of each Boiler. DYEC CEMS met the performance parameters detailed in Schedule F of the ECA. Therefore, the data recorded by the DYEC CEMS was used to assess against the in-stack emissions limits detailed in Schedule C of the ECA for hydrochloric acid, sulphur dioxide, nitrogen oxides and carbon monoxide. Combustion gases, including carbon dioxide, carbon monoxide, hydrogen chloride, nitrogen oxides, oxygen, sulphur dioxide and total hydrocarbons, were measured continuously at the BH Outlet during the emission testing program by the DYEC CEMs. Oxygen was also measured continuously by the DYEC CEMS at the Quench Inlet. DYEC provided 1-hour average concentrations for each clock hour using the 1-minute combustion gas data measured by the DYEC CEMs during each isokinetic test day at each Boiler. The data measured by the DYEC CEMS, from November 9, 2020 at 00:00 to November 12, 2020 at 23:00, was used to assess against the in-stack emission limit stated in the ECA for each Boiler. A 24-hour rolling average was determined for hydrogen chloride, nitrogen oxides and sulphur dioxide using the calculated 1-hour average data to compare to the in-stack emission limits stated in the ECA. A 4-hour rolling average was determined for carbon monoxide using the calculated 1-hour average data to compare to the in-stack emission limit stated in the ECA. Total hydrocarbon concentrations were measured by ORTECH following the procedures detailed in US EPA Method 25A. Triplicate one-hour tests were conducted at the Quench Inlet and BH Outlet of each Boiler on November 9, 2020. The total hydrocarbon data measured by ORTECH at the Quench Inlet sample locations was used to assess against the in-stack emissions limits detailed in Schedule C of the ECA. #### 5. SAMPLE RECOVERY AND ANALYSIS All sample analysis was performed by ALS Canada Ltd. Copies of Sample Logs/Chain of Custody Forms for all samples submitted for chemical analysis are provided in Appendix 10. #### 5.1 Particulate and Metals Before loading of the field test trains commenced, recovery data sheets were prepared to record initial weights of the test train components. These sheets were also used during sample recovery to record final weights and determine moisture gains and sample volumes. The particulate and metals train recovery data sheets are provided in Appendix 11. Following the conclusion of each test performed with the metals train, the probe was disconnected and all openings sealed with Teflon tape. The test trains, including the probes, were taken to the onsite ORTECH mobile laboratory for sample recovery. The train recovery procedure is briefly described as follows. The test trains were visually inspected to ensure that no damage occurred during transportation. The condition of the test train was noted. Filter and impinger content colors were recorded. The filter housing was disassembled and the filter carefully transferred to its pre-test petri dish with the use of Teflon coated tweezers. All the impingers were wiped dry on the outside then weighed and the results used to determine the stack gas moisture content. The front half of the sampling train was brushed and rinsed thoroughly with acetone. A nylon bristle probe brush was used to assist in dislodging particulate material which may have adhered to the inside surfaces of the nozzle and probe assembly. The front half was then rinsed in triplicate using 0.1 N nitric acid but no brushing was performed. The contents of the first four impingers were combined. Triplicate rinses of the impingers and connecting glassware back to and including the Teflon filter support was performed with 0.1 N nitric acid and combined with the impinger solution sample. The contents of the fifth and sixth impingers were combined. The impingers with connecting glassware were then rinsed in triplicate with approximately 100 mL of fresh potassium permanganate solution followed by a triplicate rinse with 100 mL of distilled, de-ionized water. All of the glassware rinses were added to the sample container. Any brown residue which was present in the fifth and sixth impingers was removed by incrementally rinsing with small amounts of 8 N hydrochloric acid. These acid rinses were added to a separate sample bottle which initially contained 150 mL of distilled, de-ionized water. The impingers were then rinsed with distilled, de-ionized water into the same sample container. Each sample container was sealed, labeled and the fluid level marked (where appropriate) once that portion of the recovery was completed. The samples were then checked against the master sample log/chain of custody form and
refrigerated until they were delivered to the analytical laboratory for analysis. The test samples were prepared and analyzed for metals according to US EPA Method 29 (modified). The inorganic analytical reports are provided in Appendix 12. #### 5.2 Particle Size Distribution Prior to loading the field test trains, recovery data sheets were prepared to record initial weights of the test train components. These sheets were also used during sample recovery to record final weights and determine moisture gains and sample volumes. The train recovery data sheets are provided in Appendix 13. The particle size distribution (PSD) samples were recovered in much the same way as the particulate samples from the particulate and metals trains. Following the conclusion of each test performed with the PSD trains, the probe was disconnected and all openings sealed with Teflon tape. The sample recoveries were performed in the on-site ORTECH sample recovery trailer. The test trains were visually inspected to ensure that no damage during movement had occurred. The recovery procedure is briefly described as follows. The condition of the test train was noted and the filter and impinger colours were recorded. The nozzle, PM_{10} cyclone walls, collection cup and outside of the exit stem was brushed and rinsed thoroughly with acetone into a glass sample container to determine particulate greater than PM_{10} . The PM_{10} cup and connecting parts were rinsed with acetone in a glass sample container to determine particulate less than PM_{10} but greater than $PM_{2.5}$. The $PM_{2.5}$ cup and connecting parts up to the backup filter were rinsed with acetone into a glass sample container to determine particulate less than $PM_{2.5}$. The back-up filter was transferred to its original petri dish. The impingers were wiped dry on the outside then weighed and the results used to determine the stack gas moisture content. The back half of the sampling train was then purged with nitrogen at 14 lpm for 1 hour as soon as possible after the completion of each test. The back-half of the sampling train was recovered following the procedures detailed in US EPA Method 202 for condensable particulate. The contents of the first impinger were poured into a glass sample bottle and rinses of the impinger and connecting glassware were performed with water which was added to the sample. The glassware was then rinsed with acetone and the rinse was repeated in duplicate with hexane. The acetone and hexane rinses were combined into a single glass sample bottle. Each sample container was sealed, labeled and the fluid level marked (where appropriate) once that portion of the recovery was completed. The samples were then checked against the master sample log/chain of custody form and refrigerated until they were delivered to the analytical laboratory for analysis. The particle size and condensable particulate matter results are presented with the inorganic analytical reports provided in Appendix 12. #### 5.3 Semi-Volatile Organic Compounds Prior to loading the field test trains, recovery data sheets were prepared to record initial weights of the test train components. These sheets were also used during sample recovery to record final weights and determine moisture gains and sample volumes. The train recovery data sheets are provided in Appendix 14. Following the conclusion of each test performed with the semi-volatile organics train, the probe was disconnected and all openings sealed with Teflon tape. The test trains, including the probes, were taken to the on-site ORTECH mobile laboratory for sample recovery. The train recovery procedure is briefly described as follows. The condition of the test train was noted. Filter, XAD-2 trap and impinger content colours were recorded. The filter housing was disassembled and the filter carefully transferred, with the use of Teflon coated tweezers, to a piece of pre-cleaned aluminum foil. Each filter was then folded in half onto itself within the foil, the foil ends crimped, then placed in a pre-cleaned glass petri dish. Both the foil containing the filter(s) and the glass Petri dish were labeled. All of the impingers were wiped dry on the outside then weighed and the results used to determine the stack gas moisture content. The front half of the sampling train, up to but not including the trap, was brushed and rinsed thoroughly with acetone. A Teflon probe brush was used to assist in dislodging particulate material that may have adhered to the inside surfaces of the cyclone bypass and filter top assembly. This front half rinse was then repeated using hexane, with no brushing, and all rinsing was combined with the probe rinse sample. The filter bottom, filter bottom u-tube and trap inlet stem were soaked for five minutes in each of acetone and hexane then rinsed. The XAD-2 trap was drained of excess cooling water and weighed. The ends were then sealed with Teflon tape and the trap was labeled and wrapped in aluminum foil. Since ORTECH uses a one piece trap and condenser, the five minute soak of this component was performed by the analytical laboratory. The contents of the first three impingers were combined in a pre-cleaned amber glass sample bottle. Triplicate rinses of the impingers and connecting glassware back to and including the trap bottom utube were performed first with HPLC water, which was added to the impinger solution sample, and then with acetone followed by hexane. The acetone and hexane rinses were combined in a separate sample bottle from the impinger solutions. Each sample container was sealed and labeled once that portion of the recovery was completed. The samples were then checked against the master sample log/chain of custody form then refrigerated until they were delivered to ALS for analysis. Semi-volatile organic analyses were performed on single composite extracts for each test according to EPS 1/RM/3 and EPS 1/RM/23. These methods were modified slightly to include other semi-volatile organic compounds following the Environment Canada NITEP/Mid-Connecticut combustion test procedures. These analytical improvements have been implemented over many years and have been identified and approved through laboratory accreditation and acceptance by the MECP. The SVOC analytical reports are provided in Appendix 15. #### 5.4 Acid Gases Following the conclusion of each test performed with the acid gas train, the probe was disconnected and all openings sealed with Teflon tape. The test trains were taken to the on-site ORTECH mobile laboratory for sample recovery. The train recovery procedure is briefly described as follows. The test trains were visually inspected to ensure that no damage occurred during transportation. The condition of the test train was noted and the impinger content colors were recorded. All the impingers were wiped dry on the outside then weighed and the results used to determine the stack gas moisture content. The contents of the first three impingers were combined. Triplicate rinses of the impingers and connecting glassware back to and including the Teflon filter support was performed with high purity water and combined with the impinger solution sample. Each sample container was sealed, labeled and the fluid level marked (where appropriate) once that portion of the recovery was completed. The samples were then checked against the master sample log/chain of custody form and refrigerated until they were transported to the laboratory for analysis. Analysis for hydrogen fluoride, hydrogen chloride and ammonia was performed via ion chromatography. Train recovery data sheets are provided in Appendix 16. The acid gases analytical results are presented with inorganic analytical reports in Appendix 12. #### 5.5 Volatile Organics Train Recovery Following the conclusion of each tube pair run performed with the volatile organic sampling train (VOST), the tubes were removed from the train, capped and placed in appropriately labeled test tubes which were also capped. The tubes were sent to ALS for volatile organic compound (VOC) analysis. The VOST samples were analyzed via SW846 Method 5041A/8260B. Briefly, after spiking with internal and surrogate standards, the traps were thermally desorbed through a clam shell heater then through a chilled aqueous purge to remove the bulk of the moisture onto a secondary trap. These secondary traps are further dried using a counter current flow of helium. The secondary traps are then thermally desorbed into a VOC sample concentrator and again the VOCs are thermally transferred/concentrated onto a GC column. The VOC compounds are separated via gas chromatography (GC) and analyzed via GC/MS. The condensate collected from each tube pair run was carefully transferred to a glass bottle and combined as a single sample for each sampling location. The condensate samples were archived for future analysis if necessary. The VOST analytical report is provided in Appendix 17. #### 5.6 Aldehydes Following the conclusion of each test performed with the Aldehyde Train the probe was disconnected and all openings were sealed with Teflon tape. The test train was then recovered on site in an ORTECH sample recovery trailer separate from all other test train recoveries and solvents. The train recovery procedure is briefly described as follows. The condition of the test train was noted. All the impingers were wiped dry and weighed. The contents of the impingers were transferred into a glass sample container. The probe and impingers were rinsed with a small amount of DI water followed by a small amount of hexane into the same sample container. Each sample container was sealed, labeled and the fluid level marked (where appropriate) once that portion of the recovery was completed. The samples were then checked against the master sample log/chain of custody form and refrigerated until they were transported to the laboratory for analysis. Analysis for formaldehyde, acetaldehyde and
acrolein was performed via GC/MS. The sample recovery data sheets are provided in Appendix 18 and the analytical results are presented in Appendix 19. ### 6. INTERNAL AND EXTERNAL QA/QC PROGRAM #### 6.1 General As with other emission testing programs conducted by ORTECH, a comprehensive internal quality assurance/quality control (QA/QC) program was included. Blank sampling trains were recovered and analyzed or reagent blanks were analyzed using the same procedures as the test trains to provide background concentrations of the emission test components. #### 6.2 Pre-Test Activities Prior to the commencement of the emission testing program, the following activities were performed: - Preparation, pre-cleaning and proofing of the manual stack sampling trains and sample containers. - Preparation and quality checks of chemicals, reagents, filters and XAD-2 adsorbent resin. - Calibration of all sampling and monitoring equipment. - Development (and review) of data acquisition, data reduction and summary procedures. - Development of internal QA/QC field data sheets. - Review of equipment calibration logs. - Review of proposed field and laboratory procedures. All proving data for the Semi-Volatile Organics Train glassware and auxiliary equipment was deemed acceptable prior to the test program. A proof rinse of the sampling probes was collected and archived for future analysis if necessary. For each batch of VOST tubes, a minimum of 1 pair in 10 was analyzed to demonstrate an absence of significant background contaminants from the tubes prior to the test program. The proof data for the semi-volatile organics glassware and VOST tubes is provided in Appendix 20. The proof data for the aldehyde solutions is provided in the aldehyde analytical report. All equipment used in the field testing program was calibrated and checked prior to the field testing program. Pertinent equipment calibration data is supplied in Appendix 21. As part of ORTECH's internal QA/QC, data acquisition, data reduction and summary procedures were already in place and periodic spot checks of the computer programs were performed using known data sets. #### 6.3 Emission Testing QA/QC Results Prior to the field testing program, preliminary data was acquired to perform the required calculations for choosing a nozzle size to permit isokinetic sampling. The internal diameter of each duct was verified and the appropriate number of sampling points was marked on each sampling probe. The following general QA/QC criteria were satisfied for each of the test trains where applicable: - All sampling equipment was cleaned and proven clean (where applicable) prior to the commencement of the field testing program. - All sampling equipment passed a visual and operational check prior to use in the field. - Oil filled manometer gauges which had been properly leveled and zeroed were used to measure the velocity pressure. - All sampling data was recorded in ink on preformatted data sheets at least once every 5 minutes and/or at least twice during sampling each traverse point. - Any unusual occurrences were noted during each test on the appropriate data form. - The field team leader reviewed all calibration and sampling data forms daily. - Only tapered edge sampling nozzles and S-type pitot tubes that had been visually inspected and caliper measured, and deemed acceptable, were used for sampling. - Each leg of the S-type pitot was leak-checked before the start of testing. The leak-checks were all acceptable (no leak detected). - Each entire sampling train met acceptable leak-check criteria before and after each test, and during any move from one sampling traverse to another. If a test did not meet the leak-check criteria the test was voided and repeated. - The S-type pitot tube and sampling nozzle were maintained parallel to the flow during testing and care was taken to ensure that they did not scrape the ports when being inserted and removed from the stack. - The probe and filter components were maintained at $120^{\circ}\text{C} \pm 14^{\circ}\text{C}$ during testing. If the probe or filter temperature was outside of the acceptable range the test was halted until the temperature could be brought back into the acceptable range. - Covanta was responsible for monitoring process operations during testing and notified ORTECH when testing was to proceed. #### 6.4 Sample Recovery, Handling and Custody ORTECH's sample identification scheme and system for handling and processing samples was initiated as part of ORTECH's sample tracking system for stack emission samples. All samples were identified by a unique sample number comprised of a series of numbers and letters. A master sample log/chain of custody form was maintained by the QA/QC designate and was made available to the ORTECH personnel designated to perform the sample recovery for a specific sampling train. Once a sample was collected it was labeled and checked against the sample log by the QA/QC designate. The information contained within the sample number and the sample log enabled the sampling, recovery, data reduction and report writing personnel to easily determine the test date, test number, test type and train sample identification for a given sample. To ensure continuity, the analytical laboratory was requested to use the ORTECH number for sample identification. The ORTECH personnel responsible for delivering samples used the master sample log/chain of custody form to document the transfer of the samples to the analytical laboratory. Appropriate care was taken when shipping the samples in order to maintain sample integrity. Once the samples and master sample log/chain of custody forms were received by the analytical laboratory, the laboratory personnel verified that all samples had been received and their integrity maintained. The laboratory personnel then signed the master log and made a photocopy which ORTECH personnel received as a record of the chain of custody for the samples. #### 6.5 Analytical Results ORTECH uses a one piece condenser and XAD-2 trap for SVOC collection, this component of the test train was Teflon sealed and wrapped with foil prior to being transported to the analytical laboratory where it was given the required five minute soaking with each of acetone and hexane. This is consistent with all SVOC test programs conducted by ORTECH and the modification was documented in the Pre-Test Plan approved by the MECP. Analyses for the present emission testing program were performed using acceptable laboratory procedures in accordance with the specified analytical protocols. Adherence to the prescribed QA/QC procedures ensured data of consistent and measurable quality. Analytical quality control focused on the use of control standards to provide a measure of analytical accuracy. Replicate analysis (usually duplicate analysis) of the same sample was used as a means of determining precision of the various analytical procedures. Also specific acceptance criteria were defined for various analytical operations including calibrations, control standard analysis, drift checks, blanks, etc. The following general QA/QC procedures were incorporated into the analytical effort: - the on-site Field Supervisor reviewed all data and QA/QC data on a daily basis for completeness and acceptability - master sample logs were maintained for all samples collected - analytical QA/QC data was tabulated by the analytical laboratories using appropriate charts or forms - all hard copy raw data was maintained in organized files Specific analytical QA/QC procedures are presented in the analytical reports and are briefly summarized below. #### 6.5.1 Metals Sample Analysis QA/QC The analysis of the Method 29 stack samples involved sample digestion followed by Inductively Coupled Argon Plasma Mass Spectroscopy (ICP-MS) analysis. The analysis for mercury employed cold vapour atomic absorption (CVAA). The analytical QA/QC is described as follows and the results are provided in the analytical report. #### **ICPMS Analysis** The quality assurance activities conducted by the analytical laboratory are detailed in the Quality Assurance Report provided in the analytical report. Specific QA/QC results are summarized below: - One duplicate sample analysis was performed for the test program. The relative percent difference was less than 4.4% well within the acceptable limit of less than ±20%, for elements that are greater than 5 times the minimum detection limit. - A blank spike (performed as a pre-digestion spike) was analyzed with the test samples. All of the recovery results were between 96-104%. The acceptable limit is 85-115% of the true value. - A matrix spike (performed as a post digestion spike) was analyzed with the test samples. All of the recovery results were between 83-101%. The acceptable limit is 70-130% of the true value. The following general analytical QA/QC requirements must also be met or the samples are re-analyzed: - An instrument calibration check standard was analyzed immediately after the calibration curve and must be within 90%-110% of the actual concentrations. - Instrument calibration blank check sample were analyzed with every 10 samples and must be within three times the minimum detection limit. - A continuing calibration check is run every 10 samples and must be within 85%-115% of the actual concentrations. - Instrument (interference) check sample for ICP-MS analysis was analyzed before and after each analytical run. The value(s) found for the interference check sample must be within 80%-120% of the true value. Barium, chromium, copper, lead, molybdenum and nickel were detected in the blank train at levels greater than the limit of reporting. Chromium, copper, molybdenum and nickel were observed by the analytical laboratory in the method blank at levels greater than the limit of reporting. The test sample data may be biased high for these compounds as a result of this potential background. #### **Mercury Analysis** The
quality assurance activities conducted by the analytical laboratory are detailed in the Quality Assurance Report provided in the analytical report. Specific QA/QC results are summarized below: - One duplicate sample analysis was performed for each fraction. The relative percent difference was less than 1.1% within the acceptable limit of less than ±20%, for fractions that are greater than 5 times the minimum detection limit. - A blank spike (performed as a pre-digestion spike) was analyzed with the test samples. All of the recovery results were between 93-95% within the acceptable limit of 90-110% of the true value. - A matrix spike (performed as a post digestion spike) was analyzed with the test samples. All of the recovery results were between 88-99%, within the acceptable limit of 85-115% of the true value. The following general analytical QA/QC requirements must also be met or the samples are re-analyzed: - A 5 point calibration was performed. - An instrument check calibration standard was analyzed immediately after the calibration and must be within 90%-110% of the actual concentration - One mid-range calibration standard was analyzed after 10 samples and at the end of the run and must be within 85%-115% of the actual concentration. - Instrument calibration blank check sample is analyzed with every 10 samples and must be within three times the minimum detection limit. #### 6.5.2 Acid Gas Sample Analysis QA/QC Analyses of the acid gas samples from the Method 26A sampling train was performed by Ion Chromatography (IC). The quality assurance activities conducted by the analytical laboratory are detailed in the Quality Assurance Report provided in the analytical report. Specific QA/QC results are summarized below: - All of the hydrogen chloride and hydrogen fluoride analyses were conducted in duplicate. One duplicate sample analysis was also performed for ammonia. The relative percent difference was less than 4.0%, well within the acceptable limit of less than ±20% for compounds that are greater than 5 times the minimum detection limit. - A blank spike sample was analyzed with the test samples. The recovery results for the blank spike sample were 97% for hydrogen chloride, 101% for hydrogen fluoride and 103% for ammonia, within the acceptable range of 90-110%. - A matrix spike (spike confirmation) sample was analyzed with every 20 samples to confirm the identity of each peak. The recovery results of the matrix spike sample were 105% for hydrogen chloride, 95% for hydrogen fluoride and 101% for ammonia, within the acceptable range of 80-120%. The following general analytical QA/QC requirements must also be met or the samples are re-analyzed: - A 6 point calibration bracketing the expected range. - An instrument check calibration standard was analyzed immediately after the calibration and must be within 90%-110% of the actual concentration. - A complete set of calibration standards were analyzed at the end of the analysis and must be within 10% of the true value. - One mid-range calibration standard was analyzed after 10 samples and at the end of the run and must be within 90%-110% of the actual concentration. - Instrument calibration blank check samples were analyzed with every 10 samples and must be within three times the minimum detection limit for each ion. #### 6.5.3 Aldehyde Sample Analysis QA/QC Analysis for formaldehyde, acetaldehyde and acrolein was performed via GC/MS. Laboratory control samples were analyzed with the test samples. Two laboratory control samples were prepared by the analytical laboratory and analyzed with the test samples ($5\mu g$ and $2.5 \mu g$). The recovery for the $5\mu g$ sample was 119% for acetaldehyde, 75% for formaldehyde and 66% for acrolein. The recovery for the $2.5\mu g$ sample was 144% for acetaldehyde, 102% for formaldehyde and 25% for acrolein. Acrolein was not detected in any of the samples in quantities greater than the reported detection limit. Acetaldehyde and formaldehyde were detected in both blank samples in quantities similar to those found in the test samples. Formaldehyde was also detected in the method blank. The test sample data may be biased high for these compounds as a result of this potential background. During the preparation of the 2021 compliance testing report (ORTECH Report No. 22085) an inconsistency was noted by ORTECH in regards to the units being used in the analytical reports for acetaldehyde, formaldehyde and acrolein. Upon review by ALS, it was determined that the data reported for the 2020 compliance testing program was incorrect. The data was reported as μg ; as a result the emission data in the original report, dated January 19, 2021, was incorrect for these compounds. ORTECH has revised this report to correct the acetaldehyde, formaldehyde and acrolein emission data and dispersion modelling. #### 6.5.4 SVOC Sample Analysis QA/QC The combined filter, probe rinse, Amberlite XAD-2 cartridge, impinger solutions and associated rinse and soaking solutions for each of the semi-volatile organics trains were analyzed together as one sample per test. Staff at ALS added extraction standards to all samples prior to extraction. Clean-up standards were added just prior to the clean-up process. Recoveries of the clean-up standards provide an indication on the losses that occur during the extract clean-up. The analytical report includes the lists of the field spike, extraction and clean-up standards used. The analysis of samples involved complex sample extraction and cleanup, followed by HRMS/MS analysis. Recovery of the dioxin and furan field spike standards were between 75-123% which indicates good extraction efficiency and provides a high degree of confidence in the results obtained from the dioxin and furan test trains. Per the dioxin and furan analytical report, 123678-HxCDF showed the presence of a peak in the corresponding diphenylether channel on the field samples. Historical evidence has shown that this diphenylether is a false positive and the HxCDF value is considered real and unbiased. Also, the mass resolution deteriorated during the 12 hour run sequence with the resolution being slightly below 10,000 for selected functions at the end of the run sequence. There is no evidence for enhanced interferences or noise to negatively impact data quality. Per the analytical report for chlorophenols, select C-13 extraction/internal standards were biased low and below the targeted 20% lower control limit. However, due to isotope dilution corrections the lower recoveries should not compromise the quantitation of positive target responses. #### 6.5.5 Volatile Organic Compound Analysis QA/QC Prior to sampling VOST tube pairs were cleaned and conditioned under helium sweep (approximately 50 mL/min flow) through each tube in an oven at 280°C for at least 12 hours. One VOST pair was analyzed and proven clean for every 10 pairs cleaned. VOST tubes were end-capped and stored sealed in individual screw-capped vials at 4°C between conditioning and shipment to the field. Two field blanks, a trip blank and a laboratory method blank were analyzed with the test sample tubes. VOST tubes were desorbed and analyzed, combined as pairs, according to SW846 Method 5041A/8260B. The analytical report includes the field standards, internal standards and surrogate standards used. The surrogate recoveries for each of the surrogates should be between 50-150%. The recoveries for each sample were between 71-116%. #### 7. RESULTS AND DISCUSSION Emission tests were completed for particulate matter, particle size distribution, condensable particulate matter, metals, semi-volatile organic compounds, aldehydes, acid gases and volatile organic compounds at the Boiler No. 1 BH Outlet and Boiler No. 2 BH Outlet. Combustion gases, including hydrochloric acid, sulphur dioxide, nitrogen oxides and carbon monoxide were measured during the emission testing program (November 9 to November 12, 2020) by the DYEC CEMS. Total hydrocarbon concentrations were also measured at the BH Outlet and Quench Inlet by ORTECH on November 9, 2020. Tables referenced in this report for the tests conducted at Boiler No. 1 and Boiler No. 2 are provided in Appendix 1 and Appendix 2, respectively. Detailed test schedules are provided in Table 1 and Table 2 of Appendix 1 and Appendix 2 for Boiler No. 1 and Boiler No. 2, respectively. #### 7.1 Stack Gas Sampling Parameters Emission test calculations for the particulate and metals, particle size, acid gases, and SVOC tests conducted are provided in Appendix 22 to Appendix 25, respectively. Stack gas sampling parameters for the tests conducted at each location are summarized in Table 3 (Appendix 1 and Appendix 2). These parameters include calibration data, nozzle diameter, dry gas volume sampled and average percentage of isokineticity for each test. #### 7.2 Stack Gas Physical Parameters Stack gas physical parameters for tests conducted at each BH Outlet location are presented in Table 4 (Appendix 1 and Appendix 2). The average values from the isokinetic tests at each site are summarized below: | Stack Gas Parameter | Boiler No. 1 BH Outlet* | Boiler No. 2 BH Outlet* | |--------------------------------|-------------------------|-------------------------| | Gas Temperature (°C) | 140 | 142 | | Moisture by Volume (%) | 16.1 | 15.7 | | Velocity (m/s) | 17.5 | 17.5 | | Static Pressure (kPa) | -2.34 | -2.28 | | Absolute Pressure (kPa) | 98.4 | 98.6 | | Carbon Dioxide by Volume (%)** | 10.8 | 11.0 | | Oxygen by Volume (%)** | 8.49 | 8.32 | ^{*} Excludes the isokinetic Acid Gases tests as testing was conducted on a single traverse of the duct ^{**} dry basis, measured by DYEC CEMS #### 7.3 Volumetric Flowrate Data Stack gas volumetric flowrates for the tests conducted at each BH Outlet location are presented in Table 5 (Appendix 1 and Appendix 2). The average flowrate values from the tests at each site are summarized below: | Volumetric Flowrate | Boiler No. 1 BH
Outlet* | Boiler No. 2 BH Outlet* | |---|-------------------------|-------------------------| | Actual Flowrate (m ³ /s) | 25.8 | 25.8 | | Dry Reference Flowrate (Rm ³ /s)** | 15.2 | 15.2 | | Dry Adjusted Flowrate (Rm ³ /s)*** | 19.0 | 19.3 | | Wet Reference Flowrate (Rm ³ /s)** | 18.1 | 18.0 | - * Excludes the isokinetic Acid Gases tests as testing was conducted on a single traverse of the duct - ** at 25°C and 1 atmosphere - *** at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume #### 7.4 Particulate Emission Data Filterable particulate emission data obtained from each of the particulate and metals tests conducted at the BH Outlet of each Boiler is presented in Table 6 (Appendix 1 and Appendix 2). Average filterable particulate emission data for each BH Outlet location is summarized below: | Particulate Emission Parameter | Boiler No. 1 BH Outlet | Boiler No. 2 BH Outlet | |--|------------------------|------------------------| | Actual Conc. (mg/m³) | 1.90 | 1.49 | | Dry Reference Conc. (mg/Rm ³)* | 3.19 | 2.54 | | Dry Adjusted Conc. (mg/Rm³)** | 2.60 | 2.00 | | Wet Reference Conc. (mg/Rm ³)* | 2.70 | 2.14 | | Emission Rate (mg/s) | 49.6 | 39.3 | at 25°C and 1 atmosphere The ECA stipulates maximum in-stack limits for the emissions of various compounds including particulate matter. The average particulate dry adjusted concentration at the Boiler No. 1 BH Outlet (2.60 mg/Rm³, adjusted to 11% oxygen) and the Boiler No. 2 BH Outlet (2.00 mg/Rm³, adjusted to 11% oxygen) were well below the maximum limit (9 mg/Rm³, adjusted to 11% oxygen) stated in the ECA. The amount of particulate matter detected in the blank sampling train filter and acetone probe rinse samples for Boiler No. 1 BH Outlet was 0.6 mg and 0.6 mg, respectively. The amount of particulate detected in the blank sampling train filter and acetone probe rinse samples for Boiler No. 2 BH Outlet was 0.3 mg and <0.1 mg, respectively. Although these levels are significant relative to the amount detected in the test trains, the blank analysis was not subtracted from the test sample analyses during calculation of the particulate emission data. ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume Particle size distribution tests were also conducted at the BH Outlet of each Boiler. PM_{10} and $PM_{2.5}$ emission data is detailed in Table 7 (Appendix 1 and Appendix 2) for each location. Average emission data for each BH Outlet location is summarized below: | | PM ₁₀ | | PM _{2.5} | | |--|------------------|--------------|-------------------|--------------| | PM ₁₀ and PM _{2.5} | Boiler No. 1 | Boiler No. 2 | Boiler No. 1 | Boiler No. 2 | | Emission Parameter | BH Outlet | BH Outlet | BH Outlet | BH Outlet | | Actual Conc. (mg/m³) | <0.46 | <0.39 | <0.17 | <0.30 | | Dry Reference Conc. (mg/Rm ³)* | <0.79 | <0.65 | <0.28 | <0.51 | | Dry Adjusted Conc. (mg/Rm³)** | <0.63 | <0.51 | <0.22 | <0.40 | | Wet Reference Conc. (mg/Rm³)* | <0.66 | <0.55 | <0.24 | <0.43 | | Emission Rate (mg/s) | <12.3 | <10.0 | <4.36 | <7.86 | at 25°C and 1 atmosphere Condensable particulate emission data obtained from the back-half of each of the particle size distribution tests conducted at the BH Outlet for each Boiler is presented in Table 8 (Appendix 1 and Appendix 2). Average condensable particulate emission data for each BH Outlet location is summarized below: | | Inorganic Fraction | | Organic Fraction | | |--|--------------------|--------------|------------------|--------------| | Condensable Particulate Emission | Boiler No. 1 | Boiler No. 2 | Boiler No. 1 | Boiler No. 2 | | Parameter | BH Outlet | BH Outlet | BH Outlet | BH Outlet | | Actual Conc. (mg/m³) | 1.84 | 2.10 | 1.14 | 1.31 | | Dry Reference Conc. (mg/Rm ³)* | 3.15 | 3.53 | 1.96 | 2.20 | | Dry Adjusted Conc. (mg/Rm ³)** | 2.49 | 2.77 | 1.55 | 1.73 | | Wet Reference Conc. (mg/Rm³)* | 2.63 | 2.98 | 1.64 | 1.86 | | Emission Rate (mg/s) | 47.9 | 53.3 | 29.7 | 33.2 | ^{*} at 25°C and 1 atmosphere The amount of condensable particulate detected in the blank sampling train for Boiler No. 1 was 1.4 mg for the inorganic fraction and 0.5 mg for the organic fraction. The amount of condensable particulate detected in the blank sampling train for Boiler No. 2 was 1.9 mg for the inorganic fraction and 0.6 mg for the organic fraction. Although these levels are significant relative to the amount detected in the test trains, the blank analysis was not subtracted from the test sample analyses during calculation of the condensable particulate emission data. ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume The average PM₁₀ and PM_{2.5} results, including condensable particulate matter, are summarized below for each Boiler: | | PM ₁₀ + Condensable | | $PM_{2.5}$ + Condensable | | |--|--------------------------------|--------------|--------------------------|--------------| | PM ₁₀ and PM _{2.5} + Condensable | Boiler No. 1 | Boiler No. 2 | Boiler No. 1 | Boiler No. 2 | | Emission Parameter | BH Outlet | BH Outlet | BH Outlet | BH Outlet | | Actual Conc. (mg/m³) | <3.44 | <3.79 | <3.15 | <3.71 | | Dry Reference Conc. (mg/Rm ³)* | <5.90 | <6.38 | <5.39 | <6.24 | | Dry Adjusted Conc. (mg/Rm ³)** | <4.67 | <5.01 | <4.26 | <4.90 | | Wet Reference Conc. (mg/Rm ³)* | <4.93 | <5.38 | <4.51 | <5.27 | | Emission Rate (mg/s) | <88.9 | <96.5 | <82.0 | <94.3 | at 25°C and 1 atmosphere #### 7.5 Acid Gases Hydrogen chloride, hydrogen fluoride and ammonia emission data for the tests conducted at the BH Outlet of each Boiler are presented in Table 9 (Appendix 1 and Appendix 2). Hydrogen fluoride was not detected in any of the test samples in quantities greater than the detection limit. The detection limit was used to calculate hydrogen fluoride emission data. Hydrogen chloride and ammonia were detected in quantities greater than the detection limit in all of the samples collected at each location. Average hydrogen chloride, hydrogen fluoride and ammonia emission data for the tests conducted at the BH Outlet of each Boiler is summarized below: | | Hydrogen Chloride | | Hydrogen Fluoride | | Ammonia | | |--|-------------------|--------------|-------------------|--------------|--------------|--------------| | Acid Gases | Boiler No. | Boiler No. 2 | Boiler No. 1 | Boiler No. 2 | Boiler No. 1 | Boiler No. 2 | | Emission Parameter | 1 | | | | | | | Actual Conc. (mg/m³) | 2.94 | 2.29 | <0.075 | <0.076 | 0.45 | 0.49 | | Dry Reference Conc. (mg/Rm³)* | 4.91 | 3.90 | <0.13 | <0.13 | 0.75 | 0.84 | | Dry Adjusted Conc. (mg/Rm ³)** | 4.00 | 3.06 | <0.10 | <0.10 | 0.61 | 0.66 | | Wet Reference Conc. (mg/Rm ³)* | 4.18 | 3.27 | <0.11 | <0.11 | 0.64 | 0.70 | | Emission Rate (mg/s) | 76.2 | 60.8 | <1.95 | <2.02 | 11.6 | 13.1 | | Dry Adjusted Conc. (ppm)** | 2.69 | 2.05 | <0.13 | <0.13 | 0.88 | 0.94 | ^{*} at 25°C and 1 atmosphere Hydrogen fluoride and ammonia were not detected in the blank samples in quantities greater than the detection limit. Hydrogen chloride was detected in Blank Train No. 2 in quantities greater than the detection limit. The blank analysis was not subtracted from the test sample analyses during calculation of the emission data. ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume #### 7.6 Combustion Gas Emission Data Combustion gases, including carbon dioxide, carbon monoxide, hydrogen chloride, nitrogen oxides, oxygen and sulphur dioxide, were measured continuously at the BH Outlet during the emission testing program by the DYEC CEMs. Oxygen was also measured at the Quench Inlet by the DYEC CEMS. The oxygen, carbon dioxide and carbon monoxide concentrations for each test period were used to calculate the molecular weight of the gas stream. The oxygen concentration data was also used to correct the dry reference concentration data to 11% oxygen. DYEC provided 1-hour average concentrations for each clock hour using the 1-minute combustion gas data measured by the DYEC CEMs during each isokinetic test day at each Boiler. DYEC CEMS data was provided from November 9, 2020 at 00:00 to November 12, 2020 at 23:00 for each Boiler. A 24-hour rolling average was determined for hydrogen chloride, nitrogen oxides and sulphur dioxide using the 1-hour average data for the isokinetic test days at each unit to compare to the in-stack limits stated in the ECA. A 4-hour rolling average was determined for carbon monoxide using the calculated 1-hour average data for the isokinetic test days at each unit to compare to the in-stack limit stated in the ECA. The minimum, average and maximum 1-hour, 4-hour and 24-hour combustion gas data measured by the DYEC CEMS is summarized in Table 10 (Appendix 1 and Appendix 2). The maximum concentration, along with the in-stack limit stated in the ECA, is summarized in the following table for each component. | | | In-Stack ECA | Maximum Co | oncentration | |-------------------------------------|---|--------------|--------------|--------------| | Combustion Gases Emission Parameter | | Limit | Boiler No. 1 | Boiler No. 2 | | | Oxygen (%, 1-hr) | - | 9.51 | 8.90 | | | Carbon Monoxide (mg/Rm ³ , 4-hr)* | ≤ 40 | 16.8 | 20.8 | | BH Outlet | Sulphur Dioxide (mg/Rm ³ , 24-hr)* | ≤ 35 | 0.5 | 0.5 | | bn Outlet | Nitrogen Oxides (mg/Rm ³ , 24-hr)* | ≤ 121 | 110 | 111 | | | Hydrogen Chloride (mg/Rm ³ , 24-hr)* | ≤ 9 | 4.4 | 3.7 | | | Total Hydrocarbons (mg/Rm³, 1-hr)* | - | 0 | 1 | | Quench Inlet | Oxygen (%, 1-hr) | ≥ 6 | 9 | 9 | ^{*} dry at reference conditions, adjusted to 11% oxygen ^{**} dry at reference conditions Total hydrocarbon concentration data
was measured by ORTECH on November 9, 2020 at the Quench Inlet and BH Outlet sampling locations. The results of the total hydrocarbons tests are summarized in Table 10 (Appendix 1 and Appendix 2). The average THC concentration for each location, along with the in-stack limit stated in the ECA, is summarized in the following table. | | | | Average Co | ncentration | |--------------|----------------------------------|-------|--------------|--------------| | Com | oustion Gases Emission Parameter | Limit | Boiler No. 1 | Boiler No. 2 | | DI C. Hat | Total Hydrocarbons (1-minute)* | - | 0.5 | 0.3 | | BH Outlet | Total Hydrocarbons (10-minute)** | - | 0.5 | 0.3 | | Ouench Inlet | Total Hydrocarbons (1-minute)* | - | 0.5 | 1.1 | | Quench Inlet | Total Hydrocarbons (10-minute)** | 50 | 0.5 | 1.1 | - * ppm dry basis, expressed as equivalent methane (average of each 60 minute test with data recorded in 1-minute intervals) - ** ppm dry basis, expressed as equivalent methane (average of each 60 minute test calculated using the 10-minute rolling average) The one-minute average total hydrocarbon data and the 10-minute total hydrocarbon data measured by ORTECH and expressed on a dry basis as equivalent methane is provided in Appendix 26. #### 7.7 Metal Emission Data Metal analytical results for the tests performed at the BH Outlet of each Boiler are given in Tables 11, 12 and 13 (Appendix 1 and Appendix 2) for Test No. 1, Test No. 2 and Test No. 3, respectively. Metal concentrations and emission rates are shown in Tables 14, 15 and 16 for Test No. 1, Test No. 2 and Test No. 3, respectively. Summaries of the metal actual concentrations, dry reference concentrations, dry adjusted concentrations, wet reference concentrations, and emission rates including the coefficients of variation for the tests performed are provided in Tables 17, 18, 19, 20 and 21, respectively. Table 22 summarizes the average metal emission data for the tests performed. Table 23 summarizes the results from the blank metals trains. The amount of metals detected in the blank trains was significant when compared to the amounts collected in the test trains since most of the metals in the test trains were at or near the detection limit. The emission data was not corrected for the blank data. The metals analysis of the Method 29 test trains was performed on two separate analytical fractions, the probe and filter hydrofluoric acid digest and analysis of the train impingers and associated rinses. In instances where all analyses were reported to be below the detection limit for a given metal, the value of the detection limit for the fraction most likely to contain that metal was used to calculate emission data, and the remaining fraction was assigned a value of zero. In instances where any given fraction was detected that value was used to calculate emission data, and the remaining undetected fraction were assigned a value of zero. The ECA stipulates maximum in-stack limits for the emissions of various compounds including cadmium and lead. The average cadmium emission data is summarized below: | Cadmium Emission Parameter | Boiler No. 1 BH Outlet | Boiler No. 2 BH Outlet | |-------------------------------|------------------------|------------------------| | Actual Conc. (μg/m³) | 0.055 | 0.041 | | Dry Reference Conc. (μg/Rm³)* | 0.093 | 0.071 | | Dry Adjusted Conc. (μg/Rm³)** | 0.075 | 0.056 | | Wet Reference Conc. (μg/Rm³)* | 0.079 | 0.060 | | Emission Rate (mg/s) | 0.0014 | 0.0011 | ^{*} at 25°C and 1 atmosphere The average lead emission data is summarized below: | Lead Emission Parameter | Boiler No. 1 BH Outlet | Boiler No. 2 BH Outlet | |-------------------------------|------------------------|------------------------| | Actual Conc. (μg/m³) | 0.27 | 0.25 | | Dry Reference Conc. (μg/Rm³)* | 0.46 | 0.43 | | Dry Adjusted Conc. (μg/Rm³)** | 0.37 | 0.34 | | Wet Reference Conc. (μg/Rm³)* | 0.39 | 0.36 | | Emission Rate (mg/s) | 0.0071 | 0.0067 | ^{*} at 25°C and 1 atmosphere The cadmium and lead dry adjusted concentrations were well below the maximum in-stack emission limits stated in the ECA (7 μ g/Rm³, adjusted to 11% oxygen for cadmium and 50 μ g/Rm³, adjusted to 11% oxygen for lead). ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ## 7.8 Mercury Emission Data Mercury analysis, concentration and emission data are also summarized in the metals emission tables. Mercury was detected in samples from each test at Boiler No. 1 and in one of the three tests at Boiler No. 2, specifically in the impinger sample analysis, and as is the case with all other analyses the mercury analytical results are not blank corrected. The average mercury emission data is summarized below: | Mercury Emission Parameter | Boiler No. 1 BH Outlet | Boiler No. 2 BH Outlet | |--|------------------------|------------------------| | Actual Conc. (μg/m³) | 0.25 | <0.034 | | Dry Reference Conc. (μg/Rm ³)* | 0.42 | <0.058 | | Dry Adjusted Conc. (μg/Rm³)** | 0.34 | <0.045 | | Wet Reference Conc. (μg/Rm³)* | 0.36 | <0.048 | | Emission Rate (mg/s) | 0.0065 | <0.00089 | ^{*} at 25°C and 1 atmosphere The mercury dry adjusted concentrations were well below the maximum in-stack emission limit stated in the ECA of 15 μ g/Rm³, adjusted to 11% oxygen. #### 7.9 Semi-Volatile Organic Emission Data The combined filter and probe rinse, and combined Amberlite XAD-2 cartridge and impinger solutions for each of the semi-volatile organics trains were analyzed together (one analysis per test) for semi-volatile organic compounds including select dioxins, furans, dioxin-like polychlorinated biphenyls (PCBs), chlorobenzenes (CBs), chlorophenols (CPs) and polycyclic aromatic hydrocarbons (PAHs) at the BH Outlet of each Boiler. #### 7.9.1 Dioxins and Furans Emission Data Dioxins and furans are groups of chemically related chlorinated organic compounds or congeners. There are seventy-five dioxin congeners and one hundred and thirty five furan congeners. The individual congeners all have different molecular structures and they may also have different molecular formulae. Individual congeners, which have the same molecular formula but different molecular structure, are referred to as isomers. Groups of isomers are referred to as congener groups or homologues. The basic dioxin and furan molecules have the molecular formulae $C_{12}H_8O_2$ and $C_{12}H_8O$, respectively. In chlorinated dioxin and furans, between one and eight chlorine atoms may replace an equal number of hydrogen atoms in the basic molecule. ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume The following table lists the chlorinated dioxin and furan congener groups, and the number of isomers present in each group: | Congener G | roup Abbreviation | Number of Chlorine
Atoms Per Molecule | Molecular Formula | Number of Isomers Per
Congener Group | |------------|-------------------|--|---|---| | | M1CDD | 1 | C ₁₂ H ₇ ClO ₂ | 2 | | | D2CDD | 2 | $C_{12}H_6Cl_2O_2$ | 10 | | | T3CDD | 3 | $C_{12}H_5Cl_3O_2$ | 14 | | Dioxins | T4CDD | 4 | $C_{12}H_4CI_4O_2$ | 22 | | DIOXINS | P5CDD | 5 | $C_{12}H_3CI_5O_2$ | 14 | | | H6CDD | 6 | $C_{12}H_2CI_6O_2$ | 10 | | | H7CDD | 7 | $C_{12}H_1CI_7O_2$ | 2 | | | O8CDD | 8 | $C_{12}CI_8O_2$ | 1 | | | M1CDF | 1 | C ₁₂ H ₇ ClO | 4 | | | D2CDF | 2 | $C_{12}H_6CI_2O$ | 16 | | | T3CDF | 3 | $C_{12}H_5Cl_3O$ | 28 | | Furanc | T4CDF | 4 | $C_{12}H_4CI_4O$ | 38 | | Furans | P5CDF | 5 | $C_{12}H_3CI_5O$ | 28 | | | H6CDF | 6 | $C_{12}H_2CI_6O$ | 16 | | | H7CDF | 7 | $C_{12}H_1CI_7O$ | 4 | | | O8CDF | 8 | $C_{12}CI_8O$ | 1 | In Ontario, the MECP normally requires that only the higher tetra to octa (T4CDD to O8CDD) dioxin congeners and the higher tetra to octa (T4CDF to O8CDF) furan congeners are included in air emission testing. This is because the lower mono to tri congener groups (M1CDD to T3CDD and M1CDF to T3CDF) are considered to be generally less toxic than the higher congener groups and the test procedures have not been validated for these lower groups. In addition, it is acceptable to the MECP to use only specific isomers in the higher congener groups to compare emission data with the MECP criteria for dioxin and furan emissions. Dioxin and furan congener group analytical results and emission data for the tests performed at the BH Outlet of each Boiler are given in Table 24 to Table 32 (Appendix 1 and Appendix 2). The results are shown as congener groups from T4CDF to O8CDF and T4CDD to O8CDD, as normally required by the MECP. The average dioxin congener group emission data for each location is summarized below: | Dioxin Congener Emission Parameter | Boiler No. 1 BH Outlet | Boiler No. 2 BH Outlet | |--|------------------------|------------------------| | Actual Conc. (ng/m³) | 1.29 | 0.30 | | Dry Reference Conc. (ng/Rm ³)* | 2.20 | 0.52 | | Dry Adjusted Conc. (ng/Rm ³)** | 1.75 | 0.41 | | Wet Reference Conc. (ng/Rm ³)* | 1.84 | 0.44 | | Emission Rate (ng/s) | 32.6 | 7.86 | at 25°C and 1 atmosphere ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume The average furan congener group emission data for each location is summarized below: | Furan Congener Emission Parameter | Boiler No. 1 BH Outlet | Boiler No. 2 BH Outlet | |--|------------------------|------------------------| | Actual Conc. (ng/m³) | 0.38 | <0.082 | | Dry Reference Conc. (ng/Rm³)* | 0.65 | <0.14 | | Dry Adjusted Conc. (ng/Rm ³)** | 0.52 | <0.11 | | Wet Reference Conc. (ng/Rm ³)* | 0.54 | <0.12 | | Emission Rate (ng/s) | 9.66 | <2.12 | ^{*} at 25°C and 1 atmosphere The amounts of dioxin and furan congeners detected in the blank sampling trains and in the laboratory blank were insignificant
when compared to the amounts detected in the test trains. The blank sampling train analytical results are shown in Table 33. The blank analyses were not subtracted from the test sample analyses during calculation of the dioxin and furan congener emission data. Dioxin, furan and dioxin-like PCB specific isomer analytical results and emission data for the tests performed are given in Table 34 to Table 42 (Appendix 1 and 2) for the BH Outlets. The isomers included in these tables are considered the most toxic of all the dioxin and furan isomers. They are characterized by having chlorine atoms located at the 2, 3, 7 and 8 positions of the basic dioxin and furan molecules. The blank sampling train analytical results are shown in Table 43 for the BH Outlet. The blank analyses were not subtracted from the test sample analyses during the calculation of the dioxin and furan isomer emission data. Several schemes have been proposed for calculating dioxin and furan toxic equivalents (TEQ's) in which different factors have been assigned to the various isomers and congener groups. Calculations in this report are based on the methods preferred by the MECP, which use WHO and NATO/CCMS (1989) toxicity equivalence factors (TEFs). The purpose in calculating dioxin and furan emission rates as toxic equivalents is to provide a means of assessing and comparing the effects of dioxin and furan emission rates for different emission sources. In these calculations, 2,3,7,8-T4CDD, the most toxic of all the dioxin and furan isomers, is assigned an arbitrary value of 1.0 for a toxic equivalency factor. Then, other dioxin and furan isomers are assigned toxic equivalency factors which are based on their relative toxicity compared with 2,3,7,8-T4CDD. Emission rates for each isomer are multiplied by their assigned factor and the products are summed to provide the toxic equivalency emission rate. ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume The MECP "Summary of Standards and Guidelines to Support Ontario Regulation 419/05 – Air Pollution – Local Air Quality", dated April 2012, provided a new framework for calculating dioxin and furan toxicity equivalent concentrations which includes emission data for 12 dioxin-like PCBs. This document was replaced by "Air Contaminants Benchmarks List: standards, guidelines and screening levels for assessing point of impingement concentrations of air contaminants", with the most recent version published on April 27, 2018, however the dioxin and furan toxicity equivalent calculation methodology remains the same. Tables 44 to 49 show the dioxins, furans and dioxin-like PCBs toxicity equivalent emission data calculated using the full detection limit for those compounds not detected. Table 50 show the dioxins, furans and dioxin-like PCBs toxicity equivalent emission data calculated using half the detection limit for those compounds not detected. The average dioxin, furan and dioxin-like PCBs toxicity equivalent emission data, calculated using the WHO toxicity equivalence factors and half the detection limit (Table 50 in Appendix 1 and Appendix 2) is summarized below. Per the MECP standards and guidelines referenced above, dioxin, furan and dioxin-like PCB toxicity equivalent emission data calculated using the WHO toxicity equivalence factors and half the detection limit are used for dispersion modelling analysis for comparison with the point of impingement criteria discussed in Section 8. | Total Dioxin and Furan Isomer and | Boiler No. 1 | Boiler No. 2 | |--|--------------|--------------| | PBCs Emission Parameter | BH Outlet | BH Outlet | | Actual Conc. (pg TEQ/m³) | 20.4 | 4.12 | | Dry Reference Conc. (pg TEQ/Rm ³)* | 35.0 | 7.02 | | Dry Adjusted Conc. (pg TEQ/Rm ³)** | 27.8 | 5.55 | | Wet Reference Conc. (pg TEQ/Rm ³)* | 29.3 | 5.92 | | Emission Rate (ng TEQ/s) | 0.52 | 0.11 | ^{*} at 25°C and 1 atmosphere The average dioxin and furan dry adjusted toxicity equivalent concentration, calculated using the NATO/CCMS (1989) toxicity equivalence factors and the full detection limit (Table 46B in Appendix 1 and Appendix 2) is summarized below. Dioxin and furan toxicity equivalent emission data for the BH Outlet, calculated using the NATO/CCMS (1989) toxicity equivalence factors and the full detection limit, is used for comparison with the in-stack emission limit specified in the ECA. | Dioxin and Furan Isomer | Boiler No. 1 | Boiler No. 2 | |---|--------------|--------------| | Emission Parameter | BH Outlet | BH Outlet | | Dry Adjusted Conc. (pg TEQ/Rm ³)* | <28.7 | <7.26 | ^{*} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume The dioxin and furan dry adjusted TEQ concentration at the BH Outlet of each Boiler was well below the maximum in-stack emission limit stated in the ECA of 60 pgTEQ/Rm³, adjusted to 11% oxygen. ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ## 7.9.2 Chlorobenzene and Chlorophenol Emission Data As with dioxins and furans, chlorobenzenes and chlorophenols are groups of compounds that have different molecular structures and may also have different numbers of chlorine atoms in the basic molecule. Chlorobenzenes have the structure of the benzene molecule except that between one and six chlorine atoms are substituted for an equal number of hydrogen atoms in the benzene ring. Benzene has the molecular formula C_6H_6 . Chlorobenzene congener groups have the molecular formulae C_6H_5Cl , $C_6H_4Cl_2$, $C_6H_3Cl_3$, $C_6H_2Cl_4$, C_6HCl_5 and C_6Cl_6 . Chlorophenols have the structure of the phenol molecule except that between one and five chlorine atoms are substituted for an equal number of hydrogen atoms in the benzene ring. Phenol has the molecular formula C_6H_5OH . Chlorophenol congener groups have the molecular formulae C_6H_4ClOH , $C_6H_3Cl_2OH$, $C_6H_2Cl_3OH$, C_6HCl_4OH and C_6Cl_5OH . Chlorobenzene congener and isomer analytical results and emission data are given in Table 51 to Table 59 for the BH Outlet. Amounts collected were assumed to be equivalent to the detection limit, where the analytical results were below the detection limit. The average total chlorobenzene emission data is presented below: | Chlorobenzenes Emission Parameter | Boiler No. 1 BH Outlet | Boiler No. 2 BH Outlet | | | |--|------------------------|------------------------|--|--| | Actual Conc. (ng/m³) | <626 | <300 | | | | Dry Reference Conc. (ng/Rm ³)* | <1069 | <512 | | | | Dry Adjusted Conc. (ng/Rm ³)** | <850 | <404 | | | | Wet Reference Conc. (ng/Rm ³)* | <895 | <431 | | | | Emission Rate (µg/s) | <15.9 | <7.73 | | | ^{*} at 25°C and 1 atmosphere Blank sampling train and laboratory blank analytical results for chlorobenzenes are given in Table 60. The blank analyses were not subtracted from the test sample analyses during the calculation of chlorobenzene emission data. Chlorophenol congener and isomer analytical results and emission data is given in Table 61 to Table 69 for the BH Outlet of each Boiler. Amounts collected were assumed to be equivalent to the detection limit, where the analytical results were below the detection limits (<DL). ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume The average total chlorophenol emission data is presented below: | Chlorophenol Emission Parameter | Boiler No. 1 BH Outlet | Boiler No. 2 BH Outlet | |--|------------------------|------------------------| | Actual Conc. (ng/m³) | <132 | <147 | | Dry Reference Conc. (ng/Rm ³)* | <226 | <250 | | Dry Adjusted Conc. (ng/Rm ³)** | <180 | <198 | | Wet Reference Conc. (ng/Rm³)* | <189 | <211 | | Emission Rate (μg/s) | <3.35 | <3.77 | at 25°C and 1 atmosphere Blank sampling train and laboratory blank analytical results for chlorophenols are given in Table 70. The blank analyses were not subtracted from the test sample analyses during the calculation of chlorophenol emission data. #### 7.9.3 Polycyclic Aromatic Hydrocarbon Emission Data The SVOC samples from the BH Outlet sampling location on each Boiler were also analyzed for select polycyclic aromatic hydrocarbon (PAH) compounds. Analytical results and PAH emission data for the tests performed are provided in Table 71, 72 and Table 73 for Test No. 1, Test No. 2 and Test No. 3, respectively. PAH actual concentrations, dry reference concentrations, dry adjusted concentrations, wet reference concentrations, and emission rates are shown in Tables 74 to 78, respectively. A summary of the average emission data is given in Table 79. The average total PAH emission data is presented below: | Total PAH Emission Parameter | Boiler No. 1 BH Outlet | Boiler No. 2 BH Outlet | |--|------------------------|------------------------| | Actual Conc. (ng/m³) | <229 | <190 | | Dry Reference Conc. (ng/Rm ³)* | <391 | <324 | | Dry Adjusted Conc. (ng/Rm ³)** | <311 | <256 | | Wet Reference Conc. (ng/Rm³)* | <328 | <273 | | Emission Rate (μg/s) | <5.80 | <4.89 | ^{*} at 25°C and 1 atmosphere Table 80 summarizes the lab blank and blank train PAH analyses. The blank train sample analyses were not subtracted from the test train sample analyses for the purposes of emission rate calculations. ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ## 7.10 Aldehydes Acetaldehyde, formaldehyde and acrolein emission data for the tests conducted at the BH Outlet of each Boiler is presented in Table 81. Average acetaldehyde, formaldehyde and acrolein emission data for the tests conducted at the BH Outlet of each Boiler is summarized below: | | Acetaldehyde | | Formal | dehyde | Acrolein | | |--|--------------|--------------|--------------|--------------|--------------|--------------| | Aldehydes |
Boiler No. 1 | Boiler No. 2 | Boiler No. 1 | Boiler No. 2 | Boiler No. 1 | Boiler No. 2 | | Emission Parameter | BH Outlet | | Actual Conc. (μg/m³) | 25.3 | 37.8 | 26.8 | 32.2 | <1.40 | <1.86 | | Dry Reference Conc. (μg/Rm³)* | 43.4 | 65.1 | 46.1 | 55.3 | <2.40 | <3.20 | | Dry Adjusted Conc. (μg/Rm³)** | 34.5 | 51.4 | 36.6 | 43.7 | <1.90 | <2.52 | | Wet Reference Conc. (μg/Rm ³)* | 36.3 | 54.6 | 38.5 | 46.4 | <2.01 | <2.68 | | Emission Rate (mg/s) | 0.64 | 0.99 | 0.68 | 0.84 | <0.035 | <0.049 | ^{*} at 25°C and 1 atmosphere Acrolein was not detected in any of the test samples or in the blank samples in quantities greater than the reported detection limit. Acetaldehyde and formaldehyde were detected in both blank samples in quantities greater than the detection limit and in quantities similar to the test samples. ## 7.11 Volatile Organic Emission Data Three forty minute test runs were completed at each BH Outlet for volatile organic compounds using SLO-VOST. One backup pair of tubes was collected for each Boiler and archived in case a sample was lost during the analytical extraction process. Volatile organic analysis data for the tests is provided in Table 82, 83 and Table 84 for Test No. 1, Test No. 2 and Test No. 3, respectively. The average test results of volatile organic actual concentrations, dry reference concentrations, dry adjusted concentrations, wet reference concentrations, and emission rates are shown in Table 85 to 89, respectively. The average volatile organic emission data is summarized in Table 90. ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume The average total VOC emission data collected from the VOST sampling train is presented below: | VOC Emission Parameter | Boiler No. 1 BH Outlet | Boiler No. 2 BH Outlet | |-------------------------------|------------------------|------------------------| | Actual Conc. (μg/m³) | <215 | <261 | | Dry Reference Conc. (μg/Rm³)* | <373 | <448 | | Dry Adjusted Conc. (μg/Rm³)** | <293 | <354 | | Wet Reference Conc. (μg/Rm³)* | <310 | <376 | | Emission Rate (mg/s) | <5.51 | <6.76 | ^{*} at 25°C and 1 atmosphere The average total VOC emission data, including acetaldehyde, formaldehyde and acrolein, per the list provided in Schedule D of the ECA is presented below: | VOC Emission Parameter | Boiler No. 1 BH Outlet | Boiler No. 2 BH Outlet | |-------------------------------|------------------------|------------------------| | Dry Reference Conc. (μg/Rm³)* | <465 | <572 | | Dry Adjusted Conc. (μg/Rm³)** | <366 | <452 | | Emission Rate (mg/s) | <6.87 | <8.65 | at 25°C and 1 atmosphere Analysis of blank adsorbent tubes is provided in Table 91. The field blank tubes were taken to the test site and uncapped in order to expose the tubes to the ambient environment at the sampling location. Test sample analyses were not blank corrected during the calculation of the emission data. ## 8. DISPERSION MODELLING The emission data measured during the testing program was used to assess emissions from the main stack against the point of impingement criteria detailed in Ontario Regulation 419/05 or the applicable MECP guideline. Dispersion modelling was completed using the CALPUFF model (using Version 6.263 as requested by the MECP) by Golder Associates. The dispersion modelling results are detailed in Appendix 27. Golder Associates can provide the dispersion modelling zip files upon request. The predicted ground level Point of Impingement (POI) concentrations, calculated based on the average total emission rate, for each contaminant included in the November 2020 emission testing program was well below the applicable standard, guideline or upper risk threshold. The contaminant with the highest predicted concentration relative to the standard was nitrogen oxides (6% of the 1-hour standard and 2% of the 24-hour standard with meteorological anomaly removal), all other contaminants were less than 1% of the relevant standard with meteorological anomaly removal. ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ^{**} at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume #### 9. FACILITY PROCESS DATA Continuous Emission Monitoring (CEM) data was supplied by DYEC personnel for the emission test program. The 1-hour CEM System data was provided for the following process parameters at the BH Outlet sampling locations: - Hydrogen Chloride (mg/Rm³, adjusted to 11% oxygen) - Nitrogen Oxides (mg/Rm³, adjusted to 11% oxygen) - Sulphur Dioxide (mg/Rm³, adjusted to 11% oxygen) - Carbon Monoxide (mg/Rm³, adjusted to 11% oxygen) - Oxygen (% volume, dry) - Total Hydrocarbons (mg/Rm³, adjusted to 11% oxygen) DYEC provided 1-hour average concentrations for each clock hour using the 1-minute combustion gas data measured by the DYEC CEMs during each isokinetic test day at each Boiler. DYEC CEMS data was provided from November 9, 2020 at 00:00 to November 12, 2020 at 23:00 for each Boiler. A 24-hour rolling average was determined for hydrogen chloride, nitrogen oxides and sulphur dioxide using the 1-hour average data for the isokinetic test days at each unit to compare to the in-stack limits stated in the ECA. A 4-hour rolling average was determined for carbon monoxide using the calculated 1-hour average data for the isokinetic test days at each unit to compare to the in-stack limit stated in the ECA. The combustion gas concentrations, expressed as 1-hour average concentrations, 4-hour rolling average and 24-hour rolling average where applicable, at the Boiler No. 1 BH Outlet and Boiler No. 2 BH Outlet are provided in Appendix 28. 1-minute CEM data provided by DYEC was used to calculate the average oxygen, carbon dioxide and carbon monoxide concentrations for each isokinetic test period. The average oxygen, carbon dioxide and carbon monoxide concentrations were used to calculate the molecular weight of the gas stream. The average oxygen concentrations were also used to adjust the dry reference concentration data to 11% oxygen. The 1-minute data for the isokinetic test periods has been retained by ORTECH and can be provided upon request. The facility process data was also supplied by DYEC personnel for each test day. Hourly process data has been retained by Covanta and can be provided upon request. The process data is summarized below: | | Total
Power | Combu | Fuel
sted**
³ /d) | Avg. Con
Zone ⁻ | Гетр. | | am
les/d) | Combus | SW
sted***
ies/d) | lnj. l | eagent
Rate
rs/d) | | Inj. Rate
/d) | | nj. Rate
:/d) | |-----------|--------------------|-----------------|------------------------------------|-------------------------------|-----------------|-----------------|-----------------|-----------------|-------------------------|-----------------|-------------------------|-----------------|------------------|-----------------|------------------| | Test Date | Output*
(MWh/d) | Boiler
No. 1 | Boiler
No. 2 | Nov 9/20 | 392 | 0 | 0 | 1230 | 1312 | 808 | 808 | 192 | 199 | 531 | 801 | 134 | 126 | 4393 | 4242 | | Nov 10/20 | 391 | 0 | 0 | 1226 | 1300 | 807 | 804 | 202 | 203 | 522 | 828 | 133 | 126 | 4208 | 4262 | | Nov 11/20 | 389 | 23 | 0 | 1235 | 1316 | 803 | 804 | 204 | 202 | 516 | 882 | 131 | 126 | 4182 | 4205 | | Nov 12/20 | 390 | 0 | 0 | 1227 | 1314 | 806 | 805 | 200 | 205 | 458 | 755 | 134 | 126 | 4167 | 4224 | | Average | 391 | 6 | 0 | 1230 | 1311 | 806 | 805 | 199 | 202 | 507 | 816 | 133 | 126 | 4237 | 4233 | ^{*} Gross turbine output ^{**} Auxiliary fuel was not combusted during the conduct of reference test runs to demonstrate ECA compliance ^{***} Calculated by crane scales. #### 10. CONCLUSIONS The main conclusions which can be drawn from the present emission testing program are: - During the stack test periods the facility was maintained within the operational parameters defined by the amended ECA that constitutes normal operation. Testing was conducted at a steam production rate of greater than 803 tonnes of steam per day for each Boiler. The maximum continuous rating for the facility is 1614.7 tonnes of steam per day for the two Boilers combined (33.64 tonnes of steam per hour or 807.4 tonnes per day for each Boiler). - The in-stack concentrations of the components listed in the ECA were all below the concentration limits provided in the ECA. - Using CALPUFF dispersion modelling techniques (using Version 6.263 as requested by the MECP), the predicted maximum point of impingement concentrations, based on the average test results for both boilers, show DYEC to be operating well below the current standards in Regulation 419/05 (Schedule 3) under the Ontario Environmental Protection Act and other MECP criteria including guidelines and upper risk thresholds. Schedule C of ECA No. 7306-8FDKNX lists in-stack limits for the emissions of various compounds. Emissions limits are given for particulate matter, mercury, cadmium, lead, dioxins and furans and organic matter as the results from compliance source testing. Emission limits are also given for hydrochloric acid, sulphur dioxide, nitrogen oxides and carbon monoxide calculated as the rolling arithmetic average of data measured by a CEMS. The July 2020 relative accuracy and system bias testing was conducted on the Continuous Emission Monitoring Systems (CEMS) installed at the Quench Inlet and BH Outlet of each Boiler prior to the compliance testing program. Since the DYEC CEMS met the performance parameters detailed in Schedule F of the ECA, the data recorded by the DYEC CEMS was used to assess against the in-stack emissions limits detailed in Schedule C of the ECA for hydrochloric acid, sulphur dioxide, nitrogen oxides and carbon monoxide. Note the DYEC CEMS data for the isokinetic test days at each unit was used to determine the minimum, average and maximum concentrations of the combustion gases listed in the ECA. Total hydrocarbon concentration data was measured by ORTECH on November 9, 2020 at the Quench Inlet and BH Outlet sampling locations. The total hydrocarbon data
measured by ORTECH at the Quench Inlet sample locations was well below the total hydrocarbons (organic matter) in-stack emissions limit detailed in Schedule C of the ECA. The average results for the tests conducted at Boiler No. 1, along with the respective in-stack emission limits, are summarized in the following table: | Parameter | Test No. 1 | Test No. 2 | Test No. 3 | Average | In-Stack Limit | |--|------------|------------|------------|---------|----------------| | Total Power Output (MWh/day)* | - | - | - | 391 | - | | Average Combustion Zone Temp. (°C)* | - | - | - | 1230 | - | | Steam (tonnes/day)* | - | - | - | 806 | - | | MSW Combusted (tonnes/day)* | - | - | - | 199 | - | | NO _x Reagent Injection Rate (liters/day)* | - | - | - | 507 | - | | Carbon Injection (kg/day)* | - | - | - | 133 | - | | Lime Injection (kg/day)* | - | - | - | 4237 | - | | Filterable Particulate (mg/Rm³) (1) | 3.35 | 4.07 | 0.36 | 2.60 | 9 | | PM ₁₀ with Condensable (mg/Rm ³) (1) | <4.77 | <5.15 | <4.08 | <4.67 | - | | PM _{2.5} with Condensable (mg/Rm ³) (1) | <3.90 | <4.95 | <3.94 | <4.26 | - | | Hydrogen Fluoride (mg/Rm³) (1) | <0.097 | <0.10 | <0.11 | <0.10 | - | | Ammonia (mg/Rm³) (1) | 0.55 | 0.67 | 0.61 | 0.61 | - | | Cadmium (μg/Rm³) (1) | 0.093 | 0.075 | 0.058 | 0.075 | 7 | | Lead (μg/Rm ³) ⁽¹⁾ | 0.48 | 0.34 | 0.29 | 0.37 | 50 | | Mercury (μg/Rm ³) ⁽¹⁾ | 0.55 | 0.35 | 0.13 | 0.34 | 15 | | Antimony (μg/Rm³) ⁽¹⁾ | 0.092 | 0.046 | <0.040 | <0.059 | - | | Arsenic (μg/Rm ³) ⁽¹⁾ | <0.046 | <0.045 | <0.040 | <0.044 | - | | Barium (μg/Rm³) ⁽¹⁾ | 1.55 | 1.38 | 1.81 | 1.58 | - | | Beryllium (μg/Rm³) ⁽¹⁾ | <0.046 | <0.045 | <0.040 | <0.044 | - | | Chromium (μg/Rm³) ⁽¹⁾ | 1.41 | 1.00 | 0.65 | 1.02 | - | | Cobalt (μg/Rm³) ⁽¹⁾ | <0.046 | <0.045 | 0.069 | <0.053 | - | | Copper (µg/Rm³) (1) | 5.25 | 5.22 | 5.16 | 5.21 | - | | Molybdenum (μg/Rm³) ⁽¹⁾ | 5.60 | 5.34 | 4.79 | 5.24 | - | | Nickel (μg/Rm³) ⁽¹⁾ | 1.31 | 2.34 | 0.97 | 1.54 | - | | Selenium (μg/Rm³) ⁽¹⁾ | 1.33 | 1.84 | <0.20 | <1.12 | - | | Silver (μg/Rm³) ⁽¹⁾ | <0.046 | <0.045 | <0.040 | <0.044 | - | | Thallium (μg/Rm³) ⁽¹⁾ | 0.22 | 0.091 | <0.040 | <0.12 | - | | Vanadium (μg/Rm³) ⁽¹⁾ | <0.023 | <0.023 | <0.020 | <0.022 | - | | Zinc (μg/Rm³) ⁽¹⁾ | 8.23 | 5.17 | 4.52 | 5.97 | - | | Dioxins and Furans (pg TEQ/Rm ³) (3) | <31.2 | <31.0 | <23.8 | <28.7 | 60 | | Total Chlorobenzenes (ng/Rm³) (1) | <761 | <942 | <848 | <850 | - | | Total Chlorophenols (ng/Rm³) (1) | <178 | <185 | <175 | <180 | - | | Total PAHs (ng/Rm ³) ⁽¹⁾ | <200 | <515 | <219 | <311 | - | | VOCs (μg/Rm³) ⁽¹⁾ | <308 | <267 | <305 | <293 | - | | Aldehydes (μg/Rm³) ⁽¹⁾ | <79.9 | <60.5 | <78.5 | <73.0 | - | | Total VOCs (µg/Rm ³) (1) (4) | <388 | <328 | <384 | <366 | - | | Quench Inlet Organic Matter (THC) (ppm, dry) (2) | 0.9 | 0.2 | 0.3 | 0.5 | 50 | ^{*} based on process data provided by Covanta ⁽¹⁾ dry at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ⁽²⁾ dry basis as equivalent methane (average of each 60 minute test with data recorded in 1-minute intervals) ⁽³⁾ calculated using the NATO/CCMS (1989) toxicity equivalence factors and the full detection limit for those isomers below the analytical detection limit, dry at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ⁽⁴⁾ Includes all components from the volatile organic compounds test list in the ECA (i.e. Volatile Organic Sampling Train and Aldehyde Sampling train components). The average results for the tests conducted at Boiler No. 2, along with the respective in-stack emission limits, are summarized in the following table: | Parameter | Test No. 1 | Test No. 2 | Test No. 3 | Average | In-Stack Limit | |--|------------|------------|------------|---------|----------------| | Total Power Output (MWh/day)* | - | - | - | 391 | - | | Average Combustion Zone Temp. (°C)* | - | - | - | 1311 | - | | Steam (tonnes/day)* | - | - | - | 805 | - | | MSW Combusted (tonnes/day)* | - | - | - | 202 | - | | NO _x Reagent Injection Rate (liters/day)* | - | - | - | 816 | - | | Carbon Injection (kg/day)* | - | - | - | 126 | - | | Lime Injection (kg/day)* | - | - | - | 4233 | - | | Filterable Particulate (mg/Rm³) (1) | 2.72 | 0.76 | 2.52 | 2.00 | 9 | | PM ₁₀ with Condensable (mg/Rm ³) (1) | <4.96 | <5.40 | <4.68 | <5.01 | - | | PM _{2.5} with Condensable (mg/Rm ³) (1) | <4.89 | <5.27 | <4.54 | <4.90 | - | | Hydrogen Fluoride (mg/Rm³) (1) | <0.10 | <0.10 | <0.10 | <0.10 | - | | Ammonia (mg/Rm³) (1) | 0.73 | 0.65 | 0.60 | 0.66 | - | | Cadmium (µg/Rm³) (1) | 0.054 | 0.034 | 0.078 | 0.056 | 7 | | Lead (µg/Rm³) (1) | 0.34 | 0.32 | 0.36 | 0.34 | 50 | | Mercury (μg/Rm³) ⁽¹⁾ | 0.058 | < 0.033 | <0.045 | <0.045 | 15 | | Antimony (μg/Rm³) (1) | <0.038 | 0.051 | <0.045 | <0.044 | - | | Arsenic (μg/Rm³) ⁽¹⁾ | <0.038 | <0.045 | <0.045 | <0.042 | - | | Barium (μg/Rm³) ⁽¹⁾ | 0.22 | 1.93 | 2.18 | 1.44 | - | | Beryllium (μg/Rm³) ⁽¹⁾ | <0.038 | <0.045 | <0.045 | <0.042 | - | | Chromium (μg/Rm³) ⁽¹⁾ | 0.75 | 0.85 | 0.74 | 0.78 | - | | Cobalt (µg/Rm³) (1) | <0.038 | <0.045 | 0.066 | <0.050 | - | | Copper (µg/Rm³) (1) | 5.00 | 5.11 | 5.14 | 5.09 | - | | Molybdenum (μg/Rm³) ⁽¹⁾ | 4.55 | 5.33 | 5.20 | 5.03 | - | | Nickel (μg/Rm ³) ⁽¹⁾ | 0.66 | 0.83 | 1.11 | 0.87 | - | | Selenium (μg/Rm³) ⁽¹⁾ | <0.19 | 0.68 | <0.22 | < 0.37 | - | | Silver (μg/Rm³) ⁽¹⁾ | <0.038 | <0.045 | <0.045 | <0.042 | - | | Thallium (μg/Rm³) ⁽¹⁾ | <0.038 | 0.058 | 0.16 | <0.084 | - | | Vanadium (μg/Rm³) ⁽¹⁾ | <0.019 | <0.022 | 0.061 | <0.034 | - | | Zinc (μg/Rm³) ⁽¹⁾ | 3.75 | 5.36 | 5.67 | 4.93 | - | | Dioxins and Furans (pg TEQ/Rm ³) (3) | <6.90 | <8.31 | <6.59 | <7.26 | 60 | | Total Chlorobenzenes (ng/Rm³) (1) | <440 | <436 | <337 | <404 | - | | Total Chlorophenols (ng/Rm³) (1) | <206 | <173 | <215 | <198 | - | | Total PAHs (ng/Rm ³) ⁽¹⁾ | <229 | <311 | <227 | <256 | - | | VOCs (μg/Rm³) (1) | <317 | <400 | <345 | <354 | - | | Aldehydes (μg/Rm³) ⁽¹⁾ | <110 | <81.1 | <102 | <97.7 | - | | Total VOCs (μg/Rm ³) (1) (4) | <427 | <481 | <447 | <452 | - | | Quench Inlet Organic Matter (THC) (ppm, dry) (2) | 1.6 | 1.0 | 0.6 | 1.1 | 50 | ^{*} based on process data provided by Covanta ⁽¹⁾ dry at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ⁽²⁾ dry basis as equivalent methane (average of each 60 minute test with data recorded in 1-minute intervals) ⁽³⁾ calculated using the NATO/CCMS (1989) toxicity equivalence factors and the full detection limit for those isomers below the analytical detection limit, dry at 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ⁽⁴⁾ Includes all components from the volatile organic compounds test list in the ECA (i.e. Volatile Organic Sampling Train and Aldehyde Sampling train components). A summary of the minimum, average and maximum concentrations for the combustion gases measured by the DYEC CEMS with in-stack limits listed in the ECA is provided below for the two units. | Boiler No. | Parameter | Minimum | Average | Maximum | In-Stack Limit | |--------------|---|---------|---------|---------|----------------| | | Carbon Monoxide (mg/Rm³) (1) | 7.8 | 11.4 | 16.8 | 40 | | Doilor No. 1 | Hydrogen Chloride (mg/Rm ³) (2) | 3.4 | 3.8 | 4.4 | 9 | | Boiler No. 1 | Nitrogen Oxides (mg/Rm ³) (2) | 109 | 110 | 110 | 121 | | | Sulphur Dioxide (mg/Rm ³) (2) | 0 | 0.1 | 0.5 | 35 | | | Carbon Monoxide (mg/Rm³) (1) | 10.8 | 14.1 | 20.8 | 40 | | Poilor No. 2 | Hydrogen Chloride (mg/Rm ³) (2) | 2.8 | 3.2 | 3.7 | 9 | | Boiler No. 2 | Nitrogen Oxides (mg/Rm ³) (2) | 110 | 110 | 111 | 121 | | | Sulphur Dioxide (mg/Rm ³) (2) | 0 | 0.1 | 0.5 | 35 | - (1) 4-hour average measured by DYEC CEMS, dry at 25°C and 1 atmosphere adjusted to 11% oxygen by volume - (2) 24-hour average measured by DYEC CEMS, dry at 25°C and 1 atmosphere adjusted to 11% oxygen by volume ## **APPENDIX 1** Boiler No. 1 BH Outlet Data Tables (92 pages) TABLE 1 Covanta - Durham York Energy Centre Boiler No. 1 Isokinetic Sampling Train Test Schedules ## **Particulate and Metals Trains** | Test | Test Date | Samplin | Sampling Time* | | | |--------|-------------------|---------|----------------|-----|--| | Number | | Start | Finish | min | | | 1 | November 9, 2020 | 9:37 | 12:44 | 180 | | | 2 | November 9, 2020 | 13:29 | 16:44 | 180 | | | 3 | November 10, 2020 | 15:04 | 18:13 | 180 | | ## **Particle Size Distribution Trains** | Test | Test Date | Samplin | Sampling Time*
min | | |--------|-------------------|---------|-----------------------|-----| | Number | Start | | | | | 1 | November 10, 2020 | 8:09 | 10:13 | 120 | | 2 | November 10, 2020 | 10:58 | 12:59 | 120 | | 3 | November 10, 2020 | 13:42 | 15:45 | 120 | ## **Acid Gases Trains** | Test | Test Date | Samplin | Sampling Time* | | |--------|------------------|---------|----------------|-----| | Number | | Start | Finish | min | | 1 | November 9, 2020 | 9:31 | 10:31 | 60 | | 2 | November 9, 2020 | 11:44 | 12:44 | 60 | | 3 | November 9, 2020 | 13:09 | 14:09 | 60 | ## **Semi-Volatile Organic Compounds Trains** | Test Date | Samplin | Sampling Time* | | |-------------------|--|--|---| | | Start | Finish | min | | November 11, 2020 | 8:23 | 12:30 | 240 | | November 11, 2020 | 13:27 | 18:26 | 240 | | November 12, 2020 | 8:20 | 12:32 | 240 | | | November 11, 2020
November 11, 2020 | November 11, 2020 8:23 November 11, 2020 13:27 | Start Finish November 11, 2020 8:23 12:30 November 11, 2020 13:27 18:26 | ^{*} Actual sampling time excluding leak-checks, traverse changes and process down time. TABLE 2 Covanta - Durham York Energy Centre Boiler No. 1 Organic Compounds Test Schedules ## **Acrolein and Aldehydes Trains** | Test | Test Date | Samplin | Sampling Time | | |--------|-------------------
---------|---------------|-----| | Number | | Start | Finish | min | | _ | | | | | | 1 | November 11, 2020 | 11:38 | 12:38 | 60 | | 2 | November 11, 2020 | 12:42 | 13:42 | 60 | | 3 | November 11, 2020 | 13:45 | 15:35 | 60 | ## **Volatile Organic Compounds Trains** | Test | Test Date | Samplin | Sampling Time | | |--------|-------------------|---------|---------------|-----| | Number | | Start | Finish | min | | _ | | | | | | 1 | November 11, 2020 | 8:19 | 8:59 | 40 | | 2 | November 11, 2020 | 9:04 | 9:44 | 40 | | 3 | November 11, 2020 | 9:48 | 10:28 | 40 | | 4 | November 11, 2020 | 10:34 | 11:14 | 40 | | | | | | | ## **Total Hydrocarbons Trains** | Sampling | Test | Test Date | Sampling Period | | Sampling Time | |--------------|--------|------------------|-----------------|--------|---------------| | Location | Number | | Start | Finish | min · | | | | | | | | | BH Outlet | 1 | November 9, 2020 | 14:52 | 15:52 | 60 | | BH Outlet | 2 | November 9, 2020 | 15:58 | 16:58 | 60 | | BH Outlet | 3 | November 9, 2020 | 17:04 | 18:04 | 60 | | Quench Inlet | 1 | November 9, 2020 | 10:10 | 11:10 | 60 | | Quench Inlet | 2 | November 9, 2020 | 11:17 | 12:17 | 60 | | Quench Inlet | 3 | November 9, 2020 | 12:23 | 13:23 | 60 | | | | | | | | # TABLE 3 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Stack Gas Sampling Parameters ## **Particulate and Metals Trains** | Test
No. | Pitot
Tube | , | | Gas Volume
Sampled | Percentage of
Isokineticity | |-------------|---------------|--------|------|-----------------------|--------------------------------| | | Coefficient | Factor | mm | Rm³ * | % | | 1 | 0.851 | 0.999 | 6.38 | 3.521 | 97.5 | | 2 | 0.851 | 0.999 | 6.38 | 3.600 | 98.3 | | 3 | 0.848 | 1.004 | 6.73 | 3.969 | 101.2 | ## **Particle Size Distribution Trains** | Test
No. | Pitot
Tube | Dry Gas
Meter | Nozzle
Diameter | Gas Volume
Sampled | Percentage of
Isokineticity | |-------------|---------------|------------------|--------------------|-----------------------|--------------------------------| | | Coefficient | Factor | mm | Rm³ * | % | | 1 | 0.848 | 0.992 | 4.51 | 1.176 | 95.7 | | 2 | 0.848 | 0.992 | 4.51 | 1.180 | 101.7 | | 3 | 0.848 | 0.992 | 4.51 | 1.167 | 99.2 | ## **Acid Gases Trains** | Test
No. | Pitot
Tube | Dry Gas
Meter | Nozzle
Diameter | Gas Volume
Sampled | Percentage of
Isokineticity | |-------------|---------------|------------------|--------------------|-----------------------|--------------------------------| | | Coefficient | Factor | mm | Rm³ * | % | | 1 | 0.848 | 1.004 | 6.73 | 1.338 | 100.5 | | 2 | 0.848 | 1.004 | 6.73 | 1.296 | 100.0 | | 3 | 0.848 | 1.004 | 6.73 | 1.322 | 101.5 | ## **Semi-Volatile Organic Compounds Trains** | Test
No. | Pitot
Tube | Dry Gas
Meter | Nozzle
Diameter | Gas Volume
Sampled | Percentage of
Isokineticity | |-------------|---------------|------------------|--------------------|-----------------------|--------------------------------| | | Coefficient | Factor | mm | Rm³ * | % | | 1 | 0.849 | 1.004 | 6.73 | 5.135 | 99.7 | | 2 | 0.849 | 1.004 | 6.73 | 5.077 | 99.0 | | 3 | 0.849 | 1.004 | 6.73 | 5.162 | 99.6 | ^{*} Dry at 25°C and 1 atmosphere ## TABLE 4 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Stack Gas Physical Parameters ## **Particulate and Metals Trains** | Test
No. | Gas
Temp. | Moisture
by Volume | Gas
Velocity | Static
Pressure | Absolute
Pressure | Carbon Dioxide
by Volume | Oxygen
by Volume | |-------------|--------------|-----------------------|-----------------|--------------------|----------------------|-----------------------------|---------------------| | | °C | % | m/s | kPa | kPa | % * | % * | | 1 | 141 | 14.6 | 17.4 | -2.22 | 99.3 | 10.7 | 8.74 | | 2 | 142 | 15.8 | 17.9 | -2.22 | 99.1 | 10.7 | 8.75 | | 3 | 141 | 16.6 | 17.5 | -2.33 | 98.0 | 10.8 | 8.39 | | Average | 141 | 15.7 | 17.6 | -2.26 | 98.8 | 10.7 | 8.63 | ## **Particle Size Distribution Trains** | Test
No. | Gas
Temp. | Moisture
by Volume | Gas
Velocity | Static
Pressure | Absolute
Pressure | Carbon Dioxide
by Volume | Oxygen
by Volume | |-------------|--------------|-----------------------|-----------------|--------------------|----------------------|-----------------------------|---------------------| | | °C | % | m/s | kPa | kPa | % * | % * | | 1 | 142 | 16.7 | 18.3 | -2.33 | 98.4 | 10.9 | 8.36 | | 2 | 140 | 16.1 | 17.1 | -2.33 | 98.3 | 11.0 | 8.37 | | 3 | 141 | 16.6 | 17.6 | -2.33 | 98.1 | 10.8 | 8.45 | | Average | 141 | 16.5 | 17.7 | -2.33 | 98.3 | 10.9 | 8.39 | ## Acid Gases Trains ** | Test
No. | Gas
Temp. | Moisture
by Volume | Gas
Velocity | Static
Pressure | Absolute
Pressure | Carbon Dioxide
by Volume | Oxygen
by Volume | |-------------|--------------|-----------------------|-----------------|--------------------|----------------------|-----------------------------|---------------------| | | °C | % | m/s | kPa | kPa | % * | % * | | 1 | 140 | 14.4 | 17.2 | -2.22 | 99.4 | 10.8 | 8.73 | | 2 | 142 | 15.8 | 17.0 | -2.22 | 99.3 | 10.8 | 8.59 | | 3 | 143 | 17.6 | 17.6 | -2.22 | 99.1 | 11.0 | 8.30 | | Average | 142 | 15.9 | 17.3 | -2.22 | 99.3 | 10.9 | 8.54 | ## **Semi-Volatile Organics Trains** | Test
No. | Gas
Temp. | Moisture
by Volume | Gas
Velocity | Static
Pressure | Absolute
Pressure | Carbon Dioxide
by Volume | Oxygen
by Volume | |-------------|--------------|-----------------------|-----------------|--------------------|----------------------|-----------------------------|---------------------| | | °C | % | m/s | kPa | kPa | % * | % * | | 1 | 140 | 16.6 | 17.3 | -2.37 | 97.6 | 10.8 | 8.34 | | 2 | 139 | 16.2 | 17.1 | -2.37 | 97.7 | 10.8 | 8.49 | | 3 | 138 | 15.9 | 17.0 | -2.51 | 98.7 | 11.0 | 8.49 | | Average | 139 | 16.2 | 17.1 | -2.42 | 98.0 | 10.9 | 8.44 | ^{*} Dry basis, measured by the DYEC CEMS ^{**} Sampling was conducted isokinetically on a single traverse in the duct. ## TABLE 5 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Stack Gas Volumetric Flowrates ## **Particulate and Metals Trains** | Test
No. | Actual
Flowrate | Dry Reference
Flowrate | Dry Adjusted
Flowrate | Wet Reference
Flowrate | |-------------|--------------------|---------------------------|--------------------------|---------------------------| | | m³/s | Rm³/s * | Rm³/s ** | Rm³/s* | | 1 | 25.6 | 15.4 | 19.0 | 18.1 | | 2 | 26.5 | 15.7 | 19.2 | 18.6 | | 3 | 25.9 | 15.1 | 19.0 | 18.1 | | Average | 26.0 | 15.4 | 19.1 | 18.2 | ## **Particle Size Distribution Trains** | Test
No. | Actual
Flowrate
m³/s | Dry Reference
Flowrate
Rm³/s * | Dry Adjusted
Flowrate
Rm³/s ** | Wet Reference
Flowrate
Rm³/s* | |-------------|----------------------------|--------------------------------------|--------------------------------------|-------------------------------------| | 1 | 27.1 | 15.7 | 19.9 | 18.9 | | 2 | 25.3 | 14.9 | 18.9 | 17.7 | | 3 | 26.0 | 15.1 | 19.0 | 18.1 | | Average | 26.1 | 15.2 | 19.2 | 18.2 | ## Acid Gases Trains *** | Test
No. | Actual
Flowrate
m³/s | Dry Reference
Flowrate
Rm³/s * | Dry Adjusted
Flowrate
Rm³/s ** | Wet Reference
Flowrate
Rm³/s* | | |-------------|----------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--| | 1 | 25.3 | 15.3 | 18.9 | 17.9 | | | 2 | 25.2 | 14.9 | 18.6 | 17.7 | | | 3 | 26.0 | 15.0 | 19.1 | 18.2 | | | Average | 25.5 | 15.1 | 18.8 | 18.0 | | ## **Semi-Volatile Organics Trains** | Test
No. | Actual
Flowrate | Dry Reference
Flowrate | Dry Adjusted
Flowrate | Wet Reference
Flowrate | |-------------|--------------------|---------------------------|--------------------------|---------------------------| | | m³/s | Rm³/s * | Rm³/s ** | Rm³/s* | | 1 | 25.6 | 14.8 | 18.8 | 17.8 | | 2 | 25.3 | 14.8 | 18.5 | 17.6 | | 3 | 25.2 | 14.9 | 18.7 | 17.8 | | Average | 25.3 | 14.8 | 18.7 | 17.7 | - * At 25°C and 1 atmosphere - ** At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume - *** Sampling was conducted isokinetically on a single traverse in the duct. Volumetric flowrates from the corresponding particulate and metals tests were used to calculate emission data. TABLE 6 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Particulate Emission Data | Test | Partic | ulate Colle | cted | Dry Gas | · | Particulate | | Particulate | | |---------|----------------|----------------|-------|-------------------|--------|------------------|-----------------|------------------|------------------| | No. | Probe
Rinse | Main
Filter | Total | Volume
Sampled | Actual | Dry
Reference | Dry
Adjusted | Wet
Reference | Emission
Rate | | | mg | mg | mg | Rm ³ * | mg/m³ | mg/Rm³* | mg/Rm³** | mg/Rm³* | mg/s | | 1 | 14.4 | 0.1 | 14.5 | 2 521 | 2.40 | 4.12 | 2.25 | 2.52 | 60.6 | | 1 | | | | 3.521 | 2.48 | 4.12 | 3.35 | 3.52 | 63.6 | | 2 | 17.7 | 0.3 | 18.0 | 3.600 | 2.96 | 5.00 | 4.07 | 4.21 | 78.3 | | 3 | 1.6 | 0.2 | 1.8 | 3.969 | 0.26 | 0.45 | 0.36 | 0.38 | 6.83 | | Average | | | | | 1.90 | 3.19 | 2.60 | 2.70 | 49.6 | | Blank | 0.6 | 0.6 | | | | | | | | ^{*} At 25 °C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume # TABLE 7 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet PM_{2.5} and PM₁₀ Emission Data ## $PM_{2.5}$ | | Total | Dry Volume | | | Emission | | | |---------|-------------------|------------|----------------------|-----------------------|---------------------|---------------|-------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Rate | | No. mg | Rm ³ * | mg/m³ | mg/Rm ³ * | mg/Rm ³ ** | mg/Rm³* | mg/s | | | 1 | <0.5 | 1.176 | <0.25 | <0.43 | <0.34 | <0.35 | <6.68 | | 2 | <0.2 | 1.180 | <0.10 | <0.17 | <0.13 | <0.14 | <2.53 | | 3 | <0.3 | 1.167 | <0.15 | <0.26 | <0.20 | <0.21 | <3.88 | | Average | | | <0.17
| <0.28 | <0.22 | <0.24 | <4.36 | | Blank | <0.2 | , | | | | | | ## PM₁₀ | | Total | Dry Volume | | | Emission | | | |---------|-----------|-------------------|--------|----------------------|---------------------|---------------|-------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Rate | | No. | mg | Rm ³ * | mg/m³ | mg/Rm³* | mg/Rm³** | mg/Rm³* | mg/s | | 1 | <1.8 | 1.176 | <0.89 | <1.53 | <1.21 | <1.27 | <24.0 | | 2 | <0.5 | 1.180 | <0.25 | < 0.42 | < 0.33 | <0.36 | <6.31 | | 3 | <0.5 | 1.167 | <0.25 | <0.43 | <0.34 | <0.36 | <6.47 | | Average | | | <0.46 | <0.79 | <0.63 | <0.66 | <12.3 | | Blank | <0.3 | | | | | | | ^{*} At 25 °C and 1 atmosphere Note: "<" indicates that the analyte was not detected and the value of the detection limit was used to calculate the emission data. ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 8 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Condensable Particulate Emission Data ## **Inorganic Condensable Particulate** | | Total | Dry Volume | Inor | ganic Condensable P | articulate Concen | tration | Emission | |---------|-----------|------------|--------|----------------------|-----------------------|---------------|----------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Rate | | No. | mg | Rm³* | mg/m³ | mg/Rm³* | mg/Rm ³ ** | mg/Rm³* | mg/s | | 1 | 3.5 | 1.176 | 1.72 | 2.98 | 2.35 | 2.47 | 46.7 | | 2 | 4.0 | 1.180 | 2.00 | 3.39 | 2.68 | 2.85 | 50.5 | | 3 | 3.6 | 1.167 | 1.79 | 3.08 | 2.45 | 2.57 | 46.6 | | Average | | | 1.84 | 3.15 | 2.49 | 2.63 | 47.9 | | Blank | 1.4 | | | | | | | | | | | | | | | | ## **Organic Condensable Particulate** | Total | Dry Volume | Org | Emission | | | | |-----------|-------------------|---|--|--|--|--| | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Rate | | No. mg | Rm³* | mg/m³ | mg/Rm³* | mg/Rm³** | mg/Rm³* | mg/s | | 1.8 | 1.176 | 0.89 | 1.53 | 1.21 | 1.27 | 24.0 | | 3.2 | 1.180 | 1.60 | 2.71 | 2.14 | 2.28 | 40.4 | | 1.9 | 1.167 | 0.95 | 1.63 | 1.29 | 1.36 | 24.6 | | | | 1.14 | 1.96 | 1.55 | 1.64 | 29.7 | | 0.5 | | | | | | | | | 1.8
3.2
1.9 | Collected mg Sampled Rm³* 1.8 1.176 3.2 1.180 1.9 1.167 | Collected mg Sampled Rm³* Actual mg/m³ 1.8 1.176 0.89 3.2 1.180 1.60 1.9 1.167 0.95 1.14 | Collected mg Sampled Rm³* Actual mg/m³ Dry Reference mg/Rm³* 1.8 1.176 0.89 1.53 3.2 1.180 1.60 2.71 1.9 1.167 0.95 1.63 1.14 1.96 | Collected mg Sampled Rm³* Actual mg/m³ Dry Reference mg/Rm³* Dry Adjusted mg/Rm³** 1.8 1.176 0.89 1.53 1.21 3.2 1.180 1.60 2.71 2.14 1.9 1.167 0.95 1.63 1.29 1.14 1.96 1.55 | Collected mg Sampled Rm³* Actual mg/m³ Dry Reference mg/Rm³* Dry Adjusted mg/Rm³** Wet Reference mg/Rm³* 1.8 1.176 0.89 1.53 1.21 1.27 3.2 1.180 1.60 2.71 2.14 2.28 1.9 1.167 0.95 1.63 1.29 1.36 1.14 1.96 1.55 1.64 | ^{*} At 25 °C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume ## TABLE 9 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Halides and Ammonia Emission Data ## Hydrogen Chloride | ted Samp
Rm
6 1.33 | 3* mg/m ³ | | | Wet Reference
mg/Rm ³ * | Emission Rate
mg/s | |--------------------------|----------------------|------|-------------------------|---------------------------------------|-----------------------| | | | | * mg/Rm ³ ** | mg/Rm³* | mg/s | | 6 1.33 | 38 295 | | | | | | | | 4.90 | 3.99 | 4.18 | 75.7 | | 6 1.29 | 3.14 | 5.22 | 4.25 | 4.45 | 80.5 | | 1 1.32 | 22 2.73 | 4.62 | 3.77 | 3.89 | 72.3 | | | 2.94 | 4.91 | 4.00 | 4.18 | 76.2 | | 57 | | | | | | | | 1 1.32
57 | 2.94 | 2.94 4.91 | 2.94 4.91 4.00 | 2.94 4.91 4.00 4.18 | ## Hydrogen Fluoride | | HF | Dry Volume | Hydrogen Fluoride Concentration | | | HF | | |---------|-----------|-------------------|---------------------------------|----------------------|--------------|---------------|----------------------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission Rate | | No. | mg | Rm ³ * | mg/m³ | mg/Rm ³ * | mg/Rm³** | mg/Rm³* | mg/s | | 1 | <0.160 | 1.338 | <0.072 | <0.12 | <0.097 | <0.10 | <1.85 | | 2 | < 0.161 | 1.296 | <0.075 | <0.12 | < 0.10 | <0.11 | <1.92 | | 3 | <0.176 | 1.322 | <0.079 | <0.13 | <0.11 | <0.11 | <2.08 | | Average | | | <0.075 | <0.13 | <0.10 | <0.11 | <1.95 | | Blank | <0.107 | | | | | | | ## **Ammonia** | | Ammonia | Dry Volume | Ammonia Concentration | | | Ammonia | | |---------|-----------|------------|-----------------------|---------------|-----------------------|---------------|----------------------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission Rate | | No. | mg | Rm³* | mg/m³ | mg/Rm³* | mg/Rm ³ ** | mg/Rm³* | mg/s | | 1 | 0.911 | 1.338 | 0.41 | 0.68 | 0.55 | 0.58 | 10.5 | | 2 | 1.06 | 1.296 | 0.49 | 0.82 | 0.67 | 0.70 | 12.6 | | 3 | 0.986 | 1.322 | 0.44 | 0.75 | 0.61 | 0.63 | 11.7 | | Average | | | 0.45 | 0.75 | 0.61 | 0.64 | 11.6 | | Blank | <0.288 | | | | | | | Note: "<" indicates that the analyte was not detected and the value of the detection limit was used to calculate the emission data. ^{*} At 25 °C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 10 Covanta - Durham York Energy Centre Boiler No. 1 Combustion Gas Analyses ## Data measured by the DYEC CEMS from November 9 to November 12, 2020 | Sampling
Location | Parameter | Minimum | Average | Maximum | |----------------------|--|---------|---------|---------| | BH Outlet | Oxygen (%, 1 hr Avg) | 7.97 | 8.48 | 9.51 | | BH Outlet | Carbon Monoxide (mg/Rm ³ , 1 hr Avg) * | 6 | 11 | 26 | | BH Outlet | Carbon Monoxide (mg/Rm³, 4 hr Avg) * | 7.8 | 11.4 | 16.8 | | BH Outlet | Sulphur Dioxide (mg/Rm³, 1 hr Avg) * | 0 | 0.1 | 6.0 | | BH Outlet | Sulphur Dioxide (mg/Rm ³ , 24 hr Avg) * | 0 | 0.1 | 0.5 | | BH Outlet | Nitrogen Oxides (mg/Rm³, 1 hr Avg) * | 98 | 110 | 118 | | BH Outlet | Nitrogen Oxides (mg/Rm³, 24 hr Avg) * | 109 | 110 | 110 | | BH Outlet | Hydrogen Chloride (mg/Rm³, 1 hr Avg) * | 1 | 4 | 7 | | , BH Outlet | Hydrogen Chloride (mg/Rm³, 24 hr Avg) * | 3.4 | 3.8 | 4.4 | | BH Outlet | Total Hydrocarbons (mg/Rm³, 1 hr Avg) * | 0 | 0 | 0 | | Quench Inlet | Oxygen (%, 1 hr Avg) | 8 | 9 | 9 | ## Data measured by the ORTECH CEMS on November 9, 2020 | Sampling
Location | Test
No. | Parameter | Minimum | Average | Maximum | |----------------------|-------------|--|---------|---------|---------| | | | | | | | | BH Outlet | 1 | Total Hydrocarbons (ppm dry, 1-min Avg) | 0 | 0.4 | 4.8 | | BH Outlet | 2 | Total Hydrocarbons (ppm dry, 1-min Avg) | 0 | 0.4 | 3.4 | | BH Outlet | 3 | Total Hydrocarbons (ppm dry, 1-min Avg) | 0 | 0.7 | 5.6 | | Average | | Total Hydrocarbons (ppm dry, 1-min Avg) | | 0.5 | | | Quench Inlet | 1 | Total Hydrocarbons (ppm dry, 1-min Avg) | 0.3 | 0.9 | 4.6 | | Quench Inlet | 2 | Total Hydrocarbons (ppm dry, 1-min Avg) | 0 | 0.2 | 1.3 | | Quench Inlet | 3 | Total Hydrocarbons (ppm dry, 1-min Avg) | 0.1 | 0.3 | 2.5 | | Average | - | Total Hydrocarbons (ppm dry, 1-min Avg) | | 0.5 | | | Quench Inlet | 1 | Total Hydrocarbons (ppm dry, 10-min Avg) | 0.4 | 1.0 | 2.2 | | Quench Inlet | 2 | Total Hydrocarbons (ppm dry, 10-min Avg) | 0 | 0.2 | 0.4 | | Quench Inlet | 3 | Total Hydrocarbons (ppm dry, 10-min Avg) | 0.1 | 0.3 | 0.7 | | Average | | Total Hydrocarbons (ppm dry, 10-min Avg) | | 0.5 | | Reference conditions, dry basis adjusted to 11% oxygen TABLE 11 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Metals Analyses Test No. 1 | Metal | Probe & Filter
Hydrofluoric Acid Digest | Impingers
& Rinses | Total
Collected | |------------|--|-----------------------|--------------------| | | μg | μg | μg | | | | | | | Antimony | 0.40 | <0.1 | 0.40 | | Arsenic | <1 | <0.2 | <0.20 | | Barium | 5.48 | 1.22 | 6.70 | | Beryllium | <0.2 | <0.1 | <0.20 | | Cadmium | 0.25 | 0.15 | 0.40 | | Chromium | 5.34 | 0.74 | 6.08 | | Cobalt | <0.2 | <0.1 | <0.20 | | Copper | 6.98 | 15.7 | 22.7 | | Lead | 1.23 | 0.84 | 2.07 | | Mercury * | <0.015 | 2.38 | 2.38 | | Molybdenum | 24.2 | <0.1 | 24.2 | | Nickel | 4.83 | 0.85 | 5.68 | | Selenium | <2 | 5.75 | 5.75 | | Silver | <0.2 | <0.1 | <0.20 | | Thallium | 0.97 | <0.05 | 0.97 | | Vanadium | <1 | <0.1 | <0.10 | | Zinc | 25.2 | 10.4 | 35.6 | | Total | | | <114 | ^{*} Includes the permanganate impingers Note: "<" indicates that the analyte was not detected. Where all
values were reported below the detection limit for a given metal, the value of the detection limit for the fraction most likely to contain that metal was used to calculate emission data, the remaining fractions were assigned a value of zero. In instances where only one fraction was below the detection limit, that fraction was assigned a value of zero to calculate emission data. TABLE 12 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Metals Analyses Test No. 2 | Metal | Probe & Filter
Hydrofluoric Acid Digest | Impingers
& Rinses | Total
Collected | |------------|--|-----------------------|--------------------| | | μg | μg | μg | | | | | · | | Antimony | 0.21 | <0.1 | 0.21 | | Arsenic | <1 | <0.2 | <0.20 | | Barium | 5.07 | 1.01 | 6.08 | | Beryllium | <0.2 | <0.1 | <0.20 | | Cadmium | 0.17 | 0.16 | 0.33 | | Chromium | 3.85 | 0.58 | 4.43 | | Cobalt | <0.2 | <0.1 | <0.20 | | Copper | 6.68 | 16.4 | 23.1 | | Lead | 0.96 | 0.55 | 1.51 | | Mercury * | <0.015 | 1.55 | 1.55 | | Molybdenum | 23.6 | <0.1 | 23.6 | | Nickel | 3.40 | 6.95 | 10.4 | | Selenium | <2 | 8.13 | 8.13 | | Silver | <0.2 | <0.1 | <0.20 | | Thallium | 0.40 | <0.05 | 0.40 | | Vanadium | <1 | <0.1 | <0.10 | | Zinc | 16.8 | 6.05 | 22.9 | | Total | | | <103 | ^{*} Includes the permanganate impingers Note: "<" indicates that the analyte was not detected. Where all values were reported below the detection limit for a given metal, the value of the detection limit for the fraction most likely to contain that metal was used to calculate emission data, the remaining fractions were assigned a value of zero. In instances where only one fraction was below the detection limit, that fraction was assigned a value of zero to calculate emission data. TABLE 13 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Metals Analyses Test No. 3 | Metal | Probe & Filter | Impingers | Total | |------------|--------------------------|-----------|-----------| | | Hydrofluoric Acid Digest | & Rinses | Collected | | | μg | μg | μg | | Antimony | <0.2 | <0.1 | <0.20 | | Arsenic | <1 | <0.2 | <0.20 | | Barium | 8.07 | 1.00 | 9.07 | | Beryllium | <0.2 | <0.1 | <0.20 | | Cadmium | 0.23 | 0.060 | 0.29 | | Chromium | 2.76 | 0.49 | 3.25 | | Cobalt | 0.35 | <0.1 | 0.35 | | Copper | 6.16 | 19.7 | 25.9 | | Lead | 1.01 | 0.46 | 1.47 | | Mercury * | <0.015 | 0.64 | 0.64 | | Molybdenum | 24.0 | <0.1 | 24.0 | | Nickel | 3.84 | 1.01 | 4.85 | | Selenium | <2 | <1 | <1.00 | | Silver | <0.2 | <0.1 | <0.20 | | Thallium | <0.2 | <0.05 | <0.20 | | Vanadium | <1 | <0.1 | <0.10 | | Zinc | 17.0 | 5.66 | 22.7 | | Total | | | <94.5 | ^{*} Includes the permanganate impingers Note: "<" indicates that the analyte was not detected. Where all values were reported below the detection limit for a given metal, the value of the detection limit for the fraction most likely to contain that metal was used to calculate emission data, the remaining fractions were assigned a value of zero. In instances where only one fraction was below the detection limit, that fraction was assigned a value of zero to calculate emission data. TABLE 14 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Metals Emission Data Test No. 1 | Metal | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |------------|-----------|---------------|---------------|---------------|---------------|----------| | | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | μg | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | | | | | | | | | Antimony | 0.40 | 0.068 | 0.11 | 0.092 | 0.096 | 0.0017 | | Arsenic | <0.20 | <0.034 | <0.057 | <0.046 | <0.048 | <0.00088 | | Barium | 6.70 | 1.15 | 1.90 | 1.55 | 1.62 | 0.029 | | Beryllium | <0.20 | <0.034 | <0.057 | <0.046 | <0.048 | <0.00088 | | Cadmium | 0.40 | 0.069 | 0.11 | 0.093 | 0.098 | 0.0018 | | Chromium | 6.08 | 1.04 | 1.73 | 1.41 | 1.47 | 0.027 | | Cobalt | <0.20 | <0.034 | <0.057 | <0.046 | <0.048 | <0.00088 | | Copper | 22.7 | 3.88 | 6.44 | 5.25 | 5.50 | 0.099 | | Lead | 2.07 | 0.35 | 0.59 | 0.48 | 0.50 | 0.0091 | | Mercury | 2.38 | 0.41 | 0.68 | 0.55 | 0.58 | 0.010 | | Molybdenum | 24.2 | 4.14 | 6.87 | 5.60 | 5.87 | 0.11 | | Nickel | 5.68 | 0.97 | 1.61 | 1.31 | 1.38 | 0.025 | | Selenium | 5.75 | 0.98 | 1.63 | 1.33 | 1.39 | 0.025 | | Silver | <0.20 | < 0.034 | <0.057 | <0.046 | <0.048 | <0.00088 | | Thallium | 0.97 | 0.17 | 0.28 | 0.22 | 0.24 | 0.0043 | | Vanadium | <0.10 | <0.017 | <0.028 | <0.023 | <0.024 | <0.00044 | | Zinc | 35.6 | 6.09 | 10.1 | 8.23 | 8.63 | 0.16 | | Total | <114 | <19.5 | <32.3 | <26.3 | <27.6 | <0.50 | | Dry Gas Volume Sampled (Rm ³ *): | 3.521 | |---|-------| | Actual Flowrate (m³/s) : | 25.6 | | Dry Reference Flowrate (Rm³/s*): | 15.4 | | Dry Adjusted Flowrate (Rm ³ /s**): | 19.0 | | Wet Reference Flowrate (Rm³/s*) : | 18.1 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 15 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Metals Emission Data Test No. 2 | Metal | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |------------|-----------|---------------|---------------|---------------|---------------|-----------| | | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | μg | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | | | | | | | | | Antimony | 0.21 | 0.034 | 0.057 | 0.046 | 0.048 | 0.00089 | | Arsenic | <0.20 | <0.033 | <0.056 | <0.045 | < 0.047 | <0.00087 | | Barium | 6.08 | 1.00 | 1.69 | 1.38 | 1.42 | 0.026 | | Beryllium | <0.20 | < 0.033 | <0.056 | <0.045 | < 0.047 | <0.00087 | | Cadmium | 0.33 | 0.054 | 0.092 | 0.075 | 0.077 | 0.0014 | | Chromium | 4.43 | 0.73 | 1.23 | 1.00 | 1.04 | 0.019 | | Cobalt | <0.20 | < 0.033 | <0.056 | < 0.045 | < 0.047 | <0.00087 | | Copper | 23.1 | 3.79 | 6.41 | 5.22 | 5.40 | 0.10 | | Lead | 1.51 | 0.25 | 0.42 | 0.34 | 0.35 | 0.0066 | | Mercury | 1.55 | 0.25 | 0.43 | 0.35 | 0.36 | 0.0067 | | Molybdenum | 23.6 | 3.87 | 6.56 | 5.34 | 5.52 | 0.10 | | Nickel | 10.4 | 1.70 | 2.88 | 2.34 | 2.42 | 0.045 | | Selenium | 8.13 | 1.33 | 2.26 | 1.84 | 1.90 | 0.035 | | Silver | <0.20 | <0.033 | <0.056 | <0.045 | <0.047 | <0.00087 | | Thallium | 0.40 | 0.066 | 0.11 | 0.091 | 0.094 | 0.0018 | | Vanadium | < 0.10 | <0.016 | <0.028 | <0.023 | <0.023 | < 0.00043 | | Zinc | 22.9 | 3.75 | 6.35 | 5.17 | 5.34 | 0.099 | | Total | <103 | <17.0 | <28.7 | <23.4 | <24.2 | <0.45 | | Dry Gas Volume Sampled (Rm ³ *): | 3.600 | |---|-------| | Actual Flowrate (m³/s) : | 26.5 | | Dry Reference Flowrate (Rm³/s*) : | 15.7 | | Dry Adjusted Flowrate (Rm³/s**): | 19.2 | | Wet Reference Flowrate (Rm³/s*): | 18.6 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 16 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Metals Emission Data Test No. 3 | Metal | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |------------|-----------|---------------|---------------|---------------|---------------|-----------| | | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | μg | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | | | | | | | | | Antimony | <0.20 | <0.029 | <0.050 | <0.040 | <0.042 | <0.00076 | | Arsenic | <0.20 | <0.029 | <0.050 | <0.040 | < 0.042 | <0.00076 | | Barium | 9.07 | 1.33 | 2.29 | 1.81 | 1.91 | 0.034 | | Beryllium | <0.20 | < 0.029 | <0.050 | <0.040 | < 0.042 | < 0.00076 | | Cadmium | 0.29 | 0.043 | 0.074 | 0.058 | 0.061 | 0.0011 | | Chromium | 3.25 | 0.48 | 0.82 | 0.65 | 0.68 | 0.012 | | Cobalt | 0.35 | 0.051 | 0.087 | 0.069 | 0.072 | 0.0013 | | Copper | 25.9 | 3.79 | 6.52 | 5.16 | 5.43 | 0.098 | | Lead | 1.47 | 0.22 | 0.37 | 0.29 | 0.31 | 0.0056 | | Mercury | 0.64 | 0.094 | 0.16 | 0.13 | 0.14 | 0.0024 | | Molybdenum | 24.0 | 3.52 | 6.05 | 4.79 | 5.04 | 0.091 | | Nickel | 4.85 | 0.71 | 1.22 | 0.97 | 1.02 | 0.018 | | Selenium | <1.00 | <0.15 | <0.25 | <0.20 | <0.21 | <0.0038 | | Silver | <0.20 | < 0.029 | <0.050 | <0.040 | <0.042 | <0.00076 | | Thallium | <0.20 | < 0.029 | <0.050 | <0.040 | <0.042 | <0.00076 | | Vanadium | < 0.10 | <0.015 | <0.025 | <0.020 | <0.021 | <0.00038 | | Zinc | 22.7 | 3.32 | 5.71 | 4.52 | 4.76 | 0.086 | | Total | <94.5 | <13.9 | <23.8 | <18.9 | <19.9 | <0.36 | | Dry Gas Volume Sampled (Rm ³ *): | 3.969 | | |---|-------|--| | Actual Flowrate (m³/s) : | 25.9 | | | Dry Reference Flowrate (Rm³/s*) : | 15.1 | | | Dry Adjusted Flowrate (Rm³/s**) : | 19.0 | | | Wet Reference Flowrate (Rm³/s*) : | 18.1 | | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 17 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Metal Actual Concentrations | Metal | | Actual Concentration | | | | | | | |------------|------------|----------------------|------------|---------|--------------|--|--|--| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | | | μg/m³ | μg/m³ | μg/m³ | μg/m³ | % | | | | | | | | | | | | | | | Antimony | 0.068 | 0.034 | <0.029 | <0.044 | 48.5 | | | | | Arsenic | < 0.034 | <0.033 | <0.029 | <0.032 | 7.9 | | | | | Barium | 1.15 | 1.00 | 1.33 | 1.16 | 14.3 | | | | | Beryllium | < 0.034 | <0.033 | < 0.029 | < 0.032 | 7.9 | | | | | Cadmium | 0.069 | 0.054 | 0.043 | 0.055 | 23.6 | | | | | Chromium | 1.04 | 0.73 | 0.48 | 0.75 | 37.7 | | | | | Cobalt | < 0.034 | <0.033 | 0.051 | < 0.039 | 25.2 | | | | | Copper | 3.88 | 3.79 | 3.79 | 3.82 | 1.4 | | | | | Lead | 0.35 | 0.25 | 0.22 | 0.27 | 26.8 | | | | | Mercury | 0.41 | 0.25 | 0.094 | 0.25 | 62.0 | | | | | Molybdenum | 4.14 | 3.87 | 3.52 | 3.84 | 8.1 | | | | | Nickel | 0.97 | 1.70 | 0.71 | 1.13 | 45.4 | | | | | Selenium | 0.98 | 1.33 | <0.15 | <0.82 | 74.3 | | | | | Silver | < 0.034 | < 0.033 | <0.029 | < 0.032 | 7.9 | | | | |
Thallium | 0.17 | 0.066 | <0.029 | <0.087 | 81.1 | | | | | Vanadium | < 0.017 | < 0.016 | <0.015 | < 0.016 | 7.9 | | | | | Zinc | 6.09 | 3.75 | 3.32 | 4.39 | 34.0 | | | | | Total | <19.5 | <17.0 | <13.9 | <16.8 | 16.8 | | | | TABLE 18 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Metal Dry Reference Concentrations | Metal | | Dry Reference Concentration | | | | | | | |------------|------------|-----------------------------|------------|---------|--------------|--|--|--| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | | | μg/Rm³* | μg/Rm³* | μg/Rm³* | μg/Rm³* | % | | | | | A A: | 0.11 | 0.057 | 0.050 | | | | | | | Antimony | 0.11 | 0.057 | <0.050 | <0.073 | 46.7 | | | | | Arsenic | <0.057 | <0.056 | <0.050 | <0.054 | 6.3 | | | | | Barium | 1.90 | 1.69 | 2.29 | 1.96 | 15.4 | | | | | Beryllium | <0.057 | <0.056 | <0.050 | <0.054 | 6.3 | | | | | Cadmium | 0.11 | 0.092 | 0.074 | 0.093 | 21.9 | | | | | Chromium | 1.73 | 1.23 | 0.82 | 1.26 | 36.0 | | | | | Cobalt | <0.057 | <0.056 | 0.087 | <0.066 | 26.7 | | | | | Copper | 6.44 | 6.41 | 6.52 | 6.46 | 0.8 | | | | | Lead | 0.59 | 0.42 | 0.37 | 0.46 | 25.0 | | | | | Mercury | 0.68 | 0.43 | 0.16 | 0.42 | 60.7 | | | | | Molybdenum | 6.87 | 6.56 | 6.05 | 6.49 | 6.4 | | | | | Nickel | 1.61 | 2.88 | 1.22 | 1.90 | 45.4 | | | | | Selenium | 1.63 | 2.26 | <0.25 | <1.38 | 74.3 | | | | | Silver | <0.057 | <0.056 | <0.050 | < 0.054 | 6.3 | | | | | Thallium | 0.28 | 0.11 | <0.050 | <0.15 | 79.7 | | | | | Vanadium | <0.028 | <0.028 | <0.025 | <0.027 | 6.3 | | | | | Zinc | 10.1 | 6.35 | 5.71 | 7.39 | 32.2 | | | | | Total | <32.3 | <28.7 | <23.8 | <28.3 | 15.1 | | | | ^{*} At 25°C and 1 atmosphere TABLE 19 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Metal Dry Adjusted Concentrations | Metal | | Coefficient | | | | |------------|------------------------|------------------------|------------------------|---------------------|-------------------| | | Test No. 1
μg/Rm³** | Test No. 2
μg/Rm³** | Test No. 3
μg/Rm³** | Average
μg/Rm³** | of Variation
% | | Antimony | 0.092 | 0.046 | <0.040 | <0.059 | 47.7 | | Arsenic | < 0.046 | <0.045 | <0.040 | <0.039 | 47.7
7.8 | | Barium | 1.55 | 1.38 | 1.81 | 1.58 | 7.8
13.8 | | Beryllium | < 0.046 | <0.045 | <0.040 | < 0.044 | 7.8 | | Cadmium | 0.093 | 0.075 | 0.058 | 0.075 | 23.1 | | Chromium | 1.41 | 1.00 | 0.65 | 1.02 | 37.1 | | Cobalt | <0.046 | <0.045 | 0.069 | < 0.053 | 24.9 | | Copper | 5.25 | 5.22 | 5.16 | 5.21 | 0.9 | | Lead | 0.48 | 0.34 | 0.29 | 0.37 | 26.1 | | Mercury | 0.55 | 0.35 | 0.13 | 0.34 | 61.5 | | Molybdenum | 5.60 | 5.34 | 4.79 | 5.24 | 7.9 | | Nickel | 1.31 | 2.34 | 0.97 | 1.54 | 46.4 | | Selenium | 1.33 | 1.84 | <0.20 | <1.12 | 74.8 | | Silver | <0.046 | <0.045 | <0.040 | <0.044 | 7.8 | | Thallium | 0.22 | 0.091 | < 0.040 | < 0.12 | 80.3 | | Vanadium | <0.023 | <0.023 | <0.020 | <0.022 | 7.8 | | Zinc | 8.23 | 5.17 | 4.52 | 5.97 | 33.2 | | Total | <26.3 | <23.4 | <18.9 | <22.9 | 16.5 | ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 20 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Metal Wet Reference Concentrations | Metal | | Wet Reference Concentration | | | | | | | | |------------|------------|-----------------------------|--------------------|---------|--------------|--|--|--|--| | | Test No. 1 | Test No. 2 | Test No. 3 Average | | of Variation | | | | | | | μg/Rm³* | μg/Rm³* | μg/Rm³* | μg/Rm³* | % | | | | | | | | | | | | | | | | | Antimony | 0.096 | 0.048 | <0.042 | <0.062 | 47.9 | | | | | | Arsenic | <0.048 | <0.047 | <0.042 | <0.046 | 7.3 | | | | | | Barium | 1.62 | 1.42 | 1.91 | 1.65 | 14.7 | | | | | | Beryllium | <0.048 | <0.047 | < 0.042 | <0.046 | 7.3 | | | | | | Cadmium | 0.098 | 0.077 | 0.061 | 0.079 | 23.1 | | | | | | Chromium | 1.47 | 1.04 | 0.68 | 1.06 | 37.2 | | | | | | Cobalt | <0.048 | <0.047 | 0.072 | <0.056 | 25.7 | | | | | | Copper | 5.50 | 5.40 | 5.43 | 5.44 | 0.9 | | | | | | Lead | 0.50 | 0.35 | 0.31 | 0.39 | 26.2 | | | | | | Mercury | 0.58 | 0.36 | 0.14 | 0.36 | 61.6 | | | | | | Molybdenum | 5.87 | 5.52 | 5.04 | 5.48 | 7.6 | | | | | | Nickel | 1.38 | 2.42 | 1.02 | 1.61 | 45.4 | | | | | | Selenium | 1.39 | 1.90 | <0.21 | <1.17 | 74.3 | | | | | | Silver | <0.048 | <0.047 | < 0.042 | < 0.046 | 7.3 | | | | | | Thallium | 0.24 | 0.094 | < 0.042 | < 0.12 | 80.7 | | | | | | Vanadium | <0.024 | <0.023 | <0.021 | <0.023 | 7.3 | | | | | | Zinc | 8.63 | 5.34 | 4.76 | 6.24 | 33.4 | | | | | | Total | <27.6 | <24.2 | <19.9 | <23.9 | 16.2 | | | | | ^{*} At 25°C and 1 atmosphere TABLE 21 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Metal Emission Rates | Metal | *************************************** | Emission Rate | | | | | | |------------|---|--------------------|--------------------|-----------------|-------------------|--|--| | | Test No. 1
mg/s | Test No. 2
mg/s | Test No. 3
mg/s | Average
mg/s | of Variation
% | | | | Antimony | 0.0017 | 0.00089 | <0.00076 | <0.0011 | 47.1 | | | | Arsenic | <0.0017 | <0.00089 | <0.00076 | | | | | | | | | | <0.00084 | 7.9 | | | | Barium | 0.029 | 0.026 | 0.034 | 0.030 | 13.4 | | | | Beryllium | <0.00088 | <0.00087 | <0.00076 | <0.00084 | 7.9 | | | | Cadmium | 0.0018 | 0.0014 | 0.0011 | 0.0014 | 22.9 | | | | Chromium | 0.027 | 0.019 | 0.012 | 0.019 | 36.8 | | | | Cobalt | <0.00088 | <0.00087 | 0.0013 | < 0.0010 | 24.7 | | | | Copper | 0.099 | 0.10 | 0.098 | 0.099 | 1.1 | | | | Lead | 0.0091 | 0.0066 | 0.0056 | 0.0071 | 25.7 | | | | Mercury | 0.010 | 0.0067 | 0.0024 | 0.0065 | 61.1 | | | | Molybdenum | 0.11 | 0.10 | 0.091 | 0.10 | 7.9 | | | | Nickel | 0.025 | 0.045 | 0.018 | 0.029 | 47.1 | | | | Selenium | 0.025 | 0.035 | <0.0038 | <0.021 | 75.1 | | | | Silver | <0.00088 | <0.00087 | <0.00076 | <0.00084 | 7.9 | | | | Thallium | 0.0043 | 0.0018 | <0.00076 | < 0.0023 | 79.8 | | | | Vanadium | <0.00044 | < 0.00043 | <0.00038 | <0.00042 | 7.9 | | | | Zinc | 0.16 | 0.099 | 0.086 | 0.11 | 32.7 | | | | Total | <0.50 | <0.45 | <0.36 | <0.44 | 16.3 | | | TABLE 22 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Metal Emission Data | Metal | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | | | | | | | | Antimony | <0.044 | <0.073 | <0.059 | <0.062 | <0.0011 | | Arsenic | <0.032 | <0.054 | <0.044 | <0.046 | <0.00084 | | Barium | 1.16 | 1.96 | 1.58 | 1.65 | 0.030 | | Beryllium | <0.032 | <0.054 | <0.044 | <0.046 | <0.00084 | | Cadmium | 0.055 | 0.093 | 0.075 | 0.079 | 0.0014 | | Chromium | 0.75 | 1.26 | 1.02 | 1.06 | 0.019 | | Cobalt | < 0.039 | <0.066 | <0.053 | <0.056 | <0.0010 | | Copper | 3.82 | 6.46 | 5.21 | 5.44 | 0.099 | | Lead | 0.27 | 0.46 | 0.37 | 0.39 | 0.0071 | | Mercury | 0.25 | 0.42 | 0.34 | 0.36 | 0.0065 | | Molybdenum | 3.84 | 6.49 | 5.24 | 5.48 | 0.10 | | Nickel | 1.13 | 1.90 | 1.54 | 1.61 | 0.029 | | Selenium | <0.82 | <1.38 | <1.12 | <1.17 | <0.021 | | Silver | <0.032 | <0.054 | < 0.044 | <0.046 | <0.00084 | | Thallium | <0.087 | <0.15 | <0.12 | <0.12 | <0.0023 | | Vanadium | <0.016 | <0.027 | <0.022 | <0.023 | <0.00042 | | Zinc | 4.39 | 7.39 | 5.97 | 6.24 | 0.11 | | Total | <16.8 | <28.3 | <22.9 | <23.9 | <0.44 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 23 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Blank Train Metal Analyses | Metal | Probe & Filter | Impingers | Total | |------------|---------------------------------|-----------|-----------| | | Hydrofluoric Acid Digest | & Rinses | Collected | | | μg | μg | μg | | Antimony | <0.2 | <0.1 | <0.20 | | Arsenic | <1 | <0.2 | <0.20 | | Barium | 7.18 | 0.78 | 7.96 | | Beryllium | <0.2 | <0.1 | <0.20 | | Cadmium | <0.1 | <0.05 | < 0.10 | | Chromium | 2.44 | 0.36 | 2.80 | | Cobalt | <0.2 | <0.1 | <0.20 | | Copper | 6.07 | 9.78 | 15.9 | | Lead | <0.5 | 0.42 | 0.42 | | Mercury * | <0.015 | <0.15 | <0.15 | | Molybdenum | 23.3 | <0.1 | 23.3 | | Nickel | 2.30 | 0.28 | 2.58 | | Selenium | <2 | <1 | <1.00 | | Silver | <0.2 | <0.1 | <0.20 | | Thallium | <0.2 | <0.05 | <0.20 | | Vanadium | <1 | <0.1 | <0.10 | | Zinc | <6 | <3 | <6.00 | | Total | | | <61.5 | ^{*} Includes the permanganate impingers. **Note**: "<" indicates that the analyte was not detected. Where all values are reported below the detection limit for a given metal, the value of the detection limit for the fraction most likely to contain that metal was used to calculate the total collected in the blank, the remaining fractions are assigned a value of zero. In instances where only one fraction was below the detection limit, that fraction was assigned a value of zero to calculate the total collected in the blank. # TABLE 24 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Congener Group Emission Data ### in and Furan Congener Group Emission D Test No. 1 #### **Dioxins** | Congener
Group | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |------------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzo-p-dioxins | 436 | 0.049 | 0.085 | 0.067 | 0.071 | 1.26 | | Pentachlorodibenzo-p-dioxins | 1700 | 0.19 | 0.33 | 0.26 | 0.28 | 4.90 | | Hexachlorodibenzo-p-dioxins | 4780 | 0.54 | 0.93 | 0.73 | 0.77 | 13.8 | | Heptachlorodibenzo-p-dioxins | 4350 | 0.49 | 0.85 | 0.67 | 0.70 | 12.5 | | Octachlorodibenzo-p-dioxin | 1370
 0.15 | 0.27 | 0.21 | 0.22 | 3.95 | | Total | 12636 | 1.42 | 2.46 | 1.94 | 2.05 | 36.4 | | | | | | | | | #### **Furans** | Congener
Group | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |--------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzofurans | 299 | 0.034 | 0.058 | 0.046 | 0.048 | 0.90 | | Pentachlorodibenzofurans | 299
810 | 0.034 | 0.058 | 0.046 | 0.048 | 0.86
2.33 | | Hexachlorodibenzofurans | 1220 | 0.14 | 0.10 | 0.12 | 0.13 | 2.55
3.52 | | Heptachlorodibenzofurans | 981 | 0.11 | 0.19 | 0.15 | 0.16 | 2.83 | | Octachlorodibenzofuran | 363 | 0.041 | 0.071 | 0.056 | 0.059 | 1.05 | | Total | 3673 | 0.41 | 0.72 | 0.56 | 0.59 | 10.6 | | Dry Gas Volume Sampled (Rm³*): | 5.135 | |-----------------------------------|-------| | Actual Flowrate (m³/s) : | 25.6 | | Dry Reference Flowrate (Rm³/s*): | 14.8 | | Dry Adjusted Flowrate (Rm³/s**): | 18.8 | | Wet Reference Flowrate (Rm³/s*) : | 17.8 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume # TABLE 25 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Congener Group Emission Data #### Test No. 2 #### **Dioxins** | Congener
Group | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |------------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzo-p-dioxins | 324 | 0.037 | 0.064 | 0.051 | 0.054 | 0.94 | | Pentachlorodibenzo-p-dioxins | 1700 | 0.20 | 0.33 | 0.27 | 0.28 | 4.96 | | Hexachlorodibenzo-p-dioxins | 4400 | 0.51 | 0.87 | 0.69 | 0.73 | 12.8 | | Heptachlorodibenzo-p-dioxins | 4050 | 0.47 | 0.80 | 0.64 | 0.67 | 11.8 | | Octachlorodibenzo-p-dioxin | 1260 | 0.15 | 0.25 | 0.20 | 0.21 | 3.67 | | Total | 11734 | 1.35 | 2.31 | 1.85 | 1.94 | 34.2 | #### **Furans** | Congener
Group | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |--|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | TOWNS AND THE STATE OF STAT | pg | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzofurans | 289 | 0.033 | 0.057 | 0.046 | 0.048 | 0.84 | | Pentachlorodibenzofurans | 797 | 0.092 | 0.16 | 0.13 | 0.13 | 2.32 | | Hexachlorodibenzofurans | 1200 | 0.14 | 0.24 | 0.19 | 0.20 | 3.50 | | Heptachlorodibenzofurans | 973 | 0.11 | 0.19 | 0.15 | 0.16 | 2.84 | | Octachlorodibenzofuran | 330 | 0.038 | 0.065 | 0.052 | 0.055 | 0.96 | | Total | 3589 | 0.41 | 0.71 | 0.57 | 0.59 | 10.5 | | Dry Gas Volume Sampled (Rm ³ *): | 5.077 | |---|-------| | Actual Flowrate (m³/s) : | 25.3 | | Dry Reference Flowrate (Rm³/s*): | 14.8 | | Dry Adjusted Flowrate (Rm³/s**): | 18.5 | | Wet Reference Flowrate (Rm³/s*) : | 17.6 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 26 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet ### Dioxin and Furan Congener Group Emission Data Test No. 3 #### **Dioxins** | Congener
Group | Total
Collected | Actual Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |------------------------------|--------------------|----------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzo-p-dioxins | 158 | 0.018 | 0.031 | 0.024 | 0.026 | 0.46 | | Pentachlorodibenzo-p-dioxins | 1340 | 0.15 | 0.26 | 0.21 | 0.22 | 3.87 | | Hexachlorodibenzo-p-dioxins | 3590 | 0.41 | 0.70 | 0.55 | 0.58 | 10.4 | | Heptachlorodibenzo-p-dioxins | 3310 | 0.38 | 0.64 | 0.51 | 0.54 | 9.55 | | Octachlorodibenzo-p-dioxin | 1040 | 0.12 | 0.20 | 0.16 | 0.17 | 3.00 | | Total | 9438 | 1.08 | 1.83 | 1.46 | 1.53 | 27.2 | #### **Furans** | Congener
Group | Total
Collected | Actual Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |--------------------------|--------------------|----------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzofurans | 132 | 0.015 | 0.026 | 0.020 | 0.021 | 0.38 | | Pentachlorodibenzofurans | 578 | 0.066 | 0.11 | 0.089 | 0.094 | 1.67 | | Hexachlorodibenzofurans | 928 | 0.11 | 0.18 | 0.14 | 0.15 | 2.68 | | Heptachlorodibenzofurans | 794 | 0.091 | 0.15 | 0.12 | 0.13 | 2.29 | | Octachlorodibenzofuran | 313 | 0.036 | 0.061 | 0.048 | 0.051 | 0.90 | | Total | 2745 | 0.31 | 0.53 | 0.42 | 0.45 | 7.92 | | Dry Gas Volume Sampled (Rm³*): | 5.162 | |-----------------------------------|-------| | Actual Flowrate (m³/s) : | 25.2 | | Dry Reference Flowrate (Rm³/s*): | 14.9 | | Dry Adjusted Flowrate (Rm³/s**): | 18.7 | | Wet Reference Flowrate (Rm³/s*) : | 17.8 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 27 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Congener Group Actual Concentrations | Congener | | Coefficient | | | | |------------------------------|------------|-------------|------------|---------|--------------| | Group | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/m³ | ng/m³ | ng/m³ | ng/m³ | % | | Tetrachlorodibenzo-p-dioxins | 0.049 | 0.037 | 0.018 | 0.035 | 44.9 | | Pentachlorodibenzo-p-dioxins | 0.19 | 0.037 | 0.15 | 0.033 | 12.9 | | Hexachlorodibenzo-p-dioxins | 0.54 | 0.51 | 0.41 | 0.49 | 13.6 | | Heptachlorodibenzo-p-dioxins | 0.49 | 0.47 | 0.38 | 0.45 | 13.1 | | Octachlorodibenzo-p-dioxin | 0.15 | 0.15 | 0.12 | 0.14 | 13.1 | | Total | 1.42 | 1.35 | 1.08 | 1.29 | 14.0 | | | | | | | | | Congener | | Coefficient | | | | |--------------------------|------------|-------------|------------|---------|--------------| | Group | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/m³ | ng/m³ | ng/m³ | ng/m³ | % | | | | | | | | | Tetrachlorodibenzofurans | 0.034 | 0.033 | 0.015 | 0.027 | 38.8 | | Pentachlorodibenzofurans | 0.091 | 0.092 | 0.066 | 0.083 | 17.6 | | Hexachlorodibenzofurans | 0.14 | 0.14 | 0.11 | 0.13 | 14.3 | | Heptachlorodibenzofurans | 0.11 | 0.11 | 0.091 | 0.10 | 11.3 | | Octachlorodibenzofuran | 0.041 | 0.038 | 0.036 | 0.038 | 6.6 | | Total | 0.41 | 0.41 | 0.31 | 0.38 | 15.0 | TABLE 28 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Congener Group Dry Reference Concentrations | Congener | | Coefficient | | | | |------------------------------|------------|-------------|------------|---------|--------------| | Group | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | Tetrachlorodibenzo-p-dioxins | 0.085 | 0.064 | 0.031 | 0.060 | 45.8 | | Pentachlorodibenzo-p-dioxins | 0.33 | 0.33 | 0.26 | 0.31 | 13.7 | | Hexachlorodibenzo-p-dioxins | 0.93 | 0.87 | 0.70 | 0.83 | 14.6 | | Heptachlorodibenzo-p-dioxins | 0.85 | 0.80 | 0.64 | 0.76 | 14.1 | | Octachlorodibenzo-p-dioxin | 0.27 | 0.25 | 0.20 | 0.24 | 14.1 | | Total | 2.46 | 2.31 |
1.83 | 2.20 | 15.0 | | Congener | | Coefficient | | | | |--------------------------|------------|-------------|------------|---------|--------------| | Group | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | | | | | | | | Tetrachlorodibenzofurans | 0.058 | 0.057 | 0.026 | 0.047 | 39.4 | | Pentachlorodibenzofurans | 0.16 | 0.16 | 0.11 | 0.14 | 18.4 | | Hexachlorodibenzofurans | 0.24 | 0.24 | 0.18 | 0.22 | 15.2 | | Heptachlorodibenzofurans | 0.19 | 0.19 | 0.15 | 0.18 | 12.1 | | Octachlorodibenzofuran | 0.071 | 0.065 | 0.061 | 0.065 | 7.7 | | Total | 0.72 | 0.71 | 0.53 | 0.65 | 15.9 | ^{*} At 25°C and 1 atmosphere TABLE 29 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Congener Group Dry Adjusted Concentrations | Congener | | Coefficient | | | | |------------------------------|-----------------------|-----------------------|-----------------------|--------------------|-------------------| | Group | Test No. 1
ng/Rm³* | Test No. 2
ng/Rm³* | Test No. 3
ng/Rm³* | Average
ng/Rm³* | of Variation
% | | Tetrachlorodibenzo-p-dioxins | 0.067 | 0.051 | 0.024 | 0.047 | 45.2 | | Pentachlorodibenzo-p-dioxins | 0.26 | 0.27 | 0.21 | 0.25 | 13.6 | | Hexachlorodibenzo-p-dioxins | 0.73 | 0.69 | 0.55 | 0.66 | 14.2 | | Heptachlorodibenzo-p-dioxins | 0.67 | 0.64 | 0.51 | 0.61 | 13.7 | | Octachlorodibenzo-p-dioxin | 0.21 | 0.20 | 0.16 | 0.19 | 13.7 | | Total | 1.94 | 1.85 | 1.46 | 1.75 | 14.6 | | Congener
Group | | Coefficient | | | | |--------------------------|-----------------------|-----------------------|-----------------------|--------------------|-------------------| | | Test No. 1
ng/Rm³* | Test No. 2
ng/Rm³* | Test No. 3
ng/Rm³* | Average
ng/Rm³* | of Variation
% | | Tetrachlorodibenzofurans | 0.046 | 0.046 | 0.020 | 0.037 | 39.2 | | Pentachlorodibenzofurans | 0.12 | 0.13 | 0.089 | 0.11 | 18.2 | | Hexachlorodibenzofurans | 0.19 | 0.19 | 0.14 | 0.17 | 15.0 | | Heptachlorodibenzofurans | 0.15 | 0.15 | 0.12 | 0.14 | 11.9 | | Octachlorodibenzofuran | 0.056 | 0.052 | 0.048 | 0.052 | 7.1 | | Total | 0.56 | 0.57 | 0.42 | 0.52 | 15.7 | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 30 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Congener Group Wet Reference Concentrations | Congener | | Coefficient | | | | |------------------------------|------------|-------------|------------|---------|--------------| | Group | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | Tatrachlaradihanna n diavina | 0.071 | 0.054 | 0.000 | 0.050 | 45.5 | | Tetrachlorodibenzo-p-dioxins | 0.071 | 0.054 | 0.026 | 0.050 | 45.5 | | Pentachlorodibenzo-p-dioxins | 0.28 | 0.28 | 0.22 | 0.26 | 13.7 | | Hexachlorodibenzo-p-dioxins | 0.77 | 0.73 | 0.58 | 0.69 | 14.4 | | Heptachlorodibenzo-p-dioxins | 0.70 | 0.67 | 0.54 | 0.64 | 13.9 | | Octachlorodibenzo-p-dioxin | 0.22 | 0.21 | 0.17 | 0.20 | 13.9 | | Total | 2.05 | 1.94 | 1.53 | 1.84 | 14.8 | | Congener | | Coefficient | | | | |--------------------------|------------|-------------|------------|---------|--------------| | Group | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | Tetrachlorodibenzofurans | 0.048 | 0.048 | 0.021 | 0.020 | 20.4 | | Pentachlorodibenzofurans | | | 0.021 | 0.039 | 39.4 | | | 0.13 | 0.13 | 0.094 | 0.12 | 18.4 | | Hexachlorodibenzofurans | 0.20 | 0.20 | 0.15 | 0.18 | 15.1 | | Heptachlorodibenzofurans | 0.16 | 0.16 | 0.13 | 0.15 | 12.1 | | Octachlorodibenzofuran | 0.059 | 0.055 | 0.051 | 0.055 | 7.3 | | Total | 0.59 | 0.59 | 0.45 | 0.54 | 15.8 | ^{*} At 25°C and 1 atmosphere TABLE 31 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Congener Group Emission Rates | Congener | Emission Rate Coeff | | | | | | |------------------------------|---------------------|------------|------------|---------|--------------|--| | Group | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | ng/s | ng/s | ng/s | ng/s | % | | | | | | | | | | | Tetrachlorodibenzo-p-dioxins | 1.26 | 0.94 | 0.46 | 0.89 | 45.6 | | | Pentachlorodibenzo-p-dioxins | 4.90 | 4.96 | 3.87 | 4.57 | 13.4 | | | Hexachlorodibenzo-p-dioxins | 13.8 | 12.8 | 10.4 | 12.3 | 14.3 | | | Heptachlorodibenzo-p-dioxins | 12.5 | 11.8 | 9.55 | 11.3 | 13.8 | | | Octachlorodibenzo-p-dioxin | 3.95 | 3.67 | 3.00 | 3.54 | 13.7 | | | Total | 36.4 | 34.2 | 27.2 | 32.6 | 14.7 | | | Congener | | Emission Rate | | | | | | |--------------------------|------------|---------------|------------|---------|--------------|--|--| | Group | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | | ng/s | ng/s | ng/s | ng/s | % | | | | Tetrachlorodibenzofurans | 0.86 | 0.84 | 0.38 | 0.70 | 39.2 | | | | Pentachlorodibenzofurans | 2.33 | 2.32 | 1.67 | 2.11 | 18.1 | | | | Hexachlorodibenzofurans | 3.52 | 3.50 | 2.68 | 3.23 | 14.8 | | | | Heptachlorodibenzofurans | 2.83 | 2.84 | 2.29 | 2.65 | 11.8 | | | | Octachlorodibenzofuran | 1.05 | 0.96 | 0.90 | 0.97 | 7.4 | | | | Total | 10.6 | 10.5 | 7.92 | 9.66 | 15.6 | | | TABLE 32 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Dioxin and Furan Congener Group Emission Data | Congener
Group | Actual
Concentration | Dry Reference
Concentration | | Wet Reference
Concentration | Emission
Rate | |------------------------------|-------------------------|--------------------------------|----------|--------------------------------|------------------| | | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzo-p-dioxins | 0.035 | 0.060 | 0.047 | 0.050 | 0.89 | | Pentachlorodibenzo-p-dioxins | 0.18 | 0.31 | 0.25 | 0.26 | 4.57 | | Hexachlorodibenzo-p-dioxins | 0.49 | 0.83 | 0.66 | 0.69 | 12.3 | | Heptachlorodibenzo-p-dioxins | 0.45 | 0.76 | 0.61 | 0.64 | 11.3 | | Octachlorodibenzo-p-dioxin | 0.14 | 0.24 | 0.19 | 0.20 | 3.54 | | Total | 1.29 | 2.20 | 1.75 | 1.84 | 32.6 | | Congener
Group | Actual
Concentration | Dry Reference
Concentration | | Wet Reference
Concentration | Emission
Rate | |--------------------------|-------------------------|--------------------------------|----------|--------------------------------|------------------| | | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzofurans | 0.027 | 0.047 | 0.037 | 0.039 | 0.70 | | Pentachlorodibenzofurans | 0.083 | 0.14 | 0.11 | 0.12 | 2.11 | | Hexachlorodibenzofurans | 0.13 | 0.22 | 0.17 | 0.18 | 3.23 | | Heptachlorodibenzofurans | 0.10 | 0.18 | 0.14 | 0.15 | 2.65 | | Octachlorodibenzofuran | 0.038 | 0.065 | 0.052 | 0.055 | 0.97 | | Total | 0.38 | 0.65 | 0.52 | 0.54 | 9.66 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 33 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Blank Dioxin and Furan Congener Group Analyses | Blank
Train | Laboratory
Blank | |----------------|----------------------------------| | pg | pg | | <4.3 | <3.1 | | <4.4 | <3.1 | | <4.0 | <3.4 | | 47.9 | <3.2 | | 177 | 133 | | <238 | <146 | | | 7rain pg <4.3 <4.4 <4.0 47.9 177 | | Congener
Group | Blank
Train | Laboratory
Blank | |--------------------------|----------------|---------------------| | | pg | pg | | Tetrachlorodibenzofurans | <3.3 | <1.9 | | Pentachlorodibenzofurans | <2.6 | <2.0 | | Hexachlorodibenzofurans | 3.54 | <3.3 | | Heptachlorodibenzofurans | <7.4 | <9.5 | | Octachlorodibenzofuran | <19 | 31.5 | | Total | <35.8 | <48.2 | [&]quot;<" indicates that the amount detected is less than the detection limit In these cases the value of the detection limit was used to calculate the total collected. TABLE 34 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Specific Isomer Emission Data Test No. 1 | Specific
Isomer | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |-------------------------------------|-----------|---------------|---------------|---------------|---------------|----------| | isomer | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | pg | pg/m³ | pg/Rm³* | pg/Rm³** | pg/Rm³* | ng/s | | 2378-tetrachlorodibenzo-p-dioxin | <4.2 | <0.47 | <0.82 | <0.64 | <0.68 | <0.012 | | 12378-pentachlorodibenzo-p-dioxin | <34 | <3.83 | <6.62 | <5.21 | <5.51 | <0.098 | | 123478-hexachlorodibenzo-p-dioxin | 117 | 13.2 | 22.8 | 17.9 | 18.9 | 0.34 | | 123678-hexachlorodibenzo-p-dioxin | 331 | 37.3 | 64.5 | 50.7 | 53.6 | 0.95 | | 123789-hexachlorodibenzo-p-dioxin | 146 | 16.4 | 28.4 | 22.4 | 23.6 | 0.42 | | 1234678-heptachlorodibenzo-p-dioxin | 2100 | 236 | 409 | 322 | 340 | 6.05 | | Octachlorodibenzo-p-dioxin | 1370 | 154 | 267 | 210 | 222 | 3.95 | | 2378-tetrachlorodibenzofuran | 7.87 | 0.89 | 1.53 | 1.21 | 1.27 | 0.023 | | 12378-pentachlorodibenzofuran | 22.8 | 2.57 | 4.44 | 3.50 | 3.69 | 0.066 | | 23478-pentachlorodibenzofuran | 78.6 | 8.85 | 15.3 | 12.0 | 12.7 | 0.23 | | 123478-hexachlorodibenzofuran | 102 | 11.5 | 19.9 | 15.6 | 16.5 | 0.29 | | 123678-hexachlorodibenzofuran | 116 | 13.1 | 22.6 | 17.8 | 18.8 | 0.33 | | 234678-hexachlorodibenzofuran | 230 | 25.9 | 44.8 | 35.3 | 37.2 | 0.66 | | 123789-hexachlorodibenzofuran | <61 | <6.87 | <11.9 | <9.35 | <9.88 | <0.18 | | 1234678-heptachlorodibenzofuran | 682 | 76.8 | 133 | 105 | 110 | 1.97 | | 1234789-heptachlorodibenzofuran | 117 | 13.2 | 22.8 | 17.9 | 18.9 | 0.34 | | Octachlorodibenzofuran | 363 | 40.9 | 70.7 | 55.7 | 58.8 | 1.05 | | PCB 81 | <27 | <3.04 | <5.26 | <4.14 | <4.37 | <0.078 | | PCB 77 | 66.9 | 7.53 | 13.0 | 10.3 | 10.8 | 0.19 | | PCB 123 | <27 | <3.04 | <5.26 | <4.14 | <4.37 | <0.078 | | PCB 118 | 859 | 96.7 | 167 | 132 | 139 | 2.48 | | PCB 114 | 30.6 | 3.45 | 5.96 | 4.69 | 4.95 | 0.088 | | PCB 105 | 251 | 28.3 | 48.9 | 38.5 | 40.6 | 0.72 | | PCB 126 | <25 | <2.81 | <4.87 | <3.83 | <4.05 | < 0.072 | | PCB 167 | 27.2 | 3.06 | 5.30 | 4.17 |
4.40 | 0.078 | | PCB 156/157 | 79.8 | 8.98 | 15.5 | 12.2 | 12.9 | 0.23 | | PCB 169 | 31.4 | 3.54 | 6.11 | 4.81 | 5.08 | 0.091 | | PCB 189 | 37.4 | 4.21 | 7.28 | 5.73 | 6.06 | 0.11 | | Total Dioxins & Furans Only | <5882 | <662 | <1146 | <902 | <952 | <17.0 | | Total PCBs Only | <1462 | <165 | <285 | <224 | <237 | <4.21 | | Total Dioxins & Furans and PCBs | <7345 | <827 | <1430 | <1126 | <1189 | <21.2 | | Dry Gas Volume Sampled (Rm ³ *): | 5.135 | |---|-------| | Actual Flowrate (m³/s) : | 25.6 | | Dry Reference Flowrate (Rm³/s*) : | 14.8 | | Dry Adjusted Flowrate (Rm³/s**): | 18.8 | | Wet Reference Flowrate (Rm³/s*) : | 17.8 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 35 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Specific Isomer Emission Data Test No. 2 | Specific
Isomer | Total
Collected | Actual Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |-------------------------------------|--------------------|----------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | pg/m³ | pg/Rm³* | pg/Rm³** | pg/Rm³* | ng/s | | 2378-tetrachlorodibenzo-p-dioxin | <2.5 | <0.29 | <0.49 | <0.39 | <0.41 | <0.0073 | | 12378-pentachlorodibenzo-p-dioxin | 33.8 | 3.89 | 6.66 | 5.33 | 5.60 | 0.099 | | 123478-hexachlorodibenzo-p-dioxin | 107 | 12.3 | 21.1 | 16.9 | 17.7 | 0.31 | | 123678-hexachlorodibenzo-p-dioxin | 321 | 37.0 | 63.2 | 50.6 | 53.2 | 0.94 | | 123789-hexachlorodibenzo-p-dioxin | 152 | 17.5 | 29.9 | 24.0 | 25.2 | 0.44 | | 1234678-heptachlorodibenzo-p-dioxin | 1840 | 212 | 362 | 290 | 305 | 5.36 | | Octachlorodibenzo-p-dioxin | 1260 | 145 | 248 | 199 | 209 | 3.67 | | 2378-tetrachlorodibenzofuran | 18.7 | 2.15 | 3.68 | 2.95 | 3.10 | 0.055 | | 12378-pentachlorodibenzofuran | 31.2 | 3.59 | 6.15 | 4.92 | 5.17 | 0.091 | | 23478-pentachlorodibenzofuran | 79.6 | 9.17 | 15.7 | 12.5 | 13.2 | 0.23 | | 123478-hexachlorodibenzofuran | 105 | 12.1 | 20.7 | 16.5 | 17.4 | 0.31 | | 123678-hexachlorodibenzofuran | 119 | 13.7 | 23.4 | 18.8 | 19.7 | 0.35 | | 234678-hexachlorodibenzofuran | 202 | 23.3 | 39.8 | 31.8 | 33.5 | 0.59 | | 123789-hexachlorodibenzofuran | 63.1 | 7.27 | 12.4 | 9.94 | 10.5 | 0.18 | | 1234678-heptachlorodibenzofuran | 633 | 72.9 | 125 | 99.7 | 105 | 1.85 | | 1234789-heptachlorodibenzofuran | <99 | <11.4 | <19.5 | <15.6 | <16.4 | < 0.29 | | Octachlorodibenzofuran | 330 | 38.0 | 65.0 | 52.0 | 54.7 | 0.96 | | PCB 81 | <26 | <3.00 | <5.12 | <4.10 | <4.31 | <0.076 | | PCB 77 | 213 | 24.5 | 42.0 | 33.6 | 35.3 | 0.62 | | PCB 123 | 135 | 15.6 | 26.6 | 21.3 | 22.4 | 0.39 | | PCB 118 | 6370 | 734 | 1255 | 1004 | 1055 | 18.6 | | PCB 114 | 181 | 20.9 | 35.7 | 28.5 | 30.0 | 0.53 | | PCB 105 | 2070 | 239 | 408 | 326 | 343 | 6.03 | | PCB 126 | <35 | <4.03 | <6.89 | <5.52 | <5.80 | < 0.10 | | PCB 167 | 85.8 | 9.89 | 16.9 | 13.5 | 14.2 | 0.25 | | PCB 156/157 | 330 | 38.0 | 65.0 | 52.0 | 54.7 | 0.96 | | PCB 169 | 32.5 | 3.74 | 6.40 | 5.12 | 5.38 | 0.095 | | PCB 189 | 42.6 | 4.91 | 8.39 | 6.71 | 7.06 | 0.12 | | Total Dioxins & Furans Only | <5397 | <622 | <1063 | <850 | <894 | <15.7 | | Total PCBs Only | <9521 | <1097 | <1875 | <1500 | <1577 | <27.8 | | Total Dioxins & Furans and PCBs | <14918 | <1719 | <2938 | <2351 | <2471 | <43.5 | | Dry Gas Volume Sampled (Rm ³ *): | 5.077 | |---|-------| | Actual Flowrate (m³/s) : | 25.3 | | Dry Reference Flowrate (Rm³/s*): | 14.8 | | Dry Adjusted Flowrate (Rm³/s**) : | 18.5 | | Wet Reference Flowrate (Rm³/s*): | 17.6 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 36 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Specific Isomer Emission Data Test No. 3 | Specific
Isomer | Total
Collected | Actual Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission.
Rate | |-------------------------------------|--------------------|----------------------|--------------------------------|-------------------------------|--------------------------------|-------------------| | | pg | pg/m³ | pg/Rm³* | pg/Rm³** | pg/Rm³* | ng/s | | 2378-tetrachlorodibenzo-p-dioxin | <4.2 | <0.48 | <0.81 | <0.65 | <0.68 | <0.012 | | 12378-pentachlorodibenzo-p-dioxin | 32.1 | 3.68 | 6.22 | 4.95 | 5.21 | 0.093 | | 123478-hexachlorodibenzo-p-dioxin | 81.9 | 9.38 | 15.9 | 12.6 | 13.3 | 0.24 | | 123678-hexachlorodibenzo-p-dioxin | 252 | 28.9 | 48.8 | 38.9 | 40.9 | 0.73 | | 123789-hexachlorodibenzo-p-dioxin | 106 | 12.1 | 20.5 | 16.4 | 17.2 | 0.31 | | 1234678-heptachlorodibenzo-p-dioxin | 1590 | 182 | 308 | 245 | 258 | 4.59 | | Octachlorodibenzo-p-dioxin | 1040 | 119 | 201 | 161 | 169 | 3.00 | | 2378-tetrachlorodibenzofuran | <5.6 | <0.64 | <1.08 | <0.86 | <0.91 | <0.016 | | 12378-pentachlorodibenzofuran | 22.6 | 2.59 | 4.38 | 3.49 | 3.66 | 0.065 | | 23478-pentachlorodibenzofuran | 54.9 | 6.29 | 10.6 | 8.47 | 8.90 | 0.16 | | 123478-hexachlorodibenzofuran | 74.0 | 8.48 | 14.3 | 11.4 | 12.0 | 0.21 | | 123678-hexachlorodibenzofuran | 91.3 | 10.5 | 17.7 | 14.1 | 14.8 | 0.26 | | 234678-hexachlorodibenzofuran | 165 | 18.9 | 32.0 | 25.5 | 26.8 | 0.48 | | 123789-hexachlorodibenzofuran | 47.6 | 5.45 | 9.22 | 7.35 | 7.72 | 0.14 | | 1234678-heptachlorodibenzofuran | 513 | 58.8 | 99.4 | 79.2 | 83.2 | 1.48 | | 1234789-heptachlorodibenzofuran | <77 | <8.82 | <14.9 | <11.9 | <12.5 | <0.22 | | Octachlorodibenzofuran | 313 | 35.9 | 60.6 | 48.3 | 50.8 | 0.90 | | PCB 81 | <27 | <3.09 | <5.23 | <4.17 | <4.38 | <0.078 | | PCB 77 | <63 | <7.22 | <12.2 | <9.72 | <10.2 | <0.18 | | PCB 123 | <27 | <3.09 | <5.23 | <4.17 | <4.38 | <0.078 | | PCB 118 | 1010 | 116 | 196 | 156 | 164 | 2.92 | | PCB 114 | <22 | <2.52 | <4.26 | <3.40 | <3.57 | < 0.064 | | PCB 105 · | 331 | 37.9 | 64.1 | 51.1 | 53.7 | 0.96 | | PCB 126 | <27 | <3.09 | <5.23 | <4.17 | <4.38 | <0.078 | | PCB 167 | <17 | <1.95 | <3.29 | <2.62 | <2.76 | < 0.049 | | PCB 156/157 | 55.0 | 6.30 | 10.7 | 8.49 | 8.92 | 0.16 | | PCB 169 | <23 | <2.63 | <4.46 | <3.55 | <3.73 | < 0.066 | | PCB 189 | 24.3 | 2.78 | 4.71 | 3.75 | 3.94 | 0.070 | | Total Dioxins & Furans Only | <4470 | <512 | <866 | <690 | <725 | <12.9 | | Total PCBs Only | <1626 | <186 | <315 | <251 | <264 | <4.69 | | Total Dioxins & Furans and PCBs | <6097 | <698 | <1181 | <941 | <989 | <17.6 | | Dry Gas Volume Sampled (Rm ³ *): | 5.162 | |---|-------| | Actual Flowrate (m³/s) : | 25.2 | | Dry Reference Flowrate (Rm³/s*) : | 14.9 | | Dry Adjusted Flowrate (Rm³/s**): | 18.7 | | Wet Reference Flowrate (Rm³/s*): | 17.8 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 37 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Specific Isomer Actual Concentrations | Specific | | Coefficient | | | | | |-------------------------------------|------------|-------------|------------|---------|--------------|--| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | pg/m³ | pg/m³ | pg/m³ | pg/m³ | % | | | 2378-tetrachlorodibenzo-p-dioxin | <0.47 | <0.29 | <0.48 | <0.41 | 26.4 | | | 12378-pentachlorodibenzo-p-dioxin | <3.83 | 3.89 | 3.68 | <3.80 | 2.9 | | | 123478-hexachlorodibenzo-p-dioxin | 13.2 | 12.3 | 9.38 | 11.6 | 17.1 | | | 123678-hexachlorodibenzo-p-dioxin | 37.3 | 37.0 | 28.9 | 34.4 | 13.9 | | | 123789-hexachlorodibenzo-p-dioxin | 16.4 | 17.5 | 12.1 | 15.4 | 18.5 | | | 1234678-heptachlorodibenzo-p-dioxin | 236 | 212 | 182 | 210 | 12.9 | | | Octachlorodibenzo-p-dioxin | 154 | 145 | 119 | 140 | 13.1 | | | 2378-tetrachlorodibenzofuran | 0.89 | 2.15 | <0.64 | <1.23 | 66.2 | | | 12378-pentachlorodibenzofuran | 2.57 | 3.59 | 2.59 | 2.92 | 20.1 | | | 23478-pentachlorodibenzofuran | 8.85 | 9.17 | 6.29 | 8.10 | 19.5 | | | 123478-hexachlorodibenzofuran | 11.5 | 12.1 | 8.48 | 10.7 | 18.1 | | | 123678-hexachlorodibenzofuran | 13.1 | 13.7 | 10.5 | 12.4 | 13.9 | | | 234678-hexachlorodibenzofuran | 25.9 | 23.3 | 18.9 | 22.7 | 15.6 | | | 123789-hexachlorodibenzofuran | <6.87 | 7.27 | 5.45 | <6.53 | 14.6 | | | 1234678-heptachlorodibenzofuran | 76.8 | 72.9 | 58.8 | 69.5 | 13.7 | | | 1234789-heptachlorodibenzofuran | 13.2 | <11.4 | <8.82 | <11.1 | 19.7 | | | Octachlorodibenzofuran | 40.9 | 38.0 | 35.9 | 38.2 | 6.6 | | | PCB 81 | <3.04 | <3.00 | <3.09 | <3.04 | 1.6 | | | PCB 77 | 7.53 | 24.5 | <7.22 | <13.1 | 75.7 | | | PCB 123 | <3.04 | 15.6 | <3.09 | <7.23 | 99.7 | | | PCB 118 | 96.7 | 734 | 116 | 315 | 115 | | | PCB 114 | 3.45 | 20.9 | <2.52 | <8.94 | 116 | | | PCB 105 | 28.3 | 239 | 37.9 | 102 | 117 | | | PCB 126 | <2.81 | <4.03 | <3.09 | <3.31 | 19.3 | | | PCB 167 | 3.06 | 9.89 | <1.95 | <4.97 | 86.6 | | | PCB 156/157 | 8.98 | 38.0 | 6.30 | 17.8 | 99.0 | | | PCB 169 | 3.54 | 3.74 | <2.63 | <3.30 | 17.8 | | | PCB 189 | 4.21 | 4.91 | 2.78 | 3.97 | 27.3 | | | Total Dioxins & Furans Only | <662 | <622 | <512 | <599 | 13.0 | | | Total PCBs Only | <165 | <1097 | <186 | <483 | 110 | | | Total Dioxins & Furans and PCBs | <827 | <1719 | <698 | <1081 | 51.4 | | TABLE 38 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Specific Isomer Dry Reference Concentrations | Specific | E | Coefficient | | | | |-------------------------------------|------------|-------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | pg/Rm³* | pg/Rm³* | pg/Rm³* | pg/Rm³* | % | | 2378-tetrachlorodibenzo-p-dioxin | <0.82 | <0.49 | <0.81 | <0.71 | 26.4 | | 12378-pentachlorodibenzo-p-dioxin | <6.62 | 6.66 | 6.22 | <6.50 | 3.7 | | 123478-hexachlorodibenzo-p-dioxin | 22.8 | 21.1 | 15.9 | 19.9 | 18.1 | | 123678-hexachlorodibenzo-p-dioxin | 64.5 | 63.2 | 48.8 | 58.8 | 14.8 | |
123789-hexachlorodibenzo-p-dioxin | 28.4 | 29.9 | 20.5 | 26.3 | 19.2 | | 1234678-heptachlorodibenzo-p-dioxin | 409 | 362 | 308 | 360 | 14.0 | | Octachlorodibenzo-p-dioxin | 267 | 248 | 201 | 239 | 14.1 | | 2378-tetrachlorodibenzofuran | 1.53 | 3.68 | <1.08 | <2.10 | 66.1 | | 12378-pentachlorodibenzofuran | 4.44 | 6.15 | 4.38 | 4.99 | 20.1 | | 23478-pentachlorodibenzofuran | 15.3 | 15.7 | 10.6 | 13.9 | 20.3 | | 123478-hexachlorodibenzofuran | 19.9 | 20.7 | 14.3 | 18.3 | 18.9 | | 123678-hexachlorodibenzofuran | 22.6 | 23.4 | 17.7 | 21.2 | 14.6 | | 234678-hexachlorodibenzofuran | 44.8 | 39.8 | 32.0 | 38.8 | 16.6 | | 123789-hexachlorodibenzofuran | <11.9 | 12.4 | 9.22 | <11.2 | 15.3 | | 1234678-heptachlorodibenzofuran | 133 | 125 | 99.4 | 119 | 14.7 | | 1234789-heptachlorodibenzofuran | 22.8 | <19.5 | <14.9 | <19.1 | 20.7 | | Octachlorodibenzofuran | 70.7 | 65.0 | 60.6 | 65.4 | 7.7 | | PCB 81 | <5.26 | <5.12 | <5.23 | <5.20 | 1.4 | | PCB 77 | 13.0 | 42.0 | <12.2 | <22.4 | 75.7 | | PCB 123 | <5.26 | 26.6 | <5.23 | <12.4 | 99.7 | | PCB 118 | 167 | 1255 | 196 | 539 | 115 | | PCB 114 | 5.96 | 35.7 | <4.26 | <15.3 | 115 | | PCB 105 | 48.9 | 408 | 64.1 | 174 | 117 | | PCB 126 | <4.87 | <6.89 | <5.23 | <5.66 | 19.1 | | PCB 167 | 5.30 | 16.9 | <3.29 | <8.50 | 86.5 | | PCB 156/157 | 15.5 | 65.0 | 10.7 | 30.4 | 98.9 | | PCB 169 | 6.11 | 6.40 | <4.46 | <5.66 | 18.6 | | PCB 189 | 7.28 | 8.39 | 4.71 | 6.79 | 27.8 | | Total Dioxins & Furans Only | <1146 | <1063 | <866 | <1025 | 14.0 | | Total PCBs Only | <285 | <1875 | <315 | <825 | 110 | | Total Dioxins & Furans and PCBs | <1430 | <2938 | <1181 | <1850 | 51.4 | ^{*} At 25°C and 1 atmosphere TABLE 39 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Specific Isomer Dry Adjusted Concentrations | Specific | 1 | Coefficient | | | | |-------------------------------------|------------|-------------|---------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | pg/Rm³* | pg/Rm³* | pg/Rm³* | pg/Rm³* | % | | 2378-tetrachlorodibenzo-p-dioxin | <0.64 | <0.39 | <0.65 | <0.56 | 25.9 | | 12378-pentachlorodibenzo-p-dioxin | <5.21 | 5.33 | 4.95 | <5.16 | 3.7 | | 123478-hexachlorodibenzo-p-dioxin | 17.9 | 16.9 | 12.6 | 15.8 | 17.7 | | 123678-hexachlorodibenzo-p-dioxin | 50.7 | 50.6 | 38.9 | 46.7 | 14.5 | | 123789-hexachlorodibenzo-p-dioxin | 22.4 | 24.0 | 16.4 | 20.9 | 19.2 | | 1234678-heptachlorodibenzo-p-dioxin | 322 | 290 | 245 | 286 | 13.4 | | Octachlorodibenzo-p-dioxin | 210 | 199 | 161 | 190 | 13.7 | | 2378-tetrachlorodibenzofuran | 1.21 | 2.95 | <0.86 | <1.67 | 66.8 | | 12378-pentachlorodibenzofuran | 3.50 | 4.92 | 3.49 | 3.97 | 20.7 | | 23478-pentachlorodibenzofuran | 12.0 | 12.5 | 8.47 | 11.0 | 20.1 | | 123478-hexachlorodibenzofuran | 15.6 | 16.5 | 11.4 | 14.5 | 18.8 | | 123678-hexachlorodibenzofuran | 17.8 | 18.8 | 14.1 | 16.9 | 14.6 | | 234678-hexachlorodibenzofuran | 35.3 | 31.8 | 25 <i>.</i> 5 | 30.9 | 16.1 | | 123789-hexachlorodibenzofuran | <9.35 | 9.94 | 7.35 | <8.88 | 15.3 | | 1234678-heptachlorodibenzofuran | 105 | 99.7 | 79.2 | 94.5 | 14.3 | | 1234789-heptachlorodibenzofuran | 17.9 | <15.6 | <11.9 | <15.1 | 20.2 | | Octachlorodibenzofuran | 55.7 | 52.0 | 48.3 | 52.0 | 7.1 | | PCB 81 | <4.14 | <4.10 | <4.17 | <4.13 | 0.9 | | PCB 77 | 10.3 | 33.6 | <9.72 | <17.8 | 76.3 | | PCB 123 | <4.14 | 21.3 | <4.17 | <9.86 | 100 | | PCB 118 | 132 | 1004 | 156 | 430 | 115 | | PCB 114 | 4.69 | 28.5 | <3.40 | <12.2 | 116 | | PCB 105 | 38.5 | 326 | 51.1 | 139 | 117 | | PCB 126 | <3.83 | <5.52 | <4.17 | <4.51 | 19.8 | | PCB 167 | 4.17 | 13.5 | <2.62 | <6.77 | 87.1 | | PCB 156/157 | 12.2 | 52.0 | 8.49 | 24.2 | 99.5 | | PCB 169 | 4.81 | 5.12 | <3.55 | <4.50 | 18.5 | | PCB 189 | 5.73 | 6.71 | 3.75 | 5.40 | 27.9 | | Total Dioxins & Furans Only | <902 | <850 | <690 | <814 | 13.6 | | Total PCBs Only | <224 | <1500 | <251 | <658 | 111 | | Total Dioxins & Furans and PCBs | <1126 | <2351 | <941 | <1473 | 52.0 | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 40 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Specific Isomer Wet Reference Concentrations | Isomer | Test No. 1 pg/Rm³* | Test No. 2 | Test No. 3 | Average | of Variation | |--|--------------------|------------|------------|---------|--------------| | The statement for a summand some statement | pg/Rm³* | | | | o. ranation | | | | pg/Rm³* | pg/Rm³* | pg/Rm³* | % | | 2378-tetrachlorodibenzo-p-dioxin | <0.68 | <0.41 | <0.68 | <0.59 | 26.0 | | 12378-pentachlorodibenzo-p-dioxin | <5.51 | 5.60 | 5.21 | <5.44 | 3.8 | | 123478-hexachlorodibenzo-p-dioxin | 18.9 | 17.7 | 13.3 | 16.6 | 17.9 | | 123678-hexachlorodibenzo-p-dioxin | 53.6 | 53.2 | 40.9 | 49.2 | 14.7 | | 123789-hexachlorodibenzo-p-dioxin | 23.6 | 25.2 | 17.2 | 22.0 | 19.3 | | 1234678-heptachlorodibenzo-p-dioxin | 340 | 305 | 258 | 301 | 13.7 | | Octachlorodibenzo-p-dioxin | 222 | 209 | 169 | 200 | 13.9 | | 2378-tetrachlorodibenzofuran | 1.27 | 3.10 | <0.91 | <1.76 | 66.6 | | 12378-pentachlorodibenzofuran | 3.69 | 5.17 | 3.66 | 4.17 | 20.6 | | 23478-pentachlorodibenzofuran | 12.7 | 13.2 | 8.90 | 11.6 | 20.3 | | 123478-hexachlorodibenzofuran | 16.5 | 17.4 | 12.0 | 15.3 | 18.9 | | 123678-hexachlorodibenzofuran | 18.8 | 19.7 | 14.8 | 17.8 | 14.7 | | 234678-hexachlorodibenzofuran | 37.2 | 33.5 | 26.8 | 32.5 | 16.3 | | 123789-hexachlorodibenzofuran | <9.88 | 10.5 | 7.72 | <9.35 | 15.4 | | 1234678-heptachlorodibenzofuran | 110 | 105 | 83.2 | 99.5 | 14.5 | | 1234789-heptachlorodibenzofuran | 18.9 | <16.4 | <12.5 | <15.9 | 20.4 | | Octachlorodibenzofuran | 58.8 | 54.7 | 50.8 | 54.7 | 7.3 | | PCB 81 | <4.37 | <4.31 | <4.38 | <4.35 | 0.9 | | PCB 77 | 10.8 | 35.3 | <10.2 | <18.8 | 76.1 | | PCB 123 | <4.37 | 22.4 | <4.38 | <10.4 | 100 | | PCB 118 | 139 | 1055 | 164 | 453 | 115 | | PCB 114 | 4.95 | 30.0 | <3.57 | <12.8 | 116 | | PCB 105 | 40.6 | 343 | 53.7 | 146 | 117 | | PCB 126 | <4.05 | <5.80 | <4.38 | <4.74 | 19.6 | | PCB 167 | 4.40 | 14.2 | <2.76 | <7.12 | 86.9 | | PCB 156/157 | 12.9 | 54.7 | 8.92 | 25.5 | 99.3 | | PCB 169 | 5.08 | 5.38 | <3.73 | <4.73 | 18.6 | | PCB 189 | 6.06 | 7.06 | 3.94 | 5.68 | 28.0 | | Total Dioxins & Furans Only | <952 | <894 | <725 | <857 | 13.8 | | Total PCBs Only | <237 | <1577 | <264 | <692 | 111 | | Total Dioxins & Furans and PCBs | <1189 | <2471 | <989 | <1550 | 51.9 | ^{*} At 25°C and 1 atmosphere TABLE 41 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Specific Isomer Emission Rates | Specific | | Coefficient | | | | |-------------------------------------|------------|-------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/s | ng/s | ng/s | ng/s | % | | 2378-tetrachlorodibenzo-p-dioxin | <0.012 | <0.0073 | <0.012 | <0.011 | 26.5 | | 12378-pentachlorodibenzo-p-dioxin | <0.098 | 0.099 | 0.093 | <0.096 | 3.4 | | 123478-hexachlorodibenzo-p-dioxin | 0.34 | 0.31 | 0.24 | 0.30 | 17.8 | | 123678-hexachlorodibenzo-p-dioxin | 0.95 | 0.94 | 0.73 | 0.87 | 14.4 | | 123789-hexachlorodibenzo-p-dioxin | 0.42 | 0.44 | 0.31 | 0.39 | 18.9 | | 1234678-heptachlorodibenzo-p-dioxin | 6.05 | 5.36 | 4.59 | 5.34 | 13.7 | | Octachlorodibenzo-p-dioxin | 3.95 | 3.67 | 3.00 | 3.54 | 13.7 | | 2378-tetrachlorodibenzofuran | 0.023 | 0.055 | <0.016 | <0.031 | 65.9 | | 12378-pentachlorodibenzofuran | 0.066 | 0.091 | 0.065 | 0.074 | 19.9 | | 23478-pentachlorodibenzofuran | 0.23 | 0.23 | 0.16 | 0.21 | 19.9 | | 123478-hexachlorodibenzofuran | 0.29 | 0.31 | 0.21 | 0.27 | 18.5 | | 123678-hexachlorodibenzofuran | 0.33 | 0.35 | 0.26 | 0.31 | 14.3 | | 234678-hexachlorodibenzofuran | 0.66 | 0.59 | 0.48 | 0.58 | 16.3 | | 123789-hexachlorodibenzofuran | <0.18 | 0.18 | 0.14 | <0.17 | 15.0 | | 1234678-heptachlorodibenzofuran | 1.97 | 1.85 | 1.48 | 1.76 | 14.3 | | 1234789-heptachlorodibenzofuran | 0.34 | <0.29 | <0.22 | <0.28 | 20.4 | | Octachlorodibenzofuran | 1.05 | 0.96 | 0.90 | 0.97 | 7.4 | | PCB 81 | <0.078 | <0.076 | <0.078 | <0.077 | 1.6 | | PCB 77 | 0.19 | 0.62 | < 0.18 | <0.33 | 75.5 | | PCB 123 | <0.078 | 0.39 | <0.078 | <0.18 | 99.5 | | PCB 118 | 2.48 | 18.6 | 2.92 | 7.99 | 115 | | PCB 114 | 0.088 | 0.53 | <0.064 | <0.23 | 115 | | PCB 105 | 0.72 | 6.03 | 0.96 | 2.57 | 117 | | PCB 126 | < 0.072 | <0.10 | <0.078 | < 0.084 | 18.9 | | PCB 167 | 0.078 | 0.25 | < 0.049 | < 0.13 | 86.3 | | PCB 156/157 | 0.23 | 0.96 | 0.16 | 0.45 | 98.7 | | PCB 169 | 0.091 | 0.095 | <0.066 | <0.084 | 18.2 | | PCB 189 | 0.11 | 0.12 | 0.070 | 0.10 | 27.5 | | Total Dioxins & Furans Only | <17.0 | <15.7 | <12.9 | <15.2 | 13.7 | | Total PCBs Only | <4.21 | <27.8 | <4.69 | <12.2 | 110 | | Total Dioxins & Furans and PCBs | <21.2 | <43.5 | <17.6 | <27.4 | 51.2 | | | | | | | | TABLE 42 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Dioxin and Furan Specific Isomer Emission Data | Specific | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |-------------------------------------|---------------|---------------|---------------|---------------|----------| | Isomer | Concentration | Concentration | Concentration | Concentration | Rate | | | pg/m³ | pg/Rm³* | pg/Rm³** | pg/Rm³* | ng/s | | 2378-tetrachlorodibenzo-p-dioxin | <0.41 | <0.71 | <0.56 | <0.59 | <0.011 | | 12378-pentachlorodibenzo-p-dioxin | <3.80 | <6.50 | <5.16 | <5.44 | <0.096 | | 123478-hexachlorodibenzo-p-dioxin | 11.6 | 19.9 | 15.8 | 16.6 | 0.30 | | 123678-hexachlorodibenzo-p-dioxin | 34.4 | 58.8 | 46.7 | 49.2 | 0.87 | | 123789-hexachlorodibenzo-p-dioxin | 15.4 | 26.3 | 20.9 | 22.0 | 0.39 | | 1234678-heptachlorodibenzo-p-dioxin | 210 | 360 | 286 | 301 | 5.34 | | Octachlorodibenzo-p-dioxin | 140 | 239 | 190 | 200 | 3.54 | | 2378-tetrachlorodibenzofuran | <1.23 | <2.10 | <1.67 | <1.76 | <0.031 | | 12378-pentachlorodibenzofuran | 2.92 | 4.99 | 3.97 | 4.17 | 0.074 | | 23478-pentachlorodibenzofuran | 8.10 | 13.9 | 11.0 | 11.6 | 0.21 | |
123478-hexachlorodibenzofuran | 10.7 | 18.3 | 14.5 | 15.3 | 0.27 | | 123678-hexachlorodibenzofuran | 12.4 | 21.2 | 16.9 | 17.8 | 0.31 | | 234678-hexachlorodibenzofuran | 22.7 | 38.8 | 30.9 | 32.5 | 0.58 | | 123789-hexachlorodibenzofuran | <6.53 | <11.2 | <8.88 | <9.35 | <0.17 | | 1234678-heptachlorodibenzofuran | 69.5 | 119 | 94.5 | 99.5 | 1.76 | | 1234789-heptachlorodibenzofuran | <11.1 | <19.1 | <15.1 | <15.9 | <0.28 | | Octachlorodibenzofuran | 38.2 | 65.4 | 52.0 | 54.7 | 0.97 | | PCB 81 | <3.04 | <5.20 | <4.13 | <4.35 | <0.077 | | PCB 77 | <13.1 | <22.4 | <17.8 | <18.8 | < 0.33 | | PCB 123 | <7.23 | <12.4 | <9.86 | <10.4 | <0.18 | | PCB 118 | 315 | 539 | 430 | 453 | 7.99 | | PCB 114 | <8.94 | <15.3 | <12.2 | <12.8 | <0.23 | | PCB 105 | 102 | 174 | 139 | 146 | 2.57 | | PCB 126 | <3.31 | <5.66 | <4.51 | <4.74 | <0.084 | | PCB 167 | <4.97 | <8.50 | <6.77 | <7.12 | <0.13 | | PCB 156/157 | 17.8 | 30.4 | 24.2 | 25.5 | 0.45 | | PCB 169 | <3.30 | <5.66 | <4.50 | <4.73 | <0.084 | | PCB 189 | 3.97 | 6.79 | 5.40 | 5.68 | 0.10 | | Total Dioxins & Furans Only | <599 | <1025 | <814 | <857 | <15.2 | | Total PCBs Only | <483 | <825 | <658 | <692 | <12.2 | | Total Dioxins & Furans and PCBs | <1081 | <1850 | <1473 | <1550 | <27.4 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 43 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Blank Dioxin and Furan Specific Isomer Analyses | Specific | Blank | Laboratory | |-------------------------------------|--------|------------| | Isomer | Train | Blank | | | pg | pg | | 2378-tetrachlorodibenzo-p-dioxin | <4.3 | <3.1 | | 12378-pentachlorodibenzo-p-dioxin | <4.4 | <3.1 | | 123478-hexachlorodibenzo-p-dioxin | <4.0 | <3.4 | | 123678-hexachlorodibenzo-p-dioxin | <3.5 | <3.3 | | 123789-hexachlorodibenzo-p-dioxin | <3.8 | <3.3 | | 1234678-heptachlorodibenzo-p-dioxin | 47.9 | <15 | | Octachlorodibenzo-p-dioxin | 177 | 133 | | 2378-tetrachlorodibenzofuran | <3.3 | <1.9 | | 12378-pentachlorodibenzofuran | <2.6 | <2.0 | | 23478-pentachlorodibenzofuran | <2.4 | <1.9 | | 123478-hexachlorodibenzofuran | <2.2 | <2.7 | | 123678-hexachlorodibenzofuran | <2.1 | <2.6 | | 234678-hexachlorodibenzofuran | <2.3 | <2.9 | | 123789-hexachlorodibenzofuran | <2.7 | <3.3 | | 1234678-heptachlorodibenzofuran | <9.8 | <7.4 | | 1234789-heptachlorodibenzofuran | <7.4 | <9.5 | | Octachlorodibenzofuran | <19 | 31.5 | | PCB 81 | <22 | <12 | | PCB 77 | <23 | <12 | | PCB 123 | <27 | <14 | | PCB 118 | 61.5 | 18.3 | | PCB 114 | <21 | <14 | | PCB 105 | <21 | <14 | | PCB 126 | <24 | <17 | | PCB 167 | <13 | <11 | | PCB 156/157 | <19 | <16 | | PCB 169 | <15 | <13 | | PCB 189 | <11 | <10 | | Total Dioxins & Furans Only | <298.7 | <229.9 | | Total PCBs Only | <258 | <151 | | Total Dioxins & Furans and PCBs | <556 | <381 | [&]quot;<" indicates that the amount detected is less than the detection limit In these cases the value of the detection limit was used to calculate the total collected. TABLE 44 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Toxicity Equivalent Actual Concentrations | Specific | Toxicity | | Actual Cor | centration | | |-------------------------------------|-------------|------------|------------|------------|-----------| | Isomer | Equivalency | Test No. 1 | Test No. 2 | Test No. 3 | Average | | | Factor | pg TEQ/m³ | pg TEQ/m³ | pg TEQ/m³ | pg TEQ/m³ | | 2378-tetrachlorodibenzo-p-dioxin | 1.00000 | <0.47 | <0.29 | <0.48 | <0.41 | | 12378-pentachlorodibenzo-p-dioxin | 1.00000 | <3.83 | 3.89 | 3.68 | <3.80 | | 123478-hexachlorodibenzo-p-dioxin | 0.10000 | 1.32 | 1.23 | 0.94 | 1.16 | | 123678-hexachlorodibenzo-p-dioxin | 0.10000 | 3.73 | 3.70 | 2.89 | 3.44 | | 123789-hexachlorodibenzo-p-dioxin | 0.10000 | 1.64 | 1.75 | 1.21 | 1.54 | | 1234678-heptachlorodibenzo-p-dioxin | 0.01000 | 2.36 | 2.12 | 1.82 | 2.10 | | Octachlorodibenzo-p-dioxin | 0.00030 | 0.046 | 0.044 | 0.036 | 0.042 | | 2378-tetrachlorodibenzofuran | 0.10000 | 0.089 | 0.22 | <0.064 | <0.12 | | 12378-pentachlorodibenzofuran | 0.03000 | 0.077 | 0.11 | 0.078 | 0.088 | | 23478-pentachlorodibenzofuran | 0.30000 | 2.65 | 2.75 | 1.89 | 2.43 | | 123478-hexachlorodibenzofuran | 0.10000 | 1.15 | 1.21 | 0.85 | 1.07 | | 123678-hexachlorodibenzofuran | 0.10000 | 1.31 | 1.37 | 1.05 | 1.24 | | 234678-hexachlorodibenzofuran | 0.10000 | 2.59 | 2.33 | 1.89 | 2.27 | | 123789-hexachlorodibenzofuran | 0.10000 | < 0.69 | 0.73 | 0.55 | <0.65 | | 1234678-heptachlorodibenzofuran | 0.01000 | 0.77 | 0.73 | 0.59 | 0.69 | | 1234789-heptachlorodibenzofuran | 0.01000 | 0.13 | <0.11 | <0.088 | <0.11 | | Octachlorodibenzofuran | 0.00030 | 0.01 | 0.011 | 0.011 | 0.011 | | PCB 81 | 0.00030 | <0.00091 | <0.00090 | <0.00093 | <0.00091 | | PCB 77 | 0.00010 | 0.00075 | 0.0025 | <0.00072 | < 0.0013 | | PCB 123 | 0.00003 | <0.000091 | 0.00047 | < 0.000093 | < 0.00022 | | PCB 118 | 0.00003 | 0.0029 | 0.022 | 0.0035 | 0.0095 | | PCB 114 | 0.00003 | 0.00010 | 0.00063 | <0.000076 | <0.00027 | | PCB 105 | 0.00003 | 0.00085 | 0.0072 | 0.0011 | 0.0030 | | PCB 126 | 0.10000 | <0.28 | < 0.40 | <0.31 | <0.33 | | PCB 167 | 0.00003 | 0.000092 | 0.00030 | <0.00058 | < 0.00015 | | PCB 156/157 | 0.00003 | 0.00027 | 0.0011 | 0.00019 | 0.00053 | | PCB 169 | 0.03000 | 0.11 | 0.11 | <0.079 | <0.099 | | PCB 189 | 0.00003 | 0.00013 | 0.00015 | 0.000084 | 0.00012 | | Total Dioxins & Furans Only | | <22.9 | <22.6 | <18.1 | <21.2 | | Total PCBs Only | | <0.39 | <0.55 | <0.40 | <0.45 | | Total Dioxins & Furans and PCBs | | <23.3 | <23.1 | <18.5 | <21.6 | TABLE 45 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Toxicity Equivalent Dry Reference Concentrations | Specific | Toxicity | | | | | |-------------------------------------|-------------|--------------------------|--------------------------|-----------------------------|-------------| | Isomer | Equivalency | Test No. 1 | Test No. 2 | Concentration
Test No. 3 | Average | | | Factor | pg TEQ/Rm ³ * | pg TEQ/Rm ³ * | pg TEQ/Rm ³ * | pg TEQ/Rm³* | | 2378-tetrachlorodibenzo-p-dioxin | 1.00000 | <0.82 | <0.49 | <0.81 | <0.71 | | 12378-pentachlorodibenzo-p-dioxin | 1.00000 | <6.62 | 6.66 | 6.22 | <6.50 | | 123478-hexachlorodibenzo-p-dioxin | 0.10000 | 2.28 | 2.11 | 1.59 | 1.99 | | 123678-hexachlorodibenzo-p-dioxin | 0.10000 | 6.45 | 6.32 | 4.88 | 5.88 | | 123789-hexachlorodibenzo-p-dioxin | 0.10000 | 2.84 | 2.99 | 2.05 | 2.63 | | 1234678-heptachlorodibenzo-p-dioxin | 0.01000 | 4.09 | 3.62 | 3.08 | 3.60 | | Octachlorodibenzo-p-dioxin | 0.00030 | 0.080 | 0.074 | 0.060 | 0.072 | | 2378-tetrachlorodibenzofuran | 0.10000 | 0.15 | 0.37 | <0.11 | <0.21 | | 12378-pentachlorodibenzofuran | 0.03000 | 0.13 | 0.18 | 0.13 | 0.15 | | 23478-pentachlorodibenzofuran | 0.30000 | 4.59 | 4.70 | 3.19 | 4.16 | | 123478-hexachlorodibenzofuran | 0.10000 | 1.99 | 2.07 | 1.43 | 1.83 | | 123678-hexachlorodibenzofuran | 0.10000 | 2.26 | 2.34 | 1.77 | 2.12 | | 234678-hexachlorodibenzofuran | 0.10000 | 4.48 | 3.98 | 3.20 | 3.88 | | 123789-hexachlorodibenzofuran | 0.10000 | <1.19 | 1.24 | 0.92 | <1.12 | | 1234678-heptachlorodibenzofuran | 0.01000 | 1.33 | 1.25 | 0.99 | 1.19 | | 1234789-heptachlorodibenzofuran | 0.01000 | 0.23 | <0.19 | <0.15 | <0.19 | | Octachlorodibenzofuran | 0.00030 | 0.021 | 0.019 | 0.018 | 0.020 | | PCB 81 | 0.00030 | <0.0016 | <0.0015 | <0.0016 | <0.0016 | | PCB 77 | 0.00010 | 0.0013 | 0.0042 | <0.0012 | <0.0022 | | PCB 123 | 0.00003 | <0.00016 | 0.00080 | <0.00016 | <0.00037 | | PCB 118 | 0.00003 | 0.0050 | 0.038 | 0.0059 | 0.016 | | PCB 114 | 0.00003 | 0.00018 | 0.0011 | < 0.00013 | <0.00046 | | PCB 105 | 0.00003 | 0.0015 | 0.012 | 0.0019 | 0.0052 | | PCB 126 | 0.10000 | < 0.49 | < 0.69 | <0.52 | <0.57 | | PCB 167 | 0.00003 | 0.00016 | 0.00051 | <0.000099 | <0.00025 | | PCB 156/157 | 0.00003 | 0.00047 | 0.0019 | 0.00032 | 0.00091 | | PCB 169 | 0.03000 | 0.18 | 0.19 | <0.13 | <0.17 | | PCB 189 | 0.00003 | 0.00022 | 0.00025 | 0.00014 | 0.00020 | | Total Dioxins & Furans Only | | <39.5 | <38.6 | <30.6 | <36.3 | | Total PCBs Only | | <0.68 | <0.94 | < 0.67 | <0.76 | | Total Dioxins & Furans and PCBs | | <40.2 | <39.6 | <31.3 | <37.0 | ^{*} At 25°C and 1 atmosphere TABLE 46 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Toxicity Equivalent Dry Adjusted Concentrations Calculated Using the Full Detection Limit | Specific | Toxicity | | Dry Adjusted | Concentration | | |-------------------------------------|-------------|-------------|--------------|---------------|--------------------------| | Isomer | Equivalency | Test No. 1 | Test No. 2 | Test No. 3 | Average | | | Factor | pg TEQ/Rm³* | pg TEQ/Rm³* | pg TEQ/Rm³* | pg TEQ/Rm ³ * | | 2378-tetrachlorodibenzo-p-dioxin | 1.00000 | <0.64 | <0.39 | <0.65 | <0.56 | | 12378-pentachlorodibenzo-p-dioxin | 1.00000 | <5.21 | 5.33 | 4.95 | <5.16 | | 123478-hexachlorodibenzo-p-dioxin | 0.10000 | 1.79 | 1.69 | 1.26 | 1.58 | | 123678-hexachlorodibenzo-p-dioxin | 0.10000 | 5.07 | 5.06 | 3.89 | 4.67 | | 123789-hexachlorodibenzo-p-dioxin | 0.10000 | 2.24 | 2.40 | 1.64 | 2.09 | | 1234678-heptachlorodibenzo-p-dioxin | 0.01000 | 3.22 | 2.90 | 2.45 | 2.86 | | Octachlorodibenzo-p-dioxin | 0.00030 | 0.063 | 0.060 | 0.048 | 0.057 | | 2378-tetrachlorodibenzofuran | 0.10000 | 0.12 | 0.29 | <0.086 | <0.17 | | 12378-pentachlorodibenzofuran | 0.03000 | 0.10 | 0.15 | 0.10 | 0.12 | | 23478-pentachlorodibenzofuran | 0.30000 | 3.61 | 3.76 | 2.54 | 3.31 | | 123478-hexachlorodibenzofuran | 0.10000 | 1.56 | 1.65 | 1.14 | 1.45 | | 123678-hexachlorodibenzofuran | 0.10000 | 1.78 | 1.88 | 1.41 | 1.69 | | 234678-hexachlorodibenzofuran | 0.10000 | 3.53 | 3.18 | 2.55 | 3.09 | | 123789-hexachlorodibenzofuran | 0.10000 | < 0.94 | 0.99 | 0.73 | <0.89 | | 1234678-heptachlorodibenzofuran | 0.01000 | 1.05 | 1.00 | 0.79 | 0.94 | | 1234789-heptachlorodibenzofuran | 0.01000 | 0.18 | < 0.16 | <0.12 | <0.15 | | Octachlorodibenzofuran | 0.00030 | 0.017 | 0.016 | 0.014 | 0.016 | | PCB 81 | 0.00030 | <0.0012 | <0.0012 | <0.0013 |
<0.0012 | | PCB 77 | 0.00010 | 0.0010 | 0.0034 | <0.00097 | <0.0018 | | PCB 123 | 0.00003 | <0.00012 | 0.00064 | < 0.00013 | < 0.00030 | | PCB 118 | 0.00003 | 0.0040 | 0.030 | 0.0047 | 0.013 | | PCB 114 | 0.00003 | 0.00014 | 0.00086 | <0.00010 | < 0.00037 | | PCB 105 | 0.00003 | 0.0012 | 0.0098 | 0.0015 | 0.0042 | | PCB 126 | 0.10000 | <0.38 | <0.55 | < 0.42 | <0.45 | | PCB 167 | 0.00003 | 0.00013 | 0.00041 | <0.00079 | <0.00020 | | PCB 156/157 | 0.00003 | 0.00037 | 0.0016 | 0.00025 | 0.00073 | | PCB 169 | 0.03000 | 0.14 | 0.15 | <0.11 | <0.13 | | PCB 189 | 0.00003 | 0.00017 | 0.00020 | 0.00011 | 0.00016 | | Total Dioxins & Furans Only | | <31.1 | <30.9 | <24.4 | <28.8 | | Total PCBs Only | | <0.54 | <0.75 | < 0.53 | < 0.61 | | Total Dioxins & Furans and PCBs | | <31.7 | <31.7 | <24.9 | <29.4 | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 46B Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Toxicity Equivalent Dry Adjusted Concentrations Calculated Using the Full Detection Limit | Specific | Toxicity | | Dry Adjusted (| Concentration | | |-------------------------------------|-------------|--------------------------|----------------|-------------------------|--------------------------| | Isomer | Equivalency | Test No. 1 | Test No. 2 | Test No. 3 | Average | | | Factor | pg TEQ/Rm ³ * | pg TEQ/Rm³* | pg TEQ/Rm ^{3*} | pg TEQ/Rm ³ * | | 2378-tetrachlorodibenzo-p-dioxin | 1.000 | <0.64 | <0.39 | <0.65 | <0.56 | | 12378-pentachlorodibenzo-p-dioxin | 0.500 | <2.61 | 2.66 | 2.48 | <2.58 | | 123478-hexachlorodibenzo-p-dioxin | 0.100 | 1.79 | 1.69 | 1.26 | 1.58 | | 123678-hexachlorodibenzo-p-dioxin | 0.100 | 5.07 | 5.06 | 3.89 | 4.67 | | 123789-hexachlorodibenzo-p-dioxin | 0.100 | 2.24 | 2.40 | 1.64 | 2.09 | | 1234678-heptachlorodibenzo-p-dioxin | 0.010 | 3.22 | 2.90 | 2.45 | 2.86 | | Octachlorodibenzo-p-dioxin | 0.001 | 0.21 | 0.20 | 0.16 | 0.19 | | 2378-tetrachlorodibenzofuran | 0.100 | 0.12 | 0.29 | <0.086 | <0.17 | | 12378-pentachlorodibenzofuran | 0.050 | 0.17 | 0.25 | 0.17 | 0.20 | | 23478-pentachlorodibenzofuran | 0.500 | 6.02 | 6.27 | 4.24 | 5.51 | | 123478-hexachlorodibenzofuran | 0.100 | 1.56 | 1.65 | 1.14 | 1.45 | | 123678-hexachlorodibenzofuran | 0.100 | 1.78 | 1.88 | 1.41 | 1.69 | | 234678-hexachlorodibenzofuran | 0.100 | 3.53 | 3.18 | 2.55 | 3.09 | | 123789-hexachlorodibenzofuran | 0.100 | <0.94 | 0.99 | 0.73 | <0.89 | | 1234678-heptachlorodibenzofuran | 0.010 | 1.05 | 1.00 | 0.79 | 0.94 | | 1234789-heptachlorodibenzofuran | 0.010 | 0.18 | <0.16 | <0.12 | <0.15 | | Octachlorodibenzofuran | 0.001 | 0.056 | 0.052 | 0.048 | 0.052 | | Total Dioxins & Furans | | <31.2 | <31.0 | <23.8 | <28.7 | | In-Stack Emission Limit | | | | | 60 | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume NATO/CCMS (1989) Toxicity Equivalency Factors TABLE 47 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Toxicity Equivalent Wet Reference Concentrations | Specific | Toxicity | | Wet Reference | Concentration | | |-------------------------------------|-------------|-------------|---------------|--------------------------|--------------------------| | Isomer | Equivalency | Test No. 1 | Test No. 2 | Test No. 3 | Average | | | Factor | pg TEQ/Rm³* | pg TEQ/Rm³* | pg TEQ/Rm ³ * | pg TEQ/Rm ³ * | | 2378-tetrachlorodibenzo-p-dioxin | 1.00000 | <0.68 | <0.41 | <0.68 | <0.59 | | 12378-pentachlorodibenzo-p-dioxin | 1.00000 | <5.51 | 5.60 | 5.21 | <5.44 | | 123478-hexachlorodibenzo-p-dioxin | 0.10000 | 1.89 | 1.77 | 1.33 | 1.66 | | 123678-hexachlorodibenzo-p-dioxin | 0.10000 | 5.36 | 5.32 | 4.09 | 4.92 | | 123789-hexachlorodibenzo-p-dioxin | 0.10000 | 2.36 | 2.52 | 1.72 | 2.20 | | 1234678-heptachlorodibenzo-p-dioxin | 0.01000 | 3.40 | 3.05 | 2.58 | 3.01 | | Octachlorodibenzo-p-dioxin | 0.00030 | 0.067 | 0.063 | 0.051 | 0.060 | | 2378-tetrachlorodibenzofuran | 0.10000 | 0.13 | 0.31 | <0.091 | <0.18 | | 12378-pentachlorodibenzofuran | 0.03000 | 0.11 | 0.16 | 0.11 | 0.13 | | 23478-pentachlorodibenzofuran | 0.30000 | 3.82 | 3.96 | 2.67 | 3.48 | | 123478-hexachlorodibenzofuran | 0.10000 | 1.65 | 1.74 | 1.20 | 1.53 | | 123678-hexachlorodibenzofuran | 0.10000 | 1.88 | 1.97 | 1.48 | 1.78 | | 234678-hexachlorodibenzofuran | 0.10000 | 3.72 | 3.35 | 2.68 | 3.25 | | 123789-hexachlorodibenzofuran | 0.10000 | <0.99 | 1.05 | 0.77 | <0.93 | | 1234678-heptachlorodibenzofuran | 0.01000 | 1.10 | 1.05 | 0.83 | 0.99 | | 1234789-heptachlorodibenzofuran | 0.01000 | 0.19 | <0.16 | <0.12 | <0.16 | | Octachlorodibenzofuran | 0.00030 | 0.018 | 0.016 | 0.015 | 0.016 | | PCB 81 | 0.00030 | <0.0013 | <0.0013 | <0.0013 | <0.0013 | | PCB 77 | 0.00010 | 0.0011 | 0.0035 | <0.0010 | < 0.0019 | | PCB 123 | 0.00003 | < 0.00013 | 0.00067 | < 0.00013 | <0.00031 | | PCB 118 | 0.00003 | 0.0042 | 0.032 | 0.0049 | 0.014 | | PCB 114 | 0.00003 | 0.00015 | 0.00090 | < 0.00011 | < 0.00039 | | PCB 105 | 0.00003 | 0.0012 | 0.010 | 0.0016 | 0.0044 | | PCB 126 | 0.10000 | <0.40 | <0.58 | <0.44 | < 0.47 | | PCB 167 | 0.00003 | 0.00013 | 0.00043 | <0.000083 | <0.00021 | | PCB 156/157 | 0.00003 | 0.00039 | 0.0016 | 0.00027 | 0.00076 | | PCB 169 | 0.03000 | 0.15 | 0.16 | <0.11 | <0.14 | | PCB 189 | 0.00003 | 0.00018 | 0.00021 | 0.00012 | 0.00017 | | Total Dioxins & Furans Only | | <32.9 | <32.5 | <25.6 | <30.3 | | Total PCBs Only | | <0.57 | <0.79 | <0.56 | <0.64 | | Total Dioxins & Furans and PCBs | | <33.4 | <33.3 | <26.2 | <31.0 | ^{*} At 25°C and 1 atmosphere TABLE 48 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dioxin and Furan Toxicity Equivalent Emission Rates | Specific | Toxicity | Emission Rate | | | | | |-------------------------------------|-------------|---------------|------------|------------|------------|--| | Isomer | Equivalency | Test No. 1 | Test No. 2 | Test No. 3 | Average | | | | Factor | ng TEQ/s | ng TEQ/s | ng TEQ/s | ng TEQ/s | | | 2378-tetrachlorodibenzo-p-dioxin | 1.00000 | <0.012 | <0.0073 | <0.012 | <0.011 | | | 12378-pentachlorodibenzo-p-dioxin | 1.00000 | <0.098 | 0.099 | 0.093 | <0.096 | | | 123478-hexachlorodibenzo-p-dioxin | 0.10000 | 0.034 | 0.031 | 0.024 | 0.030 | | | 123678-hexachlorodibenzo-p-dioxin | 0.10000 | 0.095 | 0.094 | 0.073 | 0.087 | | | 123789-hexachlorodibenzo-p-dioxin | 0.10000 | 0.042 | 0.044 | 0.031 | 0.039 | | | 1234678-heptachlorodibenzo-p-dioxin | 0.01000 | 0.061 | 0.054 | 0.046 | 0.053 | | | Octachlorodibenzo-p-dioxin | 0.00030 | 0.0012 | 0.0011 | 0.00090 | 0.0011 | | | 2378-tetrachlorodibenzofuran | 0.10000 | 0.0023 | 0.0055 | <0.0016 | <0.0031 | | | 12378-pentachlorodibenzofuran | 0.03000 | 0.0020 | 0.0027 | 0.0020 | 0.0022 | | | 23478-pentachlorodibenzofuran | 0.30000 | 0.068 | 0.070 | 0.048 | 0.062 | | | 123478-hexachlorodibenzofuran | 0.10000 | 0.029 | 0.031 | 0.021 | 0.027 | | | 123678-hexachlorodibenzofuran | 0.10000 | 0.033 | 0.035 | 0.026 | 0.031 | | | 234678-hexachlorodibenzofuran | 0.10000 | 0.066 | 0.059 | 0.048 | 0.058 | | | 123789-hexachlorodibenzofuran | 0.10000 | <0.018 | 0.018 | 0.014 | <0.017 | | | 1234678-heptachlorodibenzofuran | 0.01000 | 0.020 | 0.018 | 0.015 | 0.018 | | | 1234789-heptachlorodibenzofuran | 0.01000 | 0.0034 | <0.0029 | <0.0022 | <0.0028 | | | Octachlorodibenzofuran | 0.00030 | 0.00031 | 0.00029 | 0.00027 | 0.00029 | | | PCB 81 | 0.00030 | <0.000023 | <0.000023 | <0.000023 | <0.000023 | | | PCB 77 | 0.00010 | 0.000019 | 0.000062 | <0.000018 | <0.000033 | | | PCB 123 | 0.00003 | <0.0000023 | 0.000012 | <0.0000023 | <0.0000055 | | | PCB 118 | 0.00003 | 0.000074 | 0.00056 | 0.000087 | 0.00024 | | | PCB 114 | 0.00003 | 0.0000026 | 0.000016 | <0.0000019 | <0.0000068 | | | PCB 105 | 0.00003 | 0.000022 | 0.00018 | 0.000029 | 0.000077 | | | PCB 126 | 0.10000 | <0.0072 | <0.010 | <0.0078 | <0.0084 | | | PCB 167 | 0.00003 | 0.0000024 | 0.0000075 | <0.000015 | <0.000038 | | | PCB 156/157 | 0.00003 | 0.0000069 | 0.000029 | 0.0000048 | 0.000014 | | | PCB 169 | 0.03000 | 0.0027 | 0.0028 | <0.0020 | <0.0025 | | | PCB 189 | 0.00003 | 0.0000032 | 0.0000037 | 0.0000021 | 0.0000030 | | | Total Dioxins & Furans Only | | <0.59 | <0.57 | <0.46 | <0.54 | | | Total PCBs Only | | <0.010 | < 0.014 | <0.010 | <0.011 | | | Total Dioxins & Furans and PCBs | | <0.60 | <0.59 | <0.47 | <0.55 | | TABLE 49 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Dioxin and Furan Toxicity Equivalent Emission Data Calculated Using the Full Detection Limit | Specific
Isomer | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | | |--|---------------|---------------|---------------------------|--------------------------|------------|--| | isomer | Concentration | Concentration | Concentration | Concentration | Rate | | | | pg TEQ/m³ | pg TEQ/Rm³* | pg TEQ/Rm ³ ** | pg TEQ/Rm ³ * | ng TEQ/s | | |
 2378-tetrachlorodibenzo-p-dioxin | <0.41 | <0.71 | <0.56 | <0.59 | <0.011 | | | 12378-pentachlorodibenzo-p-dioxin | <3.80 | <6.50 | <5.16 | <5.44 | < 0.096 | | | 123478-hexachlorodibenzo-p-dioxin | 1.16 | 1.99 | 1.58 | 1.66 | 0.030 | | | 123678-hexachlorodibenzo-p-dioxin | 3.44 | 5.88 | 4.67 | 4.92 | 0.087 | | | 123789-hexachlorodibenzo-p-dioxin | 1.54 | 2.63 | 2.09 | 2.20 | 0.039 | | | 1234678-heptachlorodibenzo-p-dioxin | 2.10 | 3.60 | 2.86 | 3.01 | 0.053 | | | Octachlorodibenzo-p-dioxin | 0.042 | 0.072 | 0.057 | 0.060 | 0.0011 | | | 2378-tetrachlorodibenzofuran | <0.12 | <0.21 | <0.17 | <0.18 | <0.0031 | | | 12378-pentachlorodibenzofuran | 0.088 | 0.15 | 0.12 | 0.13 | 0.0022 | | | 23478-pentachlorodibenzofuran | 2.43 | 4.16 | 3.31 | 3.48 | 0.062 | | | 123478-hexachlorodibenzofuran | 1.07 | 1.83 | 1.45 | 1.53 | 0.027 | | | 123678-hexachlorodibenzofuran | 1.24 | 2.12 | 1.69 | 1.78 | 0.031 | | | 234678-hexachlorodibenzofuran | 2.27 | 3.88 | 3.09 | 3.25 | 0.058 | | | 123789-hexachlorodibenzofuran | <0.65 | <1.12 | <0.89 | <0.93 | <0.017 | | | 1234678-heptachlorodibenzofuran | 0.69 | 1.19 | 0.94 | 0.99 | 0.018 | | | 1234789-heptachlorodibenzofuran | < 0.11 | <0.19 |
<0.15 | <0.16 | <0.0028 | | | Octachlorodibenzofuran | 0.011 | 0.020 | 0.016 | 0.016 | 0.00029 | | | PCB 81 | <0.00091 | <0.0016 | <0.0012 | <0.0013 | <0.000023 | | | PCB 77 | < 0.0013 | <0.0022 | <0.0018 | <0.0019 | < 0.000033 | | | PCB 123 | <0.00022 | < 0.00037 | <0.00030 | <0.00031 | <0.0000055 | | | PCB 118 | 0.0095 | 0.016 | 0.013 | 0.014 | 0.00024 | | | PCB 114 | <0.00027 | <0.00046 | < 0.00037 | <0.00039 | <0.0000068 | | | PCB 105 | 0.0030 | 0.0052 | 0.0042 | 0.0044 | 0.000077 | | | PCB 126 | <0.33 | <0.57 | <0.45 | <0.47 | <0.0084 | | | PCB 167 | < 0.00015 | <0.00025 | <0.00020 | <0.00021 | <0.000038 | | | PCB 156/157 | 0.00053 | 0.00091 | 0.00073 | 0.00076 | 0.000014 | | | PCB 169 | <0.099 | <0.17 | <0.13 | <0.14 | < 0.0025 | | | PCB 189 | 0.00012 | 0.00020 | 0.00016 | 0.00017 | 0.0000030 | | | Total Dioxins & Furans Only | <21.2 | <36.3 | <28.8 | <30.3 | <0.54 | | | Total PCBs Only | < 0.45 | <0.76 | <0.61 | <0.64 | <0.011 | | | Total Dioxíns & Furans and PCBs | <21.6 | <37.0 | <29.4 | <31.0 | <0.55 | | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 50 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Dioxin and Furan Toxicity Equivalent Emission Data Calculated Using Half the Detection Limit | Specific
Isomer | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |--|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | isomei | | | | | | | | pg TEQ/m³ | pg TEQ/Rm ³ * | pg TEQ/Rm ^{3**} | pg TEQ/Rm ³ * | ng TEQ/s | |
 2378-tetrachlorodibenzo-p-dioxin | 0.21 | 0.35 | 0.28 | 0.30 | 0.0053 | | 12378-pentachlorodibenzo-p-dioxin | 3.16 | 5.40 | 4.30 | 4.52 | 0.080 | | 123478-hexachlorodibenzo-p-dioxin | 1.16 | 1.99 | 1.58 | 1.66 | 0.030 | | 123678-hexachlorodibenzo-p-dioxin | 3.44 | 5.88 | 4.67 | 4.92 | 0.087 | | 123789-hexachlorodibenzo-p-dioxin | 1.54 | 2.63 | 2.09 | 2.20 | 0.039 | | 1234678-heptachlorodibenzo-p-dioxin | 2.10 | 3.60 | 2.86 | 3.01 | 0.053 | | Octachlorodibenzo-p-dioxin | 0.042 | 0.072 | 0.057 | 0.060 | 0.0011 | | 2378-tetrachlorodibenzofuran | 0.11 | 0.19 | 0.15 | 0.16 | 0.0028 | | 12378-pentachlorodibenzofuran | 0.088 | 0.15 | 0.12 | 0.13 | 0.0022 | | 23478-pentachlorodibenzofuran | 2.43 | 4.16 | 3.31 | 3.48 | 0.062 | | 123478-hexachlorodibenzofuran | 1.07 | 1.83 | 1.45 | 1.53 | 0.027 | | 123678-hexachlorodibenzofuran | 1.24 | 2.12 | 1.69 | 1.78 | 0.031 | | 234678-hexachlorodibenzofuran | 2.27 | 3.88 | 3.09 | 3.25 | 0.058 | | 123789-hexachlorodibenzofuran | 0.54 | 0.92 | 0.73 | 0.77 | 0.014 | | 1234678-heptachlorodibenzofuran | 0.69 | 1.19 | 0.94 | 0.99 | 0.018 | | 1234789-heptachlorodibenzofuran | 0.078 | 0.13 | 0.11 | 0.11 | 0.0020 | | Octachlorodibenzofuran | 0.011 | 0.020 | 0.016 | 0.016 | 0.00029 | | PCB 81 | 0.00046 | 0.00078 | 0.00062 | 0.00065 | 0.000012 | | PCB 77 | 0.0012 | 0.0020 | 0.0016 | 0.0017 | 0.000030 | | PCB 123 | 0.00019 | 0.00032 | 0.00025 | 0.00027 | 0.0000047 | | PCB 118 | 0.0095 | 0.016 | 0.013 | 0.014 | 0.00024 | | PCB 114 | 0.00026 | 0.00044 | 0.00035 | 0.00037 | 0.0000065 | | PCB 105 | 0.0030 | 0.0052 | 0.0042 | 0.0044 | 0.000077 | | PCB 126 | 0.17 | 0.28 | 0.23 | 0.24 | 0.0042 | | PCB 167 | 0.00014 | 0.00024 | 0.00019 | 0.00020 | 0.0000035 | | PCB 156/157 | 0.00053 | 0.00091 | 0.00073 | 0.00076 | 0.000014 | | PCB 169 | 0.086 | 0.15 | 0.12 | 0.12 | 0.0022 | | PCB 189 | 0.00012 | 0.00020 | 0.00016 | 0.00017 | 0.0000030 | | Total Dioxins & Furans Only | 20.2 | 34.5 | 27.4 | 28.9 | 0.51 | | Total PCBs Only | 0.27 | 0.46 | 0.36 | 0.38 | 0.0068 | | Total Dioxins & Furans and PCBs | 20.4 | 35.0 | 27.8 | 29.3 | 0.52 | ^{*} At 25°C and 1 atmosphere Note: The value of half the detection limit was used to calculate emission data for those analytes not detected. ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 51 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Emission Data for Chlorobenzenes Test No. 1 | Specific
Isomer | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |--|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Monochlorobenzene | 3120 | 351 | 608 | 478 | 505 | 8.99 | | 1,3-Dichlorobenzene | 588 | 66.2 | 115 | 90.1 | 95.2 | 1.69 | | 1,4-Dichlorobenzene | 419 | 47.2 | 81.6 | 64.2 | 67.8 | 1.21 | | 1,2-Dichlorobenzene | 485 | 54.6 | 94.4 | 74.4 | 78.5 | 1.40 | | Total Dichlorobenzene | 1492 | 168 | 291 | 229 | 242 | 4.30 | | 1,3,5-trichlorobenzene | 64.6 | 7.27 | 12.6 | 9.90 | 10.5 | 0.19 | | 1,2,4-trichlorobenzene | 164 | 18.5 | 31.9 | 25.1 | 26.6 | 0.47 | | 1,2,3-trichlorobenzene | 49.7 | 5.60 | 9.68 | 7.62 | 8.05 | 0.14 | | Total Trichlorobenzene | 278 | 31.3 | 54.2 | 42.7 | 45.1 | 0.80 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 37.3 | 4.20 | 7.26 | 5.72 | 6.04 | 0.11 | | 1,2,3,4-tetrachlorobenzene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Total Tetrachlorobenzene | <49.3 | <5.55 | <9.60 | <7.56 | <7.98 | <0.14 | | Pentachlorobenzene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Hexachlorobenzene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Total Chlorobenzenes | <4964 | <559 | <967 | <761 | <804 | <14.3 | | | | | | | | | | Dry Gas Volume Sampled (Rm ³ *): | 5.135 | |---|-------| | Actual Flowrate (m³/s) : | 25.6 | | Dry Reference Flowrate (Rm³/s*): | 14.8 | | Dry Adjusted Flowrate (Rm ³ /s**): | 18.8 | | Wet Reference Flowrate (Rm³/s*): | 17.8 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 52 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Emission Data for Chlorobenzenes Test No. 2 | Specific
Isomer | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |--|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Monochlorobenzene | 4210 | 485 | 829 | 663 | 697 | 12.3 | | 1,3-Dichlorobenzene | 564 | 65.0 | 111 | 88.9 | 93.4 | 1.64 | | 1,4-Dichlorobenzene | 360 | 41.5 | 70.9 | 56.7 | 59.6 | 1.05 | | 1,2-Dichlorobenzene | 474 | 54.6 | 93.4 | 74.7 | 78.5 | 1.38 | | Total Dichlorobenzene | 1398 | 161 | 275 | 220 | 232 | 4.08 | | 1,3,5-trichlorobenzene | 65.0 | 7.49 | 12.8 | 10.2 | 10.8 | 0.19 | | 1,2,4-trichlorobenzene | 179 | 20.6 | 35.3 | 28.2 | 29.6 | 0.52 | | 1,2,3-trichlorobenzene | 51.4 | 5.92 | 10.1 | 8.10 | 8.51 | 0.15 | | Total Trichlorobenzene | 295 | 34.0 | 58.2 | 46.5 | 48.9 | 0.86 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 36.5 | 4.21 | 7.19 | 5.75 | 6.05 | 0.11 | | 1,2,3,4-tetrachlorobenzene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | <0.035 | | Total Tetrachlorobenzene | <48.5 | <5.59 | <9.55 | <7.64 | <8.03 | <0.14 | | Pentachlorobenzene | 13.2 | 1.52 | 2.60 | 2.08 | 2.19 | 0.038 | | Hexachlorobenzene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | <0.035 | | Total Chlorobenzenes | <5977 | <689 | <1177 | <942 | <990 | <17.4 | | Dry Gas Volume Sampled (Rm³*): | 5.077 | |-----------------------------------|-------| | Actual Flowrate (m³/s) : | 25.3 | | Dry Reference Flowrate (Rm³/s*): | 14.8 | | Dry Adjusted Flowrate (Rm³/s**): | 18.5 | | Wet Reference Flowrate (Rm³/s*) : | 17.6 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 53 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Emission Data for Chlorobenzenes Test No. 3 | Specific | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |--|-----------|---------------|---------------|---------------|---------------|----------| | Isomer | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Monochlorobenzene | 3240 | 371 | 628 | 500 | 525 | 9.35 | | 1,3-Dichlorobenzene | 722 | 82.7 | 140 | 111 | 117 | 2.08 | | 1,4-Dichlorobenzene | 443 | 50.7 | 85.8 | 68.4 | 71.8 | 1.28 | | 1,2-Dichlorobenzene | 586 | 67.1 | 114 | 90.5 | 95.0 | 1.69 | | Total Dichlorobenzene | 1751 | 201 | 339 | 270 | 284 | 5.05 | | 1,3,5-trichlorobenzene | 82.1 | 9.40 | 15.9 | 12.7 | 13.3 | 0.24 | | 1,2,4-trichlorobenzene | 281 | 32.2 | 54.4 | 43.4 | 45.6 | 0.81 | | 1,2,3-trichlorobenzene | 59.0 | 6.76 | 11.4 | 9.11 | 9.57 | 0.17 | | Total Trichlorobenzene | 422 | 48.3 | 81.8 | 65.2 | 68.4 | 1.22 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 43.4 | 4.97 | 8.41 | 6.70 | 7.04 | 0.13 | | 1,2,3,4-tetrachlorobenzene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Total Tetrachlorobenzene | <55.4 | <6.35 | <10.7 | <8.55 | <8.98 | <0.16 | | Pentachlorobenzene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Hexachlorobenzene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Total Chlorobenzenes | <5493 | <629 | <1064 | <848 | <891 | <15.9 | | Dry Gas Volume Sampled (Rm³*): | 5.162 | |-----------------------------------|-------| | Actual Flowrate (m³/s) : | 25.2 | | Dry Reference Flowrate (Rm³/s*) : | 14.9 | | Dry Adjusted Flowrate (Rm³/s**): | 18.7 | | Wet Reference Flowrate (Rm³/s*) : | 17.8 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 54 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Actual Concentrations for Chlorobenzenes | Specific | | Coefficient | | | |
--|------------|-------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/m³ | ng/m³ | ng/m³ | ng/m³ | % | | Monochlorobenzene | 351 | 485 | 371 | 402 | 17.9 | | 1,3-Dichlorobenzene | 66.2 | 65.0 | 82.7 | 71.3 | 13.9 | | 1,4-Dichlorobenzene | 47.2 | 41.5 | 50.7 | 46.5 | 10.1 | | 1,2-Dichlorobenzene | 54.6 | 54.6 | 67.1 | 58.8 | 12.3 | | Total Dichlorobenzene | 168 | 161 | 201 | 177 | 11.9 | | 1,3,5-trichlorobenzene | 7.27 | 7.49 | 9.40 | 8.06 | 14.6 | | 1,2,4-trichlorobenzene | 18.5 | 20.6 | 32.2 | 23.8 | 31.1 | | 1,2,3-trichlorobenzene | 5.60 | 5.92 | 6.76 | 6.09 | 9.8 | | Total Trichlorobenzene | 31.3 | 34.0 | 48.3 | 37.9 | 24.1 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 4.20 | 4.21 | 4.97 | 4.46 | 10.0 | | 1,2,3,4-tetrachlorobenzene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Total Tetrachlorobenzene | <5.55 | <5.59 | <6.35 | <5.83 | 7.7 | | Pentachlorobenzene | <1.35 | 1.52 | <1.37 | <1.42 | 6.5 | | Hexachlorobenzene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Total Chlorobenzenes | <559 | <689 | <629 | <626 | 10.4 | TABLE 55 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dry Reference Concentrations for Chlorobenzenes | Specific | Dry Reference Concentration | | | | Coefficient | |--|-----------------------------|------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | Monochlorobenzene | 608 | 829 | 628 | 688 | 17.8 | | 1,3-Dichlorobenzene | 115 | 111 | 140 | 122 | 12.9 | | 1,4-Dichlorobenzene | 81.6 | 70.9 | 85.8 | 79.4 | 9.7 | | 1,2-Dichlorobenzene | 94.4 | 93.4 | 114 | 100 | 11.3 | | Total Dichlorobenzene | 291 | 275 | 339 | 302 | 11.1 | | 1,3,5-trichlorobenzene | 12.6 | 12.8 | 15.9 | 13.8 | 13.5 | | 1,2,4-trichlorobenzene | 31.9 | 35.3 | 54.4 | 40.5 | 30.0 | | 1,2,3-trichlorobenzene | 9.68 | 10.1 | 11.4 | 10.4 | 8.7 | | Total Trichlorobenzene | 54.2 | 58.2 | 81.8 | 64.7 | 23.0 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 7.26 | 7.19 | 8.41 | 7.62 | 9.0 | | 1,2,3,4-tetrachlorobenzene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | Total Tetrachlorobenzene | <9.60 | <9.55 | <10.7 | <9.96 | 6.7 | | Pentachlorobenzene | <2.34 | 2.60 | <2.32 | <2.42 | 6.4 | | Hexachlorobenzene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | Total Chlorobenzenes | <967 | <1177 | <1064 | <1069 | 9.9 | ^{*} At 25°C and 1 atmosphere TABLE 56 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Dry Adjusted Concentrations for Chlorobenzenes | Specific | | Dry Adjusted Concentration | | | | | |--|-----------------------|----------------------------|-----------------------|--------------------|-------------------|--| | Isomer | Test No. 1
ng/Rm³* | Test No. 2
ng/Rm³* | Test No. 3
ng/Rm³* | Average
ng/Rm³* | of Variation
% | | | Monochlorobenzene | 478 | 663 | 500 | 547 | 18.5 | | | 1,3-Dichlorobenzene | 90.1 | 88.9 | 111 | 96.8 | 13.1 | | | 1,4-Dichlorobenzene | 64.2 | 56.7 | 68.4 | 63.1 | 9.4 | | | 1,2-Dichlorobenzene | 74.4 | 74.7 | 90.5 | 79.8 | 11.5 | | | Total Dichlorobenzene | 229 | 220 | 270 | 240 | 11.2 | | | 1,3,5-trichlorobenzene | 9.90 | 10.2 | 12.7 | 10.9 | 13.8 | | | 1,2,4-trichlorobenzene | 25.1 | 28.2 | 43.4 | 32.2 | 30.3 | | | 1,2,3-trichlorobenzene | 7.62 | 8.10 | 9.11 | 8.28 | 9.2 | | | Total Trichlorobenzene | 42.7 | 46.5 | 65.2 | 51.5 | 23.4 | | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 5.72 | 5.75 | 6.70 | 6.06 | 9.2 | | | 1,2,3,4-tetrachlorobenzene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | | Total Tetrachlorobenzene | <7.56 | <7.64 | <8.55 | <7.92 | 7.0 | | | Pentachlorobenzene | <1.84 | 2.08 | <1.85 | <1.92 | 7.0 | | | Hexachlorobenzene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | | Total Chlorobenzenes | <761 | <942 | <848 | <850 | 10.6 | | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 57 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Wet Reference Concentrations for Chlorobenzenes | Specific | W | Coefficient | | | | |--|------------|-------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | Monochlorobenzene | 505 | 697 | 525 | 576 | 18.3 | | 1,3-Dichlorobenzene | 95.2 | 93.4 | 117 | 102 | 12.9 | | 1,4-Dichlorobenzene | 67.8 | 59.6 | 71.8 | 66.4 | 9.4 | | 1,2-Dichlorobenzene | 78.5 | 78.5 | 95.0 | 84.0 | 11.3 | | Total Dichlorobenzene | 242 | 232 | 284 | 252 | 11.0 | | 1,3,5-trichlorobenzene | 10.5 | 10.8 | 13.3 | 11.5 | 13.6 | | 1,2,4-trichlorobenzene | 26.6 | 29.6 | 45.6 | 33.9 | 30.1 | | 1,2,3-trichlorobenzene | 8.05 | 8.51 | 9.57 | 8.71 | 8.9 | | Total Trichlorobenzene | 45.1 | 48.9 | 68.4 | 54.1 | 23.2 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 6.04 | 6.05 | 7.04 | 6.37 | 9.0 | | 1,2,3,4-tetrachlorobenzene | <1.94 | <1.99 | <1.95 | <1.96 | 1.3 | | Total Tetrachlorobenzene | <7.98 | <8.03 | <8.98 | <8.33 | 6.8 | | Pentachlorobenzene | <1.94 | 2.19 | <1.95 | <2.03 | 6.9 | | Hexachlorobenzene | <1.94 | <1.99 | <1.95 | <1.96 | 1.3 | | Total Chlorobenzenes | <804 | <990 | <891 | <895 | 10.4 | ^{*} At 25°C and 1 atmosphere TABLE 58 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Emission Rates for Chlorobenzenes | Specific | | Emission Rate | | | | | |--|------------|---------------|------------|---------|--------------|--| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | μg/s | μg/s | μg/s | μg/s | % | | | Monochlorobenzene | 8.99 | 12.3 | 9.35 | 10.2 | 17.6 | | | 1,3-Dichlorobenzene | 1.69 | 1.64 | 2.08 | 1.81 | 13.3 | | | 1,4-Dichlorobenzene | 1.21 | 1.05 | 1.28 | 1.18 | 10.0 | | | 1,2-Dichlorobenzene | 1.40 | 1.38 | 1.69 | 1.49 | 11.7 | | | Total Dichlorobenzene | 4.30 | 4.08 | 5.05 | 4.48 | 11.5 | | | 1,3,5-trichlorobenzene | 0.19 | 0.19 | 0.24 | 0.20 | 13.9 | | | 1,2,4-trichlorobenzene | 0.47 | 0.52 | 0.81 | 0.60 | 30.4 | | | 1,2,3-trichlorobenzene | 0.14 | 0.15 | 0.17 | 0.15 | 9.1 | | | Total Trichlorobenzene | 0.80 | 0.86 | 1.22 | 0.96 | 23.4 | | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 0.11 | 0.11 | 0.13 | 0.11 | 9.4 | | | 1,2,3,4-tetrachlorobenzene | <0.035 | <0.035 | <0.035 | < 0.035 | 0.6 | | | Total Tetrachlorobenzene | <0.14 | <0.14 | <0.16 | <0.15 | 7.1 | | | Pentachlorobenzene | <0.035 | 0.038 | <0.035 | <0.036 | 6.2 | | | Hexachlorobenzene | <0.035 | <0.035 | <0.035 | <0.035 | 0.6 | | | Total Chlorobenzenes | <14.3 | <17.4 | <15.9 | <15.9 | 9.8 | | TABLE 59 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Emission Data for Chlorobenzenes | Specific
Isomer | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted Concentration | Wet Reference
Concentration | Emission
Rate | |--|-------------------------|--------------------------------|----------------------------|--------------------------------|------------------| | isome. | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | | | | | | | | Monochlorobenzene | 402 | 688 | 547 | 576 | 10.2 | | 1,3-Dichlorobenzene | 71.3 | 122 | 96.8 | 102 | 1.81 | | 1,4-Dichlorobenzene | 46.5 | 79.4 | 63.1 | 66.4 | 1.18 | | 1,2-Dichlorobenzene | 58.8 | 100 | 79.8 | 84.0 | 1.49 | | Total Dichlorobenzene | 177 | 302 | 240 | 252 | 4.48 | | 1,3,5-trichlorobenzene | 8.06 | 13.8 | 10.9 | 11.5 | 0.20 | | 1,2,4-trichlorobenzene | 23.8 | 40.5 | 32.2 | 33.9 | 0.60 | | 1,2,3-trichlorobenzene | 6.09 | 10.4 | 8.28 | 8.71 | 0.15 | | Total Trichlorobenzene | 37.9 | 64.7 | 51.5 | 54.1 | 0.96 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 4.46 | 7.62 | 6.06 | 6.37 | 0.11 | | 1,2,3,4-tetrachlorobenzene | <1.37 | <2.34 | <1.86 | <1.96 | <0.035 | | Total Tetrachlorobenzene | <5.83 | <9.96 | <7.92 | <8.33 | <0.15 | | Pentachlorobenzene | <1.42 | <2.42 | <1.92 | <2.03 | <0.036 | | Hexachlorobenzene | <1.37 | <2.34 | <1.86 | <1.96 | <0.035 | | Total Chlorobenzenes | <626 | <1069 | <850 | <895 | <15.9 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 60 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Chlorobenzene Blank Analyses | Isomers
and Congener Group Totals | Blank Train
Total ng | Laboratory Blank
Total ng | |--|-------------------------|------------------------------| | Monochlorobenzene | <12 | <12 | | 1,3-Dichlorobenzene | <12 | <12 | | 1,4-Dichlorobenzene | <12 | <12 | | 1,2-Dichlorobenzene | <12 | <12 | | Total Dichlorobenzene | <36.0 | <36.0 | | 1,3,5-trichlorobenzene | <12 | <12 | | 1,2,4-trichlorobenzene | <12 | <12 | | 1,2,3-trichlorobenzene | <12 | <12 | | Total Trichlorobenzene | <36.0 | <36.0 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | <12 | <12 | | 1,2,3,4-tetrachlorobenzene | <12 | <12 | | Total Tetrachlorobenzene | <24.0 | <24.0 | | Pentachlorobenzene | <12 | <12 | | Hexachlorobenzene | <12 | <12 | | Total Chlorobenzenes | <132 | <132 | [&]quot;<" indicates that the amount detected is less than the detection limit. In these cases the value of the detection limit was used to calculate the total collected. TABLE 61 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Chlorophenol Isomer and Congener Group Analysis and Emission Data Test No. 1 | Specific | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |-----------------------------------|------------|---------------|---------------|---------------|---------------|----------| | Isomer | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | 2-monochlorophenol | -CO | -6.76 | -44 7 | | | | | 3-monochlorophenol | <60
<60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | , | | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 |
| 4-monochlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | Total Monochlorophenols | <180 | <20.3 | <35.1 | <27.6 | <29.1 | <0.52 | | 2,6-dichlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | 2,4 & 2,5-dichlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | 3,5-dichlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | 2,3-dichlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | 3,4-dichlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | Total Dichlorophenols | <300 | <33.8 | <58.4 | <46.0 | <48.6 | <0.86 | | 2,4,6-trichlorophenol | 200 | 22.5 | 38.9 | 30.7 | 32.4 | 0.58 | | 2,3,6-trichlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | 2,3,5-trichlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | 2,4,5-trichlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | 2,3,4-trichlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | 3,4,5-trichlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | Total Trichlorophenols | <500 | <56.3 | <97.4 | <76.7 | <81.0 | <1.44 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | 2,3,4,5-tetrachlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | Total Tetrachlorophenols | <120 | <13.5 | <23.4 | <18.4 | <19.4 | <0.35 | | Pentachlorophenol | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | Total Chlorophenols | <1160 | <131 | <226 | <178 | <188 | <3.34 | | Dry Gas Volume Sampled (Rm ³ *): | 5.135 | |---|-------| | Actual Flowrate (m³/s) : | 25.6 | | Dry Reference Flowrate (Rm³/s*): | 14.8 | | Dry Adjusted Flowrate (Rm ³ /s**): | 18.8 | | Wet Reference Flowrate (Rm ³ /s*): | 17.8 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 62 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Chlorophenol Isomer and Congener Group Analysis and Emission Data Test No. 2 | Specific | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |-----------------------------------|------------|---------------|---------------|---------------|---------------|----------| | Isomer | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | 2 | -60 | -6.04 | | | | | | 2-monochlorophenol | <60
-60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | 3-monochlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | 4-monochlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | Total Monochlorophenols | <180 | <20.7 | <35.5 | <28.4 | <29.8 | <0.52 | | 2,6-dichlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | 2,4 & 2,5-dichlorophenol | 76.1 | 8.77 | 15.0 | 12.0 | 12.6 | 0.22 | | 3,5-dichlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | 2,3-dichlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | 3,4-dichlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | Total Dichlorophenols | <316 | <36.4 | <62.3 | <49.8 | <52.4 | <0.92 | | 2,4,6-trichlorophenol | 201 | 23.2 | 39.6 | 31.7 | 33.3 | 0.59 | | 2,3,6-trichlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | 2,3,5-trichlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | 2,4,5-trichlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | 2,3,4-trichlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | 3,4,5-trichlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | Total Trichlorophenols | <501 | <57.7 | <98.7 | <78.9 | <83.0 | <1.46 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | 2,3,4,5-tetrachlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | Total Tetrachlorophenols | <120 | <13.8 | <23.6 | <18.9 | <19.9 | <0.35 | | Pentachlorophenol | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | Total Chlorophenols | <1177 | <136 | <232 | <185 | <195 | <3.43 | | Dry Gas Volume Sampled (Rm ³ *): | 5.077 | |---|-------| | Actual Flowrate (m³/s) : | 25.3 | | Dry Reference Flowrate (Rm³/s*): | 14.8 | | Dry Adjusted Flowrate (Rm³/s**): | 18.5 | | Wet Reference Flowrate (Rm ³ /s*): | 17.6 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 63 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Chlorophenol Isomer and Congener Group Analysis and Emission Data Test No. 3 | Specific | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |-----------------------------------|-----------|---------------|---------------|---------------|---------------|----------| | Isomer | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | 2-monochlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | 3-monochlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | 4-monochlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | Total Monochlorophenols | <180 | <20.6 | <34.9 | <27.8 | <29.2 | <0.52 | | 2,6-dichlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | 2,4 & 2,5-dichlorophenol | 65.6 | 7.51 | 12.7 | 10.1 | 10.6 | 0.19 | | 3,5-dichlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | 2,3-dichlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | 3,4-dichlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | Total Dichlorophenols | <306 | <35.0 | <59.2 | <47.2 | <49.6 | <0.88 | | 2,4,6-trichlorophenol | 171 | 19.6 | 33.1 | 26.4 | 27.7 | 0.49 | | 2,3,6-trichlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | 2,3,5-trichlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | 2,4,5-trichlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | < 0.17 | | 2,3,4-trichlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | 3,4,5-trichlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | < 0.17 | | Total Trichlorophenols | <471 | <53.9 | <91.2 | <72.7 | <76.4 | <1.36 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | 2,3,4,5-tetrachlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | Total Tetrachlorophenols | <120 | <13.7 | <23.2 | <18.5 | <19.5 | <0.35 | | Pentachlorophenol | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | Total Chlorophenols | <1137 | <130 | <220 | <175 | <184 | <3.28 | | Dry Gas Volume Sampled (Rm ³ *) : | 5.162 | |--|-------| | Actual Flowrate (m³/s) : | 25.2 | | Dry Reference Flowrate (Rm³/s*): | 14.9 | | Dry Adjusted Flowrate (Rm³/s**): | 18.7 | | Wet Reference Flowrate (Rm³/s*): | 17.8 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 64 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Chlorophenol Isomer and Congener Group Actual Concentrations | Specific | | | Coefficient | | | |-----------------------------------|------------|------------|-------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/m³ | ng/m³ | ng/m³ | ng/m³ | % | | 2-monochlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | 3-monochlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | 4-monochlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | Total Monochlorophenols | <20.3 | <20.7 | <20.6 | <20.5 | 1.2 | | 2,6-dichlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | 2,4 & 2,5-dichlorophenol | <6.76 | 8.77 | 7.51 | <7.68 | 13.2 | | 3,5-dichlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | 2,3-dichlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | 3,4-dichlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | Total Dichlorophenols | <33.8 | <36.4 | <35.0 | <35.1 | 3.8 | | 2,4,6-trichlorophenol | 22.5 | 23.2 | 19.6 | 21.8 | 8.8 | | 2,3,6-trichlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | 2,3,5-trichlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | 2,4,5-trichlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | 2,3,4-trichlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | 3,4,5-trichlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | Total Trichlorophenols | <56.3 | <57.7 | <53.9 | <56.0 | 3.4 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | 2,3,4,5-tetrachlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | Total Tetrachlorophenols | <13.5 | <13.8 | <13.7 | <13.7 | 1.2 | | Pentachlorophenol | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | Total Chlorophenols | <131 | <136 | <130 | <132 | 2.3 | TABLE 65 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Chlorophenol Isomer and Congener Group Dry Reference Concentrations | Specific | | Coefficient | | | | |-----------------------------------|------------|-------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | 2-monochlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | 3-monochlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | 4-monochlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | Total Monochlorophenols | <35.1 | <35.5 | <34.9 | <35.1 | 0.8 | | 2,6-dichlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | 2,4 & 2,5-dichlorophenol | <11.7 | 15.0 | 12.7 | <13.1 | 12.9 | | 3,5-dichlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | 2,3-dichlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | 3,4-dichlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | Total Dichlorophenols | <58.4 | <62.3 | <59.2 | <60.0 | 3.4 | | 2,4,6-trichlorophenol | 38.9 | 39.6 | 33.1 | 37.2 | 9.6 | | 2,3,6-trichlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | 2,3,5-trichlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | 2,4,5-trichlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | 2,3,4-trichlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | 3,4,5-trichlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | Total Trichlorophenols | <97.4 | <98.7 | <91.2 | <95.8 | 4.1 | |
2,3,5,6/2,3,4,6-tetrachlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | 2,3,4,5-tetrachlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | Total Tetrachlorophenols | <23.4 | <23.6 | <23.2 | <23.4 | 0.8 | | Pentachlorophenol | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | Total Chlorophenols | <226 | <232 | <220 | <226 | 2.6 | ^{*} At 25°C and 1 atmosphere TABLE 66 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Chlorophenol Isomer and Congener Group Dry Adjusted Concentrations | Specific | **** | Coefficient | | | | |-----------------------------------|------------|-------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | 2-monochlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | 3-monochlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | 4-monochlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | Total Monochlorophenols | <27.6 | <28.4 | <27.8 | <27.9 | 1.4 | | 2,6-dichlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | 2,4 & 2,5-dichlorophenol | <9.20 | 12.0 | 10.1 | <10.4 | 13.6 | | 3,5-dichlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | 2,3-dichlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | 3,4-dichlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | Total Dichlorophenols | <46.0 | <49.8 | <47.2 | <47.7 | 4.1 | | 2,4,6-trichlorophenol | 30.7 | 31.7 | 26.4 | 29.6 | 9.5 | | 2,3,6-trichlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | 2,3,5-trichlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | 2,4,5-trichlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | 2,3,4-trichlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | 3,4,5-trichlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | Total Trichlorophenols | <76.7 | <78.9 | <72.7 | <76.1 | 4.1 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | 2,3,4,5-tetrachlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | Total Tetrachlorophenols | <18.4 | <18.9 | <18.5 | <18.6 | 1.4 | | Pentachlorophenol | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | Total Chlorophenols | <178 | <185 | <175 | <180 | 2.9 | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 67 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Chlorophenol Isomer and Congener Group Wet Reference Concentrations | Specific | 1 | Concentration | Coefficient | | | |-----------------------------------|------------|---------------|-------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | 2-monochlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | 3-monochlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | 4-monochlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | Total Monochlorophenols | <29.1 | <29.8 | <29.2 | <29.4 | 1.3 | | 2,6-dichlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | 2,4 & 2,5-dichlorophenol | <9.72 | 12.6 | 10.6 | <11.0 | 13.4 | | 3,5-dichlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | 2,3-dichlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | 3,4-dichlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | Total Dichlorophenols | <48.6 | <52.4 | <49.6 | <50.2 | 3.9 | | 2,4,6-trichlorophenol | 32.4 | 33.3 | 27.7 | 31.1 | 9.6 | | 2,3,6-trichlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | 2,3,5-trichlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | 2,4,5-trichlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | 2,3,4-trichlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | 3,4,5-trichlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | Total Trichlorophenols | <81.0 | <83.0 | <76.4 | <80.1 | 4.2 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | 2,3,4,5-tetrachlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | Total Tetrachlorophenols | <19.4 | <19.9 | <19.5 | <19.6 | 1.3 | | Pentachlorophenol | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | Total Chlorophenols | <188 | <195 | <184 | <189 | 2.9 | ^{*} At 25°C and 1 atmosphere TABLE 68 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Chlorophenol Isomer and Congener Group Emission Rates | Specific | | Emission Rate | | | | | |-----------------------------------|------------|---------------|------------|---------|--------------|--| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | μg/s | μg/s | μg/s | μg/s | %% | | | 2-monochlorophenol | <0.17 | <0.17 | <0.17 | <0.17 | 0.6 | | | 3-monochlorophenol | <0.17 | <0.17 | <0.17 | | | | | 4-monochlorophenol | | | | < 0.17 | 0.6 | | | · · | <0.17 | <0.17 | <0.17 | <0.17 | 0.6 | | | Total Monochlorophenols | <0.52 | <0.52 | <0.52 | <0.52 | 0.6 | | | 2,6-dichlorophenol | <0.17 | <0.17 | <0.17 | <0.17 | 0.6 | | | 2,4 & 2,5-dichlorophenol | < 0.17 | 0.22 | 0.19 | < 0.19 | 12.8 | | | 3,5-dichlorophenol | < 0.17 | <0.17 | < 0.17 | <0.17 | 0.6 | | | 2,3-dichlorophenol | <0.17 | <0.17 | <0.17 | < 0.17 | 0.6 | | | 3,4-dichlorophenol | < 0.17 | <0.17 | < 0.17 | <0.17 | 0.6 | | | Total Dichlorophenols | <0.86 | <0.92 | <0.88 | <0.89 | 3.3 | | | 2,4,6-trichlorophenol | 0.58 | 0.59 | 0.49 | 0.55 | 9.2 | | | 2,3,6-trichlorophenol | < 0.17 | <0.17 | < 0.17 | <0.17 | 0.6 | | | 2,3,5-trichlorophenol | < 0.17 | <0.17 | < 0.17 | <0.17 | 0.6 | | | 2,4,5-trichlorophenol | < 0.17 | <0.17 | < 0.17 | < 0.17 | 0.6 | | | 2,3,4-trichlorophenol | < 0.17 | <0.17 | <0.17 | <0.17 | 0.6 | | | 3,4,5-trichlorophenol | < 0.17 | <0.17 | <0.17 | < 0.17 | 0.6 | | | Total Trichlorophenols | <1.44 | <1.46 | <1.36 | <1.42 | 3.8 | | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <0.17 | <0.17 | <0.17 | <0.17 | 0.6 | | | 2,3,4,5-tetrachlorophenol | <0.17 | <0.17 | <0.17 | <0.17 | 0.6 | | | Total Tetrachlorophenols | <0.35 | <0.35 | <0.35 | <0.35 | 0.6 | | | Pentachlorophenol | <0.17 | <0.17 | <0.17 | <0.17 | 0.6 | | | Total Chlorophenols | <3.34 | <3.43 | <3.28 | <3.35 | 2.3 | | TABLE 69 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Emission Data for Chlorophenol Isomer and Congener Groups | Specific | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |-----------------------------------|---------------|---------------|---------------|---------------|----------| | Isomer | Concentration | Concentration | Concentration | Concentration | Rate | | | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | 2-monochlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | 3-monochlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | 4-monochlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | Total Monochlorophenols | <20.5 | <35.1 | <27.9 | <29.4 | <0.52 | | 2,6-dichlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | 2,4 & 2,5-dichlorophenol | <7.68 | <13.1 | <10.4 | <11.0 | <0.19 | | 3,5-dichlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | 2,3-dichlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | 3,4-dichlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | Total Dichlorophenols | <35.1 | <60.0 | <47.7 | <50.2 | <0.89 | | 2,4,6-trichlorophenol | 21.8 | 37.2 | 29.6 | 31.1 | 0.55 | | 2,3,6-trichlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | 2,3,5-trichlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | 2,4,5-trichlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | 2,3,4-trichlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | 3,4,5-trichlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | Total Trichlorophenols | <56.0 | <95.8 | <76.1 | <80.1 | <1.42 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | 2,3,4,5-tetrachlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | Total Tetrachlorophenols | <13.7 | <23.4 | <18.6 | <19.6 | <0.35 | | Pentachlorophenol | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | Total Chlorophenols | <132 | <226 | <180 | <189 | <3.35 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 70 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Chlorophenol Blank Analyses | Congener | Lab Blank | Blank Train | |-----------------------------------|-----------|-------------| | Group | Total ng | Total ng | | | | | | 2-monochlorophenol | <60 | <60 | | 3-monochlorophenol | <60 | <60 | | 4-monochlorophenol | <60 | <60 | | Total Monochlorophenols | <180 | <180 | | 2,6-dichlorophenol | <60 | <60 | | 2,4 & 2,5-dichlorophenol | <60 | <60 | | 3,5-dichlorophenol | <60 | <60 | | 2,3-dichlorophenol | <60 | <60 | | 3,4-dichlorophenol | <60 | <60 | | Total Dichlorophenols | <300 | <300 | | 2,4,6-trichlorophenol | <60 | <60 | | 2,3,6-trichlorophenol | <60 | <60 | | 2,3,5-trichlorophenol | <60 | <60 | | 2,4,5-trichlorophenol | <60 | <60 | | 2,3,4-trichlorophenol | <60 | <60 | | 3,4,5-trichlorophenol | <60 | <60 | | Total Trichlorophenols | <360 | <360 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <60 | <60 | | 2,3,4,5-tetrachlorophenol | <60 | <60 | | Total Tetrachlorophenols | <120 | <120 | | Pentachlorophenol | <60 | <60 | | Total Chlorophenols | <1020 | <1020 | [&]quot;<" indicates that the amount detected is less than the detection limit. In these cases the value of the detection limit was used to calculate the total collected. TABLE 71 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Polycyclic Aromatic Hydrocarbon Emission Data Test No. 1 | Compound | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |---------------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Acenaphthene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Acenaphthylene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Anthracene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Benzo(a)Anthracene | <12 | <1.35 | <2.34 | <1.84 | <1.94 |
<0.035 | | Benzo(b)Fluoranthene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Benzo(k)Fluoranthene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Benzo(a)fluorene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Benzo(b)fluorene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Benzo(g,h,i)Perylene | 96.3 | 10.8 | 18.8 | 14.8 | 15.6 | 0.033 | | Benzo(a)Pyrene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Benzo(e)Pyrene | <12 | <1.35 | <2.34 | <1.84 | | | | Biphenyl | 24.2 | 2.72 | 4.71 | 3.71 | <1.94
3.92 | < 0.035 | | 2-Chloronaphthalene | <12 | <1.35 | 4.71
<2.34 | 3.71
<1.84 | | 0.070 | | Chrysene/Triphenylene | <12 | <1.35 | <2.34
<2.34 | <1.84 | <1.94 | <0.035 | | Coronene | 69.9 | 7.87 | 13.6 | 10.7 | <1.94 | <0.035 | | Dibenzo(a,c/a,h)Anthracene | <12 | <1.35 | <2.34 | | 11.3 | 0.20 | | Dibenzo(a,e)pyrene | <60 | <6.76 | <2.34
<11.7 | <1.84
<9.20 | <1.94 | <0.035 | | 9,10-dimethylanthracene | | | | | <9.72 | <0.17 | | 7,12-Dimethylbenzo(a)anthracene | <12
<12 | <1.35
<1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Fluoranthene | 26.1 | 2.94 | <2.34 | <1.84 | <1.94 | <0.035 | | Fluorene | | | 5.08 | 4.00 | 4.23 | 0.075 | | Indeno(1,2,3-cd)Pyrene | 12.0 | 1.35 | 2.34 | 1.84 | 1.94 | 0.035 | | 2-methylanthracene | 13.0 | 1.46 | 2.53 | 1.99 | 2.10 | 0.037 | | 3-Methylcholanthrene | 22.0 | 2.48 | 4.28 | 3.37 | 3.56 | 0.063 | | | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | 1-Methylnaphthalene | 22.3 | 2.51 | 4.34 | 3.42 | 3.61 | 0.064 | | 2-Methylnaphthalene | 43.3 | 4.87 | 8.43 | 6.64 | 7.01 | 0.12 | | 1-Methylphenanthrene | 51.6 | 5.81 | 10.0 | 7.91 | 8.36 | 0.15 | | 9-Methylphenanthrene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Naphthalene | 207 | 23.3 | 40.3 | 31.7 | 33.5 | 0.60 | | Perylene | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Phenanthrene | 76.9 | 8.66 | 15.0 | 11.8 | 12.5 | 0.22 | | Picene | <60 | <6.76 | <11.7 | <9.20 | <9.72 | <0.17 | | Pyrene | 32.2 | 3.63 | 6.27 | 4.94 | 5.21 | 0.093 | | Tetralin | 188 | 21.2 | 36.6 | 28.8 | 30.4 | 0.54 | | m-terphenyl | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | o-Terphenyl | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | p-terphenyl | <12 | <1.35 | <2.34 | <1.84 | <1.94 | <0.035 | | Total | <1305 | <147 | <254 | <200 | <211 | <3.76 | | Dry Gas Volume Sampled (Rm³*) : | 5.135 | |-----------------------------------|-------| | Actual Flowrate (m³/s) : | 25.6 | | Dry Reference Flowrate (Rm³/s*) : | 14.8 | | Dry Adjusted Flowrate (Rm³/s**) : | 18.8 | | Wet Reference Flowrate (Rm³/s*): | 17.8 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 72 **Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet** Polycyclic Aromatic Hydrocarbon Emission Data Test No. 2 | Compound | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |---------------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | | | | | | | | | Acenaphthene | 87.1 | 10.0 | 17.2 | 13.7 | 14.4 | 0.25 | | Acenaphthylene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | <0.035 | | Anthracene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | < 0.035 | | Benzo(a) Anthracene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | < 0.035 | | Benzo(b)Fluoranthene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | < 0.035 | | Benzo(k) Fluoranthene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | <0.035 | | Benzo(a)fluorene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | < 0.035 | | Benzo(b)fluorene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | < 0.035 | | Benzo(g,h,i)Perylene | 24.4 | 2.81 | 4.81 | 3.84 | 4.04 | 0.071 | | Benzo(a)Pyrene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | <0.035 | | Benzo(e)Pyrene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | <0.035 | | Biphenyl | 55 9 | 64.4 | 110 | 88.1 | 92.6 | 1.63 | | 2-Chloronaphthalene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | <0.035 | | Chrysene/Triphenylene | 21.9 | 2.52 | 4.31 | 3.45 | 3.63 | 0.064 | | Coronene | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | Dibenzo(a,c/a,h)Anthracene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | <0.035 | | Dibenzo(a,e)pyrene | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.033 | | 9,10-dimethylanthracene | 26.7 | 3.08 | 5.26 | 4.21 | 4.42 | 0.078 | | 7,12-Dimethylbenzo(a)anthracene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | <0.078 | | Fluoranthene | 111 | 12.8 | 21.9 | 17.5 | 18.4 | 0.32 | | Fluorene | 48.7 | 5.61 | 9.59 | 7.67 | 8.07 | 0.32 | | Indeno(1,2,3-cd)Pyrene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | <0.035 | | 2-methylanthracene | 117 | 13.5 | 23.0 | 18.4 | 19.4 | | | 3-Methylcholanthrene | <60 | <6.91 | <11.8 | <9.45 | 19.4
<9.94 | 0.34 | | 1-Methylnaphthalene | 42.5 | 4.90 | 8.37 | | | <0.17 | | 2-Methylnaphthalene | 42.5
85.7 | 4.90
9.87 | | 6.70 | 7.04 | 0.12 | | 1-Methylphenanthrene | 43.6 | | 16.9 | 13.5 | 14.2 | 0.25 | | 9-Methylphenanthrene | | 5.02 | 8.59 | 6.87 | 7.22 | 0.13 | | | 107 | 12.3 | 21.1 | 16.9 | 17.7 | 0.31 | | Naphthalene | 524 | 60.4 | 103 | 82.6 | 86.8 | 1.53 | | Perylene | <12 | <1.38 | <2.36 | <1.89 | <1.99 | <0.035 | | Phenanthrene | 516 | 59.5 | 102 | 81.3 | 85.5 | 1.50 | | Picene | <60 | <6.91 | <11.8 | <9.45 | <9.94 | <0.17 | | Pyrene | 83.2 | 9.59 | 16.4 | 13.1 | 13.8 | 0.24 | | Tetralin | 355 | 40.9 | 69.9 | 55.9 | 58.8 | 1.03 | | m-terphenyl | 33.8 | 3.89 | 6.66 | 5.33 | 5.60 | 0.099 | | o-Terphenyl | 56.5 | 6.51 | 11.1 | 8.90 | 9.36 | 0.16 | | p-terphenyl | 16.5 | 1.90 | 3.25 | 2.60 | 2.73 | 0.048 | | Total | <3268 | <376 | <644 | <515 | <541 | <9.53 | | Dry Gas Volume Sampled (Rm ³ *) : | 5.077 | |--|-------| | Actual Flowrate (m³/s) : | 25.3 | | Dry Reference Flowrate (Rm³/s*): | 14.8 | | Dry Adjusted Flowrate (Rm³/s**) : | 18.5 | | Wet Reference Flowrate (Rm³/s*) : | 17.6 | ^{*} At 25°C and 1 atmosphere ** At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume Note: "<" indicates that the analyte was not detected and the value of the detection limit was used to calculate the emission data. **TABLE 73 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet** Polycyclic Aromatic Hydrocarbon Emission Data Test No. 3 | Compound | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |---------------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Acenaphthene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Acenaphthylene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Anthracene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Benzo(a)Anthracene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Benzo(b)Fluoranthene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Benzo(k)Fluoranthene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Benzo(a)fluorene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Benzo(b)fluorene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Benzo(g,h,i)Perylene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Benzo(a)Pyrene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Benzo(e)Pyrene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Biphenyl | 24.1 | 2.76 | 4.67 | 3.72 | 3.91 | 0.033 | | 2-Chloronaphthalene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | < 0.070 | | Chrysene/Triphenylene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Coronene | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.035 | | Dibenzo(a,c/a,h)Anthracene | <12 | <1.37 | <2.32 | <1.85 | <9.73
<1.95 | <0.17 | | Dibenzo(a,e)pyrene | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.035 | | 9,10-dimethylanthracene | <12 | <1.37 | <2.32 | <1.85 | | | | 7,12-Dimethylbenzo(a)anthracene | <12 | <1.37 | <2.32 | | <1.95 | <0.035 | | Fluoranthene | 13.9 | | | <1.85 | <1.95 | <0.035 | | Fluorene | 13.9
<12 | 1.59 | 2.69 | 2.15 | 2.25 | 0.040 | | Indeno(1,2,3-cd)Pyrene | <12 | <1.37
<1.37 | <2.32 | <1.85 | <1.95 | < 0.035 | | | | | <2.32 | <1.85 | <1.95 | <0.035 | | 2-methylanthracene | 21.1 | 2.42 | 4.09 | 3.26 | 3.42 | 0.061 | | 3-Methylcholanthrene | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | 1-Methylnaphthalene | 21.8 | 2.50 | 4.22 | 3.36 | 3.54 | 0.063 | | 2-Methylnaphthalene | 29.7 | 3.40 | 5.75 | 4.58 | 4.82 | 0.086 | | 1-Methylphenanthrene | 25.5 | 2.92 | 4.94 | 3.94 | 4.14 | 0.074 | | 9-Methylphenanthrene | 13.3 | 1.52 | 2.58 | 2.05 | 2.16 | 0.038 | | Naphthalene | 200 | 22.9 | 38.7 | 30.9 | 32.4 | 0.58 | | Perylene | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Phenanthrene | 59.5 | 6.82 | 11.5 | 9.18 | 9.65 | 0.17 | | Picene | <60 | <6.87 | <11.6 | <9.26 | <9.73 | <0.17 | | Pyrene | 12.8 | 1.47 | 2.48 | 1.98 | 2.08 | 0.037 | | Tetralin | 496 | 56.8 | 96.1 | 76.6 | 80.4 | 1.43 | | m-terphenyl | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | o-Terphenyl | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | p-terphenyl | <12 | <1.37 | <2.32 | <1.85 | <1.95 | <0.035 | | Total | <1422 | <163 | <275 | <219 | <231 | <4.10 | | Dry Gas Volume Sampled (Rm ³ *) : | 5.162 | |--|-------| | Actual Flowrate (m³/s) : | 25.2 | | Dry Reference Flowrate (Rm³/s*) : | 14.9 | | Dry Adjusted Flowrate (Rm³/s**): | 18.7 | | Wet Reference Flowrate (Rm³/s*) : | 17.8 | * At 25°C and 1 atmosphere ** At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume Note: "<" indicates that the analyte was not detected and the value of the detection limit was used to calculate the emission data. TABLE 74 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Polycyclic Aromatic Hydrocarbon Actual Concentrations | Compound | | Actual Cor | ncentration | | Coefficient |
---------------------------------|------------|------------|----------------|---------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/m³ | ng/m³ | ng/m³ | ng/m³ | <u> </u> | | Acenaphthene | <1.35 | 10.0 | <1.37 | <4.25 | 118 | | Acenaphthylene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Anthracene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Benzo(a)Anthracene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Benzo(b)Fluoranthene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Benzo(k)Fluoranthene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Benzo(a)fluorene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Benzo(b)fluorene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Benzo(g,h,i)Perylene | 10.8 | 2.81 | <1.37 | <5.01 | 102 | | Benzo(a)Pyrene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Benzo(e)Pyrene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Biphenyl | 2.72 | 64.4 | 2.76 | 23.3 | 153 | | 2-Chloronaphthalene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Chrysene/Triphenylene | <1.35 | 2.52 | <1.37 | <1.75 | 38.3 | | Coronene | 7.87 | <6.91 | <6.87 | <7.22 | 7.8 | | Dibenzo(a,c/a,h)Anthracene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Dibenzo(a,e)pyrene | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | 9,10-dimethylanthracene | <1.35 | 3.08 | <1.37 | <1.93 | 51.2 | | 7,12-Dimethylbenzo(a)anthracene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Fluoranthene | 2.94 | 12.8 | 1.59 | 5.77 | 106 | | Fluorene | 1.35 | 5.61 | <1.37 | <2.78 | 88.3 | | Indeno(1,2,3-cd)Pyrene | 1.46 | <1.38 | <1.37 | <1.41 | 3.5 | | 2-methylanthracene | 2.48 | 13.5 | 2.42 | 6.12 | 104 | | 3-Methylcholanthrene | <6.76 | <6.91 | <6 <i>.</i> 87 | <6.85 | 1.2 | | 1-Methylnaphthalene | 2.51 | 4.90 | 2.50 | 3.30 | 41.8 | | 2-Methylnaphthalene | 4.87 | 9.87 | 3.40 | 6.05 | 56.1 | | 1-Methylphenanthrene | 5.81 | 5.02 | 2.92 | 4.58 | 32.6 | | 9-Methylphenanthrene | <1.35 | 12.3 | 1.52 | <5.07 | 124 | | Naphthalene | 23.3 | 60.4 | 22.9 | 35.5 | 60.6 | | Perylene | <1.35 | <1.38 | <1.37 | <1.37 | 1.2 | | Phenanthrene | 8.66 | 59.5 | 6.82 | 25.0 | 120 | | Picene | <6.76 | <6.91 | <6.87 | <6.85 | 1.2 | | Pyrene | 3.63 | 9.59 | 1.47 | 4.89 | 86.0 | | Tetralin | 21.2 | 40.9 | 56.8 | 39.6 | 45.1 | | m-terphenyl | <1.35 | 3.89 | <1.37 | <2.21 | 66.2 | | o-Terphenyl | <1.35 | 6.51 | <1.37 | <3.08 | 96.5 | | p-terphenyl | <1.35 | 1.90 | <1.37 | <1.54 | 20.2 | | Total | <147 | <376 | <163 | <229 | 56.0 | TABLE 75 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Polycyclic Aromatic Hydrocarbon Dry Reference Concentrations | Compound | | Dry Reference Concentration | | | | | |---------------------------------|------------|-----------------------------|------------|---------|--------------------------|--| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | Coefficient of Variation | | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | %% | | | Acenaphthene | <2.34 | 17.2 | <2.32 | <7.27 | 118 | | | Acenaphthylene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Anthracene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Benzo(a)Anthracene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Benzo(b)Fluoranthene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Benzo(k)Fluoranthene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Benzo(a)fluorene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Benzo(b)fluorene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Benzo(g,h,i)Perylene | 18.8 | 4.81 | <2.32 | <8.63 | 103 | | | Benzo(a)Pyrene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Benzo(e)Pyrene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Biphenyl | 4.71 | 110 | 4.67 | 39.8 | 153 | | | 2-Chloronaphthalene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Chrysene/Triphenylene | <2.34 | 4.31 | <2.32 | <2.99 | 38.3 | | | Coronene | 13.6 | <11.8 | <11.6 | <12.4 | 8.9 | | | Dibenzo(a,c/a,h)Anthracene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Dibenzo(a,e)pyrene | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | | 9,10-dimethylanthracene | <2.34 | 5.26 | <2.32 | <3.31 | 51.1 | | | 7,12-Dimethylbenzo(a)anthracene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Fluoranthene | 5.08 | 21.9 | 2.69 | 9.88 | 106 | | | Fluorene | 2.34 | 9.59 | <2.32 | <4.75 | 88.2 | | | Indeno(1,2,3-cd)Pyrene | 2.53 | <2.36 | <2.32 | <2.41 | 4.6 | | | 2-methylanthracene | 4.28 | 23.0 | 4.09 | 10.5 | 104 | | | 3-Methylcholanthrene | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | | 1-Methylnaphthalene | 4.34 | 8.37 | 4.22 | 5.65 | 41.8 | | | 2-Methylnaphthalene | 8.43 | 16.9 | 5.75 | 10.4 | 56.1 | | | 1-Methylphenanthrene | 10.0 | 8.59 | 4.94 | 7.86 | 33.5 | | | 9-Methylphenanthrene | <2.34 | 21.1 | 2.58 | <8.66 | 124 | | | Naphthalene | 40.3 | 103 | 38.7 | 60.8 | 60.5 | | | Perylene | <2.34 | <2.36 | <2.32 | <2.34 | 0.8 | | | Phenanthrene | 15.0 | 102 | 11.5 | 42.7 | 120 | | | Picene | <11.7 | <11.8 | <11.6 | <11.7 | 0.8 | | | Pyrene | 6.27 | 16.4 | 2.48 | 8.38 | 85.8 | | | Tetralin | 36.6 | 69.9 | 96.1 | 67.5 | 44.1 | | | m-terphenyl | <2.34 | 6.66 | <2.32 | <3.77 | 66.2 | | | o-Terphenyl | <2.34 | 11.1 | <2.32 | <5.26 | 96.5 | | | p-terphenyl | <2.34 | 3.25 | <2.32 | <2.64 | 20.1 | | | Total | <254 | <644 | <275 | <391 | 56.0 | | ^{*} At 25°C and 1 atmosphere TABLE 76 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Polycyclic Aromatic Hydrocarbon Dry Adjusted Concentrations | Compound | | Coefficient | | | | |---------------------------------|------------|-------------|------------|---------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | Acenaphthene | <1.84 | 13.7 | <1.85 | <5.81 | 118 | | Acenaphthylene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Anthracene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Benzo(a)Anthracene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Benzo(b)Fluoranthene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Benzo(k)Fluoranthene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Benzo(a)fluorene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Benzo(b)fluorene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Benzo(g,h,i)Perylene | 14.8 | 3.84 | <1.85 | <6.82 | 102 | | Benzo(a)Pyrene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Benzo(e)Pyrene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Biphenyl | 3.71 | 88.1 | 3.72 | 31.8 | 153 | | 2-Chloronaphthalene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Chrysene/Triphenylene | <1.84 | 3.45 | <1.85 | <2.38 | 38.9 | | Coronene | 10.7 | <9.45 | <9.26 | <9.81 | 8.1 | | Dibenzo(a,c/a,h)Anthracene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Dibenzo(a,e)pyrene | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | 9,10-dimethylanthracene | <1.84 | 4.21 | <1.85 | <2.63 | 51.8 | | 7,12-Dimethylbenzo(a)anthracene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Fluoranthene | 4.00 | 17.5 | 2.15 | 7.88 | 106 | | Fluorene | 1.84 | 7.67 | <1.85 | <3.79 | 88.8 | | Indeno(1,2,3-cd)Pyrene | 1.99 | <1.89 | <1.85 | <1.91 | 3.8 | | 2-methylanthracene | 3.37 | 18.4 | 3.26 | 8.36 | 104 | | 3-Methylcholanthrene | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | 1-Methylnaphthalene | 3.42 | 6.70 | 3.36 | 4.49 | 42.5 | | 2-Methylnaphthalene | 6.64 | 13.5 | 4.58 | 8.24 | 56.7 | | 1-Methylphenanthrene | 7.91 | 6.87 | 3.94 | 6.24 | 33.0 | | 9-Methylphenanthrene | <1.84 | 16.9 | 2.05 | <6.92 | 124 | | Naphthalene | 31.7 | 82.6 | 30.9 | 48.4 | 61.2 | | Perylene | <1.84 | <1.89 | <1.85 | <1.86 | 1.4 | | Phenanthrene | 11.8 | 81.3 | 9.18 | 34.1 | 120 | | Picene | <9.20 | <9.45 | <9.26 | <9.30 | 1.4 | | Pyrene | 4.94 | 13.1 | 1.98 | 6.67 | 86.4 | | Tetralin | 28.8 | 55.9 | 76.6 | 53.8 | 44.5 | | m-terphenyl | <1.84 | 5.33 | <1.85 | <3.01 | 66.8 | | o-Terphenyl | <1.84 | 8.90 | <1.85 | <4.20 | 97.0 | | p-terphenyl | <1.84 | 2.60 | <1.85 | <2.10 | 20.8 | | Total | <200 | <515 | <219 | <311 | 56.7 | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 77 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Polycyclic Aromatic Hydrocarbon Wet Reference Concentrations | Compound | | | Coefficient | | | |---------------------------------|----------------|----------------|----------------|----------------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | Acenaphthene | <1.94 | 14.4 | <1.95 | 4C 11 | 110 | | Acenaphthylene | <1.94 | <1.99 | <1.95
<1.95 | <6.11
<1.96 | 118 | | Anthracene | <1.94
<1.94 | <1.99
<1.99 | | | 1.3 | | Benzo(a)Anthracene | <1.94
<1.94 | | <1.95 | <1.96 | 1.3 | | Benzo(b)Fluoranthene | <1.94
<1.94 | <1.99 | <1.95
<1.95 | <1.96 | 1.3 | | Benzo(k)Fluoranthene | <1.94
<1.94 | <1.99 | | <1.96 | 1.3 | | Benzo(a)fluorene | | <1.99 | <1.95 | <1.96 | 1.3 | | | <1.94 | <1.99 | <1.95 | <1.96 | 1.3 | | Benzo(b)fluorene | <1.94 | <1.99 | <1.95 | <1.96 | 1.3 | | Benzo(g,h,i)Perylene | 15.6 | 4.04 | <1.95 | <7.19 | 102 | | Benzo(a)Pyrene | <1.94 | <1.99 | <1.95 | <1.96 | 1.3 | | Benzo(e)Pyrene | <1.94 | <1.99 | <1.95 | <1.96 | 1.3 | | Biphenyl | 3.92 | 92.6 | 3.91 | 33.5 | 153 | | 2-Chloronaphthalene | <1.94 | <1.99 | <1.95 | <1.96 | 1.3 | | Chrysene/Triphenylene | <1.94 | 3.63 | <1.95 | <2.51 | 38.8 | | Coronene | 11.3 | <9.94 | <9.73 | <10.3 | 8.4 | | Dibenzo(a,c/a,h)Anthracene | <1.94 | <1.99 | <1.95 | <1.96 | 1.3 | | Dibenzo(a,e)pyrene | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | 9,10-dimethylanthracene | <1.94 | 4.42 | <1.95 | <2.77 | 51.6 | | 7,12-Dimethylbenzo(a)anthracene | <1.94 | <1.99 | <1.95 | <1.96 | 1.3 | | Fluoranthene | 4.23 | 18.4 | 2.25 | 8.29 | 106 | | Fluorene | 1.94 | 8.07 | <1.95 | <3.99 | 88.7 | | Indeno(1,2,3-cd)Pyrene | 2.10 | <1.99 | <1.95 | <2.01 | 4.1 | | 2-methylanthracene | 3.56 | 19.4 | 3.42 | 8.79 | 104 | | 3-Methylcholanthrene | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | 1-Methylnaphthalene | 3.61 | 7.04 | 3.54 | 4.73 | 42.3 | | 2-Methylnaphthalene | 7.01 | 14.2 | 4.82 | 8.67 | 56.6 | | 1-Methylphenanthrene | 8.36 | 7.22 | 4.14 | 6.57 | 33.2 | | 9-Methylphenanthrene | <1.94 | 17.7 | 2.16 | <7.27 | 124 | | Naphthalene | 33.5 | 86.8 | 32.4 | 50.9 | 61.0 | | Perylene | <1.94 | <1.99 | <1.95 | <1.96 | 1.3 | | Phenanthrene | 12.5 | 85.5 | 9.65 |
35.9 | 120 | | Picene | <9.72 | <9.94 | <9.73 | <9.79 | 1.3 | | Pyrene | 5.21 | 13.8 | 2.08 | 7.02 | 86.3 | | Tetralin | 30.4 | 58.8 | 80.4 | 56.6 | 44.3 | | m-terphenyl | <1.94 | 5.60 | <1.95 | <3.16 | 66.7 | | o-Terphenyl | <1.94 | 9.36 | <1.95 | <4.42 | 96.9 | | p-terphenyl | <1.94 | 2.73 | <1.95 | <2.21 | 20.6 | | Total | <211 | <541 | <231 | <328 | 56.5 | ^{*} At 25°C and 1 atmosphere TABLE 78 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Polycyclic Aromatic Hydrocarbon Emission Rates | Compound | Emission Rate Coeff | | | | | | |---------------------------------|---------------------|------------|------------|---------|--------------|--| | · | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | μg/s | μg/s | μg/s | μg/s | % | | | A | | | | | | | | Acenaphthene | <0.035 | 0.25 | <0.035 | <0.11 | 118 | | | Acenaphthylene | <0.035 | <0.035 | <0.035 | <0.035 | 0.6 | | | Anthracene | <0.035 | <0.035 | <0.035 | <0.035 | 0.6 | | | Benzo(a)Anthracene | <0.035 | <0.035 | <0.035 | <0.035 | 0.6 | | | Benzo(b)Fluoranthene | <0.035 | <0.035 | <0.035 | <0.035 | 0.6 | | | Benzo(k)Fluoranthene | <0.035 | <0.035 | <0.035 | <0.035 | 0.6 | | | Benzo(a)fluorene | <0.035 | <0.035 | <0.035 | <0.035 | 0.6 | | | Benzo(b)fluorene | < 0.035 | <0.035 | <0.035 | <0.035 | 0.6 | | | Benzo(g,h,i)Perylene | 0.28 | 0.071 | <0.035 | <0.13 | 103 | | | Benzo(a)Pyrene | < 0.035 | <0.035 | <0.035 | <0.035 | 0.6 | | | Benzo(e)Pyrene | < 0.035 | < 0.035 | <0.035 | < 0.035 | 0.6 | | | Biphenyl | 0.070 | 1.63 | 0.070 | 0.59 | 153 | | | 2-Chloronaphthalene | < 0.035 | < 0.035 | < 0.035 | < 0.035 | 0.6 | | | Chrysene/Triphenylene | < 0.035 | 0.064 | <0.035 | < 0.044 | 38.0 | | | Coronene | 0.20 | < 0.17 | <0.17 | <0.18 | 8.7 | | | Dibenzo(a,c/a,h)Anthracene | < 0.035 | <0.035 | < 0.035 | < 0.035 | 0.6 | | | Dibenzo(a,e)pyrene | < 0.17 | <0.17 | <0.17 | < 0.17 | 0.6 | | | 9,10-dimethylanthracene | <0.035 | 0.078 | < 0.035 | < 0.049 | 50.9 | | | 7,12-Dimethylbenzo(a)anthracene | < 0.035 | <0.035 | < 0.035 | <0.035 | 0.6 | | | Fluoranthene | 0.075 | 0.32 | 0.040 | 0.15 | 106 | | | Fluorene | 0.035 | 0.14 | <0.035 | <0.070 | 88.0 | | | Indeno(1,2,3-cd)Pyrene | 0.037 | <0.035 | <0.035 | <0.036 | 4.3 | | | 2-methylanthracene | 0.063 | 0.34 | 0.061 | 0.16 | 104 | | | 3-Methylcholanthrene | <0.17 | <0.17 | <0.17 | <0.17 | 0.6 | | | 1-Methylnaphthalene | 0.064 | 0.12 | 0.063 | 0.084 | 41.6 | | | 2-Methylnaphthalene | 0.12 | 0.25 | 0.086 | 0.15 | 55.9 | | | 1-Methylphenanthrene | 0.15 | 0.13 | 0.074 | 0.12 | 33.2 | | | 9-Methylphenanthrene | <0.035 | 0.31 | 0.038 | <0.13 | 124 | | | Naphthalene | 0.60 | 1.53 | 0.58 | 0.90 | 60.3 | | | Perylene | <0.035 | <0.035 | <0.035 | <0.035 | 0.6 | | | Phenanthrene | 0.22 | 1.50 | 0.17 | 0.63 | 119 | | | Picene | <0.17 | <0.17 | <0.17 | <0.17 | 0.6 | | | Pyrene | 0.093 | 0.24 | 0.037 | 0.12 | 85.7 | | | Tetralin | 0.54 | 1.03 | 1.43 | 1.00 | 85.7
44.5 | | | [m-terphenyl | <0.035 | 0.099 | < 0.035 | < 0.056 | 44.5
66.0 | | | o-Terphenyl | <0.035 | 0.16 | <0.035 | <0.056 | | | | p-terphenyl | <0.035
<0.035 | | | | 96.3 | | | i . | \U.U3 3 | 0.048 | <0.035 | <0.039 | 19.9 | | | Total | <3.76 | <9.53 | <4.10 | <5.80 | 55.8 | | TABLE 79 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Polycyclic Aromatic Hydrocarbon Emission Data | Compound | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |---------------------------------|---------------|---------------|---------------|---------------|----------| | | Concentration | Concentration | Concentration | Concentration | Rate | | | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Acenaphthene | <4.25 | <7.27 | <5.81 | <6.11 | <0.11 | | Acenaphthylene | <1.37 | <2.34 | <1.86 | <1.96 | <0.035 | | Anthracene | <1.37 | <2.34 | <1.86 | <1.96 | < 0.035 | | Benzo(a)Anthracene | <1.37 | <2.34 | <1.86 | <1.96 | < 0.035 | | Benzo(b)Fluoranthene | <1.37 | <2.34 | <1.86 | <1.96 | <0.035 | | Benzo(k)Fluoranthene | <1.37 | <2.34 | <1.86 | <1.96 | < 0.035 | | Benzo(a)fluorene | <1.37 | <2.34 | <1.86 | <1.96 | <0.035 | | Benzo(b)fluorene | <1.37 | <2.34 | <1.86 | <1.96 | <0.035 | | Benzo(g,h,i)Perylene | <5.01 | <8.63 | <6.82 | <7.19 | <0.13 | | Benzo(a)Pyrene | <1.37 | <2.34 | <1.86 | <1.96 | < 0.035 | | Benzo(e)Pyrene | <1.37 | <2.34 | <1.86 | <1.96 | <0.035 | | Biphenyl | 23.3 | 39.8 | 31.8 | 33.5 | 0.59 | | 2-Chloronaphthalene | <1.37 | <2.34 | <1.86 | <1.96 | < 0.035 | | Chrysene/Triphenylene | <1.75 | <2.99 | <2.38 | <2.51 | < 0.044 | | Coronene | <7.22 | <12.4 | <9.81 | <10.3 | <0.18 | | Dibenzo(a,c/a,h)Anthracene | <1.37 | <2.34 | <1.86 | <1.96 | <0.035 | | Dibenzo(a,e)pyrene | <6.85 | <11.7 | <9.30 | <9.79 | < 0.17 | | 9,10-dimethylanthracene | <1.93 | <3.31 | <2.63 | <2.77 | <0.049 | | 7,12-Dimethylbenzo(a)anthracene | <1.37 | <2.34 | <1.86 | <1.96 | <0.045 | | Fluoranthene | 5.77 | 9.88 | 7.88 | 8.29 | 0.15 | | Fluorene | <2.78 | <4.75 | <3.79 | <3.99 | <0.070 | | Indeno(1,2,3-cd)Pyrene | <1.41 | <2.41 | <1.91 | <2.01 | <0.036 | | 2-methylanthracene | 6.12 | 10.5 | 8.36 | 8.79 | 0.16 | | 3-Methylcholanthrene | <6.85 | <11.7 | <9.30 | <9.79 | <0.17 | | 1-Methylnaphthalene | 3.30 | 5.65 | 4.49 | 4.73 | 0.084 | | 2-Methylnaphthalene | 6.05 | 10.4 | 8.24 | 8.67 | 0.054 | | 1-Methylphenanthrene | 4.58 | 7.86 | 6.24 | 6.57 | 0.12 | | 9-Methylphenanthrene | <5.07 | <8.66 | <6.92 | <7.27 | <0.13 | | Naphthalene | 35.5 | 60.8 | 48.4 | 50.9 | 0.90 | | Perylene | <1.37 | <2.34 | <1.86 | <1.96 | <0.035 | | Phenanthrene | 25.0 | 42.7 | 34.1 | 35.9 | 0.63 | | Picene | <6.85 | <11.7 | <9.30 | <9.79 | < 0.17 | | Pyrene | 4.89 | 8.38 | 6.67 | 7.02 | 0.12 | | Tetralin | 39.6 | 67.5 | 53.8 | 56.6 | 1.00 | | m-terphenyl | <2.21 | <3.77 | <3.01 | <3.16 | <0.056 | | o-Terphenyl | <3.08 | <5.26 | <4.20 | <4.42 | <0.078 | | p-terphenyl | <1.54 | <2.64 | <2.10 | <2.21 | <0.039 | | Total | <229 | <391 | <311 | <328 | <5.80 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 80 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Blank Polycyclic Aromatic Hydrocarbon Analyses | Compound | Blank | Laboratory | |---------------------------------|-------|------------| | • • | Train | Blank | | | ng | ng | | Acenaphthene | <12 | <12 | | Acenaphthylene | <12 | <12 | | Anthracene | <12 | <12 | | Benzo(a) Anthracene | <12 | <12 | | Benzo(b)Fluoranthene | <12 | <12 | | Benzo(k)Fluoranthene | <12 | <12 | | Benzo(a)fluorene | <12 | <12 | | Benzo(b)fluorene | <12 | <12 | | Benzo(g,h,i)Perylene | <12 | <12 | | Benzo(a)Pyrene | <12 | <12 | | Benzo(e)Pyrene | <12 | <12 | | Biphenyl | <12 | <12 | | 2-Chloronaphthalene | <12 | <12 | | Chrysene/Triphenylene | <12 | <12 | | Coronene | <60 | <60 | | Dibenzo(a,c/a,h)Anthracene | <12 | <12 | | Dibenzo(a,e)pyrene | <60 | <60 | | 9,10-dimethylanthracene | <12 | <12 | | 7,12-Dimethylbenzo(a)anthracene | <12 | <12 | | Fluoranthene | <12 | <12 | | Fluorene | <12 | <12 | | Indeno(1,2,3-cd)Pyrene | <12 | <12 | | 2-methylanthracene | <12 | <12 | | 3-Methylcholanthrene | <60 | <60 | | 1-Methylnaphthalene | <12 | <12 | | 2-Methylnaphthalene | <12 | <12 | | 1-Methylphenanthrene | <12 | <12 | | 9-Methylphenanthrene | <12 | <12 | | Naphthalene | 164 | 190 | | Perylene | <12 | <12 | | Phenanthrene | <12 | <12 | | Picene | <60 | <60 | | Pyrene | <12 | <12 | | ,
Tetralin | 181 | 276 | | m-terphenyl | <12 | <12 | | o-Terphenyl | <12 | <12 | | p-terphenyl | <12 | <12 | | Total | <957 | <1078 | [&]quot;<" indicates that the amount detected is less than the detection limit. In these cases the value of the detection limit was used to calculate the total collected. ## TABLE 81 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Acetaldehyde, Formaldehyde and Acrolein Emission Data ## Acetaldehyde | | Total | Dry Volume | | Acetaldehyde | | | | |---------|-----------|------------|--------|---------------|--------------|---------------|----------------------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission Rate | | No. | μg | Rm³* | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | 1 | 2.02 | 0.0428 | 27.4 | 47.2 | 37.2 | 39.4 | 0.70 | | 2 | 1.63 | 0.0451 | 21.1 | 36.1 | 28.8 | 30.3 | 0.53 | | 3 | 1.78 | 0.0379 | 27.4 | 47.0 | 37.4 | 39.3 | 0.69 | | Average | | | 25.3 | 43.4 | 34.5 | 36.3 | 0.64 | | Blank | 1.09 | | | | | | | ## Formaldehyde | | Total | Dry Volume | | Formaldehyde | Concentration | | Formaldehyde | | |---------|-----------|------------|----------------------|---------------|---------------|---------------|----------------------|--| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission Rate | | | No. μg | | Rm³* | µg/m³ µg/Rm³* µg/Rm³ | | μg/Rm³** | μg/Rm³* | mg/s | | | 1 | 2.22 | 0.0428 | 30.1 | 51.9 | 40.9 | 43.3 | 0.77 | | | 2 | 1.69 | 0.0451 | 21.9 | 37.5 | 29.9 | 31.4 | 0.55 | | | 3 | 1.85 | 0.0379 | 28.5 | 48.8 | 38.9 | 40.9 | 0.72 | | | Average | | | 26.8 | 46.1 | 36.6 | 38.5 | 0.68 | | | Blank | 1.27 | | | | | | | | ## Acrolein | | Total | Dry Volume | | Acrolein Co | ncentration | | Acrolein | |---------|-----------|-------------------|--------|---------------|---------------------|---------------|----------------------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission Rate | | No. | μg | Rm ³ * | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | 1 | <0.1 | 0.0428 | <1.36 | <2.34 | <1.84 | <1.95 | <0.035 | | 2 | <0.1 | 0.0451 | <1.30 | <2.22 | <1.77 | <1.86 | <0.033 | | 3 | <0.1 | 0.0379 | <1.54 | <2.64 | <2.10 | <2.21 | <0.039 | | Average | | | <1.40 | <2.40 | <1.90 | <2.01 | <0.035 | | Blank | <0.1 | | | | | | | Note: "<" indicates that the analyte was not detected and the value of the detection limit was used to calculate the emission data. Sampling was conducted at a single point. Volumetric flowrates from corresponding isokinetic tests were used to calculate
emission data. - * At 25 °C and 1 atmosphere - ** At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 82 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Volatile Organic Emission Data Test No. 1 | Compound | Total
Collected | Actual Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |---------------------------------------|--------------------|----------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | μg | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | | | | | | | | | Acetone | 1.25 | 30.3 | 52.4 | 41.3 | 43.6 | 0.78 | | Benzene | 0.30 | 7.28 | 12.6 | 9.92 | 10.5 | 0.19 | | Bromodichloromethane | 0.050 | 1.21 | 2.10 | 1.65 | 1.75 | 0.031 | | Bromoform | < 0.01 | <0.24 | < 0.42 | <0.33 | <0.35 | <0.0062 | | Bromomethane | < 0.09 | <2.18 | <3.78 | <2.98 | <3.14 | < 0.056 | | 1,3-Butadiene | < 0.02 | < 0.49 | < 0.84 | <0.66 | <0.70 | <0.012 | | 2-Butanone | 1.17 | 28.3 | 49.0 | 38.5 | 40.7 | 0.72 | | Carbon Tetrachloride | 0.16 | 3.93 | 6.80 | 5.36 | 5.66 | 0.10 | | Chloroform | 0.066 | 1.60 | 2.77 | 2.18 | 2.30 | 0.041 | | Cumene (Isopropylbenzene) | 0.061 | 1.48 | 2.56 | 2.02 | 2.13 | 0.038 | | Dibromochloromethane | < 0.01 | <0.24 | < 0.42 | <0.33 | <0.35 | <0.0062 | | Dichlorodifluoromethane | 0.025 | 0.61 | 1.05 | 0.83 | 0.87 | 0.016 | | 1,2-Dichloroethane | 0.049 | 1.19 | 2.06 | 1.62 | 1.71 | 0.030 | | trans,1,2-Dichloroethene | 0.027 | 0.66 | 1.13 | 0.89 | 0.94 | 0.017 | | 1,1-Dichloroethene | < 0.01 | <0.24 | < 0.42 | <0.33 | <0.35 | <0.0062 | | 1,2-Dichloropropane | < 0.01 | <0.24 | < 0.42 | <0.33 | <0.35 | < 0.0062 | | Ethylbenzene | 0.42 | 10.2 | 17.7 | 13.9 | 14.7 | 0.26 | | Ethylene Dibromide | < 0.02 | < 0.49 | <0.84 | <0.66 | <0.70 | <0.012 | | Mesitylene (1,3,5-Trimethylbenzene) | 0.44 | 10.6 | 18.3 | 14.4 | 15.2 | 0.27 | | Methylene Chloride | 1.12 | 27.3 | 47.2 | 37.2 | 39.2 | 0.70 | | Styrene | 0.23 | 5.56 | 9.62 | 7.57 | 8.00 | 0.14 | | Tetrachloroethene | <0.01 | <0.24 | < 0.42 | <0.33 | <0.35 | <0.0062 | | Toluene | 1.63 | 39.6 | 68.4 | 53.9 | 56.9 | 1.01 | | 1,1,1-Trichloroethane | < 0.01 | <0.24 | <0.42 | <0.33 | <0.35 | < 0.0062 | | Trichloroethene/1,1,2-Trichloroethene | < 0.01 | <0.24 | < 0.42 | <0.33 | <0.35 | < 0.0062 | | Trichlorotrifluoroethane | < 0.02 | < 0.49 | < 0.84 | <0.66 | <0.70 | <0.012 | | Trichlorofluoromethane | 0.068 | 1.65 | 2.86 | 2.25 | 2.37 | 0.042 | | M&P-Xylene | 1.39 | 33.8 | 58.5 | 46.1 | 48.7 | 0.87 | | O-Xylene | 0.62 | 15.1 | 26.1 | 20.5 | 21.7 | 0.39 | | Vinyl Chloride | <0.02 | <0.49 | <0.84 | <0.66 | <0.70 | <0.012 | | Total | <9.32 | <226 | <391 | <308 | <325 | <5.79 | | Dry Gas Volume Sampled (Rm ³ *): | 0.0238 | |---|--------| | Actual Flowrate (m³/s) : | 25.6 | | Dry Reference Flowrate (Rm³/s*): | 14.8 | | Dry Adjusted Flowrate (Rm³/s**): | 18.8 | | Wet Reference Flowrate (Rm³/s*): | 17.8 | ^{*} At 25°C and 1 atmosphere Note: "<" indicates that the analyte was not detected. Any analyte that was not detected was assigned a value equal to the detection limit for calculation purposes. ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 83 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Volatile Organic Emission Data Test No. 2 | Compound | Total
Collected | Actual | Dry Reference
Concentration | | Wet Reference | Emission
Rate | |---------------------------------------|--------------------|--------|--------------------------------|-----------------------|---------------|------------------| | | | μg/m³ | μg/Rm ³ * | μg/Rm ³ ** | μg/Rm³* | | | | μg | μg/m | μg/km * | μg/κm ** | μg/κm * | mg/s | | | | | | | | | | Acetone | 1.20 | 26.2 | 45.4 | 35.7 | 37.7 | 0.67 | | Benzene | 0.29 | 6.28 | 10.9 | 8.55 | 9.03 | 0.16 | | Bromodichloromethane | 0.048 | 1.05 | 1.82 | 1.43 | 1.51 | 0.027 | | Bromoform | < 0.01 | <0.22 | <0.38 | < 0.30 | <0.31 | <0.0056 | | Bromomethane | < 0.09 | <1.97 | <3.41 | <2.68 | <2.83 | < 0.050 | | 1,3-Butadiene | < 0.02 | < 0.44 | <0.76 | < 0.60 | < 0.63 | < 0.011 | | 2-Butanone | 1.12 | 24.5 | 42.4 | 33.3 | 35.2 | 0.63 | | Carbon Tetrachloride | 0.16 | 3.39 | 5.87 | 4.62 | 4.88 | 0.087 | | Chloroform | 0.063 | 1.38 | 2.39 | 1.88 | 1.98 | 0.035 | | Cumene (Isopropylbenzene) | 0.059 | 1.29 | 2.23 | 1.76 | 1.86 | 0.033 | | Dibromochloromethane | < 0.01 | <0.22 | <0.38 | <0.30 | < 0.31 | <0.0056 | | Dichlorodifluoromethane | 0.024 | 0.53 | 0.91 | 0.72 | 0.76 | 0.013 | | 1,2-Dichloroethane | 0.047 | 1.03 | 1.78 | 1.40 | 1.48 | 0.026 | | trans,1,2-Dichloroethene | 0.026 | 0.57 | 0.98 | 0.77 | 0.82 | 0.015 | | 1,1-Dichloroethene | < 0.01 | <0.22 | <0.38 | < 0.30 | < 0.31 | <0.0056 | | 1,2-Dichloropropane | < 0.01 | <0.22 | <0.38 | < 0.30 | <0.31 | <0.0056 | | Ethylbenzene | 0.40 | 8.84 | 15.3 | 12.0 | 12.7 | 0.23 | | Ethylene Dibromide | < 0.02 | < 0.44 | <0.76 | < 0.60 | < 0.63 | < 0.011 | | Mesitylene (1,3,5-Trimethylbenzene) | 0.42 | 9.15 | 15.8 | 12.5 | 13.2 | 0.23 | | Methylene Chloride | 1.08 | 23.6 | 40.8 | 32.1 | 33.9 | 0.60 | | Styrene | 0.22 | 4.82 | 8.33 | 6.56 | 6.92 | 0.12 | | Tetrachloroethene | < 0.01 | <0.22 | <0.38 | < 0.30 | <0.31 | < 0.0056 | | Toluene | 1.56 | 34.2 | 59.2 | 46.6 | 49.2 | 0.88 | | 1,1,1-Trichloroethane | < 0.01 | <0.22 | <0.38 | <0.30 | <0.31 | <0.0056 | | Trichloroethene/1,1,2-Trichloroethene | < 0.01 | <0.22 | <0.38 | < 0.30 | < 0.31 | <0.0056 | | Trichlorotrifluoroethane | < 0.02 | < 0.44 | <0.76 | <0.60 | < 0.63 | < 0.011 | | Trichlorofluoromethane | 0.065 | 1.42 | 2.46 | 1.94 | 2.05 | 0.036 | | M&P-Xylene | 1.34 | 29.3 | 50.6 | 39.8 | 42.1 | 0.75 | | O-Xylene | 0.60 | 13.0 | 22.6 | 17.8 | 18.8 | 0.33 | | Vinyl Chloride | <0.02 | <0.44 | <0.76 | <0.60 | <0.63 | <0.011 | | Total | <8.95 | <196 | <339 | <267 | <282 | <5.01 | | Dry Gas Volume Sampled (Rm³*) : | 0.0264 | |-----------------------------------|--------| | Actual Flowrate (m³/s) : | 25.6 | | Dry Reference Flowrate (Rm³/s*) : | 14.8 | | Dry Adjusted Flowrate (Rm³/s**): | 18.8 | | Wet Reference Flowrate (Rm³/s*) : | 17.8 | ^{*} At 25°C and 1 atmosphere Note: "<" indicates that the analyte was not detected. Any analyte that was not detected was assigned a value equal to the detection limit for calculation purposes. ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 84 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Volatile Organic Emission Data Test No. 3 | Compound | Total | Actual Concentration | Dry Reference | Dry Adjusted | Wet Reference | Emission | |---------------------------------------|----------|----------------------|---------------|---------------|---------------|----------| | | Conected | | Concentration | Concentration | | Rate | | | μg | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | _ | | | | | | | | Acetone | 1.34 | 30.1 | 52.1 | 41.0 | 43.3 | 0.77 | | Benzene | 0.32 | 7.22 | 12.5 | 9.82 | 10.4 | 0.18 | | Bromodichloromethane | 0.054 | 1.21 | 2.09 | 1.65 | 1.74 | 0.031 | | Bromoform | < 0.01 | <0.22 | < 0.39 | < 0.31 | <0.32 | <0.0057 | | Bromomethane | < 0.09 | <2.02 | <3.49 | <2.75 | <2.90 | <0.052 | | 1,3-Butadiene | < 0.02 | <0.45 | <0.78 | < 0.61 | < 0.64 | < 0.011 | | 2-Butanone | 1.26 | 28.1 | 48.6 | 38.3 | 40.4 | 0.72 | | Carbon Tetrachloride | 0.17 | 3.90 | 6.74 | 5.31 | 5.61 | 0.10 | | Chloroform | 0.071 | 1.59 | 2.75 | 2.17 | 2.29 | 0.041 | | Cumene (Isopropylbenzene) | 0.066 | 1.48 | 2.56 | 2.01 | 2.13 | 0.038 | | Dibromochloromethane | <0.01 | <0.22 | < 0.39 | < 0.31 | <0.32 | < 0.0057 | | Dichlorodifluoromethane | < 0.02 | < 0.45 | <0.78 | < 0.61 | < 0.64 | < 0.011 | | 1,2-Dichloroethane | 0.053 | 1.19 | 2.05 | 1.62 | 1.71 | 0.030 | | trans,1,2-Dichloroethene | 0.029 | 0.65 | 1.12 | 0.88 | 0.93 | 0.017 | | 1,1-Dichloroethene | < 0.01 | <0.22 | < 0.39 | < 0.31 | <0.32 | <0.0057 | | 1,2-Dichloropropane | < 0.01 | <0.22 | < 0.39 | <0.31 | <0.32 | <0.0057 | | Ethylbenzene | 0.45 | 10.2 | 17.6 | 13.8 | 14.6 | 0.26 | | Ethylene Dibromide | <0.02 | < 0.45 | <0.78 | < 0.61 | < 0.64 | < 0.011 | | Mesitylene (1,3,5-Trimethylbenzene) | 0.47 | 10.5 | 18.2 | 14.3 | 15.1 | 0.27 | | Methylene Chloride | 1.21 | 27.1 | 46.9 | 36.9 | 39.0 | 0.69 | | Styrene | 0.25 | 5.53 | 9.57 | 7.54 | 7.96 | 0.14 | | Tetrachloroethene | < 0.01 | <0.22 | < 0.39 | < 0.31 | <0.32 | <0.0057 | | Toluene | 1.75 | 39.3 | 68.0 | 53.5 | 56.5 | 1.01 | | 1,1,1-Trichloroethane | < 0.01 | <0.22 | <0.39 | <0.31 | <0.32 | <0.0057 | | Trichloroethene/1,1,2-Trichloroethene | <0.01 | <0.22 | <0.39 | <0.31 | <0.32 | < 0.0057 | | Trichlorotrifluoroethane | < 0.02 | < 0.45 | <0.78 | <0.61 | <0.64 | <0.011 | | Trichlorofluoromethane | 0.073 | 1.64 | 2.83 | 2.23 | 2.35 | 0.042 | | M&P-Xylene | 1.50 | 33.6 | 58.1 | 45.8 | 48.3 | 0.86 | | O-Xylene | 0.67 | 15.0 | 25.9 | 20.4 | 21.5 | 0.38 | | Vinyl Chloride | <0.02 | <0.45 | <0.78 | <0.61 | <0.64 | <0.011 | | Total | <10.00 | <224 | <388 | <305 | <322 | <5.74 | | Dry Gas Volume Sampled (Rm ³ *): | 0.0258 | |---|--------| | Actual Flowrate (m³/s) : | 25.6 | | Dry Reference Flowrate (Rm³/s*): | 14.8 | | Dry Adjusted Flowrate (Rm³/s**): | 18.8 | | Wet Reference Flowrate (Rm³/s*) : | 17.8 | ^{*} At 25°C and 1 atmosphere Note: "<" indicates that the analyte was not detected. Any analyte that was not detected was assigned a value equal to the detection limit for calculation purposes. ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 85 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Volatile Organic Actual Concentrations | Compound | | Coefficient | | | | |---------------------------------------|------------|-------------|------------|---------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | μg/m³ | μg/m³ | μg/m³ | μg/m³ | % | | | | | | | | | Acetone | 30.3 | 26.2 | 30.1 | 28.9 | 8.0 | | Benzene | 7.28 | 6.28 |
7.22 | 6.93 | 8.1 | | Bromodichloromethane | 1.21 | 1.05 | 1.21 | 1.16 | 8.0 | | Bromoform | < 0.24 | <0.22 | < 0.22 | <0.23 | 5.5 | | Bromomethane | <2.18 | <1.97 | <2.02 | <2.06 | 5.5 | | 1,3-Butadiene | < 0.49 | < 0.44 | <0.45 | < 0.46 | 5.5 | | 2-Butanone | 28.3 | 24.5 | 28.1 | 27.0 | 8.0 | | Carbon Tetrachloride | 3.93 | 3.39 | 3.90 | 3.74 | 8.1 | | Chloroform | 1.60 | 1.38 | 1.59 | 1.52 | 8.3 | | Cumene (Isopropylbenzene) | 1.48 | 1.29 | 1.48 | 1.42 | 7.7 | | Dibromochloromethane | <0.24 | <0.22 | <0.22 | <0.23 | 5.5 | | Dichlorodifluoromethane | 0.61 | 0.53 | <0.45 | <0.53 | 15.1 | | 1,2-Dichloroethane | 1.19 | 1.03 | 1.19 | 1.14 | 8.1 | | trans,1,2-Dichloroethene | 0.66 | 0.57 | 0.65 | 0.62 | 7.7 | | 1,1-Dichloroethene | <0.24 | <0.22 | <0.22 | <0.23 | 5.5 | | 1,2-Dichloropropane | <0.24 | <0.22 | <0.22 | <0.23 | 5.5 | | Ethylbenzene | 10.2 | 8.84 | 10.2 | 9.74 | 8.0 | | Ethylene Dibromide | < 0.49 | < 0.44 | <0.45 | <0.46 | 5.5 | | Mesitylene (1,3,5-Trimethylbenzene) | 10.6 | 9.15 | 10.5 | 10.1 | 8.0 | | Methylene Chloride | 27.3 | 23.6 | 27.1 | 26.0 | 8.0 | | Styrene | 5.56 | 4.82 | 5.53 | 5.30 | 8.0 | | Tetrachloroethene | <0.24 | <0.22 | <0.22 | <0.23 | 5.5 | | Toluene | 39.6 | 34.2 | 39.3 | 37.7 | 8.0 | | 1,1,1-Trichloroethane | < 0.24 | <0.22 | <0.22 | <0.23 | 5.5 | | Trichloroethene/1,1,2-Trichloroethene | <0.24 | <0.22 | <0.22 | <0.23 | 5.5 | | Trichlorotrifluoroethane | < 0.49 | < 0.44 | <0.45 | <0.46 | 5.5 | | Trichlorofluoromethane | 1.65 | 1.42 | 1.64 | 1.57 | 8.1 | | M&P-Xylene | 33.8 | 29.3 | 33.6 | 32.2 | 8.0 | | O-Xylene | 15.1 | 13.0 | 15.0 | 14.4 | 8.0 | | Vinyl Chloride | <0.49 | <0.44 | <0.45 | <0.46 | 5.5 | | Total | <226 | <196 | <224 | <215 | 7.9 | TABLE 86 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Volatile Organic Dry Reference Concentrations | Compound | | Coefficient | | | | |---------------------------------------|------------|-------------|------------|---------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | μg/Rm³* | μg/Rm³* | μg/Rm³* | μg/Rm³* | % | | | | | | | | | Acetone | 52.4 | 45.4 | 52.1 | 49.9 | 8.0 | | Benzene | 12.6 | 10.9 | 12.5 | 12.0 | 8.1 | | Bromodichloromethane | 2.10 | 1.82 | 2.09 | 2.00 | 8.0 | | Bromoform | < 0.42 | <0.38 | < 0.39 | < 0.40 | 5.5 | | Bromomethane | <3.78 | <3.41 | <3.49 | <3.56 | 5.5 | | 1,3-Butadiene | < 0.84 | <0.76 | <0.78 | <0.79 | 5.5 | | 2-Butanone | 49.0 | 42.4 | 48.6 | 46.7 | 8.0 | | Carbon Tetrachloride | 6.80 | 5.87 | 6.74 | 6.47 | 8.1 | | Chloroform | 2.77 | 2.39 | 2.75 | 2.64 | 8.3 | | Cumene (Isopropylbenzene) | 2.56 | 2.23 | 2.56 | 2.45 | 7.7 | | Dibromochloromethane | < 0.42 | <0.38 | < 0.39 | <0.40 | 5.5 | | Dichlorodifluoromethane | 1.05 | 0.91 | <0.78 | < 0.91 | 15.1 | | 1,2-Dichloroethane | 2.06 | 1.78 | 2.05 | 1.96 | 8.1 | | trans, 1, 2-Dichloroethene | 1.13 | 0.98 | 1.12 | 1.08 | 7.7 | | 1,1-Dichloroethene | < 0.42 | <0.38 | <0.39 | < 0.40 | 5.5 | | 1,2-Dichloropropane | < 0.42 | <0.38 | < 0.39 | < 0.40 | 5.5 | | Ethylbenzene | 17.7 | 15.3 | 17.6 | 16.8 | 8.0 | | Ethylene Dibromide | < 0.84 | <0.76 | <0.78 | <0.79 | 5.5 | | Mesitylene (1,3,5-Trimethylbenzene) | 18.3 | 15.8 | 18.2 | 17.4 | 8.0 | | Methylene Chloride | 47.2 | 40.8 | 46.9 | 45.0 | 8.0 | | Styrene | 9.62 | 8.33 | 9.57 | 9.17 | 8.0 | | Tetrachloroethene | < 0.42 | <0.38 | <0.39 | < 0.40 | 5.5 | | Toluene | 68.4 | 59.2 | 68.0 | 65.2 | 8.0 | | 1,1,1-Trichloroethane | < 0.42 | <0.38 | <0.39 | <0.40 | 5.5 | | Trichloroethene/1,1,2-Trichloroethene | <0.42 | <0.38 | <0.39 | <0.40 | 5.5 | | Trichlorotrifluoroethane | <0.84 | <0.76 | <0.78 | <0.79 | 5.5 | | Trichlorofluoromethane | 2.86 | 2.46 | 2.83 | 2.72 | 8.1 | | M&P-Xylene | 58.5 | 50.6 | 58.1 | 55.8 | 8.0 | | O-Xylene | 26.1 | 22.6 | 25.9 | 24.8 | 8.0 | | Vinyl Chloride | <0.84 | <0.76 | <0.78 | <0.79 | 5.5 | | Total | <391 | <339 | <388 | <373 | 7.9 | ^{*} At 25°C and 1 atmosphere TABLE 87 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Volatile Organic Dry Adjusted Concentrations | Compound | Dry Adjusted Concentration | | | | Coefficient | |---------------------------------------|----------------------------|-----------------------|-----------------------|--------------------|-------------------| | | Test No. 1
μg/Rm³* | Test No. 2
μg/Rm³* | Test No. 3
µg/Rm³* | Average
μg/Rm³* | of Variation
% | | | | | | | | | Benzene | 9.92 | 8.55 | 9.82 | 9.43 | 8.1 | | Bromodichloromethane | 1.65 | 1.43 | 1.65 | 1.58 | 8.0 | | Bromoform | <0.33 | <0.30 | <0.31 | <0.31 | 5.5 | | Bromomethane | <2.98 | <2.68 | <2.75 | <2.80 | 5.5 | | 1,3-Butadiene | <0.66 | <0.60 | <0.61 | <0.62 | 5.5 | | 2-Butanone | 38.5 | 33.3 | 38.3 | 36.7 | 8.0 | | Carbon Tetrachloride | 5.36 | 4.62 | 5.31 | 5.09 | 8.1 | | Chloroform | 2.18 | 1.88 | 2.17 | 2.08 | 8.3 | | Cumene (Isopropylbenzene) | 2.02 | 1.76 | 2.01 | 1.93 | 7.7 | | Dibromochloromethane | < 0.33 | <0.30 | < 0.31 | <0.31 | 5.5 | | Dichlorodifluoromethane | 0.83 | 0.72 | <0.61 | <0.72 | 15.1 | | 1,2-Dichloroethane | 1.62 | 1.40 | 1.62 | 1.55 | 8.1 | | trans,1,2-Dichloroethene | 0.89 | 0.77 | 0.88 | 0.85 | 7.7 | | 1,1-Dichloroethene | < 0.33 | <0.30 | <0.31 | <0.31 | 5.5 | | 1,2-Dichloropropane | < 0.33 | <0.30 | <0.31 | <0.31 | 5.5 | | Ethylbenzene | 13.9 | 12.0 | 13.8 | 13.3 | 8.0 | | Ethylene Dibromide | < 0.66 | <0.60 | <0.61 | <0.62 | 5.5 | | Mesitylene (1,3,5-Trimethylbenzene) | 14.4 | 12.5 | 14.3 | 13.7 | 8.0 | | Methylene Chloride | 37.2 | 32.1 | 36.9 | 35.4 | 8.0 | | Styrene | 7.57 | 6.56 | 7.54 | 7.22 | 8.0 | | Tetrachloroethene | <0.33 | <0.30 | < 0.31 | < 0.31 | 5.5 | | Toluene | 53.9 | 46.6 | 53.5 | 51.3 | 8.0 | | 1,1,1-Trichloroethane | < 0.33 | <0.30 | <0.31 | <0.31 | 5.5 | | Trichloroethene/1,1,2-Trichloroethene | <0.33 | <0.30 | <0.31 | <0.31 | 5.5 | | Trichlorotrifluoroethane | < 0.66 | <0.60 | <0.61 | <0.62 | 5.5 | | Trichlorofluoromethane | 2.25 | 1.94 | 2.23 | 2.14 | 8.1 | | M&P-Xylene | 46.1 | 39.8 | 45.8 | 43.9 | 8.0 | | O-Xylene | 20.5 | 17.8 | 20.4 | 19.6 | 8.0 | | Vinyl Chloride | <0.66 | <0.60 | <0.61 | <0.62 | 5.5 | | Total | <308 | <267 | <305 | <293 | 7.9 | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 88 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Volatile Organic Wet Reference Concentrations | Compound | | Wet Referen | ce Concentration | | Coefficient | |---------------------------------------|------------|-------------|------------------|---------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | μg/Rm³* | μg/Rm³* | μg/Rm³* | μg/Rm³* | % | | | | | | | | | Acetone | 43.6 | 37.7 | 43.3 | 41.5 | 8.0 | | Benzene | 10.5 | 9.03 | 10.4 | 9.96 | 8.1 | | Bromodichloromethane | 1.75 | 1.51 | 1.74 | 1.67 | 8.0 | | Bromoform | <0.35 | <0.31 | <0.32 | <0.33 | 5.5 | | Bromomethane | <3.14 | <2.83 | <2.90 | <2.96 | 5.5 | | 1,3-Butadiene | < 0.70 | < 0.63 | < 0.64 | <0.66 | 5.5 | | 2-Butanone | 40.7 | 35.2 | 40.4 | 38.8 | 8.0 | | Carbon Tetrachloride | 5.66 | 4.88 | 5.61 | 5.38 | 8.1 | | Chloroform | 2.30 | 1.98 | 2.29 | 2.19 | 8.3 | | Cumene (Isopropylbenzene) | 2.13 | 1.86 | 2.13 | 2.04 | 7.7 | | Dibromochloromethane | < 0.35 | <0.31 | <0.32 | <0.33 | 5.5 | | Dichlorodifluoromethane | 0.87 | 0.76 | < 0.64 | <0.76 | 15.1 | | 1,2-Dichloroethane | 1.71 | 1.48 | 1.71 | 1.63 | 8.1 | | trans,1,2-Dichloroethene | 0.94 | 0.82 | 0.93 | 0.90 | 7.7 | | 1,1-Dichloroethene | < 0.35 | < 0.31 | <0.32 | <0.33 | 5.5 | | 1,2-Dichloropropane | <0.35 | <0.31 | <0.32 | <0.33 | 5.5 | | Ethylbenzene | 14.7 | 12.7 | 14.6 | 14.0 | 8.0 | | Ethylene Dibromide | < 0.70 | < 0.63 | < 0.64 | <0.66 | 5.5 | | Mesitylene (1,3,5-Trimethylbenzene) | 15.2 | 13.2 | 15.1 | 14.5 | 8.0 | | Methylene Chloride | 39.2 | 33.9 | 39.0 | 37.4 | 8.0 | | Styrene | 8.00 | 6.92 | 7.96 | 7.63 | 8.0 | | Tetrachloroethene | <0.35 | <0.31 | <0.32 | <0.33 | 5.5 | | Toluene | 56.9 | 49.2 | 56.5 | 54.2 | 8.0 | | 1,1,1-Trichloroethane | <0.35 | <0.31 | <0.32 | <0.33 | 5.5 | | Trichloroethene/1,1,2-Trichloroethene | <0.35 | <0.31 | <0.32 | <0.33 | 5.5 | | Trichlorotrifluoroethane | <0.70 | < 0.63 | <0.64 | <0.66 | 5.5 | | Trichlorofluoromethane | 2.37 | 2.05 | 2.35 | 2.26 | 8.1 | | M&P-Xylene | 48.7 | 42.1 | 48.3 | 46.4 | 8.0 | | O-Xylene | 21.7 | 18.8 | 21.5 | 20.7 | 8.0 | | Vinyl Chloride | <0.70 | <0.63 | <0.64 | <0.66 | 5.5 | | Total | <325 | <282 | <322 | <310 | 7.9 | ^{*} At 25°C and 1 atmosphere TABLE 89 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Volatile Organic Emission Rates | Compound | | Emis | sion Rate | | Coefficient | |---------------------------------------|------------|------------|------------|----------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | mg/s | mg/s | mg/s | mg/s | % | | | | | | | | | Acetone | 0.78 | 0.67 | 0.77 | 0.74 | 8.0 | | Benzene | 0.19 | 0.16 | 0.18 | 0.18 | 8.1 | | Bromodichloromethane | 0.031 | 0.027 | 0.031 | 0.030 | 8.0 | | Bromoform | < 0.0062 | <0.0056 | <0.0057 | < 0.0059 | 5.5 | | Bromomethane | <0.056 | < 0.050 | <0.052 | < 0.053 | 5.5 | | 1,3-Butadiene | < 0.012 | < 0.011 | <0.011 | < 0.012 | 5.5 | | 2-Butanone | 0.72 | 0.63 | 0.72 | 0.69 | 8.0 | | Carbon Tetrachloride | 0.10 | 0.087 | 0.10 | 0.096 | 8.1 | | Chloroform | 0.041 | 0.035 | 0.041 | 0.039 | 8.3 | | Cumene (Isopropylbenzene) | 0.038 | 0.033 | 0.038 | 0.036 | 7.7 | | Dibromochloromethane | < 0.0062 | <0.0056 | <0.0057 | < 0.0059 | 5.5 | | Dichlorodifluoromethane | 0.016 | 0.013 | <0.011 | < 0.013 | 15.1 | | 1,2-Dichloroethane | 0.030 | 0.026 | 0.030 | 0.029 | 8.1 | | trans,1,2-Dichloroethene | 0.017 | 0.015 | 0.017 | 0.016 | 7.7 | | 1,1-Dichloroethene | < 0.0062 | <0.0056 | <0.0057 | < 0.0059 | 5.5 | | 1,2-Dichloropropane | < 0.0062 | <0.0056 | <0.0057 | < 0.0059 | 5.5 | | Ethylbenzene | 0.26 | 0.23 | 0.26 | 0.25 | 8.0 | | Ethylene Dibromide | < 0.012 | < 0.011 | <0.011 | < 0.012 | 5.5 | | Mesitylene (1,3,5-Trimethylbenzene) | 0.27 | 0.23 | 0.27 | 0.26 | 8.0 | | Methylene Chloride | 0.70 | 0.60 |
0.69 | 0.67 | 8.0 | | Styrene | 0.14 | 0.12 | 0.14 | 0.14 | 8.0 | | Tetrachloroethene | < 0.0062 | <0.0056 | <0.0057 | < 0.0059 | 5.5 | | Toluene | 1.01 | 0.88 | 1.01 | 0.97 | 8.0 | | 1,1,1-Trichloroethane | < 0.0062 | <0.0056 | <0.0057 | < 0.0059 | 5.5 | | Trichloroethene/1,1,2-Trichloroethene | < 0.0062 | <0.0056 | <0.0057 | < 0.0059 | 5.5 | | Trichlorotrifluoroethane | < 0.012 | < 0.011 | <0.011 | < 0.012 | 5.5 | | Trichlorofluoromethane | 0.042 | 0.036 | 0.042 | 0.040 | 8.1 | | M&P-Xylene | 0.87 | 0.75 | 0.86 | 0.83 | 8.0 | | O-Xylene | 0.39 | 0.33 | 0.38 | 0.37 | 8.0 | | Vinyl Chloride | <0.012 | <0.011 | <0.011 | <0.012 | 5.5 | | Total | <5.79 | <5.01 | <5.74 | <5.51 | 7.9 | TABLE 90 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Summary of Volatile Organic Emission Data | Compound | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |---------------------------------------|---------------|---------------|---------------|---------------|----------| | | Concentration | Concentration | Concentration | Concentration | Rate | | | μg/m³ | μg/Rm³* | μg/Rm³* | μg/Rm³* | mg/s | | | | | | | | | Acetone | 28.9 | 49.9 | 39.3 | 41.5 | 0.74 | | Benzene | 6.93 | 12.0 | 9.43 | 9.96 | 0.18 | | Bromodichloromethane | 1.16 | 2.00 | 1.58 | 1.67 | 0.030 | | Bromoform | < 0.23 | < 0.40 | < 0.31 | < 0.33 | <0.0059 | | Bromomethane | <2.06 | <3.56 | <2.80 | <2.96 | < 0.053 | | 1,3-Butadiene | < 0.46 | <0.79 | < 0.62 | <0.66 | <0.012 | | 2-Butanone | 27.0 | 46.7 | 36.7 | 38.8 | 0.69 | | Carbon Tetrachloride | 3.74 | 6.47 | 5.09 | 5.38 | 0.096 | | Chloroform | 1.52 | 2.64 | 2.08 | 2.19 | 0.039 | | Cumene (Isopropylbenzene) | 1.42 | 2.45 | 1.93 | 2.04 | 0.036 | | Dibromochloromethane | < 0.23 | < 0.40 | <0.31 | <0.33 | <0.0059 | | Dichlorodifluoromethane | <0.53 | <0.91 | <0.72 | <0.76 | < 0.013 | | 1,2-Dichloroethane | 1.14 | 1.96 | 1.55 | 1.63 | 0.029 | | trans,1,2-Dichloroethene | 0.62 | 1.08 | 0.85 | 0.90 | 0.016 | | 1,1-Dichloroethene | <0.23 | < 0.40 | <0.31 | < 0.33 | <0.0059 | | 1,2-Dichloropropane | <0.23 | < 0.40 | < 0.31 | < 0.33 | <0.0059 | | Ethylbenzene | 9.74 | 16.8 | 13.3 | 14.0 | 0.25 | | Ethylene Dibromide | < 0.46 | <0.79 | < 0.62 | < 0.66 | <0.012 | | Mesitylene (1,3,5-Trimethylbenzene) | 10.1 | 17.4 | 13.7 | 14.5 | 0.26 | | Methylene Chloride | 26.0 | 45.0 | 35.4 | 37.4 | 0.67 | | Styrene | 5.30 | 9.17 | 7.22 | 7.63 | 0.14 | | Tetrachloroethene | <0.23 | <0.40 | <0.31 | <0.33 | <0.0059 | | Toluene | 37.7 | 65.2 | 51.3 | 54.2 | 0.97 | | 1,1,1-Trichloroethane | <0.23 | < 0.40 | <0.31 | <0.33 | < 0.0059 | | Trichloroethene/1,1,2-Trichloroethene | <0.23 | < 0.40 | <0.31 | <0.33 | <0.0059 | | Trichlorotrifluoroethane | < 0.46 | <0.79 | <0.62 | <0.66 | < 0.012 | | Trichlorofluoromethane | 1.57 | 2.72 | 2.14 | 2.26 | 0.040 | | M&P-Xylene | 32.2 | 55.8 | 43.9 | 46.4 | 0.83 | | O-Xylene | 14.4 | 24.8 | 19.6 | 20.7 | 0.37 | | Vinyl Chloride | <0.46 | <0.79 | <0.62 | <0.66 | <0.012 | | Total | <215 | <373 | <293 | <310 | <5.51 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 91 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Blank Volatile Organic Analyses | Compound | Field Blank 1
Tube 5A/5B | Field Blank 2
Tube 11A/11B | Trip Blank
Tube 12A/12B | Method
Blank | |---------------------------------------|-----------------------------|-------------------------------|----------------------------|-----------------| | | μg | μg | μg | μg | | | | | | | | Acetone | 0.15 | 0.11 | 0.13 | <0.1 | | Benzene | <0.05 | <0.05 | <0.05 | <0.05 | | Bromodichloromethane | < 0.01 | <0.01 | <0.01 | <0.01 | | Bromoform | < 0.01 | < 0.01 | <0.01 | < 0.01 | | Bromomethane | < 0.09 | < 0.09 | <0.09 | <0.09 | | 1,3-Butadiene | < 0.02 | < 0.02 | <0.02 | <0.02 | | 2-Butanone | < 0.01 | <0.01 | <0.01 | < 0.01 | | Carbon Tetrachloride | < 0.01 | <0.01 | <0.01 | <0.01 | | Chloroform | < 0.01 | <0.01 | <0.01 | < 0.01 | | Cumene (Isopropylbenzene) | < 0.02 | <0.02 | <0.02 | <0.02 | | Dibromochloromethane | < 0.01 | < 0.01 | <0.01 | < 0.01 | | Dichlorodifluoromethane | <0.02 | <0.02 | <0.02 | <0.02 | | 1,2-Dichloroethane | < 0.01 | < 0.01 | <0.01 | <0.01 | | trans,1,2-Dichloroethene | < 0.01 | < 0.01 | <0.01 | <0.01 | | 1,1-Dichloroethene | < 0.01 | < 0.01 | <0.01 | <0.01 | | 1,2-Dichloropropane | < 0.01 | < 0.01 | <0.01 | <0.01 | | Ethylbenzene | < 0.01 | < 0.01 | < 0.01 | <0.01 | | Ethylene Dibromide | < 0.02 | < 0.02 | <0.02 | <0.02 | | Mesitylene (1,3,5-Trimethylbenzene) | < 0.02 | <0.02 | <0.02 | <0.02 | | Methylene Chloride | 0.11 | <0.1 | <0.1 | <0.1 | | Styrene - | < 0.02 | < 0.02 | <0.02 | <0.02 | | Tetrachloroethene | < 0.01 | < 0.01 | <0.01 | < 0.01 | | Toluene | < 0.05 | < 0.05 | <0.05 | <0.05 | | 1,1,1-Trichloroethane | < 0.01 | < 0.01 | <0.01 | < 0.01 | | Trichloroethene/1,1,2-Trichloroethene | < 0.02 | <0.02 | <0.02 | <0.02 | | Trichlorotrifluoroethane | < 0.02 | < 0.02 | <0.02 | <0.02 | | Trichlorofluoromethane | < 0.02 | <0.02 | <0.02 | <0.02 | | M&P-Xylene | < 0.03 | < 0.03 | <0.03 | <0.03 | | O-Xylene | < 0.01 | < 0.01 | < 0.01 | <0.01 | | Vinyl Chloride | <0.02 | <0.02 | <0.02 | <0.02 | | Total | <0.82 | <0.77 | <0.79 | <0.76 | Note: "<" indicates that the analyte was not detected. Any analyte that was not detected was assigned a value equal to the detection limit for calculation purposes. #### **APPENDIX 2** Boiler No. 2 BH Outlet Data Tables (92 pages) # TABLE 1 Covanta - Durham York Energy Centre Boiler No. 2 Isokinetic Sampling Train Test Schedules #### **Particulate and Metals Trains** | Test | Test Date | Samplin | Sampling Time* | | |--------|-------------------|---------|----------------|-----| | Number | Start Finish | | min | | | 1 | November 9, 2020 | 17:02 | 20:08 | 180 | | 2 | November 10, 2020 | 7:59 | 11:05 | 180 | | 3 | November 10, 2020 | 11:36 | 14:43 | 180 | #### **Particle Size Distribution Trains** | Test | Test Date | | g Period | Sampling Time* | | |--------|------------------|-------|----------|----------------|--| | Number | | Start | Finish | min | | | 1 | November 9, 2020 | 9:39 | 11:45 | 120 | | | 2 | November 9, 2020 | 12:54 | 14:55 | 120 | | | 3 | November 9, 2020 | 15:43 | 17:46 | 120 | | | | | | | | | ### **Acid Gases Trains** | Test Date | Samplin | Sampling Time* | | |-------------------|--|---|---| | | Start | Finish | min | | November 10, 2020 | 8:00 | 9:00 | 60 | | November 10, 2020 | 9:40 | 10:40 | 60 | | November 10, 2020 | 11:08 | 12:08 | 60 | | | November 10, 2020
November 10, 2020 | November 10, 2020 8:00 November 10, 2020 9:40 | Start Finish November 10, 2020 8:00 9:00 November 10, 2020 9:40 10:40 | # **Semi-Volatile Organic Compounds Trains** | Test Date | | est Date Sampling Period | | | |-----------|-------------------|--------------------------|--------|-----| | Number | | Start | Finish | min | | 1 | November 11, 2020 | 8:22 | 12:32 | 240 | | 2 | November 11, 2020 | 13:28 | 17:35 | 240 | | 3 | November 12, 2020 | 8:13 | 12:30 | 240 | ^{*} Actual sampling time excluding leak-checks, traverse changes and process down time. # TABLE 2 Covanta - Durham York Energy Centre Boiler No. 2 Organic Compounds Test Schedules # **Acrolein and Aldehydes Trains** | Test | Test Date | Samplin | Sampling Time | | |--------|-------------------|---------|---------------|-----| | Number | | Start | Finish | min | | 1 | November 11, 2020 | 11:47 | 12:47 | 60 | | 2 | November 11, 2020 | 12:50 | 13:50 | 60 | | 3 | November 11, 2020 | 13:52 | 14:52 | 60 | # **Volatile Organic Compounds Trains** | Test | Test Date | Test Date Sampling Pe | | Sampling Time | |--------|-------------------|-----------------------|--------|---------------| | Number | | Start | Finish | min | | | | | | | | 1 | November 11, 2020 | 8:20 | 9:00 | 40 | | 2 | November 11, 2020 | 9:05 | 9:45 | 40 | | 3 | November 11, 2020 | 9:50 | 10:30 | 40 | | 4 | November 11, 2020 | 10:36 | 11:16 | 40 | | | | | | | # **Total Hydrocarbons Trains** | Sampling | Test | Test Date | Samplin | g Period | Sampling Time | |--------------|--------|------------------|---------|----------|---------------| | Location | Number | | Start | Finish | min | | BH Outlet | 1 | November 9, 2020 | 14:52 | 15:52 | 60 | | BH Outlet | 2 | November 9, 2020 | 15:58 | 16:58 | 60 | | BH Outlet | 3 | November 9, 2020 | 17:04 | 18:04 | 60 | | Quench Inlet | 1 | November 9, 2020 | 10:10 | 11:10 | 60 | | Quench Inlet | 2 | November 9, 2020 | 11:17 | 12:17 | 60 | | Quench Inlet | 3 | November 9, 2020 | 12:23 | 13:23 | 60 | # TABLE 3 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Stack Gas Sampling Parameters ### **Particulate and Metals Trains** | Test
No. | Pitot
Tube | Dry Gas
Meter | Nozzle
Diameter | Gas Volume
Sampled | Percentage of
Isokineticity | |-------------|---------------|------------------|--------------------|-----------------------|--------------------------------| | | Coefficient | Factor | mm | Rm³ * | % | | 1 | 0.848 | 1.004 | 6.73 | 4.165 | 101.3 | | 2 | 0.851 | 0.999 | 6.38 | 3.494 | 98.5 | | 3 | 0.851 | 0.999 | 6.38 | 3.511 | 98.6 | ### **Particle Size Distribution Trains** | Test
No. | Pitot
Tube | Dry Gas
Meter | Nozzle
Diameter | Diameter Sampled | | |-------------|---------------|------------------|--------------------|-------------------|-------| | | Coefficient | Factor | mm | Rm ³ * | % | | 1 | 0.848 | 0.992 | 4.51 | 1.185 | 103.0 | | 2 | 0.848 | 0.992 | 4.51 | 1.181 | 103.1 | | 3 | 0.848 | 0.992 | 4.51 | 1.174 | 94.4 | #### **Acid Gases Trains** | Test
No. | Pitot
Tube | Dry Gas
Meter | Nozzle
Diameter | Gas Volume
Sampled | Percentage of
Isokineticity | |-------------|---------------|------------------|--------------------|-----------------------|--------------------------------| |
 Coefficient | Factor | mm | Rm³ * | % | | 1 | 0.848 | 1.004 | 6.73 | 1.319 | 100.9 | | 2 | 0.848 | 1.004 | 6.73 | 1.324 | 100.8 | | 3 | 0.848 | 1.004 | 6.73 | 1.320 | 99.6 | # **Semi-Volatile Organic Compounds Trains** | Test
No. | Pitot
Tube | Dry Gas
Meter | Nozzie
Diameter | Gas Volume
Sampled | Percentage of
Isokineticity | |-------------|---------------|------------------|--------------------|-----------------------|--------------------------------| | | Coefficient | Factor | mm | Rm ³ * | % | | 1 | 0.851 | 0.999 | 6.38 | 4.590 | 97.3 | | 2 | 0.851 | 0.999 | 6.38 | 4.662 | 97.3 | | 3 | 0.851 | 0.999 | 6.38 | 4.448 | 96.7 | ^{*} Dry at 25°C and 1 atmosphere # TABLE 4 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Stack Gas Physical Parameters ### **Particulate and Metals Trains** | Test
No. | Gas
Temp. | Moisture
by Volume | Gas
Velocity | Static
Pressure | Absolute
Pressure | Carbon Dioxide
by Volume | Oxygen
by Volume | |-------------|--------------|-----------------------|-----------------|--------------------|----------------------|-----------------------------|---------------------| | | °C | % | m/s | kPa | kPa | % * | % * | | 1 | 142 | 16.2 | 18.2 | -2.23 | 98.9 | 11.0 | 8.33 | | 2 | 143 | 16.2 | 17.6 | -2.40 | 98.3 | 11.1 | 8.20 | | 3 | 142 | 15.6 | 17.6 | -2.40 | 98.1 | 10.9 | 8.36 | | Average | 142 | 16.0 | 17.8 | -2.34 | 98.4 | 11.0 | 8.30 | #### **Particle Size Distribution Trains** | Test
No. | Gas
Temp. | Moisture
by Volume | Gas
Velocity | Static
Pressure | Absolute
Pressure | Carbon Dioxide
by Volume | Oxygen
by Volume | |-------------|--------------|-----------------------|-----------------|--------------------|----------------------|-----------------------------|---------------------| | | °C | % | m/s | kPa | kPa | % * | % * | | 1 | 142 | 14.9 | 16.5 | -2.04 | 99.6 | 11.1 | 8.43 | | 2 | 142 | 16.1 | 16.8 | -2.04 | 99.3 | 11.1 | 8.17 | | 3 | 142 | 15.9 | 18.4 | -2.23 | 99.0 | 11.0 | 8.28 | | Average | 142 | 15.6 | 17.2 | -2.11 | 99.3 | 11.1 | 8.29 | # Acid Gases Trains ** | Test
No. | Gas
Temp. | Moisture
by Volume | Gas
Velocity | Static
Pressure | Absolute
Pressure | Carbon Dioxide
by Volume | Oxygen
by Volume | | |-------------|--------------|-----------------------|-----------------|--------------------|----------------------|-----------------------------|---------------------|--| | °(| °C | % | m/s | kPa | kPa | % * | % * | | | 1 | 141 | 16.5 | 17.5 | -2.40 | 98.3 | 11.2 | 7.90 | | | 2 | 142 | 16.3 | 17.5 | -2.40 | 98.3 | 11.1 | 8.28 | | | 3 | 141 | 14.8 | 17.4 | -2.40 | 98.2 | 10.7 | 8.66 | | | Average | 141 | 15.9 | 17.5 | -2.40 | 98.3 | 11.0 | 8.28 | | # **Semi-Volatile Organics Trains** | Test
No. | Gas
Temp. | Moisture
by Volume | Gas
Velocity | Static
Pressure | Absolute
Pressure | Carbon Dioxide
by Volume | Oxygen
by Volume | |-------------|--------------|-----------------------|-----------------|--------------------|----------------------|-----------------------------|---------------------| | | °C | % | m/s | kPa | kPa | % * | % * | | 1 | 140 | 15.8 | 17.5 | -2.37 | 97.6 | 10.8 | 8.42 | | 2 | 142 | 16.4 | 18.0 | -2.37 | 97.7 | 10.9 | 8.33 | | 3 | 142 | 14.4 | 16.6 | -2.40 | 98.9 | 11.1 | 8.40 | | Average | 141 | 15.5 | 17.4 | -2.38 | 98.0 | 10.9 | 8.38 | ^{*} Dry basis, measured by the DYEC CEMS ^{**} Sampling was conducted isokinetically on a single traverse in the duct. # TABLE 5 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Stack Gas Volumetric Flowrates #### **Particulate and Metals Trains** | Test
No. | Actual
Flowrate | Dry Reference
Flowrate | Dry Adjusted
Flowrate | Wet Reference
Flowrate | |-------------|--------------------|---------------------------|--------------------------|---------------------------| | | m³/s | Rm³/s * | Rm³/s ** | Rm³/s* | | 1 | 26.9 | 15.8 | 20.0 | 18.8 | | 2 | 26.0 | 15.2 | 19.5 | 18.1 | | 3 | 26.0 | 15.2 | 19.3 | 18.0 | | Average | 26.3 | 15.4 | 19.6 | 18.3 | #### **Particle Size Distribution Trains** | Test
No. | Actual
Flowrate | Dry Reference
Flowrate | Dry Adjusted
Flowrate | Wet Reference
Flowrate | |-------------|--------------------|---------------------------|--------------------------|---------------------------| | | m³/s | Rm³/s * | Rm³/s ** | Rm³/s* | | 1 | 24.5 | 14.7 | 18.5 | 17.3 | | 2 | 24.8 | 14.7 | 18.9 | 17.5 | | 3 | 27.2 | 16.0 | 20.4 | 19.1 | | Average | 25.5 | 15.1 | 19.3 | 18.0 | # Acid Gases Trains *** | Test
No. | Actual
Flowrate
m³/s | Dry Reference
Flowrate
Rm³/s * | Dry Adjusted
Flowrate
Rm³/s ** | Wet Reference
Flowrate
Rm³/s* | |-------------|----------------------------|--------------------------------------|--------------------------------------|-------------------------------------| | 1 | 25.8 | 15.1 | 19.8 | 18.0 | | 2 | 25.9 | 15.1 | 19.3 | 18.1 | | 3 | 25.7 | 15.3 | 18.9 | 17.9 | | Average | 25.8 | 15.2 | 19.3 | 18.0 | # **Semi-Volatile Organics Trains** | Test
No. | Actual
Flowrate | Dry Reference
Flowrate | Dry Adjusted Wet Refe
Flowrate Flowra | | | |-------------|--------------------|---------------------------|--|--------|--| | | m³/s | Rm³/s * | Rm³/s ** | Rm³/s* | | | 1 | 25.9 | 15.1 | 19.1 | 18.0 | | | 2 | 26.5 | 15.4 | 19.5 | 18.4 | | | 3 | 24.6 | 14.7 | 18.6 | 17.2 | | | Average | 25.7 | 15.1 | 19.1 | 17.9 | | - * At 25°C and 1 atmosphere - ** At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume - *** Sampling was conducted isokinetically on a single traverse in the duct. Volumetric flowrates from the corresponding particulate and metals tests were used to calculate emission data. TABLE 6 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Particulate Emission Data | Test | Partic | ulate Colle | cted | Dry Gas | | Particulate | Concentration | | Particulate | |---------|----------------|----------------|-------|-------------------|--------|------------------|-----------------|------------------|------------------| | No. | Probe
Rinse | Main
Filter | Total | Volume
Sampled | Actual | Dry
Reference | Dry
Adjusted | Wet
Reference | Emission
Rate | | | mg | mg | mg | Rm ³ * | mg/m³ | mg/Rm³* | mg/Rm³** | mg/Rm³* | mg/s | | 1 | 14.1 | 0.3 | 14.4 | 4.165 | 2.03 | 3.46 | 2.72 | 2.90 | 54.6 | | 2 | 2.6 | 0.8 | 3.4 | 3.494 | 0.57 | 0.97 | 0.76 | 0.82 | 14.8 | | 3 | 10.5 | 0.7 | 11.2 | 3.511 | 1.87 | 3.19 | 2.52 | 2.69 | 48.6 | | Average | | | | | 1.49 | 2.54 | 2.00 | 2.14 | 39.3 | | Blank | <0.1 | 0.3 | | | | | | | | ^{*} At 25 °C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume # TABLE 7 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet PM_{2.5} and PM₁₀ Emission Data # PM_{2.5} | | Total | Dry Volume | | Emission | | | | |---------|--|------------|--------|----------------------|---------------------|---------------|-------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Rate | | No. | mg | Rm³* | mg/m³ | mg/Rm³* | mg/Rm³** | mg/Rm³* | mg/s | | 1 | <0.3 | 1.185 | <0.15 | <0.25 | <0.20 | <0.22 | <3.72 | | 2 | <0.5 | 1.181 | < 0.25 | < 0.42 | <0.33 | <0.36 | <6.22 | | 3 | <1.0 | 1.174 | <0.50 | <0.85 | <0.67 | <0.71 | <13.6 | | Average | | | <0.30 | <0.51 | <0.40 | <0.43 | <7.86 | | Blank | 0.3 | | | | | | | | | ······································ | | | | | | | ### PM₁₀ | Total | Dry Volume | PM ₁₀ Concentration | | | | | |-----------|----------------------|--|--|---|--|---| | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Rate | | mg | Rm ³ * | mg/m ³ | mg/Rm³* | mg/Rm³** | mg/Rm³* | mg/s | | <0.4 | 1.185 | <0.20 | <0.34 | <0.27 | <0.29 | <4.96 | | <0.7 | 1.181 | < 0.35 | <0.59 | < 0.46 | <0.50 | <8.71 | | <1.2 | 1.174 | <0.60 | <1.02 | <0.80 | <0.86 | <16.4 | | | | <0.39 | <0.65 | <0.51 | <0.55 | <10.0 | | 0.9 | | | | | | | | | <0.4
<0.7
<1.2 | mg Rm ³ * <0.4 1.185 <0.7 1.181 <1.2 1.174 | mg Rm ³ * mg/m ³ <0.4 1.185 <0.20 <0.7 1.181 <0.35 <1.2 1.174 <0.60 <0.39 | Collected mg Sampled Rm³* Actual mg/m³ Dry Reference mg/Rm³* <0.4 | Collected mg Sampled Rm³* Actual mg/m³ Dry Reference mg/Rm³* Dry Adjusted mg/Rm³* <0.4 | Collected mg Sampled Rm³* Actual mg/m³ Dry Reference mg/Rm³* Dry Adjusted mg/Rm³** Wet Reference mg/Rm³* <0.4 | ^{*} At 25 °C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 8 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Condensable Particulate Emission Data # **Inorganic Condensable Particulate** | | Total | Dry Volume | Inorganic Condensable Particulate Concentration | | | | Emission | |---------|-----------|-------------------|---|----------------------|--------------|---------------|----------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Rate | | No. | mg | Rm ³ * | mg/m³ | mg/Rm ³ * | mg/Rm³** | mg/Rm³* | mg/s | | 1 | 4.5 | 1.185 | 2.28 | 3.80 | 3.01 | 3.23 | 55.8 | | 2 | 4.3 | 1.181 | 2.16 | 3.64 | 2.83 | 3.06 | 53.5 | | 3 | 3.7 | 1.174 | 1.85 | 3.15 | 2.47 | 2.64 | 50.4 | | Average | | | 2.10 | 3.53 | 2.77 | 2.98 | 53.3 | | Blank | 1.9 | | | | | | | # **Organic Condensable Particulate** | | Total | Dry Volume | Organic Condensable Particulate
Concentration | | | | Emission | |---------|-----------|-------------------|---|----------------------|-----------------------|---------------|----------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Rate | | No. | mg | Rm ³ * | mg/m³ | mg/Rm ³ * | mg/Rm ³ ** | mg/Rm³* | mg/s | | 1 | 2.5 | 1.185 | 1.27 | 2.11 | 1.67 | 1.79 | 31.0 | | 2 | 3.2 | 1.181 | 1.61 | 2.71 | 2.11 | 2.28 | 39.8 | | 3 | 2.1 | 1.174 | 1.05 | 1.79 | 1.40 | 1.50 | 28.6 | | Average | | | 1.31 | 2.20 | 1.73 | 1.86 | 33.2 | | Blank | 0.6 | | | | | | | | | | | | | | | | ^{*} At 25 °C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume # TABLE 9 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Halides and Ammonia Emission Data ## Hydrogen Chloride | | HCl | Dry Volume | Hydrogen Chloride Concentration | | | | HCI | |---------|-----------|-------------------|---------------------------------|---------------|--------------|---------------|----------------------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission Rate | | No. | mg | Rm ³ * | mg/m³ | mg/Rm³* | mg/Rm³** | mg/Rm³* | mg/s | | 1 | 5.37 | 1.319 | 2.39 | 4.07 | 3.21 | 3.41 | 64.2 | | 2 | 5.11 | 1.324 | 2.27 | 3.86 | 3.04 | 3.23 | 60.9 | | 3 | 4.98 | 1.320 | 2.20 | 3.77 | 2.94 | 3.16 | 57.2 | | Average | | | 2.29 | 3.90 | 3.06 | 3.27 | 60.8 | | Blank | 0.312 | | | | | | | ## Hydrogen Fluoride | HF | Dry Volume Hydrogen Fluoride Concentration | | | | HF | | |-----------|---|---|---|---|---|---| | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission Rate | | mg | Rm ³ * | mg/m³ | mg/Rm³* | mg/Rm³** | mg/Rm ³ * | mg/s | | <0.168 | 1.319 | <0.075 | <0.13 | <0.10 | <0.11 | <2.01 | | <0.174 | 1.324 | <0.077 | <0.13 | <0.10 | <0.11 | <2.07 | | <0.173 | 1.320 | <0.076 | <0.13 | <0.10 | <0.11 | <1.99 | | | | <0.076 | <0.13 | <0.10 | <0.11 | <2.02 | | <0.109 | | | | | | | | | <pre>collected mg <0.168 <0.174 <0.173</pre> | Collected Sampled Rm ³ * <0.168 1.319 <0.174 1.324 <0.173 1.320 | Collected mg Sampled Rm³* Actual mg/m³ <0.168 | Collected mg Sampled Rm³* Actual mg/m³ Dry Reference mg/Rm³* <0.168 | Collected mg Sampled Rm³* Actual mg/m³ Dry Reference mg/Rm³* Dry Adjusted mg/Rm³** <0.168 | Collected mg Sampled Rm³* Actual mg/m³ Dry Reference mg/Rm³* Dry Adjusted mg/Rm³** Wet Reference mg/Rm³* <0.168 | #### **Ammonia** | | Ammonia | Dry Volume | Ammonia Concentration | | | | Ammonia | |---------|-----------|------------|-----------------------|---------------|--------------|---------------|----------------------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission Rate | | No. | mg | Rm³* | mg/m³ | mg/Rm³* | mg/Rm³** | mg/Rm³* | mg/s | | 1 | 1,22 | 1.319 | 0.54 | 0.92 | 0.73 | 0.78 | 14.6 | | 2 | 1.09 | 1.324 | 0.48 | 0.82 | 0.65 | 0.69 | 13.0 | | 3 | 1.01 | 1.320 | 0.45 | 0.77 | 0.60 | 0.64 | 11.6 | | Average | | | 0.49 | 0.84 | 0.66 | 0.70 | 13.1 | | Blank | <0.293 | | | | | | | ^{*} At 25 °C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 10 Covanta - Durham York Energy Centre Boiler No. 2 Combustion Gas Analyses # Data measured by the DYEC CEMS from November 9 to November 12, 2020 | Sampling
Location | Parameter | Minimum | Average | Maximum | |----------------------|---|---------|---------|---------| | BH Outlet | Oxygen (%, 1 hr Avg) | 7.88 | 8.39 | 8.90 | | BH Outlet | Carbon Monoxide (mg/Rm³, 1 hr Avg) * | 8 | 14 | 25 | | BH Outlet | Carbon Monoxide (mg/Rm³, 4 hr Avg) * | 10.8 | 14.1 | 20.8 | | BH Outlet | Sulphur Dioxide (mg/Rm³, 1 hr Avg) * | 0 | 0.2 | 6 | | BH Outlet | Sulphur Dioxide (mg/Rm³, 24 hr Avg) * | 0 | 0.1 | 0.5 | | BH Outlet | Nitrogen Oxides (mg/Rm³, 1 hr Avg) * | 100 | 110 | 122 | | BH Outlet | Nitrogen Oxides (mg/Rm³, 24 hr Avg) * | 110 | 110 | 111 | | BH Outlet | Hydrogen Chloride (mg/Rm³, 1 hr Avg) * | 2 | 3 | 4 | | BH Outlet | Hydrogen Chloride (mg/Rm³, 24 hr Avg) * | 2.8 | 3.2 | 3.7 | | BH Outlet | Total Hydrocarbons (mg/Rm³, 1 hr Avg) * | 0 | 0.1 | 1 | | Quench Inlet | Oxygen (%, 1 hr Avg) | 8 | 8 | 9 | # Data measured by the ORTECH CEMS on November 9, 2020 | Sampling
Location | Test
No. | Parameter | Minimum | Average | Maximum | |----------------------|-------------|--|---------|---------|---------| | | | | | | | | BH Outlet | 1 | Total Hydrocarbons (ppm dry, 1-min Avg) | 0 | 0.3 | 3.5 | | BH Outlet | 2 | Total Hydrocarbons (ppm dry, 1-min Avg) | 0 | 0.3 | 2.4 | | BH Outlet | 3 | Total Hydrocarbons (ppm dry, 1-min Avg) | 0 | 0.4 | 3.8 | | Average | | Total Hydrocarbons (ppm dry, 1-min Avg) | | 0.3 | | | Quench Inlet | 1 | Total Hydrocarbons (ppm dry, 1-min Avg) | 0 | 1.6 | 5.1 | | Quench Inlet | 2 | Total Hydrocarbons (ppm dry, 1-min Avg) | 0 | 1.0 | 3.0 | | Quench Inlet | 3 | Total Hydrocarbons (ppm dry, 1-min Avg) | 0 | 0.6 | 2.3 | | Average | | Total Hydrocarbons (ppm dry, 1-min Avg) | | 1.1 | | | Quench Inlet | 1 | Total Hydrocarbons (ppm dry, 10-min Avg) | 0.6 | 1.4 | 3.2 | | Quench Inlet | 2 | Total Hydrocarbons (ppm dry, 10-min Avg) | 0.2 | 1.1 | 1.8 | | Quench Inlet | 3 | Total Hydrocarbons (ppm dry, 10-min Avg) | 0 | 0.6 | 1.2 | | Average | | Total Hydrocarbons (ppm dry, 10-min Avg) | | 1.0 | | ^{*} Reference conditions, dry basis adjusted to 11% oxygen TABLE 11 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Metals Analyses Test No. 1 | Metal | Probe & Filter
Hydrofluoric Acid Digest | Impingers | Total | |------------|--|-----------|-----------| | | Hydrolldoric Acid Digest | & Rinses | Collected | | | μg | μg | μg | | | | | | | Antimony | <0.2 | <0.1 | <0.20 | | Arsenic | <1 | <0.2 | <0.20 | | Barium | <5 | 1.15 | 1.15 | | Beryllium | <0.2 | <0.1 | <0.20 | | Cadmium | 0.14 | 0.14 | 0.29 | | Chromium | 3.06 | 0.89 | 3.95 | | Cobalt | <0.2 | <0.1 | <0.20 | | Copper | 6.27 | 20.1 | 26.4 | | Lead | 1.02 | 0.78 | 1.80 | | Mercury * | <0.015 | 0.30 | 0.30 | | Molybdenum | 24.0 | <0.1 | 24.0 | | Nickel | 2.80 | 0.66 | 3.46 | | Selenium | <2 | <1 | <1.00 | | Silver | <0.2 | <0.1 | <0.20 | | Thallium | <0.2 | <0.05 | <0.20 | | Vanadium | <1 | <0.1 | <0.10 | | Zinc | 13.6 | 6.16 | 19.8 | | Total | | | <83.4 | ^{*} Includes the permanganate impingers Note: "<" indicates that the analyte was not detected. Where all values were reported below the detection limit for a given metal, the value of the detection limit for the fraction most likely to contain that metal was used to calculate emission data, the remaining fractions were assigned a value of zero. In instances where only one fraction was below the detection limit, that fraction was assigned a value of zero to calculate emission data. TABLE 12 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Metals Analyses Test No. 2 | Metal | Probe & Filter
Hydrofluoric Acid Digest | Impingers
& Rinses | Total
Collected | |------------|--|-----------------------|--------------------| | | μg | μg | μg | | A 4: | 0.00 | | | | Antimony | 0.23 | <0.1 | 0.23 | | Arsenic | <1 | <0.2 | <0.20 | | Barium | 7.52 | 1.13 | 8.65 | | Beryllium | <0.2 | <0.1 | <0.20 | | Cadmium | 0.15 | <0.05 | 0.15 | | Chromium | 3.14 | 0.67 | 3.81 | | Cobalt | <0.2 | <0.1 | <0.20 | | Copper | 6.42 | 16.5 | 22.9 | | Lead | 1.00 | 0.41 | 1.41 | | Mercury * | <0.015 | <0.15 | <0.15 | | Molybdenum | 23.9 | <0.1 | 23.9 | | Nickel | 3.07 | 0.67 | 3.74 | | Selenium | <2 | 3.07 | 3.07 | | Silver | <0.2 | <0.1 | <0.20 | | Thallium | 0.26 | <0.05 | 0.26 | | Vanadium | <1 | <0.1 | <0.10 | | Zinc | 17.6 | 6.44 | 24.0 | | Total | | | <93.2 | ^{*} Includes the permanganate impingers Note: "<" indicates that the analyte was not detected. Where all values were reported below the detection limit for a given metal, the value of the detection limit for the fraction most likely to contain that metal was used to calculate emission data, the remaining fractions were assigned a value of zero. In instances where only one fraction was below the detection limit, that fraction was assigned a value of zero to calculate emission data. TABLE 13 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Metals Analyses Test No. 3 | Metal | Probe & Filter | Impingers | Total | |------------|--------------------------|-----------|-----------| | | Hydrofluoric Acid Digest | & Rinses | Collected | | | μg | μg | μg | | A + i | .0.2 | | | | Antimony | <0.2 | <0.1 | <0.20 | | Arsenic | <1 | <0.2 | <0.20 | | Barium | 8.27 | 1.47 | 9.74 | | Beryllium | <0.2 | <0.1 | <0.20 | | Cadmium | 0.27 | 0.084 | 0.35 | | Chromium | 2.71 | 0.60 | 3.31 | | Cobalt | <0.2 | 0.30 | 0.30 | | Copper | 7.12 | 15.8 | 22.9 | | Lead | 1.01 | 0.61 | 1.62 | | Mercury * | <0.015 | <0.2 | <0.20 | | Molybdenum | 23.2 | <0.1 | 23.2 | | Nickel | 4.34 | 0.59 | 4.93 | | Selenium | <2 | <1 | <1.00 | | Silver | <0.2 | <0.1 | <0.20 | | Thallium | 0.70 | <0.05 | 0.70 | | Vanadium | <1 | 0.27 | 0.27 | | Zinc | 15.7 | 9.56 | 25.3 | | Total | | | <94.6 | ^{*} Includes the permanganate impingers Note: "<" indicates that the analyte was not detected. Where all values were reported below the detection limit for a given metal, the value of
the detection limit for the fraction most likely to contain that metal was used to calculate emission data, the remaining fractions were assigned a value of zero. In instances where only one fraction was below the detection limit, that fraction was assigned a value of zero to calculate emission data. TABLE 14 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Metals Emission Data Test No. 1 | Metal | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |------------|-----------|---------------|---------------|---------------|---------------|-----------| | | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | μg | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | | | | | | | | | Antimony | <0.20 | <0.028 | <0.048 | <0.038 | < 0.040 | <0.00076 | | Arsenic | <0.20 | <0.028 | <0.048 | <0.038 | <0.040 | <0.00076 | | Barium | 1.15 | 0.16 | 0.28 | 0.22 | 0.23 | 0.0044 | | Beryllium | <0.20 | <0.028 | <0.048 | <0.038 | < 0.040 | < 0.00076 | | Cadmium | 0.29 | 0.040 | 0.069 | 0.054 | 0.058 | 0.0011 | | Chromium | 3.95 | 0.56 | 0.95 | 0.75 | 0.80 | 0.015 | | Cobalt | <0.20 | <0.028 | <0.048 | <0.038 | <0.040 | <0.00076 | | Copper | 26.4 | 3.72 | 6.33 | 5.00 | 5.32 | 0.10 | | Lead | 1.80 | 0.25 | 0.43 | 0.34 | 0.36 | 0.0068 | | Mercury | 0.30 | 0.043 | 0.073 | 0.058 | 0.061 | 0.0012 | | Molybdenum | 24.0 | 3.38 | 5.76 | 4.55 | 4.84 | 0.091 | | Nickel | 3.46 | 0.49 | 0.83 | 0.66 | 0.70 | 0.013 | | Selenium | <1.00 | < 0.14 | < 0.24 | <0.19 | <0.20 | <0.0038 | | Silver | <0.20 | <0.028 | <0.048 | <0.038 | <0.040 | <0.00076 | | Thallium | <0.20 | <0.028 | <0.048 | <0.038 | < 0.040 | <0.00076 | | Vanadium | < 0.10 | < 0.014 | <0.024 | <0.019 | <0.020 | <0.00038 | | Zinc | 19.8 | 2.79 | 4.74 | 3.75 | 3.99 | 0.075 | | Total | <83.4 | <11.8 | <20.0 | <15.8 | <16.8 | <0.32 | | Dry Gas Volume Sampled (Rm ³ *) : | 4.165 | |--|-------| | Actual Flowrate (m³/s) : | 26.9 | | Dry Reference Flowrate (Rm³/s*) : | 15.8 | | Dry Adjusted Flowrate (Rm³/s**): | 20.0 | | Wet Reference Flowrate (Rm³/s*) : | 18.8 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 15 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Metals Emission Data Test No. 2 | Metal | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |------------|-----------|---------------|---------------|---------------|---------------|----------| | | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | μg | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | | | | | | | | | Antimony | 0.23 | 0.038 | 0.065 | 0.051 | 0.055 | 0.00099 | | Arsenic | <0.20 | <0.033 | <0.057 | <0.045 | <0.048 | <0.00087 | | Barium | 8.65 | 1.45 | 2.48 | 1.93 | 2.08 | 0.038 | | Beryllium | <0.20 | < 0.033 | <0.057 | < 0.045 | <0.048 | <0.00087 | | Cadmium | 0.15 | 0.026 | 0.044 | 0.034 | 0.037 | 0.00067 | | Chromium | 3.81 | 0.64 | 1.09 | 0.85 | 0.92 | 0.017 | | Cobalt | <0.20 | < 0.033 | <0.057 | <0.045 | <0.048 | <0.00087 | | Copper | 22.9 | 3.83 | 6.56 | 5.11 | 5.51 | 0.10 | | Lead | 1.41 | 0.24 | 0.40 | 0.32 | 0.34 | 0.0061 | | Mercury | < 0.15 | <0.025 | <0.043 | <0.033 | <0.036 | <0.00065 | | Molybdenum | 23.9 | 4.00 | 6.84 | 5.33 | 5.74 | 0.10 | | Nickel | 3.74 | 0.63 | 1.07 | 0.83 | 0.90 | 0.016 | | Selenium | 3.07 | 0.51 | 0.88 | 0.68 | 0.74 | 0.013 | | Silver | <0.20 | < 0.033 | <0.057 | <0.045 | <0.048 | <0.00087 | | Thallium | 0.26 | 0.044 | 0.074 | 0.058 | 0.062 | 0.0011 | | Vanadium | <0.10 | <0.017 | <0.029 | <0.022 | <0.024 | <0.00044 | | Zinc | 24.0 | 4.02 | 6.88 | 5.36 | 5.78 | 0.10 | | Total | <93.2 | <15.6 | <26.7 | <20.8 | <22.4 | <0.41 | | Dry Gas Volume Sampled (Rm ³ *) : | 3.494 | |--|-------| | Actual Flowrate (m³/s) : | 26.0 | | Dry Reference Flowrate (Rm³/s*): | 15.2 | | Dry Adjusted Flowrate (Rm³/s**) : | 19.5 | | Wet Reference Flowrate (Rm³/s*) : | 18.1 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 16 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Metals Emission Data Test No. 3 | Metal | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |------------|-----------|---------------|---------------|---------------|---------------|----------| | | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | μg | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | | | | | | | | | Antimony | <0.20 | <0.033 | <0.057 | <0.045 | <0.048 | <0.00087 | | Arsenic | <0.20 | < 0.033 | <0.057 | < 0.045 | <0.048 | <0.00087 | | Barium | 9.74 | 1.62 | 2.77 | 2.18 | 2.34 | 0.042 | | Beryllium | <0.20 | < 0.033 | <0.057 | < 0.045 | <0.048 | <0.00087 | | Cadmium | 0.35 | 0.058 | 0.10 | 0.078 | 0.084 | 0.0015 | | Chromium | 3.31 | 0.55 | 0.94 | 0.74 | 0.80 | 0.014 | | Cobalt | 0.30 | 0.049 | 0.084 | 0.066 | 0.071 | 0.0013 | | Copper | 22.9 | 3.82 | 6.53 | 5.14 | 5.51 | 0.099 | | Lead | 1.62 | 0.27 | 0.46 | 0.36 | 0.39 | 0.0070 | | Mercury | <0.20 | < 0.033 | <0.057 | <0.045 | <0.048 | <0.00087 | | Molybdenum | 23.2 | 3.86 | 6.61 | 5.20 | 5.58 | 0.10 | | Nickel | 4.93 | 0.82 | 1.40 | 1.11 | 1.19 | 0.021 | | Selenium | <1.00 | <0.17 | <0.28 | <0.22 | <0.24 | < 0.0043 | | Silver | <0.20 | < 0.033 | <0.057 | <0.045 | <0.048 | <0.00087 | | Thallium | 0.70 | 0.12 | 0.20 | 0.16 | 0.17 | 0.0030 | | Vanadium | 0.27 | 0.045 | 0.078 | 0.061 | 0.066 | 0.0012 | | Zinc | 25.3 | 4.21 | 7.19 | 5.67 | 6.08 | 0.11 | | Total | <94.6 | <15.8 | <26.9 | <21.2 | <22.8 | <0.41 | | Dry Gas Volume Sampled (Rm ³ *): | 3.511 | |---|-------| | Actual Flowrate (m³/s) : | 26.0 | | Dry Reference Flowrate (Rm³/s*): | 15.2 | | Dry Adjusted Flowrate (Rm³/s**): | 19.3 | | Wet Reference Flowrate (Rm³/s*) : | 18.0 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 17 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Metal Actual Concentrations | Metal | | Actual Cond | entration | | Coefficient | |------------|------------|-------------|------------|---------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | μg/m³ | μg/m³ | μg/m³ | μg/m³ | % | | | | | | | | | Antimony | <0.028 | 0.038 | <0.033 | <0.033 | 14.7 | | Arsenic | <0.028 | <0.033 | <0.033 | <0.032 | 9.4 | | Barium | 0.16 | 1.45 | 1.62 | 1.08 | 74.0 | | Beryllium | <0.028 | <0.033 | <0.033 | < 0.032 | 9.4 | | Cadmium | 0.040 | 0.026 | 0.058 | 0.041 | 39.2 | | Chromium | 0.56 | 0.64 | 0.55 | 0.58 | 8.3 | | Cobalt | <0.028 | <0.033 | 0.049 | <0.037 | 29.5 | | Copper | 3.72 | 3.83 | 3.82 | 3.79 | 1.6 | | Lead | 0.25 | 0.24 | 0.27 | 0.25 | 6.7 | | Mercury | 0.043 | <0.025 | <0.033 | < 0.034 | 26.4 | | Molybdenum | 3.38 | 4.00 | 3.86 | 3.75 | 8.6 | | Nickel | 0.49 | 0.63 | 0.82 | 0.64 | 25.9 | | Selenium | < 0.14 | 0.51 | <0.17 | <0.27 | 76.1 | | Silver | <0.028 | < 0.033 | < 0.033 | < 0.032 | 9.4 | | Thallium | <0.028 | 0.044 | 0.12 | < 0.063 | 75.0 | | Vanadium | <0.014 | < 0.017 | 0.045 | <0.025 | 68.4 | | Zinc | 2.79 | 4.02 | 4.21 | 3.67 | 21.0 | | Total | <11.8 | <15.6 | <15.8 | <14.4 | 15.7 | TABLE 18 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Metal Dry Reference Concentrations | Metal | | Dry Reference (| Concentration | | Coefficient | | | | |------------|------------|-----------------|---------------|---------|--------------|--|--|--| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | | | μg/Rm³* | μg/Rm³* | μg/Rm³* | μg/Rm³* | % | | | | | | | | | | | | | | | Antimony | <0.048 | 0.065 | <0.057 | <0.057 | 15.0 | | | | | Arsenic | <0.048 | <0.057 | <0.057 | < 0.054 | 9.7 | | | | | Barium | 0.28 | 2.48 | 2.77 | 1.84 | 74.1 | | | | | Beryllium | <0.048 | <0.057 | < 0.057 | < 0.054 | 9.7 | | | | | Cadmium | 0.069 | 0.044 | 0.10 | 0.071 | 39.2 | | | | | Chromium | 0.95 | 1.09 | 0.94 | 0.99 | 8.5 | | | | | Cobalt | <0.048 | < 0.057 | 0.084 | < 0.063 | 29.6 | | | | | Copper | 6.33 | 6.56 | 6.53 | 6.47 | 1.9 | | | | | Lead | 0.43 | 0.40 | 0.46 | 0.43 | 6.7 | | | | | Mercury | 0.073 | < 0.043 | < 0.057 | <0.058 | 26.1 | | | | | Molybdenum | 5.76 | 6.84 | 6.61 | 6.40 | 8.9 | | | | | Nickel | 0.83 | 1.07 | 1.40 | 1.10 | 26.1 | | | | | Selenium | <0.24 | 0.88 | <0.28 | < 0.47 | 76.2 | | | | | Silver | <0.048 | < 0.057 | < 0.057 | < 0.054 | 9.7 | | | | | Thallium | <0.048 | 0.074 | 0.20 | <0.11 | 75.1 | | | | | Vanadium | <0.024 | <0.029 | 0.078 | <0.043 | 68.5 | | | | | Zinc | 4.74 | 6.88 | 7.19 | 6.27 | 21.3 | | | | | Total | <20.0 | <26.7 | <26.9 | <24.5 | 16.0 | | | | ^{*} At 25°C and 1 atmosphere TABLE 19 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Metal Dry Adjusted Concentrations | Metal | | Dry Adjusted C | oncentration | | Coefficient | |------------|------------------------|------------------------|------------------------|---------------------|-------------------| | | Test No. 1
μg/Rm³** | Test No. 2
μg/Rm³** | Test No. 3
μg/Rm³** | Average
µg/Rm³** | of Variation
% | | _ | | | _ | | | | Antimony | <0.038 | 0.051 | <0.045 | <0.044 | 14.3 | | Arsenic | <0.038 | <0.045 | <0.045 | <0.042 | 9.3 | | Barium | 0.22 | 1.93 | 2.18 | 1.44 | 74.1 | | Beryllium | <0.038 | <0.045 | <0.045 | < 0.042 | 9.3 | | Cadmium | 0.054 | 0.034 | 0.078 | 0.056 | 39.6 | | Chromium | 0.75 | 0.85 | 0.74 | 0.78 | 7.7 | | Cobalt | <0.038 | <0.045 | 0.066 | <0.050 | 29.8 | | Copper | 5.00 | 5.11 | 5.14 | 5.09 | 1.5 | | Lead | 0.34 | 0.32 | 0.36 | 0.34 | 7.2 | | Mercury | 0.058 | <0.033 | <0.045 | < 0.045 | 26.7 | | Molybdenum | 4.55 | 5.33 | 5.20 | 5.03 | 8.3 | | Nickel | 0.66 | 0.83 | 1.11 | 0.87 | 26.1 | | Selenium | <0.19 | 0.68 | <0.22 | <0.37 | 75.5 | | Silver | <0.038 | <0.045 | <0.045 | <0.042 | 9.3 | | Thallium | <0.038 | 0.058 | 0.16 | <0.084 | 75.4 | | Vanadium | <0.019 | <0.022 | 0.061 | <
0.034 | 68.8 | | Zinc | 3.75 | 5.36 | 5.67 | 4.93 | 20.9 | | Total | <15.8 | <20.8 | <21.2 | <19.3 | 15.6 | ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 20 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Metal Wet Reference Concentrations | Metal | | Wet Reference Concentration | | | | | | |------------|------------|-----------------------------|------------|---------|--------------|--|--| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | | μg/Rm³* | μg/Rm³* | μg/Rm³* | μg/Rm³* | % | | | | | | | | | | | | | Antimony | <0.040 | 0.055 | <0.048 | <0.048 | 14.9 | | | | Arsenic | <0.040 | <0.048 | <0.048 | <0.046 | 9.8 | | | | Barium | 0.23 | 2.08 | 2.34 | 1.55 | 74.1 | | | | Beryllium | < 0.040 | <0.048 | <0.048 | <0.046 | 9.8 | | | | Cadmium | 0.058 | 0.037 | 0.084 | 0.060 | 39.5 | | | | Chromium | 0.80 | 0.92 | 0.80 | 0.84 | 8.3 | | | | Cobalt | < 0.040 | <0.048 | 0.071 | <0.053 | 30.0 | | | | Copper | 5.32 | 5.51 | 5.51 | 5.45 | 2.0 | | | | Lead | 0.36 | 0.34 | 0.39 | 0.36 | 7.0 | | | | Mercury | 0.061 | <0.036 | <0.048 | <0.048 | 26.1 | | | | Molybdenum | 4.84 | 5.74 | 5.58 | 5.39 | 8.9 | | | | Nickel | 0.70 | 0.90 | 1.19 | 0.93 | 26.4 | | | | Selenium | <0.20 | 0.74 | <0.24 | < 0.39 | 76.0 | | | | Silver | <0.040 | <0.048 | <0.048 | < 0.046 | 9.8 | | | | Thallium | < 0.040 | 0.062 | 0.17 | <0.090 | 75.4 | | | | Vanadium | <0.020 | <0.024 | 0.066 | <0.037 | 68.9 | | | | Zinc | 3.99 | 5.78 | 6.08 | 5.28 | 21.4 | | | | Total | <16.8 | <22.4 | <22.8 | <20.7 | 16.1 | | | ^{*} At 25°C and 1 atmosphere TABLE 21 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Metal Emission Rates | Metal | Historian Company of the | Emission Rate | | | | | | |------------|---|--------------------|--------------------|-----------------|-------------------|--|--| | | Test No. 1
mg/s | Test No. 2
mg/s | Test No. 3
mg/s | Average
mg/s | of Variation
% | | | | | | | | | | | | | Antimony | <0.00076 | 0.00099 | <0.00087 | <0.00087 | 13.1 | | | | Arsenic | <0.00076 | <0.00087 | <0.00087 | <0.00083 | 7.6 | | | | Barium | 0.0044 | 0.038 | 0.042 | 0.028 | 73.6 | | | | Beryllium | <0.00076 | <0.00087 | <0.00087 | <0.00083 | 7.6 | | | | Cadmium | 0.0011 | 0.00067 | 0.0015 | 0.0011 | 38.7 | | | | Chromium | 0.015 | 0.017 | 0.014 | 0.015 | 7.6 | | | | Cobalt | <0.00076 | <0.00087 | 0.0013 | <0.00097 | 28.2 | | | | Copper | 0.10 | 0.10 | 0.099 | 0.10 | 0.4 | | | | Lead | 0.0068 | 0.0061 | 0.0070 | 0.0067 | 6.9 | | | | Mercury | 0.0012 | <0.00065 | < 0.00087 | <0.00089 | 28.2 | | | | Molybdenum | 0.091 | 0.10 | 0.10 | 0.098 | 6.8 | | | | Nickel | 0.013 | 0.016 | 0.021 | 0.017 | 24.5 | | | | Selenium | <0.0038 | 0.013 | < 0.0043 | < 0.0072 | 75.0 | | | | Silver | <0.00076 | <0.00087 | <0.00087 | <0.00083 | 7.6 | | | | Thallium | <0.00076 | 0.0011 | 0.0030 | < 0.0016 | 74.0 | | | | Vanadium | <0.00038 | <0.00044 | 0.0012 | < 0.00067 | 67.3 | | | | Zinc | 0.075 | 0.10 | 0.11 | 0.096 | 19.4 | | | | Total | <0.32 | <0.41 | <0.41 | <0.38 | 14.0 | | | TABLE 22 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Metal Emission Data | Metal | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | | | | | | | | Antimony | <0.033 | <0.057 | <0.044 | <0.048 | <0.00087 | | Arsenic | < 0.032 | <0.054 | <0.042 | <0.046 | <0.00083 | | Barium | 1.08 | 1.84 | 1.44 | 1.55 | 0.028 | | Beryllium | < 0.032 | <0.054 | <0.042 | <0.046 | <0.00083 | | Cadmium | 0.041 | 0.071 | 0.056 | 0.060 | 0.0011 | | Chromium | 0.58 | 0.99 | 0.78 | 0.84 | 0.015 | | Cobalt | < 0.037 | < 0.063 | <0.050 | < 0.053 | <0.00097 | | Copper | 3.79 | 6.47 | 5.09 | 5.45 | 0.10 | | Lead | 0.25 | 0.43 | 0.34 | 0.36 | 0.0067 | | Mercury | < 0.034 | <0.058 | <0.045 | <0.048 | <0.00089 | | Molybdenum | 3.75 | 6.40 | 5.03 | 5.39 | 0.098 | | Nickel | 0.64 | 1.10 | 0.87 | 0.93 | 0.017 | | Selenium | <0.27 | <0.47 | <0.37 | < 0.39 | <0.0072 | | Silver | < 0.032 | < 0.054 | <0.042 | <0.046 | <0.00083 | | Thallium | < 0.063 | <0.11 | <0.084 | <0.090 | <0.0016 | | Vanadium | <0.025 | < 0.043 | < 0.034 | <0.037 | <0.00067 | | Zinc | 3.67 | 6.27 | 4.93 | 5.28 | 0.096 | | Total | <14.4 | <24.5 | <19.3 | <20.7 | <0.38 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 23 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Blank Train Metal Analyses | Metal | Probe & Filter | Impingers | Total | |------------|--------------------------|-----------|-----------| | | Hydrofluoric Acid Digest | & Rinses | Collected | | | μg | μg | μg | | Antimony | <0.2 | <0.1 | <0.20 | | Arsenic | <1 | <0.2 | <0.20 | | Barium | 5.19 | 0.83 | 6.02 | | Beryllium | <0.2 | <0.1 | <0.20 | | Cadmium | <0.1 | <0.05 | <0.10 | | Chromium | 2.41 | 0.34 | 2.75 | | Cobalt | <0.2 | <0.1 | <0.20 | | Copper | 9.00 | 8.33 | 17.3 | | Lead | 0.50 | 0.52 | 1.03 | | Mercury * | <0.015 | <0.15 | <0.15 | | Molybdenum | 22.3 | <0.1 | 22.3 | | Nickel | 2.09 | 0.28 | 2.37 | | Selenium | <2 | <1 | <1.00 | | Silver | <0.2 | <0.1 | <0.20 | | Thallium | <0.2 | <0.05 | <0.20 | | Vanadium | <1 | <0.1 | <0.10 | | Zinc | <6 | <3 | <6.00 | | Total | | | <60.4 | ^{*} Includes the permanganate impingers. **Note**: "<" indicates that the analyte was not detected. Where all values are reported below the detection limit for a given metal, the value of the detection limit for the fraction most likely to contain that metal was used to calculate the total collected in the blank, the remaining fractions are assigned a value of zero. In instances where only one fraction was below the detection limit, that fraction was assigned a value of zero to calculate the total collected in the blank. TABLE 24 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Congener Group Emission Data Test No. 1 | Congener
Group | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |------------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzo-p-dioxins | 113 | 0.014 | 0.035 | 0.010 | 0.021 | 0.27 | | Pentachlorodibenzo-p-dioxins | 311 | 0.014
0.040 | 0.025
0.068 | 0.019
0.054 | 0.021
0.057 | 0.37
1.02 | | Hexachlorodibenzo-p-dioxins | 779 | 0.099 | 0.008 | 0.034 | 0.037 | 2.56 | | Heptachlorodibenzo-p-dioxins | 626 | 0.080 | 0.14 | 0.11 | 0.11 | 2.06 | | Octachlorodibenzo-p-dioxin | 311 | 0.040 | 0.068 | 0.054 | 0.057 | 1.02 | | Total | 2140 | 0.27 | 0.47 | 0.37 | 0.39 | 7.04 | #### **Furans** | Congener
Group | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |--------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzofurans | 24.8 | 0.0032 | 0.0054 | 0.0043 | 0.0045 | 0.082 | | Pentachlorodibenzofurans | 202 | 0.026 | 0.044 | 0.035 | 0.037 | 0.66 | | Hexachlorodibenzofurans | 236 | 0.030 | 0.051 | 0.041 | 0.043 | 0.78 | | Heptachlorodibenzofurans | 154 | 0.020 | 0.034 | 0.027 | 0.028 | 0.51 | | Octachlorodibenzofuran | <43 | <0.0055 | <0.0094 | <0.0074 | <0.0079 | <0.14 | | Total | <660 | <0.084 | <0.14 | <0.11 | <0.12 | <2.17 | | Dry Gas
Volume Sampled (Rm ³ *): | 4.590 | |---|-------| | Actual Flowrate (m³/s) : | 25.9 | | Dry Reference Flowrate (Rm³/s*): | 15.1 | | Dry Adjusted Flowrate (Rm³/s**): | 19.1 | | Wet Reference Flowrate (Rm³/s*) : | 18.0 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume # TABLE 25 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Congener Group Emission Data Test No. 2 #### **Dioxins** | Congener
Group | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |------------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzo-p-dioxins | 128 | 0.016 | 0.027 | 0.022 | 0.023 | 0.42 | | Pentachlorodibenzo-p-dioxins | 418 | 0.052 | 0.090 | 0.071 | 0.075 | 1.38 | | Hexachlorodibenzo-p-dioxins | 1030 | 0.13 | 0.22 | 0.17 | 0.18 | 3.40 | | Heptachlorodibenzo-p-dioxins | 820 | 0.10 | 0.18 | 0.14 | 0.15 | 2.71 | | Octachlorodibenzo-p-dioxin | 712 | 0.089 | 0.15 | 0.12 | 0.13 | 2.35 | | Total | 3108 | 0.39 | 0.67 | 0.53 | 0.56 | 10.3 | #### **Furans** | Congener
Group | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |--------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzofurans | 63 | 0.0078 | 0.013 | 0.011 | 0.011 | 0.21 | | Pentachlorodibenzofurans | 85.9 | 0.011 | 0.018 | 0.015 | 0.015 | 0.28 | | Hexachlorodibenzofurans | 232 | 0.029 | 0.050 | 0.039 | 0.042 | 0.77 | | Heptachlorodibenzofurans | 230.0 | 0.029 | 0.049 | 0.039 | 0.041 | 0.76 | | Octachlorodibenzofuran | <88 | <0.011 | <0.019 | <0.015 | <0.016 | <0.29 | | Total | <698 | <0.087 | <0.15 | <0.12 | <0.13 | <2.31 | | Dry Gas Volume Sampled (Rm³*): | 4.662 | |-----------------------------------|-------| | Actual Flowrate (m³/s) : | 26.5 | | Dry Reference Flowrate (Rm³/s*): | 15.4 | | Dry Adjusted Flowrate (Rm³/s**): | 19.5 | | Wet Reference Flowrate (Rm³/s*) : | 18.4 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume # TABLE 26 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Congener Group Emission Data Test No. 3 #### **Dioxins** | Congener
Group | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |------------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzo-p-dioxins | 75.8 | 0.010 | 0.017 | 0.043 | 0.015 | 0.35 | | • | | 0.010 | 0.017 | 0.013 | 0.015 | 0.25 | | Pentachlorodibenzo-p-dioxins | 267 | 0.036 | 0.060 | 0.047 | 0.051 | 0.88 | | Hexachlorodibenzo-p-dioxins | 655 | 0.088 | 0.15 | 0.12 | 0.13 | 2.16 | | Heptachlorodibenzo-p-dioxins | 576 | 0.077 | 0.13 | 0.10 | 0.11 | 1.90 | | Octachlorodibenzo-p-dioxin | 326 | 0.044 | 0.073 | 0.058 | 0.063 | 1.08 | | Total | 1900 | 0.26 | 0.43 | 0.34 | 0.37 | 6.28 | #### **Furans** | Congener
Group | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |--------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzofurans | 36.9 | 0.0050 | 0.0083 | 0.0066 | 0.0071 | 0.12 | | Pentachlorodibenzofurans | 128 | 0.017 | 0.029 | 0.023 | 0.025 | 0.42 | | Hexachlorodibenzofurans | 172 | 0.023 | 0.039 | 0.031 | 0.033 | 0.57 | | Heptachlorodibenzofurans | 180 | 0.024 | 0.040 | 0.032 | 0.035 | 0.59 | | Octachlorodibenzofuran | <49 | <0.0066 | <0.011 | <0.0087 | <0.0094 | <0.16 | | Total | <566 | <0.076 | <0.13 | <0.10 | <0.11 | <1.87 | | Dry Gas Volume Sampled (Rm³*): | 4.448 | |----------------------------------|-------| | Actual Flowrate (m³/s) : | 24.6 | | Dry Reference Flowrate (Rm³/s*): | 14.7 | | Dry Adjusted Flowrate (Rm³/s**): | 18.6 | | Wet Reference Flowrate (Rm³/s*): | 17.2 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 27 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Congener Group Actual Concentrations | Congener | | Coefficient | | | | |------------------------------|------------|-------------|------------|---------|--------------| | Group | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/m³ | ng/m³ | ng/m³ | ng/m³ | % | | Tetrachlorodibenzo-p-dioxins | 0.014 | 0.016 | 0.010 | 0.013 | 22.1 | | Pentachlorodibenzo-p-dioxins | 0.040 | 0.052 | 0.036 | 0.042 | 20.1 | | Hexachlorodibenzo-p-dioxins | 0.099 | 0.13 | 0.088 | 0.11 | 19.9 | | Heptachlorodibenzo-p-dioxins | 0.080 | 0.10 | 0.077 | 0.086 | 1 5.9 | | Octachlorodibenzo-p-dioxin | 0.040 | 0.089 | 0.044 | 0.057 | 47.6 | | Total | 0.27 | 0.39 | 0.26 | 0.30 | 23.6 | | Congener | | Coefficient | | | | |--------------------------|------------|-------------|------------|---------|--------------| | Group | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/m³ | ng/m³ | ng/m³ | ng/m³ | % | | Tetrachlorodibenzofurans | 0.0032 | 0.0078 | 0.0050 | 0.0053 | 44.1 | | Pentachlorodibenzofurans | 0.026 | 0.011 | 0.017 | 0.018 | 42.0 | | Hexachlorodibenzofurans | 0.030 | 0.029 | 0.023 | 0.027 | 13.5 | | Heptachlorodibenzofurans | 0.020 | 0.029 | 0.024 | 0.024 | 18.9 | | Octachlorodibenzofuran | <0.0055 | <0.011 | <0.0066 | <0.0077 | 37.9 | | Total | <0.084 | <0.087 | <0.076 | <0.082 | 6.9 | TABLE 28 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Congener Group Dry Reference Concentrations | Congener
Group | | Dry Reference Concentration | | | | | |-----------------------------------|------------|-----------------------------|------------|--------------------|-------------------|--| | | Test No. 1 | Test No. 2 | Test No. 3 | Average
ng/Rm³* | of Variation
% | | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | | | | |
 Tetrachlorodibenzo-p-dioxins | 0.025 | 0.027 | 0.017 | 0.023 | 23.4 | | | Pentachlorodibenzo-p-dioxins | 0.068 | 0.090 | 0.060 | 0.072 | 21.2 | | | Hexachlorodibenzo-p-dioxins | 0.17 | 0.22 | 0.15 | 0.18 | 21.1 | | | Heptachlorodibenzo-p-dioxins | 0.14 | 0.18 | 0.13 | 0.15 | 17.0 | | | Octachlorodibenzo-p-dioxin | 0.068 | 0.15 | 0.073 | 0.098 | 48.5 | | | Total | 0.47 | 0.67 | 0.43 | 0.52 | 24.7 | | | Congener
Group | | Coefficient | | | | |--------------------------|------------|-------------|------------|---------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | Tetrachlorodibenzofurans | 0.0054 | 0.013 | 0.0083 | 0.0090 | 44.9 | | Pentachlorodibenzofurans | 0.044 | 0.018 | 0.029 | 0.030 | 42.3 | | Hexachlorodibenzofurans | 0.051 | 0.050 | 0.039 | 0.047 | 14.9 | | Heptachlorodibenzofurans | 0.034 | 0.049 | 0.040 | 0.041 | 19.2 | | Octachlorodibenzofuran | <0.0094 | <0.019 | <0.011 | <0.013 | 38.8 | | Total | <0.14 | <0.15 | <0.13 | <0.14 | 8.3 | ^{*} At 25°C and 1 atmosphere TABLE 29 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Congener Group Dry Adjusted Concentrations | Congener
Group | | Coefficient | | | | |------------------------------|-----------------------|-----------------------|-----------------------|--------------------|-------------------| | | Test No. 1
ng/Rm³* | Test No. 2
ng/Rm³* | Test No. 3
ng/Rm³* | Average
ng/Rm³* | of Variation
% | | Tetrachlorodibenzo-p-dioxins | 0.019 | 0.022 | 0.013 | 0.018 | 23.3 | | Pentachlorodibenzo-p-dioxins | 0.054 | 0.071 | 0.047 | 0.057 | 21.2 | | Hexachlorodibenzo-p-dioxins | 0.13 | 0.17 | 0.12 | 0.14 | 21.0 | | Heptachlorodibenzo-p-dioxins | 0.11 | 0.14 | 0.10 | 0.12 | 16.9 | | Octachlorodibenzo-p-dioxin | 0.054 | 0.12 | 0.058 | 0.077 | 48.5 | | Total | 0.37 | 0.53 | 0.34 | 0.41 | 24.7 | | Congener
Group | | Coefficient | | | | |--------------------------|-----------------------|-----------------------|-----------------------|--------------------|-------------------| | | Test No. 1
ng/Rm³* | Test No. 2
ng/Rm³* | Test No. 3
ng/Rm³* | Average
ng/Rm³* | of Variation
% | | Tetrachlorodibenzofurans | 0.0043 | 0.011 | 0.0066 | 0.0071 | 44.8 | | Pentachlorodibenzofurans | 0.035 | 0.015 | 0.023 | 0.024 | 42.4 | | Hexachlorodibenzofurans | 0.041 | 0.039 | 0.031 | 0.037 | 14.9 | | Heptachlorodibenzofurans | 0.027 | 0.039 | 0.032 | 0.032 | 19.2 | | Octachlorodibenzofuran | <0.0074 | <0.015 | <0.0087 | <0.010 | 38.8 | | Total | <0.11 | <0.12 | <0.10 | <0.11 | 8.3 | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 30 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Congener Group Wet Reference Concentrations | Congener | | Coefficient | | | | |------------------------------|------------|-----------------------|-----------------------|---------|-------------------| | Group | Test No. 1 | Test No. 2
ng/Rm³* | Test No. 3
ng/Rm³* | Average | of Variation
% | | | ng/Rm³* | | | ng/Rm³* | | | Tetrachlorodibenzo-p-dioxins | 0.021 | 0.023 | 0.015 | 0.019 | 22.4 | | Pentachlorodibenzo-p-dioxins | 0.057 | 0.075 | 0.051
| 0.061 | 20.3 | | Hexachlorodibenzo-p-dioxins | 0.14 | 0.18 | 0.13 | 0.15 | 20.2 | | Heptachlorodibenzo-p-dioxins | 0.11 | 0.15 | 0.11 | 0.12 | 16.2 | | Octachlorodibenzo-p-dioxin | 0.057 | 0.13 | 0.063 | 0.082 | 47.8 | | Total | 0.39 | 0.56 | 0.37 | 0.44 | 23.9 | | Congener
Group | | Coefficient | | | | |--------------------------|------------|-------------|------------|---------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | Tetrachlorodibenzofurans | 0.0045 | 0.011 | 0.0071 | 0.0076 | 44.3 | | Pentachlorodibenzofurans | 0.037 | 0.015 | 0.025 | 0.026 | 42.1 | | Hexachlorodibenzofurans | 0.043 | 0.042 | 0.033 | 0.039 | 13.9 | | Heptachlorodibenzofurans | 0.028 | 0.041 | 0.035 | 0.035 | 19.0 | | Octachlorodibenzofuran | <0.0079 | <0.016 | <0.0094 | <0.011 | 38.2 | | Total | <0.12 | <0.13 | <0.11 | <0.12 | 7.2 | ^{*} At 25°C and 1 atmosphere TABLE 31 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Congener Group Emission Rates | Congener
Group | | Coefficient | | | | |------------------------------|--------------------|--------------------|--------------------|--------------|-------------------| | | Test No. 1
ng/s | Test No. 2
ng/s | Test No. 3
ng/s | Average ng/s | of Variation
% | | Tetrachlorodibenzo-p-dioxins | 0.37 | 0.42 | 0.25 | 0.35 | 25.4 | | Pentachlorodibenzo-p-dioxins | 1.02 | 1.38 | 0.88 | 1.10 | 23.5 | | Hexachlorodibenzo-p-dioxins | 2.56 | 3.40 | 2.16 | 2.71 | 23.3 | | Heptachlorodibenzo-p-dioxins | 2.06 | 2.71 | 1.90 | 2.22 | 19.2 | | Octachlorodibenzo-p-dioxin | 1.02 | 2.35 | 1.08 | 1.48 | 50.7 | | Total | 7.04 | 10.3 | 6.28 | 7.86 | 26.9 | | Congener
Group | - | Coefficient | | | | |--------------------------|--------------------|--------------------|--------------------|-----------------|-------------------| | | Test No. 1
ng/s | Test No. 2
ng/s | Test No. 3
ng/s | Average
ng/s | of Variation
% | | Tetrachlorodibenzofurans | 0.082 | 0.21 | 0.12 | 0.14 | 46.6 | | Pentachlorodibenzofurans | 0.66 | 0.28 | 0.42 | 0.46 | 42.1 | | Hexachlorodibenzofurans | 0.78 | 0.77 | 0.57 | 0.70 | 16.7 | | Heptachlorodibenzofurans | 0.51 | 0.76 | 0.59 | 0.62 | 20.7 | | Octachlorodibenzofuran | <0.14 | <0.29 | <0.16 | <0.20 | 40.9 | | Total | <2.17 | <2.31 | <1.87 | <2.12 | 10.6 | TABLE 32 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Dioxin and Furan Congener Group Emission Data ## Dioxins | Congener
Group | Actual
Concentration | Dry Reference
Concentration | | Wet Reference
Concentration | Emission
Rate | |------------------------------|-------------------------|--------------------------------|----------|--------------------------------|------------------| | | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzo-p-dioxins | 0.013 | 0.023 | 0.018 | 0.019 | 0.35 | | Pentachlorodibenzo-p-dioxins | 0.042 | 0.072 | 0.057 | 0.061 | 1.10 | | Hexachlorodibenzo-p-dioxins | 0.11 | 0.18 | 0.14 | 0.15 | 2.71 | | Heptachlorodibenzo-p-dioxins | 0.086 | 0.15 | 0.12 | 0.12 | 2.22 | | Octachlorodibenzo-p-dioxin | 0.057 | 0.098 | 0.077 | 0.082 | 1.48 | | Total | 0.30 | 0.52 | 0.41 | 0.44 | 7.86 | ## **Furans** | Congener
Group | Actual
Concentration | Dry Reference
Concentration | | Wet Reference
Concentration | Emission
Rate | |---------------------------|-------------------------|--------------------------------|----------|--------------------------------|------------------| | | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | ng/s | | Tetrachlorodibenzo furans | 0.0053 | 0.0090 | 0.0071 | 0.0076 | 0.14 | | Pentachlorodibenzofurans | 0.018 | 0.030 | 0.024 | 0.026 | 0.46 | | Hexachlorodibenzofurans | 0.027 | 0.047 | 0.037 | 0.039 | 0.70 | | Heptachlorodibenzofurans | 0.024 | 0.041 | 0.032 | 0.035 | 0.62 | | Octachlorodibenzofuran | <0.0077 | <0.013 | <0.010 | <0.011 | <0.20 | | Total | <0.082 | <0.14 | <0.11 | <0.12 | <2.12 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 33 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Blank Dioxin and Furan Congener Group Analyses ## **Dioxins** | Congener
Group | Blank
Train | Laboratory
Blank | |------------------------------|----------------|---------------------| | | pg | pg | | Tetrachlorodibenzo-p-dioxins | <3.0 | <3.1 | | Pentachlorodibenzo-p-dioxins | 2.89 | <3.1 | | Hexachlorodibenzo-p-dioxins | <3.2 | <3.4 | | Heptachlorodibenzo-p-dioxins | <5.1 | <3.2 | | Octachlorodibenzo-p-dioxin | <82 | 133 | | Total | <96.2 | <146 | ## **Furans** | Congener
Group | Blank
Train | Laboratory
Blank | |--------------------------|----------------|---------------------| | | pg | pg | | Tetrachlorodibenzofurans | <1.8 | <1.9 | | Pentachlorodibenzofurans | <1.7 | <2.0 | | Hexachlorodibenzofurans | <2.2 | <3.3 | | Heptachlorodibenzofurans | <2.5 | <9.5 | | Octachlorodibenzofuran | 17.9 | 31.5 | | Total | <26.1 | <48.2 | [&]quot;<" indicates that the amount detected is less than the detection limit In these cases the value of the detection limit was used to calculate the total collected. TABLE 34 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Specific Isomer Emission Data Test No. 1 | Specific
Isomer | Total
Collected | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |-------------------------------------|--------------------|---------------|---------------|---------------|---------------|----------| | izoniei | | Concentration | Concentration | Concentration | Concentration | Rate | | | pg | pg/m³ | pg/Rm³* | pg/Rm³** | pg/Rm³* | ng/s | | 2378-tetrachlorodibenzo-p-dioxin | <4.1 | <0.52 | <0.89 | <0.71 | <0.75 | <0.013 | | 12378-pentachlorodibenzo-p-dioxin | <6.7 | <0.85 | <1.46 | <1.15 | <1.22 | <0.022 | | 123478-hexachlorodibenzo-p-dioxin | 18.2 | 2.31 | 3.97 | 3.13 | 3.33 | 0.060 | | 123678-hexachlorodibenzo-p-dioxin | 46.5 | 5,91 | 10.1 | 8.01 | 8.50 | 0.15 | | 123789-hexachlorodibenzo-p-dioxin | 19.3 | 2.45 | 4.20 | 3.32 | 3.53 | 0.063 | | 1234678-heptachlorodibenzo-p-dioxin | 284 | 36.1 | 61.9 | 48.9 | 51.9 | 0.93 | | Octachlorodibenzo-p-dioxin | 311 | 39.5 | 67.8 | 53.6 | 56.8 | 1.02 | | 2378-tetrachlorodibenzofuran | <5.8 | <0.74 | <1.26 | <1.00 | <1.06 | <0.019 | | 12378-pentachlorodibenzofuran | 6.69 | 0.85 | 1.46 | 1.15 | 1.22 | 0.022 | | 23478-pentachlorodibenzofuran | <17 | <2.16 | <3.70 | <2.93 | <3.11 | <0.056 | | 123478-hexachlorodibenzofuran | <20 | <2.54 | <4.36 | <3.44 | <3.66 | <0.066 | | 123678-hexachlorodibenzofuran | 26.6 | 3.38 | 5.80 | 4.58 | 4.86 | 0.088 | | 234678-hexachlorodibenzofuran | 44.6 | 5.66 | 9.72 | 7.68 | 8.15 | 0.15 | | 123789-hexachlorodibenzofuran | 11.2 | 1.42 | 2.44 | 1.93 | 2.05 | 0.037 | | 1234678-heptachlorodibenzofuran | 116 | 14.7 | 25.3 | 20.0 | 21.2 | 0.38 | | 1234789-heptachlorodibenzofuran | <18 | <2.29 | <3.92 | <3.10 | <3.29 | <0.059 | | Octachlorodibenzofuran | <43 | <5.46 | <9.37 | <7.41 | <7.86 | <0.14 | | PCB 81 | <27 | <3.43 | <5.88 | <4.65 | <4.93 | <0.089 | | PCB 77 | 70.8 | 8.99 | 15.4 | 12.2 | 12.9 | 0.23 | | PCB 123 | 25.7 | 3.26 | 5.60 | 4.43 | 4.70 | 0.085 | | PCB 118 | 1780 | 226 | 388 | 307 | 325 | 5.86 | | PCB 114 | 40.9 | 5.20 | 8.91 | 7.04 | 7.48 | 0.13 | | PCB 105 | 456 | 57.9 | 99.3 | 78.5 | 83.3 | 1.50 | | PCB 126 | <15 | <1.91 | <3.27 | <2.58 | <2.74 | < 0.049 | | PCB 167 | 27.6 | 3.51 | 6.01 | 4.75 | 5.04 | 0.091 | | PCB 156/157 | 79.5 | 10.1 | 17.3 | 13.7 | 14.5 | 0.26 | | PCB 169 | <8.3 | <1.05 | <1.81 | <1.43 | <1.52 | <0.027 | | PCB 189 | 18.9 | 2.40 | 4.12 | 3.26 | 3.45 | 0.062 | | Total Dioxins & Furans Only | <999 | <127 | <218 | <172 | <183 | <3.29 | | Total PCBs Only | <2550 | <324 | <555 | <439 | <466 | <8.39 | | Total Dioxins & Furans and PCBs | <3548 | <451 | <773 | <611 | <649 | <11.7 | | Dry Gas Volume Sampled (Rm ³ *): | 4.590 | |---|-------| | Actual Flowrate (m³/s) : | 25.9 | | Dry Reference Flowrate (Rm³/s*) : | 15.1 | | Dry Adjusted Flowrate (Rm³/s**): | 19.1 | | Wet Reference Flowrate (Rm³/s*): | 18.0 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 35 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Specific Isomer Emission Data Test No. 2 | Specific | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |-------------------------------------|-----------|---------------|---------------|---------------|---------------|----------| | Isomer | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | pg | pg/m³ | pg/Rm³* | pg/Rm³** | pg/Rm³* | ng/s | | 2378-tetrachlorodibenzo-p-dioxin | <5.9 | <0.74 | <1.27 | <1.00 | <1.06 | <0.019 | | 12378-pentachlorodibenzo-p-dioxin | <7.0 | <0.87 | <1.50 | <1.19 | <1.26 | <0.023 | | 123478-hexachlorodibenzo-p-dioxin | <23 | <2.87 | <4.93 | <3.90 | <4.13 | < 0.076 | | 123678-hexachlorodibenzo-p-dioxin | <51 | <6.36 | <10.9 | <8.64 | <9.16 | <0.17 | | 123789-hexachlorodibenzo-p-dioxin | <21 | <2.62 | <4.50 | <3.56 | <3.77 | < 0.069 | | 1234678-heptachlorodibenzo-p-dioxin | 333 | 41.5 | 71.4 | 56.4 | 59.8 | 1.10 | | Octachlorodibenzo-p-dioxin | 712 | 88.8 | 153 | 121 | 128 | 2.35 | | 2378-tetrachlorodibenzofuran | <13 | <1.62 | <2.79 | <2.20 | <2.33 | <0.043 | | 12378-pentachlorodibenzofuran | <8.6 | <1.07 | <1.84 | <1.46 | <1.54 | <0.028 | | 23478-pentachlorodibenzofuran | 24.8 | 3.09 | 5.32 | 4.20 | 4.45 | 0.082 | | 123478-hexachlorodibenzofuran | 25.2 | 3.14 | 5.41 | 4.27 | 4.52 | 0.083 | | 123678-hexachlorodibenzofuran | <20 | <2.49 | <4.29 | <3.39 | <3.59 | < 0.066 | | 234678-hexachlorodibenzofuran | 44.6 | 5.56 | 9.57 | 7.56 | 8.01 | 0.15 | | 123789-hexachlorodibenzofuran | <12 | <1.50 | <2.57 | <2.03 | <2.15 | < 0.040 | | 1234678-heptachlorodibenzofuran | 155 | 19.3 | 33.2 | 26.3 | 27.8 | 0.51 | | 1234789-heptachlorodibenzofuran | <17 | <2.12 | <3.65 |
<2.88 | <3.05 | <0.056 | | Octachlorodibenzofuran | <88 | <11.0 | <18.9 | <14.9 | <15.8 | <0.29 | | PCB 81 | <24 | <2.99 | <5.15 | <4.07 | <4.31 | <0.079 | | PCB 77 | 226 | 28.2 | 48.5 | 38.3 | 40.6 | 0.75 | | PCB 123 | 84.7 | 10.6 | 18.2 | 14.3 | 15.2 | 0.28 | | PCB 118 | 4710 | 587 | 1010 | 798 | 846 | 15.6 | | PCB 114 | 118 | 14.7 | 25.3 | 20.0 | 21.2 | 0.39 | | PCB 105 | 1350 | 168 | 290 | 229 | 242 | 4.46 | | PCB 126 | <26 | <3.24 | <5.58 | <4.40 | <4.67 | <0.086 | | PCB 167 | <50 | <6.23 | <10.7 | <8.47 | <8.98 | < 0.17 | | PCB 156/157 | 142 | 17.7 | 30.5 | 24.1 | 25.5 | 0.47 | | PCB 169 | <17 | <2.12 | <3.65 | <2.88 | <3.05 | < 0.056 | | PCB 189 | 15.0 | 1.87 | 3.22 | 2.54 | 2.69 | 0.050 | | Total Dioxins & Furans Only | <1561 | <195 | <335 | <264 | <280 | <5.16 | | Total PCBs Only | <6763 | <843 | <1451 | <1146 | <1214 | <22.3 | | Total Dioxins & Furans and PCBs | <8324 | <1038 | <1785 | <1410 | <1494 | <27.5 | | Dry Gas Volume Sampled (Rm ³ *): | 4.662 | |---|-------| | Actual Flowrate (m³/s) : | 26.5 | | Dry Reference Flowrate (Rm³/s*): | 15.4 | | Dry Adjusted Flowrate (Rm³/s**): | 19.5 | | Wet Reference Flowrate (Rm³/s*) : | 18.4 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 36 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Specific Isomer Emission Data Test No. 3 | Specific
Isomer | Total
Collected | Actual Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |-------------------------------------|--------------------|----------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | pg | pg/m³ | pg/Rm³* | pg/Rm³** | pg/Rm³* | ng/s | | 2378-tetrachlorodibenzo-p-dioxin | <4.3 | <0.58 | <0.97 | <0.76 | <0.83 | <0.014 | | 12378-pentachlorodibenzo-p-dioxin | 6.19 | 0.83 | 1.39 | 1.10 | 1.19 | 0.020 | | 123478-hexachlorodibenzo-p-dioxin | <17 | <2.28 | <3.82 | <3.02 | <3.27 | < 0.056 | | 123678-hexachlorodibenzo-p-dioxin | 42.2 | 5.67 | 9.49 | 7.50 | 8.11 | 0.14 | | 123789-hexachlorodibenzo-p-dioxin | <20 | <2.69 | <4.50 | <3.55 | <3.84 | <0.066 | | 1234678-heptachlorodibenzo-p-dioxin | 263 | 35.3 | 59.1 | 46.7 | 50.5 | 0.87 | | Octachlorodibenzo-p-dioxin | 326 | 43.8 | 73.3 | 57.9 | 62.6 | 1.08 | | 2378-tetrachlorodibenzofuran | <4.0 | <0.54 | <0.90 | <0.71 | <0.77 | <0.013 | | 12378-pentachlorodibenzofuran | 9.13 | 1.23 | 2.05 | 1.62 | 1.75 | 0.030 | | 23478-pentachlorodibenzofuran | <14 | <1.88 | <3.15 | <2.49 | <2.69 | < 0.046 | | 123478-hexachlorodibenzofuran | <19 | <2.55 | <4.27 | <3.38 | <3.65 | < 0.063 | | 123678-hexachlorodibenzofuran | <18 | <2.42 | <4.05 | <3.20 | <3.46 | < 0.059 | | 234678-hexachlorodibenzofuran | 37.0 | 4.97 | 8.32 | 6.57 | 7.11 | 0.12 | | 123789-hexachlorodibenzofuran | <23 | <3.09 | <5.17 | <4.09 | <4.42 | < 0.076 | | 1234678-heptachlorodibenzofuran | 104 | 14.0 | 23.4 | 18.5 | 20.0 | 0.34 | | 1234789-heptachlorodibenzofuran | 15.0 | 2.02 | 3.37 | 2.67 | 2.88 | 0.050 | | Octachlorodibenzofuran | <49 | <6.58 | <11.0 | <8.71 | <9.41 | <0.16 | | PCB 81 | <25 | <3.36 | <5.62 | <4.44 | <4.80 | <0.083 | | PCB 77 | 194 | 26.1 | 43.6 | 34.5 | 37.3 | 0.64 | | PCB 123 | 76.9 | 10.3 | 17.3 | 13.7 | 14.8 | 0.25 | | PCB 118 | 5080 | 682 | 1142 | 903 | 976 | 16.8 | | PCB 114 | 144 | 19.3 | 32.4 | 25.6 | 27.7 | 0.48 | | PCB 105 | 2240 | 301 | 504 | 398 | 430 | 7.40 | | PCB 126 | <39 | <5.24 | <8.77 | <6.93 | <7.49 | <0.13 | | PCB 167 | 177 | 23.8 | 39.8 | 31.4 | 34.0 | 0.58 | | PCB 156/157 | 617 | 82.9 | 139 | 110 | 119 | 2.04 | | PCB 169 | <18 | <2.42 | <4.05 | <3.20 | <3.46 | <0.059 | | PCB 189 | 40.9 | 5.49 | 9.20 | 7.27 | 7.86 | 0.14 | | Total Dioxins & Furans Only | <971 | <130 | <218 | <172 | <187 | <3.21 | | Total PCBs Only | <8652 | <1162 | <1945 | <1537 | <1662 | <28.6 | | Total Dioxins & Furans and PCBs | <9623 | <1293 | <2163 | <1710 | <1849 | <31.8 | | Dry Gas Volume Sampled (Rm³*): | 4.448 | |---|-------| | Actual Flowrate (m³/s) : | 24.6 | | Dry Reference Flowrate (Rm³/s*): | 14.7 | | Dry Adjusted Flowrate (Rm ³ /s**): | 18.6 | | Wet Reference Flowrate (Rm³/s*): | 17.2 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 37 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Specific Isomer Actual Concentrations | Specific | | Actual Con | centration | | Coefficient | |-------------------------------------|------------|------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | pg/m³ | pg/m³ | pg/m³ | pg/m³ | % | | 2378-tetrachlorodibenzo-p-dioxin | <0.52 | <0.74 | <0.58 | <0.61 | 18.2 | | 12378-pentachlorodibenzo-p-dioxin | <0.85 | <0.87 | 0.83 | <0.85 | 2.4 | | 123478-hexachlorodibenzo-p-dioxin | 2.31 | <2.87 | <2.28 | <2.49 | 13.2 | | 123678-hexachlorodibenzo-p-dioxin | 5.91 | <6.36 | 5.67 | <5.98 | 5.8 | | 123789-hexachlorodibenzo-p-dioxin | 2.45 | <2.62 | <2.69 | <2.59 | 4.7 | | 1234678-heptachlorodibenzo-p-dioxin | 36.1 | 41.5 | 35.3 | 37.6 | 9.0 | | Octachlorodibenzo-p-dioxin | 39.5 | 88.8 | 43.8 | 57.4 | 47.6 | | 2378-tetrachlorodibenzofuran | <0.74 | <1.62 | <0.54 | <0.96 | 59.7 | | 12378-pentachlorodibenzofuran | 0.85 | <1.07 | 1.23 | <1.05 | 18.0 | | 23478-pentachlorodibenzofuran | <2.16 | 3.09 | <1.88 | <2.38 | 26.7 | | 123478-hexachlorodibenzofuran | <2.54 | 3.14 | <2.55 | <2.74 | 12.5 | | 123678-hexachlorodibenzofuran | 3.38 | <2.49 | <2.42 | <2.76 | 19.3 | | 234678-hexachlorodibenzofuran | 5.66 | 5.56 | 4.97 | 5.40 | 6.9 | | 123789-hexachlorodibenzofuran | 1.42 | <1.50 | <3.09 | <2.00 | 47.0 | | 1234678-heptachlorodibenzofuran | 14.7 | 19.3 | 14.0 | 16.0 | 18.1 | | 1234789-heptachlorodibenzofuran | <2.29 | <2.12 | 2.02 | <2.14 | 6.4 | | Octachlorodibenzofuran | <5.46 | <11.0 | <6.58 | <7.67 | 37.9 | | PCB 81 | <3.43 | <2.99 | <3.36 | <3.26 | 7.2 | | PCB 77 | 8.99 | 28.2 | 26.1 | 21.1 | 49.9 | | PCB 123 | 3.26 | 10.6 | 10.3 | 8.05 | 51.5 | | PCB 118 | 226 | 587 | 682 | 499 | 48.3 | | PCB 114 | 5.20 | 14.7 | 19.3 | 13.1 | 55.1 | | PCB 105 | 57.9 | 168 | 301 | 176 | 69.2 | | PCB 126 | <1.91 | <3.24 | <5.24 | <3.46 | 48.5 | | PCB 167 | 3.51 | <6.23 | 23.8 | <11.2 | 98.5 | | PCB 156/157 | 10.1 | 17.7 | 82.9 | 36.9 | 108 | | PCB 169 | <1.05 | <2.12 | <2.42 | <1.86 | 38.5 | | PCB 189 | 2.40 | 1.87 | 5.49 | 3.26 | 60.1 | | Total Dioxins & Furans Only | <127 | <195 | <130 | <151 | 25.3 | | Total PCBs Only | <324 | <843 | <1162 | <776 | 54.5 | | Total Dioxins & Furans and PCBs | <451 | <1038 | <1293 | <927 | 46.6 | TABLE 38 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Specific Isomer Dry Reference Concentrations | Specific | C | ry Reference | Concentration |) | Coefficient | |-------------------------------------|------------|--------------|---------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | pg/Rm³* | pg/Rm³* | pg/Rm³* | pg/Rm³* | % | | 2378-tetrachlorodibenzo-p-dioxin | <0.89 | <1.27 | <0.97 | <1.04 | 18.9 | | 12378-pentachlorodibenzo-p-dioxin | <1.46 | <1.50 | 1.39 | <1.45 | 3.8 | | 123478-hexachlorodibenzo-p-dioxin | 3.97 | <4.93 | <3.82 | <4.24 | 14.3 | | 123678-hexachlorodibenzo-p-dioxin | 10.1 | <10.9 | 9.49 | <10.2 | 7.1 | | 123789-hexachlorodibenzo-p-dioxin | 4.20 | <4.50 | <4.50 | <4.40 | 3.9 | | 1234678-heptachlorodibenzo-p-dioxin | 61.9 | 71.4 | 59.1 | 64.1 | 10.1 | | Octachlorodibenzo-p-dioxin | 67.8 | 153 | 73.3 | 97.9 | 48.5 | | 2378-tetrachlorodibenzofuran | <1.26 | <2.79 | <0.90 | <1.65 | 60.7 | | 12378-pentachlorodibenzofuran | 1.46 | <1.84 | 2.05 | <1.78 | 16.9 | | 23478-pentachlorodibenzofuran | <3.70 | 5.32 | <3.15 | <4.06 | 27.8 | | 123478-hexachlorodibenzofuran | <4.36 | 5.41 | <4.27 | <4.68 | 13.5 | | 123678-hexachlorodibenzofuran | 5.80 | <4.29 | <4.05 | <4.71 | 20.1 | | 234678-hexachlorodibenzofuran | 9.72 | 9.57 | 8.32 | 9.20 | 8.3 | | 123789-hexachlorodibenzofuran | 2.44 | <2.57 | <5.17 | <3.39 | 45.3 | | 1234678-heptachlorodibenzofuran | 25.3 | 33.2 | 23.4 | 27.3 | 19.2 | | 1234789-heptachlorodibenzofuran | <3.92 | <3.65 | 3.37 | <3.65 | 7.5 | | Octachlorodibenzofuran | <9.37 | <18.9 | <11.0 | <13.1 | 38.8 | | PCB 81 | <5.88 | <5.15 | <5.62 | <5.55 | 6.7 | | PCB 77 | 15.4 | 48.5 | 43.6 | 35.8 | 49.8 | | PCB 123 | 5.60 | 18.2 | 17.3 | 13.7 | 51.3 | | PCB 118 | 388 | 1010 | 1142 | 847 | 47.6 | | PCB 114 | 8.91 | 25.3 | 32.4 | 22.2 | 54.2 | | PCB 105 | 99.3 | 290 | 504 | 298 | 68.0 | | PCB 126 | <3.27 | <5.58 | <8.77 | <5.87 | 47.0 | | PCB 167 | 6.01 | <10.7 | 39.8 | <18.8 | 97.1 | | PCB 156/157 | 17.3 | 30.5 | 139 | 62.2 | 107 | | PCB 169 | <1.81 | <3.65 | <4.05 | <3.17 | 37.7 | | PCB 189 | 4.12 | 3.22 | 9.20 | 5.51 | 58.5 | | Total Dioxins & Furans Only | <218 | <335 | <218 | <257 | 26.3 | | Total PCBs Only | <555 | <1451 | <1945 | <1317 | 53.5 | | Total Dioxins & Furans and PCBs | <773 | <1785 | <2163 | <1574 | 45.7 | ^{*} At 25°C and 1 atmosphere TABLE 39 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Specific Isomer Dry Adjusted Concentrations | Specific | 1 | Coefficient | | | | |-------------------------------------|------------|-------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | pg/Rm³* | pg/Rm³* | pg/Rm³* | pg/Rm³* | % | | 2378-tetrachlorodibenzo-p-dioxin | <0.71 | <1.00 | <0.76 | <0.82 | 18.9 | | 12378-pentachlorodibenzo-p-dioxin | <1.15 | <1.19 | 1.10 | <1.15 | 3.8 | | 123478-hexachlorodibenzo-p-dioxin | 3.13 | <3.90 | <3.02 | <3.35 | 14.2 | | 123678-hexachlorodibenzo-p-dioxin | 8.01 | <8.64 | 7.50 | <8.05 | 7.1 | | 123789-hexachlorodibenzo-p-dioxin | 3.32 | <3.56 | <3.55 | <3.48 | 3.8 | | 1234678-heptachlorodibenzo-p-dioxin | 48.9 | 56.4 | 46.7 |
50.7 | 10.0 | | Octachlorodibenzo-p-dioxin | 53.6 | 121 | 57.9 | 77.4 | 48.5 | | 2378-tetrachlorodibenzofuran | <1.00 | <2.20 | <0.71 | <1.30 | 60.7 | | 12378-pentachlorodibenzofuran | 1.15 | <1.46 | 1.62 | <1.41 | 16.9 | | 23478-pentachlorodibenzofuran | <2.93 | 4.20 | <2.49 | <3.21 | 27.8 | | 123478-hexachlorodibenzofuran | <3.44 | 4.27 | <3.38 | <3.70 | 13.4 | | 123678-hexachlorodibenzofuran | 4.58 | <3.39 | <3.20 | <3.72 | 20.1 | | 234678-hexachlorodibenzofuran | 7.68 | 7.56 | 6.57 | 7.27 | 8.3 | | 123789-hexachlorodibenzofuran | 1.93 | <2.03 | <4.09 | <2.68 | 45.4 | | 1234678-heptachlorodibenzofuran | 20.0 | 26.3 | 18.5 | 21.6 | 19.1 | | 1234789-heptachlorodibenzofuran | <3.10 | <2.88 | 2.67 | <2.88 | 7.5 | | Octachlorodibenzofuran | <7.41 | <14.9 | <8.71 | <10.3 | 38.8 | | PCB 81 | <4.65 | <4.07 | <4.44 | <4.39 | 6.8 | | PCB 77 | 12.2 | 38.3 | 34.5 | 28.3 | 49.8 | | PCB 123 | 4.43 | 14.3 | 13.7 | 10.8 | 51.2 | | PCB 118 | 307 | 798 | 903 | 669 | 47.6 | | PCB 114 | 7.04 | 20.0 | 25.6 | 17.5 | 54.2 | | PCB 105 | 78.5 | 229 | 398 | 235 | 68.0 | | PCB 126 | <2.58 | <4.40 | <6.93 | <4.64 | 47.0 | | PCB 167 | 4.75 | <8.47 | 31.4 | <14.9 | 97.1 | | PCB 156/157 | 13.7 | 24.1 | 110 | 49.1 | 107 | | PCB 169 | <1.43 | <2.88 | <3.20 | <2.50 | 37.7 | | PCB 189 | 3.26 | 2.54 | 7.27 | 4.35 | 58.5 | | Total Dioxins & Furans Only | <172 | <264 | <172 | <203 | 26.2 | | Total PCBs Only | <439 | <1146 | <1537 | <1041 | 53.5 | | Total Dioxins & Furans and PCBs | <611 | <1410 | <1710 | <1244 | 45.7 | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 40 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Specific Isomer Wet Reference Concentrations | Specific | V | Coefficient | | | | |-------------------------------------|------------|-------------|------------|----------------------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | pg/Rm³* | pg/Rm³* | pg/Rm³* | pg/Rm ³ * | % | | 2378-tetrachlorodibenzo-p-dioxin | <0.75 | <1.06 | <0.83 | <0.88 | 18.4 | | 12378-pentachlorodibenzo-p-dioxin | <1.22 | <1.26 | 1.19 | <1.22 | 2.8 | | 123478-hexachlorodibenzo-p-dioxin | 3.33 | <4.13 | <3.27 | <3.57 | 13.5 | | 123678-hexachlorodibenzo-p-dioxin | 8.50 | <9.16 | 8.11 | <8.59 | 6.2 | | 123789-hexachlorodibenzo-p-dioxin | 3.53 | <3.77 | <3.84 | <3.71 | 4.4 | | 1234678-heptachlorodibenzo-p-dioxin | 51.9 | 59.8 | 50.5 | 54.1 | 9.2 | | Octachlorodibenzo-p-dioxin | 56.8 | 128 | 62.6 | 82.4 | 47.8 | | 2378-tetrachlorodibenzofuran | <1.06 | <2.33 | <0.77 | <1.39 | 60.0 | | 12378-pentachlorodibenzofuran | 1.22 | <1.54 | 1.75 | <1.51 | 17.8 | | 23478-pentachlorodibenzofuran | <3.11 | 4.45 | <2.69 | <3.42 | 27.0 | | 123478-hexachlorodibenzofuran | <3.66 | 4.52 | <3.65 | <3.94 | 12.8 | | 123678-hexachlorodibenzofuran | 4.86 | <3.59 | <3.46 | <3.97 | 19.5 | | 234678-hexachlorodibenzofuran | 8.15 | 8.01 | 7.11 | 7.76 | 7.3 | | 123789-hexachlorodibenzofuran | 2.05 | <2.15 | <4.42 | <2.87 | 46.6 | | 1234678-heptachlorodibenzofuran | 21.2 | 27.8 | 20.0 | 23.0 | 18.4 | | 1234789-heptachlorodibenzofuran | <3.29 | <3.05 | 2.88 | <3.07 | 6.7 | | Octachlorodibenzofuran | <7.86 | <15.8 | <9.41 | <11.0 | 38.2 | | PCB 81 | <4.93 | <4.31 | <4.80 | <4.68 | 7.1 | | PCB 77 | 12.9 | 40.6 | 37.3 | 30.3 | 49.9 | | PCB 123 | 4.70 | 15.2 | 14.8 | 11.6 | 51.4 | | PCB 118 | 325 | 846 | 976 | 716 | 48.1 | | PCB 114 | 7.48 | 21.2 | 27.7 | 18.8 | 54.9 | | PCB 105 | 83.3 | 242 | 430 | 252 | 68.9 | | PCB 126 | <2.74 | <4.67 | <7.49 | <4.97 | 48.1 | | PCB 167 | 5.04 | <8.98 | 34.0 | <16.0 | 98.1 | | PCB 156/157 | 14.5 | 25.5 | 119 | 52.9 | 108 | | PCB 169 | <1.52 | <3.05 | <3.46 | <2.68 | 38.3 | | PCB 189 | 3.45 | 2.69 | 7.86 | 4.67 | 59.7 | | Total Dioxins & Furans Only | <183 | <280 | <187 | <216 | 25.6 | | Total PCBs Only | <466 | <1214 | <1662 | <1114 | 54.2 | | Total Dioxins & Furans and PCBs | <649 | <1494 | <1849 | <1331 | 46.3 | ^{*} At 25°C and 1 atmosphere TABLE 41 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Specific Isomer Emission Rates | Specific | | | Coefficient | | | |-------------------------------------|------------|------------|-------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/s | ng/s | ng/s | ng/s | % | | 2378-tetrachlorodibenzo-p-dioxin | <0.013 | <0.019 | <0.014 | <0.016 | 20.8 | | 12378-pentachlorodibenzo-p-dioxin | <0.022 | <0.023 | 0.020 | <0.022 | 6.1 | | 123478-hexachlorodibenzo-p-dioxin | 0.060 | <0.076 | <0.056 | <0.064 | 16.4 | | 123678-hexachlorodibenzo-p-dioxin | 0.15 | <0.17 | 0.14 | <0.15 | 9.4 | | 123789-hexachlorodibenzo-p-dioxin | 0.063 | <0.069 | <0.066 | <0.066 | 4.4 | | 1234678-heptachlorodibenzo-p-dioxin | 0.93 | 1.10 | 0.87 | 0.97 | 12.3 | | Octachlorodibenzo-p-dioxin | 1.02 | 2.35 | 1.08 | 1.48 | 50.7 | | 2378-tetrachlorodibenzofuran | <0.019 | <0.043 | <0.013 | <0.025 | 62.8 | | 12378-pentachlorodibenzofuran | 0.022 | <0.043 | 0.030 | <0.023 | 16.0 | | 23478-pentachlorodibenzofuran | < 0.056 | 0.028 | <0.030 | <0.027 | 30.0 | | 123478-hexachlorodibenzofuran | <0.066 | 0.082 | <0.040 | <0.001 | 15.6 | | 123678-hexachlorodibenzofuran | 0.088 | < 0.065 | <0.059 | <0.071 | 20.6 | | 234678-hexachlorodibenzofuran | 0.15 | 0.15 | 0.12 | 0.14 | 10.3 | | 123789-hexachlorodibenzofuran | 0.037 | <0.040 | <0.12 | <0.051 | 43.0 | | 1234678-heptachlorodibenzofuran | 0.38 | 0.51 | 0.34 | 0.41 | 21.4 | | 1234789-heptachlorodibenzofuran | <0.059 | <0.056 | 0.050 | <0.055 | 9.0 | | Octachlorodibenzofuran | <0.14 | <0.29 | <0.16 | <0.20 | 40.9 | | PCB 81 | <0.089 | <0.079 | <0.083 | <0.084 | 5.8 | | PCB 77 | 0.23 | 0.75 | 0.64 | 0.54 | 50.2 | | PCB 123 | 0.085 | 0.28 | 0.25 | 0.21 | 51.5 | | PCB 118 | 5.86 | 15.6 | 16.8 | 12.7 | 47.0 | | PCB 114 | 0.13 | 0.39 | 0.48 | 0.33 | 53.2 | | PCB 105 | 1.50 | 4.46 | 7.40 | 4.45 | 66.3 | | PCB 126 | < 0.049 | <0.086 | <0.13 | <0.088 | 45.2 | | PCB 167 | 0.091 | <0.17 | 0.58 | <0.28 | 95.1 | | PCB 156/157 | 0.26 | 0.47 | 2.04 | 0.92 | 105 | | PCB 169 | <0.027 | <0.056 | < 0.059 | <0.048 | 37.1 | | PCB 189 | 0.062 | 0.050 | 0.14 | 0.082 | 56.2 | | Total Dioxins & Furans Only | <3.29 | <5.16 | <3.21 | <3.88 | 28.4 | | Total PCBs Only | <8.39 | <22.3 | <28.6 | <19.8 | 52.3 | | Total Dioxins & Furans and PCBs | <11.7 | <27.5 | <31.8 | <23.7 | 44.8 | TABLE 42 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Dioxin and Furan Specific Isomer Emission Data | Specific | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |-------------------------------------|---------------|---------------|---------------|---------------|----------| | Isomer | Concentration | Concentration | Concentration | Concentration | Rate | | | pg/m³ | pg/Rm³* | pg/Rm³** | pg/Rm³* | ng/s | | 2378-tetrachlorodibenzo-p-dioxin | <0.61 | <1.04 | <0.82 | <0.88 | <0.016 | | 12378-pentachlorodibenzo-p-dioxin | <0.85 | <1.45 | <1.15 | <1.22 | <0.022 | | 123478-hexachlorodibenzo-p-dioxin | <2.49 | <4.24 | <3.35 | <3.57 | <0.064 | | 123678-hexachlorodibenzo-p-dioxin | <5.98 | <10.2 | <8.05 | <8.59 | <0.15 | | 123789-hexachlorodibenzo-p-dioxin | <2.59 | <4.40 | <3.48 | <3.71 | < 0.066 | | 1234678-heptachlorodibenzo-p-dioxin | 37.6 | 64.1 | 50.7 | 54.1 | 0.97 | | Octachlorodibenzo-p-dioxin | 57.4 | 97.9 | 77.4 | 82.4 | 1.48 | | 2378-tetrachlorodibenzofuran | <0.96 | <1.65 | <1.30 | <1.39 | <0.025 | | 12378-pentachlorodibenzofuran | <1.05 | <1.78 | <1.41 | <1.51 | <0.027 | | 23478-pentachlorodibenzofuran | <2.38 | <4.06 | <3.21 | <3.42 | <0.061 | | 123478-hexachlorodibenzofuran | <2.74 | <4.68 | <3.70 | <3.94 | <0.071 | | 123678-hexachlorodibenzofuran | <2.76 | <4.71 | <3.72 | <3.97 | < 0.071 | | 234678-hexachlorodibenzofuran | 5.40 | 9.20 | 7.27 | 7.76 | 0.14 | | 123789-hexachlorodibenzofuran | <2.00 | <3.39 | <2.68 | <2.87 | < 0.051 | | 1234678-heptachlorodibenzofuran | 16.0 | 27.3 | 21.6 | 23.0 | 0.41 | | 1234789-heptachlorodibenzofuran | <2.14 | <3.65 | <2.88 | <3.07 | <0.055 | | Octachlorodibenzofuran | <7.67 | <13.1 | <10.3 | <11.0 | <0.20 | | PCB 81 | <3.26 | <5.55 | <4.39 | <4.68 | <0.084 | | PCB 77 | 21.1 | 35.8 | 28.3 | 30.3 | 0.54 | | PCB 123 | 8.05 | 13.7 | 10.8 | 11.6 | 0.21 | | PCB 118 | 499 | 847 | 669 | 716 | 12.7 | | PCB 114 | 13.1 | 22.2 | 17.5 | 18.8 | 0.33 | | PCB 105 | 176 | 298 | 235 | 252 | 4.45 | | PCB 126 | <3.46 | <5.87 | <4.64 | <4.97 | <0.088 | | PCB 167 | <11.2 | <18.8 | <14.9 | <16.0 | <0.28 | | PCB 156/157 | 36.9 | 62.2 | 49.1 | 52.9 | 0.92 | | PCB 169 | <1.86 | <3.17 | <2.50 | <2.68 | <0.048 | | PCB 189 | 3.26 | 5.51 | 4.35 | 4.67 | 0.082 | | Total Dioxins & Furans Only | <151 | <257 | <203 | <216 | <3.88 | | Total PCBs Only | <776 | <1317 | <1041 | <1114 | <19.8 | | Total Dioxins & Furans and PCBs | <927 | <1574 | <1244 | <1331 | <23.7 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 43 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Blank Dioxin and Furan Specific Isomer Analyses | Specific | Blank | Laboratory | |-------------------------------------|--------|------------| | Isomer | Train | Blank | | | pg | pg | | 2378-tetrachlorodibenzo-p-dioxin | <3.0 | <3.1 | | 12378-pentachlorodibenzo-p-dioxin | <2.3 | <3.1 | | 123478-hexachlorodibenzo-p-dioxin | <3.2 | <3.4 | | 123678-hexachlorodibenzo-p-dioxin | <2.8 | <3.3 | | 123789-hexachlorodibenzo-p-dioxin | <3.1 | <3.3 | | 1234678-heptachlorodibenzo-p-dioxin | <16 | <15 | | Octachlorodibenzo-p-dioxin | <82 | 133 | | 2378-tetrachlorodibenzofuran | <1.8 | <1.9 | | 12378-pentachlorodibenzofuran | <1.7 | <2.0 | | 23478-pentachlorodibenzofuran | <1.6 | <1.9 | | 123478-hexachlorodibenzofuran | <1.8 | <2.7 | | 123678-hexachlorodibenzofuran | <1.8 | <2.6 | | 234678-hexachlorodibenzofuran | <1.9 | <2.9 | | 123789-hexachlorodibenzofuran | <2.2 | <3.3 | | 1234678-heptachlorodibenzofuran | <3.1 | <7.4 | | 1234789-heptachlorodibenzofuran | <2.5 | <9.5 | | Octachlorodibenzofuran | 17.9 | 31.5 | | PCB 81
| <22 | <12 | | PCB 77 | 33.2 | <12 | | PCB 123 | <29 | <14 | | PCB 118 | 680 | 18.3 | | PCB 114 | <23 | <14 | | PCB 105 | 340 | <14 | | PCB 126 | <26 | <17 | | PCB 167 | 51.4 | <11 | | PCB 156/157 | 144 | <16 | | PCB 169 | <22 | <13 | | PCB 189 | 20.2 | <10 | | Total Dioxins & Furans Only | <148.7 | <229.9 | | Total PCBs Only | <1391 | <151 | | Total Dioxins & Furans and PCBs | <1540 | <381 | [&]quot;<" indicates that the amount detected is less than the detection limit In these cases the value of the detection limit was used to calculate the total collected. TABLE 44 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Toxicity Equivalent Actual Concentrations | Specific | Toxicity | | Actual Con | centration | | |-------------------------------------|-------------|------------|------------|------------|-----------| | Isomer | Equivalency | Test No. 1 | Test No. 2 | Test No. 3 | Average | | | Factor | pg TEQ/m³ | pg TEQ/m³ | pg TEQ/m³ | pg TEQ/m³ | | 2378-tetrachlorodibenzo-p-dioxin | 1.00000 | <0.52 | <0.74 | <0.58 | <0.61 | | 12378-pentachlorodibenzo-p-dioxin | 1.00000 | <0.85 | <0.87 | 0.83 | <0.85 | | 123478-hexachlorodibenzo-p-dioxin | 0.10000 | 0.23 | <0.29 | <0.23 | <0.25 | | 123678-hexachlorodibenzo-p-dioxin | 0.10000 | 0.59 | <0.64 | 0.57 | < 0.60 | | 123789-hexachlorodibenzo-p-dioxin | 0.10000 | 0.25 | <0.26 | <0.27 | <0.26 | | 1234678-heptachlorodibenzo-p-dioxin | 0.01000 | 0.36 | 0.42 | 0.35 | 0.38 | | Octachlorodibenzo-p-dioxin | 0.00030 | 0.012 | 0.027 | 0.013 | 0.017 | | 2378-tetrachlorodibenzofuran | 0.10000 | <0.074 | <0.16 | <0.054 | <0.096 | | 12378-pentachlorodibenzofuran | 0.03000 | 0.025 | <0.032 | 0.037 | < 0.031 | | 23478-pentachlorodibenzofuran | 0.30000 | <0.65 | 0.93 | <0.56 | <0.71 | | 123478-hexachlorodibenzofuran | 0.10000 | <0.25 | 0.31 | <0.26 | <0.27 | | 123678-hexachlorodibenzofuran | 0.10000 | 0.34 | <0.25 | <0.24 | <0.28 | | 234678-hexachlorodibenzofuran | 0.10000 | 0.57 | 0.56 | 0.50 | 0.54 | | 123789-hexachlorodibenzofuran | 0.10000 | 0.14 | <0.15 | <0.31 | <0.20 | | 1234678-heptachlorodibenzofuran | 0.01000 | 0.15 | 0.19 | 0.14 | 0.16 | | 1234789-heptachlorodibenzofuran | 0.01000 | <0.023 | <0.021 | 0.020 | <0.021 | | Octachlorodibenzofuran | 0.00030 | <0.0016 | <0.0033 | <0.0020 | <0.0023 | | PCB 81 | 0.00030 | <0.0010 | <0.00090 | <0.0010 | <0.00098 | | PCB 77 | 0.00010 | 0.00090 | 0.0028 | 0.0026 | 0.0021 | | PCB 123 | 0.00003 | 0.000098 | 0.00032 | 0.00031 | 0.00024 | | PCB 118 | 0.00003 | 0.0068 | 0.018 | 0.020 | 0.015 | | PCB 114 | 0.00003 | 0.00016 | 0.00044 | 0.00058 | 0.00039 | | PCB 105 | 0.00003 | 0.0017 | 0.0050 | 0.0090 | 0.0053 | | PCB 126 | 0.10000 | <0.19 | <0.32 | <0.52 | <0.35 | | PCB 167 | 0.00003 | 0.00011 | <0.00019 | 0.00071 | < 0.00034 | | PCB 156/157 | 0.00003 | 0.00030 | 0.00053 | 0.0025 | 0.0011 | | PCB 169 | 0.03000 | <0.032 | <0.064 | <0.073 | <0.056 | | PCB 189 | 0.00003 | 0.000072 | 0.000056 | 0.00016 | 0.000098 | | Total Dioxins & Furans Only | • | <5.03 | <5.84 | <4.96 | <5.28 | | Total PCBs Only | | <0.23 | <0.42 | <0.63 | < 0.43 | | Total Dioxins & Furans and PCBs | | <5.26 | <6.26 | <5.59 | <5.71 | TABLE 45 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Toxicity Equivalent Dry Reference Concentrations | Specific | Toxicity | Dry Reference Concentration | | | | | | | |-------------------------------------|-------------|-----------------------------|-------------|-------------|-------------|--|--|--| | Isomer | Equivalency | Test No. 1 | Test No. 2 | Test No. 3 | Average | | | | | | Factor | pg TEQ/Rm ³ * | pg TEQ/Rm³* | pg TEQ/Rm³* | pg TEQ/Rm³* | | | | | 2378-tetrachlorodibenzo-p-dioxin | 1.00000 | <0.89 | <1.27 | <0.97 | <1.04 | | | | | 12378-pentachlorodibenzo-p-dioxin | 1.00000 | <1.46 | <1.50 | 1.39 | <1.45 | | | | | 123478-hexachlorodibenzo-p-dioxin | 0.10000 | 0.40 | < 0.49 | <0.38 | <0.42 | | | | | 123678-hexachlorodibenzo-p-dioxin | 0.10000 | 1.01 | <1.09 | 0.95 | <1.02 | | | | | 123789-hexachlorodibenzo-p-dioxin | 0.10000 | 0.42 | <0.45 | < 0.45 | <0.44 | | | | | 1234678-heptachlorodibenzo-p-dioxin | 0.01000 | 0.62 | 0.71 | 0.59 | 0.64 | | | | | Octachlorodibenzo-p-dioxin | 0.00030 | 0.020 | 0.046 | 0.022 | 0.029 | | | | | 2378-tetrachlorodibenzofuran | 0.10000 | <0.13 | <0.28 | <0.090 | <0.165 | | | | | 12378-pentachlorodibenzofuran | 0.03000 | 0.044 | <0.055 | 0.062 | <0.054 | | | | | 23478-pentachlorodibenzofuran | 0.30000 | <1.11 | 1.60 | < 0.94 | <1.22 | | | | | 123478-hexachlorodibenzofuran | 0.10000 | <0.44 | 0.54 | < 0.43 | <0.47 | | | | | 123678-hexachlorodibenzofuran | 0.10000 | 0.58 | < 0.43 | < 0.40 | < 0.47 | | | | | 234678-hexachlorodibenzofuran | 0.10000 | 0.97 | 0.96 | 0.83 | 0.92 | | | | | 123789-hexachlorodibenzofuran | 0.10000 | 0.24 | <0.26 | <0.52 | < 0.34 | | | | | 1234678-heptachlorodibenzofuran | 0.01000 | 0.25 | 0.33 | 0.23 | 0.27 | | | | | 1234789-heptachlorodibenzofuran | 0.01000 | <0.039 | < 0.036 | 0.034 | <0.036 | | | | | Octachlorodibenzofuran | 0.00030 | <0.0028 | <0.0057 | <0.0033 | <0.0039 | | | | | PCB 81 | 0.00030 | <0.0018 | <0.0015 | <0.0017 | <0.0017 | | | | | PCB 77 | 0.00010 | 0.0015 | 0.0048 | 0.0044 | 0.0036 | | | | | PCB 123 | 0.00003 | 0.00017 | 0.00055 | 0.00052 | 0.00041 | | | | | PCB 118 | 0.00003 | 0.012 | 0.030 | 0.034 | 0.025 | | | | | PCB 114 | 0.00003 | 0.00027 | 0.00076 | 0.00097 | 0.00067 | | | | | PCB 105 | 0.00003 | 0.0030 | 0.0087 | 0.015 | 0.0089 | | | | | PCB 126 | 0.10000 | <0.33 | <0.56 | <0.88 | <0.59 | | | | | PCB 167 | 0.00003 | 0.00018 | <0.00032 | 0.0012 | <0.00057 | | | | | PCB 156/157 | 0.00003 | 0.00052 | 0.00091 | 0.0042 | 0.0019 | | | | | PCB 169 | 0.03000 | <0.054 | <0.11 | <0.12 | <0.095 | | | | | PCB 189 | 0.00003 | 0.00012 | 0.000097 | 0.00028 | 0.00017 | | | | | Total Dioxins & Furans Only | | <8.63 | <10.1 | <8.30 | <8.99 | | | | | Total PCBs Only | | <0.40 | <0.72 | <1.06 | <0.73 | | | | | Total Dioxins & Furans and PCBs | | <9.03 | <10.8 | <9.36 | <9.72 | | | | ^{*} At 25°C and 1 atmosphere TABLE 46 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Toxicity Equivalent Dry Adjusted Concentrations Calculated Using the Full Detection Limit | Specific | Toxicity | Dry Adjusted Concentration | | | | | |-------------------------------------|-------------|----------------------------|-------------|--------------------------|--------------------------|--| | Isomer | Equivalency | Test No. 1 | Test No. 2 | Test No. 3 | Average | | | | Factor | pg TEQ/Rm ³ * | pg TEQ/Rm³* | pg TEQ/Rm ³ * | pg TEQ/Rm ³ * | | | 2378-tetrachlorodibenzo-p-dioxin | 1.00000 | <0.71 | <1.00 | <0.76 | <0.82 | | | 12378-pentachlorodibenzo-p-dioxin | 1.00000 | <1.15 | <1.19 | 1.10 | <1.15 | | | 123478-hexachlorodibenzo-p-dioxin | 0.10000 | 0.31 | <0.39 | <0.30 | <0.34 | | | 123678-hexachlorodibenzo-p-dioxin | 0.10000 | 0.80 | <0.86 | 0.75 | <0.80 | | | 123789-hexachlorodibenzo-p-dioxin | 0.10000 | 0.33 | <0.36 | <0.36 | <0.35 | | | 1234678-heptachlorodibenzo-p-dioxin | 0.01000 | 0.49 | 0.56 | 0.47 | 0.51 | | | Octachlorodibenzo-p-dioxin | 0.00030 | 0.016 | 0.036 | 0.017 | 0.023 | | | 2378-tetrachlorodibenzofuran | 0.10000 | <0.10 | <0.22 | <0.071 | <0.13 | | | 12378-pentachlorodibenzofuran | 0.03000 | 0.035 | <0.044 | 0.049 | < 0.042 | | | 23478-pentachlorodibenzofuran | 0.30000 | <0.88 | 1.26 | <0.75 | <0.96 | | | 123478-hexachlorodibenzofuran | 0.10000 | <0.34 | 0.43 | < 0.34 | < 0.37 | | | 123678-hexachlorodibenzofuran | 0.10000 | 0.46 | <0.34 | <0.32 | < 0.37 | | | 234678-hexachlorodibenzofuran | 0.10000 | 0.77 | 0.76 | 0.66 | 0.73 | | | 123789-hexachlorodibenzofuran | 0.10000 | 0.19 | <0.20 | < 0.41 | <0.27 | | | 1234678-heptachlorodibenzofuran | 0.01000 | 0.20 | 0.26 | 0.18 | 0.22 | | | 1234789-heptachlorodibenzofuran | 0.01000 | <0.031 | <0.029 | 0.027 | < 0.029 | | | Octachlorodibenzofuran | 0.00030 | <0.0022 | <0.0045 | <0.0026 | <0.0031 | | | PCB 81 | 0.00030 | <0.0014 | <0.0012 | <0.0013 | <0.0013 | | | PCB 77 | 0.00010 | 0.0012 | 0.0038 | 0.0034 | 0.0028 | | | PCB 123 | 0.00003 | 0.00013 | 0.00043 | 0.00041 | 0.00032 | | | PCB 118 | 0.00003 | 0.0092 | 0.024 | 0.027 | 0.020 | | | PCB 114 | 0.00003 | 0.00021 | 0.00060 | 0.00077 | 0.00053 | | | PCB 105 | 0.00003 | 0.0024 | 0.0069 | 0.012 | 0.0071 | | | PCB 126 | 0.10000 | <0.26 | < 0.44 | <0.69 | < 0.46 | | | PCB 167 | 0.00003 | 0.00014 | <0.00025 | 0.00094 | <0.00045 | | | PCB 156/157 | 0.00003 | 0.00041 | 0.00072 | 0.0033 | 0.0015 | | | PCB 169 | 0.03000 | <0.043 | <0.086 | <0.096 | <0.075 | | | PCB 189 | 0.00003 | 0.000098 | 0.000076 | 0.00022 | 0.00013 | | | Total Dioxins & Furans Only | | <6.82 | <7.94 | <6.56 | <7.11 | | | Total PCBs Only | | <0.32 | <0.56 | <0.84 | <0.57 | | | Total Dioxins & Furans and PCBs | | <7.14 | <8.50 | <7.40 | <7.68 | | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 46B Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Toxicity Equivalent Dry Adjusted Concentrations Calculated Using the Full Detection Limit | Specific | Toxicity | Toxicity Dry Adjusted Concentration | | | | | | |-------------------------------------|-------------|-------------------------------------|--------------------------|--------------------------|--------------------------|--|--| | Isomer | Equivalency | Test No. 1 | Test No. 2 | Test No. 3 | Average | | | | | Factor | pg TEQ/Rm ³ * | | | | 2378-tetrachlorodibenzo-p-dioxin | 1.000 | <0.71 | <1.00 | <0.76 | <0.82 | | | | 12378-pentachlorodibenzo-p-dioxin | 0.500 | <0.58 | <0.59 | 0.55 | <0.57 | | | | 123478-hexachlorodibenzo-p-dioxin | 0.100 | 0.31 | <0.39 | <0.30 | <0.34 | | | | 123678-hexachlorodibenzo-p-dioxin | 0.100 | 0.80 | <0.86 | 0.75 | <0.80 | | | | 123789-hexachlorodibenzo-p-dioxin | 0.100 | 0.33 | <0.36 | <0.36 | <0.35 | | | | 1234678-heptachlorodibenzo-p-dioxin | 0.010 | 0.49 | 0.56 | 0.47 | 0.51 | | | | Octachlorodibenzo-p-dioxin | 0.001 | 0.054 | 0.12 | 0.058 | 0.077 | | | | 2378-tetrachlorodibenzofuran | 0.100 | <0.10 | <0.22 |
<0.071 | <0.13 | | | | 12378-pentachlorodibenzofuran | 0.050 | 0.058 | <0.073 | 0.081 | < 0.071 | | | | 23478-pentachlorodibenzofuran | 0.500 | <1.46 | 2.10 | <1.24 | <1.60 | | | | 123478-hexachlorodibenzofuran | 0.100 | <0.34 | 0.43 | <0.34 | <0.37 | | | | 123678-hexachlorodibenzofuran | 0.100 | 0.46 | < 0.34 | <0.32 | < 0.37 | | | | 234678-hexachlorodibenzofuran | 0.100 | 0.77 | 0.76 | 0.66 | 0.73 | | | | 123789-hexachlorodibenzofuran | 0.100 | 0.19 | <0.20 | < 0.41 | <0.27 | | | | 1234678-heptachlorodibenzofuran | 0.010 | 0.20 | 0.26 | 0.18 | 0.22 | | | | 1234789-heptachlorodibenzofuran | 0.010 | <0.031 | <0.029 | 0.027 | <0.029 | | | | Octachlorodibenzofuran | 0.001 | <0.0074 | <0.015 | <0.0087 | <0.010 | | | | Total Dioxins & Furans | | <6.90 | <8.31 | <6.59 | <7.26 | | | | In-Stack Emission Limit | | | | | 60 | | | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume NATO/CCMS (1989) Toxicity Equivalency Factors TABLE 47 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Toxicity Equivalent Wet Reference Concentrations | Specific | Toxicity | Wet Reference Concentration | | | | | | |-------------------------------------|-------------|-----------------------------|--------------------------|-------------|-------------------------|--|--| | Isomer | Equivalency | Test No. 1 | Test No. 2 | Test No. 3 | Average | | | | | Factor | pg TEQ/Rm³* | pg TEQ/Rm ³ * | pg TEQ/Rm³* | pg TEQ/Rm ^{3*} | | | | 2378-tetrachlorodibenzo-p-dioxin | 1.00000 | <0.75 | <1.06 | <0.83 | <0.88 | | | | 12378-pentachlorodibenzo-p-dioxin | 1.00000 | <1.22 | <1.26 | 1.19 | <1.22 | | | | 123478-hexachlorodibenzo-p-dioxin | 0.10000 | 0.33 | < 0.41 | < 0.33 | <0.36 | | | | 123678-hexachlorodibenzo-p-dioxin | 0.10000 | 0.85 | <0.92 | 0.81 | <0.86 | | | | 123789-hexachlorodibenzo-p-dioxin | 0.10000 | 0.35 | <0.38 | <0.38 | <0.37 | | | | 1234678-heptachlorodibenzo-p-dioxin | 0.01000 | 0.52 | 0.60 | 0.51 | 0.54 | | | | Octachlorodibenzo-p-dioxin | 0.00030 | 0.017 | 0.038 | 0.019 | 0.025 | | | | 2378-tetrachlorodibenzofuran | 0.10000 | <0.11 | <0.23 | <0.077 | <0.14 | | | | 12378-pentachlorodibenzofuran | 0.03000 | 0.037 | <0.046 | 0.053 | < 0.045 | | | | 23478-pentachlorodibenzofuran | 0.30000 | <0.93 | 1.34 | < 0.81 | <1.02 | | | | 123478-hexachlorodibenzofuran | 0.10000 | <0.37 | 0.45 | <0.37 | < 0.39 | | | | 123678-hexachlorodibenzofuran | 0.10000 | 0.49 | < 0.36 | < 0.35 | < 0.40 | | | | 234678-hexachlorodibenzofuran | 0.10000 | 0.82 | 0.80 | 0.71 | 0.78 | | | | 123789-hexachlorodibenzofuran | 0.10000 | 0.20 | <0.22 | <0.44 | <0.29 | | | | 1234678-heptachlorodibenzofuran | 0.01000 | 0.21 | 0.28 | 0.20 | 0.23 | | | | 1234789-heptachlorodibenzofuran | 0.01000 | <0.033 | < 0.031 | 0.029 | < 0.031 | | | | Octachlorodibenzofuran | 0.00030 | <0.0024 | <0.0047 | <0.0028 | <0.0033 | | | | PCB 81 | 0.00030 | <0.0015 | <0.0013 | <0.0014 | <0.0014 | | | | PCB 77 | 0.00010 | 0.0013 | 0.0041 | 0.0037 | 0.0030 | | | | PCB 123 | 0.00003 | 0.00014 | 0.00046 | 0.00044 | 0.00035 | | | | PCB 118 | 0.00003 | 0.0098 | 0.025 | 0.029 | 0.021 | | | | PCB 114 | 0.00003 | 0.00022 | 0.00064 | 0.00083 | 0.00056 | | | | PCB 105 | 0.00003 | 0.0025 | 0.0073 | 0.013 | 0.0076 | | | | PCB 126 | 0.10000 | <0.27 | <0.47 | <0.75 | <0.50 | | | | PCB 167 | 0.00003 | 0.00015 | <0.00027 | 0.0010 | <0.00048 | | | | PCB 156/157 | 0.00003 | 0.00044 | 0.00076 | 0.0036 | 0.0016 | | | | PCB 169 | 0.03000 | <0.046 | <0.092 | <0.10 | <0.080 | | | | PCB 189 | 0.00003 | 0.00010 | 0.000081 | 0.00024 | 0.00014 | | | | Total Dioxins & Furans Only | | <7.24 | <8.41 | <7.09 | <7.58 | | | | Total PCBs Only | | <0.34 | <0.60 | <0.91 | <0.61 | | | | Total Dioxins & Furans and PCBs | | <7.57 | <9.01 | <8.00 | <8.20 | | | ^{*} At 25°C and 1 atmosphere TABLE 48 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dioxin and Furan Toxicity Equivalent Emission Rates | Specific | Toxicity | | | | | |-------------------------------------|-------------|------------|------------|------------|------------| | Isomer | Equivalency | Test No. 1 | Test No. 2 | Test No. 3 | Average | | | Factor | ng TEQ/s | ng TEQ/s | ng TEQ/s | ng TEQ/s | | 2378-tetrachlorodibenzo-p-dioxin | 1.00000 | <0.013 | <0.019 | <0.014 | <0.016 | | 12378-pentachlorodibenzo-p-dioxin | 1.00000 | <0.022 | < 0.023 | 0.020 | < 0.022 | | 123478-hexachlorodibenzo-p-dioxin | 0.10000 | 0.0060 | <0.0076 | <0.0056 | < 0.0064 | | 123678-hexachlorodibenzo-p-dioxin | 0.10000 | 0.015 | <0.017 | 0.014 | < 0.015 | | 123789-hexachlorodibenzo-p-dioxin | 0.10000 | 0.0063 | < 0.0069 | <0.0066 | <0.0066 | | 1234678-heptachlorodibenzo-p-dioxin | 0.01000 | 0.0093 | 0.011 | 0.0087 | 0.0097 | | Octachlorodibenzo-p-dioxin | 0.00030 | 0.00031 | 0.00071 | 0.00032 | 0.00045 | | 2378-tetrachlorodibenzofuran | 0.10000 | <0.0019 | <0.0043 | <0.0013 | <0.0025 | | 12378-pentachlorodibenzofuran | 0.03000 | 0.00066 | <0.00085 | 0.00091 | <0.00081 | | 23478-pentachlorodibenzofuran | 0.30000 | < 0.017 | 0.025 | < 0.014 | <0.018 | | 123478-hexachlorodibenzofuran | 0.10000 | <0.0066 | 0.0083 | < 0.0063 | < 0.0071 | | 123678-hexachlorodibenzofuran | 0.10000 | 0.0088 | <0.0066 | < 0.0059 | < 0.0071 | | 234678-hexachlorodibenzofuran | 0.10000 | 0.015 | 0.015 | 0.012 | 0.014 | | 123789-hexachlorodibenzofuran | 0.10000 | 0.0037 | <0.0040 | <0.0076 | <0.0051 | | 1234678-heptachlorodibenzofuran | 0.01000 | 0.0038 | 0.0051 | 0.0034 | 0.0041 | | 1234789-heptachlorodibenzofuran | 0.01000 | <0.00059 | <0.00056 | 0.00050 | <0.00055 | | Octachlorodibenzofuran | 0.00030 | <0.000042 | <0.000087 | <0.000049 | <0.000059 | | PCB 81 | 0.00030 | <0.000027 | <0.000024 | <0.000025 | <0.000025 | | PCB 77 | 0.00010 | 0.000023 | 0.000075 | 0.000064 | 0.000054 | | PCB 123 | 0.00003 | 0.0000025 | 0.0000084 | 0.0000076 | 0.0000062 | | PCB 118 | 0.00003 | 0.00018 | 0.00047 | 0.00050 | 0.00038 | | PCB 114 | 0.00003 | 0.0000040 | 0.000012 | 0.000014 | 0.000010 | | PCB 105 | 0.00003 | 0.000045 | 0.00013 | 0.00022 | 0.00013 | | PCB 126 | 0.10000 | < 0.0049 | <0.0086 | < 0.013 | <0.0088 | | PCB 167 | 0.00003 | 0.0000027 | <0.0000050 | 0.000018 | <0.0000084 | | PCB 156/157 | 0.00003 | 0.0000078 | 0.000014 | 0.000061 | 0.000028 | | PCB 169 | 0.03000 | <0.00082 | <0.0017 | <0.0018 | <0.0014 | | PCB 189 | 0.00003 | 0.0000019 | 0.0000015 | 0.0000041 | 0.0000025 | | Total Dioxins & Furans Only | | <0.13 | <0.15 | <0.12 | <0.14 | | Total PCBs Only | | <0.0060 | <0.011 | <0.016 | < 0.011 | | Total Dioxins & Furans and PCBs | | <0.14 | <0.17 | <0.14 | <0.15 | TABLE 49 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Dioxin and Furan Toxicity Equivalent Emission Data Calculated Using the Full Detection Limit | Specific
Isomer | Actual Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission | |---|----------------------|--------------------------------|-------------------------------|--------------------------------|-----------| | isomer | | | | | Rate | | | pg TEQ/m³ | pg TEQ/Rm ^{3*} | pg TEQ/Rm ³ ** | pg TEQ/Rm ³ * | ng TEQ/s | |
 2378-tetrachlorodibenzo-p-dioxin" | <0.61 | <1.04 | <0.82 | <0.88 | <0.016 | | 12378-pentachlorodibenzo-p-dioxin | <0.85 | <1.45 | <1.15 | <1.22 | <0.010 | | 123478-hexachlorodibenzo-p-dioxin | <0.25 | <0.42 | <0.34 | <0.36 | <0.0064 | | 123678-hexachlorodibenzo-p-dioxin | <0.60 | <1.02 | <0.80 | <0.86 | <0.015 | | 123789-hexachlorodibenzo-p-dioxin | <0.26 | <0.44 | <0.35 | <0.37 | <0.015 | | 1234678-heptachlorodibenzo-p-dioxin | 0.38 | 0.64 | 0.51 | 0.54 | 0.0097 | | Octachlorodibenzo-p-dioxin | 0.017 | 0.029 | 0.023 | 0.025 | 0.0097 | | octosmorodiscrizo p dioxin | 0.017 | 0.025 | 0.023 | 0.025 | 0.00043 | | 2378-tetrachlorodibenzofuran | <0.096 | <0.17 | <0.13 | <0.14 | <0.0025 | | 12378-pentachlorodibenzofuran | < 0.031 | <0.054 | < 0.042 | <0.045 | <0.00081 | | 23478-pentachlorodibenzofuran | < 0.71 | <1.22 | <0.96 | <1.02 | <0.018 | | 123478-hexachlorodibenzofuran | <0.27 | <0.47 | <0.37 | <0.39 | <0.0071 | | 123678-hexachlorodibenzofuran | <0.28 | <0.47 | <0.37 | <0.40 | <0.0071 | | 234678-hexachlorodibenzofuran | 0.54 | 0.92 | 0.73 | 0.78 | 0.014 | | 123789-hexachlorodibenzofuran | <0.20 | < 0.34 | <0.27 | <0.29 | <0.0051 | | 1234678-heptachlorodibenzofuran | 0.16 | 0.27 | 0.22 | 0.23 | 0.0041 | | 1234789-heptachlorodibenzofuran | < 0.021 | <0.036 | <0.029 | <0.031 | <0.00055 | | Octachlorodibenzofuran | <0.0023 | <0.0039 | <0.0031 | <0.0033 | <0.000059 | | PCB 81 | <0.00098 | <0.0017 | <0.0013 | <0.0014 | <0.000025 | | PCB 77 | 0.0021 | 0.0036 | 0.0028 | 0.0030 | 0.000054 | | PCB 123 | 0.00024 | 0.00041 | 0.00032 | 0.00035 | 0.0000054 | | PCB 118 | 0.015 | 0.025 | 0.020 | 0.021 | 0.00038 | | PCB 114 | 0.00039 | 0.00067 | 0.00053 | 0.00056 | 0.000010 | | PCB 105 | 0.0053 | 0.0089 | 0.0071 | 0.0076 | 0.00013 | | PCB 126 | <0.35 | <0.59 | <0.46 | <0.50 | <0.0088 | | PCB 167 | <0.00034 | <0.00057 | <0.00045 | <0.00048 | <0.000084 | | PCB 156/157 | 0.0011 | 0.0019 | 0.0015 | 0.0016 | 0.000028 | | PCB 169 | <0.056 | <0.095 | <0.075 | <0.080 | <0.0014 | | PCB 189 | 0.000098 | 0.00017 | 0.00013 | 0.00014 | 0.0000025 | | Total Dioxins & Furans Only | <5.28 | <8.99 | <7.11 | <7.58 | <0.14 | | Total PCBs Only | <0.43 | <0.73 | <0.57 | < 0.61 | <0.011 | | Total Dioxins & Furans and PCBs | <5.71 | <9.72 | <7.68 | <8.20 | <0.15 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 50 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Dioxin and Furan Toxicity Equivalent Emission Data Calculated Using Half the Detection Limit | Specific | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | | |-------------------------------------|---------------|--------------------------|---------------------------|--------------------------|-----------|--| | Isomer | Concentration | Concentration | Concentration | Concentration | Rate | | | | pg TEQ/m³ | pg
TEQ/Rm ³ * | pg TEQ/Rm ³ ** | pg TEQ/Rm ³ * | ng TEQ/s | | | 2378-tetrachlorodibenzo-p-dioxin | 0.31 | 0.52 | 0.41 | 0.44 | 0.0079 | | | 12378-pentachlorodibenzo-p-dioxin | 0.56 | 0.96 | 0.76 | 0.81 | 0.014 | | | 123478-hexachlorodibenzo-p-dioxin | 0.16 | 0.28 | 0.22 | 0.234 | 0.0042 | | | 123678-hexachlorodibenzo-p-dioxin | 0.49 | 0.84 | 0.66 | 0.71 | 0.013 | | | 123789-hexachlorodibenzo-p-dioxin | 0.17 | 0.29 | 0.23 | 0.24 | 0.0044 | | | 1234678-heptachlorodibenzo-p-dioxin | 0.38 | 0.64 | 0.51 | 0.54 | 0.0097 | | | Octachlorodibenzo-p-dioxin | 0.017 | 0.029 | 0.023 | 0.025 | 0.00045 | | | 2378-tetrachlorodibenzofuran | 0.048 | 0.083 | 0.065 | 0.069 | 0.0013 | | | 12378-pentachlorodibenzofuran | 0.026 | 0.044 | 0.035 | 0.037 | 0.00066 | | | 23478-pentachlorodibenzofuran | 0.51 | 0.87 | 0.69 | 0.74 | 0.013 | | | 123478-hexachlorodibenzofuran | 0.19 | 0.32 | 0.26 | 0.27 | 0.0049 | | | 123678-hexachlorodibenzofuran | 0.19 | 0.33 | 0.26 | 0.28 | 0.0050 | | | 234678-hexachlorodibenzofuran | 0.54 | 0.92 | 0.73 | 0.78 | 0.014 | | | 123789-hexachlorodibenzofuran | 0.12 | 0.21 | 0.17 | 0.18 | 0.0032 | | | 1234678-heptachlorodibenzofuran | 0.16 | 0.27 | 0.22 | 0.23 | 0.0041 | | | 1234789-heptachlorodibenzofuran | 0.014 | 0.024 | 0.019 | 0.020 | 0.00036 | | | Octachlorodibenzofuran | 0.0012 | 0.0020 | 0.0016 | 0.0017 | 0.000030 | | | PCB 81 | 0.00049 | 0.00083 | 0.00066 | 0.00070 | 0.000013 | | | PCB 77 | 0.0021 | 0.0036 | 0.0028 | 0.0030 | 0.000054 | | | PCB 123 | 0.00024 | 0.00041 | 0.00032 | 0.00035 | 0.0000062 | | | PCB 118 | 0.015 | 0.025 | 0.020 | 0.021 | 0.00038 | | | PCB 114 | 0.00039 | 0.00067 | 0.00053 | 0.00056 | 0.000010 | | | PCB 105 | 0.0053 | 0.0089 | 0.0071 | 0.0076 | 0.00013 | | | PCB 126 | 0.17 | 0.29 | 0.23 | 0.25 | 0.0044 | | | PCB 167 | 0.00030 | 0.00051 | 0.00040 | 0.00044 | 0.0000076 | | | PCB 156/157 | 0.0011 | 0.0019 | 0.0015 | 0.0016 | 0.000028 | | | PCB 169 | 0.028 | 0.048 | 0.038 | 0.040 | 0.00071 | | | PCB 189 | 0.00098 | 0.00017 | 0.00013 | 0.00014 | 0.0000025 | | | Total Dioxins & Furans Only | 3.90 | 6.64 | 5.25 | 5.60 | 0.10 | | | Total PCBs Only | 0.23 | 0.38 | 0.30 | 0.32 | 0.0058 | | | Total Dioxins & Furans and PCBs | 4.12 | 7.02 | 5.55 | 5.92 | 0.11 | | ^{*} At 25°C and 1 atmosphere Note: The value of half the detection limit was used to calculate emission data for those analytes not detected. ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 51 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Emission Data for Chlorobenzenes Test No. 1 | Specific | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |--|-----------|---------------|---------------|---------------|---------------|----------| | Isomer | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Monochlorobenzene | 1950 | 248 | 425 | 336 | 356 | 6.42 | | 1,3-Dichlorobenzene | 188 | 23.9 | 41.0 | 32.4 | 34.4 | 0.62 | | 1,4-Dichlorobenzene | 133 | 16.9 | 29.0 | 22.9 | 24.3 | 0.44 | | 1,2-Dichlorobenzene | 141 | 17.9 | 30.7 | 24.3 | 25.8 | 0.46 | | Total Dichlorobenzene | 462 | 58.7 | 101 | 79.6 | 84.4 | 1.52 | | 1,3,5-trichlorobenzene | 23.9 | 3.04 | 5.21 | 4.12 | 4.37 | 0.079 | | 1,2,4-trichlorobenzene | 42.9 | 5.45 | 9.35 | 7.39 | 7.84 | 0.14 | | 1,2,3-trichlorobenzene | 20.5 | 2.60 | 4.47 | 3.53 | 3.75 | 0.067 | | Total Trichlorobenzene | 87.3 | 11.1 | 19.0 | 15.0 | 16.0 | 0.29 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 17.8 | 2.26 | 3.88 | 3.07 | 3.25 | 0.059 | | 1,2,3,4-tetrachlorobenzene | <12 | <1.52 | <2.61 | <2.07 | <2.19 | <0.039 | | Total Tetrachlorobenzene | <29.8 | <3.79 | <6.49 | <5.13 | <5.45 | <0.098 | | Pentachlorobenzene | <12 | <1.52 | <2.61 | <2.07 | <2.19 | <0.039 | | Hexachlorobenzene | <12 | <1.52 | <2.61 | <2.07 | <2.19 | <0.039 | | Total Chlorobenzenes | <2553 | <324 | <556 | <440 | <467 | <8.40 | | Dry Gas Volume Sampled (Rm ³ *): | 4.590 | |---|-------| | Actual Flowrate (m³/s) : | 25.9 | | Dry Reference Flowrate (Rm³/s*): | 15.1 | | Dry Adjusted Flowrate (Rm³/s**): | 19.1 | | Wet Reference Flowrate (Rm³/s*): | 18.0 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 52 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Emission Data for Chlorobenzenes Test No. 2 | Specific
Isomer | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |--|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Monochlorobenzene | 1970 | 246 | 423 | 334 | 354 | 6.51 | | 1,3-Dichlorobenzene | 198 | 24.7 | 42.5 | 33.5 | 35.5 | 0.65 | | 1,4-Dichlorobenzene | 128 | 16.0 | 27.5 | 21.7 | 23.0 | 0.42 | | 1,2-Dichlorobenzene | 148 | 18.4 | 31.7 | 25.1 | 26.6 | 0.49 | | Total Dichlorobenzene | 474 | 59.1 | 102 | 80.3 | 85.1 | 1.57 | | 1,3,5-trichlorobenzene | 19.3 | 2.41 | 4.14 | 3.27 | 3.46 | 0.064 | | 1,2,4-trichlorobenzene | 45.1 | 5.62 | 9.67 | 7.64 | 8.10 | 0.15 | | 1,2,3-trichlorobenzene | 20.2 | 2.52 | 4.33 | 3.42 | 3.63 | 0.067 | | Total Trichlorobenzene | 84.6 | 10.5 | 18.1 | 14.3 | 15.2 | 0.28 | |
 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | 1,2,3,4-tetrachlorobenzene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | < 0.040 | | Total Tetrachlorobenzene | <24.0 | <2.99 | <5.15 | <4.07 | <4.31 | <0.079 | | Pentachlorobenzene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | Hexachlorobenzene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | Total Chlorobenzenes | <2577 | <321 | <553 | <436 | <463 | <8.51 | | Dry Gas Volume Sampled (Rm ³ *): | 4.662 | |---|-------| | Actual Flowrate (m³/s) : | 26.5 | | Dry Reference Flowrate (Rm³/s*): | 15.4 | | Dry Adjusted Flowrate (Rm³/s**): | 19.5 | | Wet Reference Flowrate (Rm³/s*): | 18.4 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 53 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Emission Data for Chlorobenzenes Test No. 3 | Specific
Isomer | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |--|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Monochlorobenzene | 1430 | 192 | 321 | 254 | 275 | 4.73 | | 1,3-Dichlorobenzene | 144 | 19.3 | 32.4 | 25.6 | 27.7 | 0.48 | | 1,4-Dichlorobenzene | 91.8 | 12.3 | 20.6 | 16.3 | 17.6 | 0.30 | | 1,2-Dichlorobenzene | 109 | 14.6 | 24.5 | 19.4 | 20.9 | 0.36 | | Total Dichlorobenzene | 345 | 46.3 | 77.5 | 61.3 | 66.3 | 1.14 | | 1,3,5-trichlorobenzene | 18.1 | 2.43 | 4.07 | 3.22 | 3.48 | 0.060 | | 1,2,4-trichlorobenzene | 35.0 | 4.70 | 7.87 | 6.22 | 6.72 | 0.12 | | 1,2,3-trichlorobenzene | 22.0 | 2.96 | 4.95 | 3.91 | 4.23 | 0.073 | | Total Trichlorobenzene | 75.1 | 10.1 | 16.9 | 13.3 | 14.4 | 0.25 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | <12 | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | 1,2,3,4-tetrachlorobenzene | <12 | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | Total Tetrachlorobenzene | <24.0 | <3.22 | <5.40 | <4.26 | <4.61 | <0.079 | | Pentachlorobenzene | <12 | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | Hexachlorobenzene | <12 | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | Total Chlorobenzenes | <1898 | <255 | <427 | <337 | <365 | <6.27 | | Dry Gas Volume Sampled (Rm ³ *): | 4.448 | |---|-------| | Actual Flowrate (m³/s) : | 24.6 | | Dry Reference Flowrate (Rm³/s*) : | 14.7 | | Dry Adjusted Flowrate (Rm³/s**): | 18.6 | | Wet Reference Flowrate (Rm³/s*) : | 17.2 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 54 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Actual Concentrations for Chlorobenzenes | Specific | | Coefficient | | | | |--|------------|-------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/m³ | ng/m³ | ng/m³ | ng/m³ | % | | Monochlorobenzene | 248 | 246 | 192 | 228 | 13.8 | | 1,3-Dichlorobenzene | 23.9 | 24.7 | 19.3 | 22.6 | 12.7 | | 1,4-Dichlorobenzene | 16.9 | 16.0 | 12.3 | 15.1 | 16.0 | | 1,2-Dichlorobenzene | 17.9 | 18.4 | 14.6 | 17.0 | 12.1 | | Total Dichlorobenzene | 58.7 | 59.1 | 46.3 | 54.7 | 13.3 | | 1,3,5-trichlorobenzene | 3.04 | 2.41 | 2.43 | 2.62 | 13.6 | | 1,2,4-trichlorobenzene | 5.45 | 5.62 | 4.70 | 5.26 | 9.3 | | 1,2,3-trichlorobenzene | 2.60 | 2.52 | 2.96 | 2.69 | 8.6 | | Total Trichlorobenzene | 11.1 | 10.5 | 10.1 | 10.6 | 4.7 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 2.26 | <1.50 | <1.61 | <1.79 | 23.0 | | 1,2,3,4-tetrachlorobenzene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Total Tetrachlorobenzene | <3.79 | <2.99 | <3.22 | <3.33 | 12.2 | | Pentachlorobenzene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Hexachlorobenzene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Total Chlorobenzenes | <324 | <321 | <255 | <300 | 13.0 | TABLE 55 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dry Reference Concentrations for Chlorobenzenes | C | Coefficient | | | | |------------|---
--|---|--| | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | 425 | 423 | 321 | 390 | 15.1 | | 41.0 | 42.5 | 32.4 | 38.6 | 14.1 | | 29.0 | 27.5 | 20.6 | 25.7 | 17.3 | | 30.7 | 31.7 | 24.5 | 29.0 | 13.5 | | 101 | 102 | 77.5 | 93.3 | 14.6 | | 5.21 | 4.14 | 4.07 | 4.47 | 14.3 | | 9.35 | 9.67 | 7.87 | 8.96 | 10.7 | | 4.47 | 4.33 | 4.95 | 4.58 | 7.0 | | 19.0 | 18.1 | 16.9 | 18.0 | 6.0 | | 3.88 | <2.57 | <2.70 | <3.05 | 23.6 | | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | <6.49 | <5.15 | <5.40 | <5.68 | 12.6 | | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | <556 | <553 | <427 | <512 | 14.4 | | | Test No. 1 ng/Rm³* 425 41.0 29.0 30.7 101 5.21 9.35 4.47 19.0 3.88 <2.61 <6.49 <2.61 <2.61 <2.61 | Test No. 1 Test No. 2 ng/Rm³* ng/Rm³* 425 423 41.0 42.5 29.0 27.5 30.7 31.7 101 102 5.21 4.14 9.35 9.67 4.47 4.33 19.0 18.1 3.88 <2.57 | Test No. 1 Test No. 2 Test No. 3 ng/Rm³* ng/Rm³* ng/Rm³* 425 423 321 41.0 42.5 32.4 29.0 27.5 20.6 30.7 31.7 24.5 101 102 77.5 5.21 4.14 4.07 9.35 9.67 7.87 4.47 4.33 4.95 19.0 18.1 16.9 3.88 <2.57 | ng/Rm³* ng/Rm³* ng/Rm³* ng/Rm³* 425 423 321 390 41.0 42.5 32.4 38.6 29.0 27.5 20.6 25.7 30.7 31.7 24.5 29.0 101 102 77.5 93.3 5.21 4.14 4.07 4.47 9.35 9.67 7.87 8.96 4.47 4.33 4.95 4.58 19.0 18.1 16.9 18.0 3.88 <2.57 | ^{*} At 25°C and 1 atmosphere TABLE 56 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Dry Adjusted Concentrations for Chlorobenzenes | Specific
Isomer | | Coefficient | | | | |--|-----------------------|-----------------------|-----------------------|--------------------|-------------------| | | Test No. 1
ng/Rm³* | Test No. 2
ng/Rm³* | Test No. 3
ng/Rm³* | Average
ng/Rm³* | of Variation
% | | Monochlorobenzene | 336 | 334 | 254 | 308 | 15.1 | | 1,3-Dichlorobenzene | 32.4 | 33.5 | 25.6 | 30.5 | 14.1 | | 1,4-Dichlorobenzene | 22.9 | 21.7 | 16.3 | 20.3 | 17.3 | | 1,2-Dichlorobenzene | 24.3 | 25.1 | 19.4 | 22.9 | 13.5 | | Total Dichlorobenzene | 79.6 | 80.3 | 61.3 | 73.7 | 14.6 | | 1,3,5-trichlorobenzene | 4.12 | 3.27 | 3.22 | 3.53 | 14.3 | | 1,2,4-trichlorobenzene | 7.39 | 7.64 | 6.22 | 7.08 | 10.7 | | 1,2,3-trichlorobenzene | 3.53 | 3.42 | 3.91 | 3.62 | 7.1 | | Total Trichlorobenzene | 15.0 | 14.3 | 13.3 | 14.2 | 6.0 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 3.07 | <2.03 | <2.13 | <2.41 | 23.6 | | 1,2,3,4-tetrachlorobenzene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Total Tetrachlorobenzene | <5.13 | <4.07 | <4.26 | <4.49 | 12.6 | | Pentachlorobenzene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Hexachlorobenzene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Total Chlorobenzenes | <440 | <436 | <337 | <404 | 14.4 | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 57 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Wet Reference Concentrations for Chlorobenzenes | Specific | N | Coefficient | | | | |--|------------|-------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | Monochlorobenzene | 356 | 354 | 275 | 328 | 14.1 | | 1,3-Dichlorobenzene | 34.4 | 35.5 | 27.7 | 32.5 | 13.1 | | 1,4-Dichlorobenzene | 24.3 | 23.0 | 17.6 | 21.6 | 16.3 | | 1,2-Dichlorobenzene | 25.8 | 26.6 | 20.9 | 24.4 | 12.5 | | Total Dichlorobenzene | 84.4 | 85.1 | 66.3 | 78.6 | 13.6 | | 1,3,5-trichlorobenzene | 4.37 | 3.46 | 3.48 | 3.77 | 13.7 | | 1,2,4-trichlorobenzene | 7.84 | 8.10 | 6.72 | 7.55 | 9.7 | | 1,2,3-trichlorobenzene | 3.75 | 3.63 | 4.23 | 3.87 | 8.2 | | Total Trichlorobenzene | 16.0 | 15.2 | 14.4 | 15.2 | 5.0 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 3.25 | <2.15 | <2.31 | <2.57 | 23.2 | | 1,2,3,4-tetrachlorobenzene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Total Tetrachlorobenzene | <5.45 | <4.31 | <4.61 | <4.79 | 12.3 | | Pentachlorobenzene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Hexachlorobenzene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Total Chlorobenzenes | <467 | <463 | <365 | <431 | 13.4 | ^{*} At 25°C and 1 atmosphere TABLE 58 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Emission Rates for Chlorobenzenes | Specific | | Emission Rate | | | | | | |--|------------|---------------|------------|---------|--------------|--|--| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | | μg/s | μg/s | μg/s | μg/s | % | | | | Monochlorobenzene | 6.42 | 6.51 | 4.73 | 5.88 | 17.0 | | | | 1,3-Dichlorobenzene | 0.62 | 0.65 | 0.48 | 0.58 | 16.2 | | | | 1,4-Dichlorobenzene | 0.44 | 0.42 | 0.30 | 0.39 | 19.0 | | | | 1,2-Dichlorobenzene | 0.46 | 0.49 | 0.36 | 0.44 | 15.6 | | | | Total Dichlorobenzene | 1.52 | 1.57 | 1.14 | 1.41 | 16.6 | | | | 1,3,5-trichlorobenzene | 0.079 | 0.064 | 0.060 | 0.067 | 14.7 | | | | 1,2,4-trichlorobenzene | 0.14 | 0.15 | 0.12 | 0.14 | 12.9 | | | | 1,2,3-trichlorobenzene | 0.067 | 0.067 | 0.073 | 0.069 | 4.7 | | | | Total Trichlorobenzene | 0.29 | 0.28 | 0.25 | 0.27 | 7.6 | | | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | 0.059 | <0.040 | <0.040 | <0.046 | 23.8 | | | | 1,2,3,4-tetrachlorobenzene | < 0.039 | <0.040 | <0.040 | <0.040 | 0.3 | | | | Total Tetrachlorobenzene | <0.098 | <0.079 | <0.079 | <0.086 | 12.6 | | | | Pentachlorobenzene | <0.039 | <0.040 | <0.040 | <0.040 | 0.3 | | | | Hexachlorobenzene | <0.039 | <0.040 | <0.040 | <0.040 | 0.3 | | | | Total Chlorobenzenes | <8.40 | <8.51 | <6.27 | <7.73 | 16.3 | | | TABLE 59 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Emission Data for Chlorobenzenes | Specific
Isomer | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |--|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Monochlorobenzene | 228 | 390 | 308 | 328 | 5.88 | | 1,3-Dichlorobenzene | 22.6 | 38.6 | 30.5 | 32.5 | 0.58 | | 1,4-Dichlorobenzene | 15.1 | 25.7 | 20.3 | 21.6 | 0.39 | | 1,2-Dichlorobenzene | 17.0 | 29.0 | 22.9 | 24.4 | 0.44 | | Total Dichlorobenzene | 54.7 | 93.3 | 73.7 | 78.6 | 1.41 | | 1,3,5-trichlorobenzene | 2.62 | 4.47 | 3.53 | 3.77 | 0.067 | | 1,2,4-trichlorobenzene | 5.26 | 8.96 | 7.08 | 7.55 | 0.14 | | 1,2,3-trichlorobenzene | 2.69 | 4.58 | 3.62 | 3.87 | 0.069 | | Total Trichlorobenzene | 10.6 | 18.0 | 14.2 | 15.2 | 0.27 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | <1.79 | <3.05 | <2.41 | <2.57 | <0.046 | | 1,2,3,4-tetrachlorobenzene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Total Tetrachlorobenzene | <3.33 | <5.68 | <4.49 | <4.79 | <0.086 | | Pentachlorobenzene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Hexachlorobenzene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Total Chlorobenzenes | <300 | <512 | <404 | <431 | <7.73 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 60 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Chlorobenzene Blank Analyses | Isomers | Blank Train | Laboratory Blank | |--|-------------|------------------| | and Congener Group Totals | Total ng | Total ng | | | | | | Monochlorobenzene | <12 | <12 | | 1,3-Dichlorobenzene | <12 | <12 | | 1,4-Dichlorobenzene | <12 | <12 | | 1,2-Dichlorobenzene | <12 | <12 | | Total Dichlorobenzene | <36.0 | <36.0 | | 1,3,5-trichlorobenzene | <12 | <12 | | 1,2,4-trichlorobenzene | <12 | <12 | | 1,2,3-trichlorobenzene | <12 | <12 | | Total Trichlorobenzene | <36.0 | <36.0 | | 1,2,3,5- & 1,2,4,5-tetrachlorobenzenes | <12 | <12 | | 1,2,3,4-tetrachlorobenzene | <12 | <12 | | Total Tetrachlorobenzene | <24.0 | <24.0 | | Pentachlorobenzene | <12 | <12 | | Hexachlorobenzene | <12 | <12 | | Total Chlorobenzenes | <132 | <132 | [&]quot;<" indicates that the amount detected is less than the detection limit. In these cases the value of the detection limit was used to calculate the total collected. TABLE 61 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Chlorophenol Isomer and Congener Group Analysis and Emission Data Test No. 1 | Specific | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |-----------------------------------|-----------|---------------|---------------|---------------|---------------|----------| | Isomer | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | ng | ng/m³ |
ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | 2-monochlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | 3-monochlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | 4-monochlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | Total Monochlorophenols | <180 | <22.9 | <39.2 | <31.0 | <32.9 | <0.59 | | 2,6-dichlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | 2,4 & 2,5-dichlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | 3,5-dichlorophenol | 238 | 30.2 | 51.9 | 41.0 | 43.5 | 0.78 | | 2,3-dichlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | 3,4-dichlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | Total Dichlorophenols | <478 | <60.7 | <104 | <82.3 | <87.4 | <1.57 | | 2,4,6-trichlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | 2,3,6-trichlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | 2,3,5-trichlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | 2,4,5-trichlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | 2,3,4-trichlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | < 0.20 | | 3,4,5-trichlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | Total Trichlorophenols | <360 | <45.7 | <78.4 | <62.0 | <65.8 | <1.18 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | 2,3,4,5-tetrachlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | Total Tetrachlorophenols | <120 | <15.2 | <26.1 | <20.7 | <21.9 | <0.39 | | Pentachlorophenol | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | Total Chlorophenols | <1198 | <152 | <261 | <206 | <219 | <3.94 | | Dry Gas Volume Sampled (Rm ³ *): | 4.590 | |---|-------| | Actual Flowrate (m³/s) : | 25.9 | | Dry Reference Flowrate (Rm³/s*): | 15.1 | | Dry Adjusted Flowrate (Rm³/s**): | 19.1 | | Wet Reference Flowrate (Rm³/s*) : | 18.0 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 62 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Chlorophenol Isomer and Congener Group Analysis and Emission Data Test No. 2 | Specific | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |-----------------------------------|-----------|---------------|---------------|---------------|---------------|----------| | Isomer | Collected | Concentration | Concentration | Concentration | Concentration | Rate | | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | 2-monochlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 3-monochlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 4-monochlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | Total Monochlorophenols | <180 | <22.4 | <38.6 | <30.5 | <32.3 | <0.59 | | 2,6-dichlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 2,4 & 2,5-dichlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 3,5-dichlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 2,3-dichlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 3,4-dichlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | Total Dichlorophenols | <300 | <37.4 | <64.4 | <50.8 | <53.9 | <0.99 | | 2,4,6-trichlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 2,3,6-trichlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 2,3,5-trichlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 2,4,5-trichlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 2,3,4-trichlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 3,4,5-trichlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | Total Trichlorophenols | <360 | <44.9 | <77.2 | <61.0 | <64.6 | <1.19 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 2,3,4,5-tetrachlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | Total Tetrachlorophenols | <120 | <15.0 | <25.7 | <20.3 | <21.5 | <0.40 | | Pentachlorophenol | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | Total Chlorophenols | <1020 | <127 | <219 | <173 | <183 | <3.37 | | Dry Gas Volume Sampled (Rm ³ *): | 4.662 | |---|-------| | Actual Flowrate (m³/s) : | 26.5 | | Dry Reference Flowrate (Rm³/s*): | 15.4 | | Dry Adjusted Flowrate (Rm³/s**): | 19.5 | | Wet Reference Flowrate (Rm³/s*): | 18.4 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 63 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Chlorophenol Isomer and Congener Group Analysis and Emission Data Test No. 3 | Specific
Isomer | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted | Wet Reference | Emission | |-----------------------------------|--------------------|-------------------------|--------------------------------|---------------|---------------|----------| | isomer | | | | Concentration | Concentration | Rate | | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | 2-monochlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | 3-monochlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | 4-monochlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | Total Monochlorophenols | <180 | <24.2 | <40.5 | <32.0 | <34.6 | <0.59 | | 2,6-dichlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | 2,4 & 2,5-dichlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | 3,5-dichlorophenol | 248 | 33.3 | 55.8 | 44.1 | 47.7 | 0.82 | | 2,3-dichlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | 3,4-dichlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | Total Dichlorophenols | <488 | <65.6 | <110 | <86.7 | <93.8 | <1.61 | | 2,4,6-trichlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | 2,3,6-trichlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | 2,3,5-trichlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | 2,4,5-trichlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | 2,3,4-trichlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | 3,4,5-trichlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | Total Trichlorophenols | <360 | <48.4 | <80.9 | <64.0 | <69.2 | <1.19 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | 2,3,4,5-tetrachlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | Total Tetrachlorophenols | <120 | <16.1 | <27.0 | <21.3 | <23.1 | <0.40 | | Pentachlorophenol | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | Total Chlorophenols | <1208 | <162 | <272 | <215 | <232 | <3.99 | | Dry Gas Volume Sampled (Rm ³ *): | 4.448 | |---|-------| | Actual Flowrate (m³/s) : | 24.6 | | Dry Reference Flowrate (Rm³/s*): | 14.7 | | Dry Adjusted Flowrate (Rm³/s**): | 18.6 | | Wet Reference Flowrate (Rm³/s*): | 17.2 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 64 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Chlorophenol Isomer and Congener Group Actual Concentrations | Specific | Actual Concentration | | | | | | |-----------------------------------|----------------------|------------|------------|---------|--------------|--| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | ng/m³ | ng/m³ | ng/m³ | ng/m³ | % | | | 2-monochlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | 3-monochlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | 4-monochlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | Total Monochlorophenols | <22.9 | <22.4 | <24.2 | <23.2 | 3.9 | | |
 2,6-dichlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | 2,4 & 2,5-dichlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | 3,5-dichlorophenol | 30.2 | <7.48 | 33.3 | <23.7 | 59.6 | | | 2,3-dichlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | 3,4-dichlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | Total Dichlorophenols | <60.7 | <37.4 | <65.6 | <54.6 | 27.6 | | | 2,4,6-trichlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | 2,3,6-trichlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | 2,3,5-trichlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | 2,4,5-trichlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | 2,3,4-trichlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | 3,4,5-trichlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | Total Trichlorophenols | <45.7 | <44.9 | <48.4 | <46.3 | 3.9 | | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | 2,3,4,5-tetrachlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | Total Tetrachlorophenols | <15.2 | <15.0 | <16.1 | <15.4 | 3.9 | | | Pentachlorophenol | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | | Total Chlorophenols | <152 | <127 | <162 | <147 | 12.3 | | TABLE 65 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Chlorophenol Isomer and Congener Group Dry Reference Concentrations | Specific | | Dry Reference Concentration | | | | |-----------------------------------|------------|-----------------------------|------------|---------|--------------| | lsomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | 2-monochlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | 3-monochlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | 4-monochlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | Total Monochlorophenols | <39.2 | <38.6 | <40.5 | <39.4 | 2.4 | | 2,6-dichlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | 2,4 & 2,5-dichlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | 3,5-dichlorophenol | 51.9 | <12.9 | 55.8 | <40.2 | 59.0 | | 2,3-dichlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | 3,4-dichlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | Total Dichlorophenols | <104 | <64.4 | <110 | <92.7 | 26.7 | | 2,4,6-trichlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | 2,3,6-trichlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | |
2,3,5-trichlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | 2,4,5-trichlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | 2,3,4-trichlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | 3,4,5-trichlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | Total Trichlorophenols | <78.4 | <77.2 | <80.9 | <78.9 | 2.4 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | 2,3,4,5-tetrachlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | Total Tetrachlorophenols | <26.1 | <25.7 | <27.0 | <26.3 | 2.4 | | Pentachlorophenol | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | Total Chlorophenols | <261 | <219 | <272 | <250 | 11.2 | ^{*} At 25°C and 1 atmosphere TABLE 66 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Chlorophenol Isomer and Congener Group Dry Adjusted Concentrations | Specific | | Dry Adjusted | Concentration | | Coefficient | |-----------------------------------|------------|--------------|---------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | 2-monochlorophenol | <10.3 | <10.2 | -10 7 | -10.4 | ~ 4 | | 3-monochlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | 4-monochlorophenol | <10.3 | | <10.7 | <10.4 | 2.4 | | Total Monochlorophenols | | <10.2 | <10.7 | <10.4 | 2.4 | | Total Monochiorophenois | <31.0 | <30.5 | <32.0 | <31.2 | 2.4 | | 2,6-dichlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | 2,4 & 2,5-dichlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | 3,5-dichlorophenol | 41.0 | <10.2 | 44.1 | <31.7 | 59.1 | | 2,3-dichlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | 3,4-dichlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | Total Dichlorophenols | <82.3 | <50.8 | <86.7 | <73.3 | 26.7 | | 2,4,6-trichlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | 2,3,6-trichlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | 2,3,5-trichlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | 2,4,5-trichlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | 2,3,4-trichlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | 3,4,5-trichlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | Total Trichlorophenols | <62.0 | <61.0 | <64.0 | <62.3 | 2.4 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | 2,3,4,5-tetrachlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | Total Tetrachlorophenols | <20.7 | <20.3 | <21.3 | <20.8 | 2.4 | | Pentachlorophenol | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | Total Chlorophenols | <206 | <173 | <215 | <198 | 11.2 | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 67 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Chlorophenol Isomer and Congener Group Wet Reference Concentrations | Specific | 1 | Coefficient | | | | |-----------------------------------|------------|-------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | 2-monochlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 3-monochlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 4-monochlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | Total Monochlorophenols | <32.9 | <32.3 | <34.6 | <33.3 | 3.5 | | 2,6-dichlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 2,4 & 2,5-dichlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 3,5-dichlorophenol | 43.5 | <10.8 | 47.7 | <34.0 | 59.5 | | 2,3-dichlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 3,4-dichlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | Total Dichlorophenols | <87.4 | <53.9 | <93.8 | <78.3 | 27.4 | | 2,4,6-trichlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 2,3,6-trichlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 2,3,5-trichlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 2,4,5-trichlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 2,3,4-trichlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 3,4,5-trichlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | Total Trichlorophenols | <65.8 | <64.6 | <69.2 | <66.5 | 3.5 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 2,3,4,5-tetrachlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | Total Tetrachlorophenols | <21.9 | <21.5 | <23.1 | <22.2 | 3.5 | | Pentachlorophenol | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | Total Chlorophenols | <219 | <183 | <232 | <211 | 12.0 | TABLE 68 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Chlorophenol Isomer and Congener Group Emission Rates | Specific | Emission Rate | | | | Coefficient | |-----------------------------------|---------------|------------|------------|---------|--------------| | Isomer | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | μg/s | μg/s | μg/s | μg/s | % | | 2 | | | | | | | 2-monochlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 3-monochlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 4-monochlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | Total Monochlorophenols | <0.59 | <0.59 | <0.59 | <0.59 | 0.3 | | 2,6-dichlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 2,4 & 2,5-dichlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 3,5-dichlorophenol | 0.78 | <0.20 | 0.82 | < 0.60 | 58.1 | | 2,3-dichlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 3,4-dichlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | Total Dichlorophenols | <1.57 | <0.99 | <1.61 | <1.39 | 25.0 | | 2,4,6-trichlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 2,3,6-trichlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 2,3,5-trichlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 2,4,5-trichlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 2,3,4-trichlorophenol | < 0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 3,4,5-trichlorophenol | < 0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | Total Trichlorophenols | <1.18 | <1.19 | <1.19 | <1.19 | 0.3 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 2,3,4,5-tetrachlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | Total Tetrachlorophenols | <0.39 | <0.40 | <0.40 | < 0.40 | 0.3 | | Pentachlorophenol | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | Total Chlorophenols | <3.94 | <3.37 | <3.99 | <3.77 | 9.2 | TABLE 69 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Emission Data for Chlorophenol Isomer and Congener Groups | Specific | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |-----------------------------------|----------------|---------------|----------------|----------------|----------| | Isomer | Concentration | Concentration | Concentration | Concentration | Rate | | | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | 2-monochlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | -0.20 | | 3-monochlorophenol | <7.72
<7.72 | <13.1 | <10.4 | <11.1
<11.1 | <0.20 | | 4-monochlorophenol | <7.72
<7.72 | <13.1 | | | <0.20 | | Total Monochlorophenols | <23.2 | <39.4 | <10.4
<31.2 | <11.1
<33.3 | <0.20 | | rotar monocinorophenois | \25.2 | \33.4 | \31. 2 | <33.3 | <0.59 | | 2,6-dichlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | 2,4 & 2,5-dichlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | 3,5-dichlorophenol | <23.7 | <40.2 | <31.7 | <34.0 | < 0.60 | | 2,3-dichlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | 3,4-dichlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | Total Dichlorophenols | <54.6 | <92.7 | <73.3 | <78.3 | <1.39 | | 2,4,6-trichlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | 2,3,6-trichlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | 2,3,5-trichlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | 2,4,5-trichlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | 2,3,4-trichlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | 3,4,5-trichlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | Total Trichlorophenols | <46.3 | <78.9 | <62.3 | <66.5 | <1.19 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | 2,3,4,5-tetrachlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | Total Tetrachlorophenols | <15.4 | <26.3 | <20.8 | <22.2 | <0.40 | | Pentachlorophenol | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | Total Chlorophenols | <147 | <250 | <198 | <211 | <3.77 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 70 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Chlorophenol Blank Analyses | Congener | Lab Blank | Blank Train | |-----------------------------------|-----------|-------------| | Group | Total ng | Total ng | | | | | | 2-monochlorophenol | <60 | <60 | | 3-monochlorophenol | <60 | <60 | | 4-monochlorophenol | <60 | <60 | | Total Monochlorophenols | <180 | <180 | | 2,6-dichlorophenol | <60 | <60 | | 2,4 & 2,5-dichlorophenol | <60 | <60 | | 3,5-dichlorophenol | <60 | <60 | | 2,3-dichlorophenol | <60 | <60 | | 3,4-dichlorophenol | <60 | <60 | | Total Dichlorophenols | <300 | <300 | | 2,4,6-trichlorophenol | <60 | <60 | | 2,3,6-trichlorophenol | <60 | <60 | | 2,3,5-trichlorophenol | <60 | <60 | | 2,4,5-trichlorophenol | <60 | <60 | | 2,3,4-trichlorophenol | <60 | <60 | | 3,4,5-trichlorophenol | <60 | <60 | | Total Trichlorophenols | <360 | <360 | | 2,3,5,6/2,3,4,6-tetrachlorophenol | <60 | <60 | | 2,3,4,5-tetrachlorophenol | <60 | <60 | | Total Tetrachlorophenols | <120 | <120 | | Pentachlorophenol | <60 | <60 | | Total Chlorophenols | <1020 | <1020 | [&]quot;<" indicates that the amount detected is less than the detection limit. In these cases the value of the detection limit was used to calculate the total collected. TABLE 71 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Polycyclic Aromatic Hydrocarbon Emission Data Test No. 1 | Compound | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |---------------------------------|--------------------
-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Acenaphthene | <12 | <1.52 | <2.61 | -2.07 | -2.10 | -0.020 | | Acenaphthylene | <12 | <1.52 | <2.61 | <2.07
<2.07 | <2.19 | <0.039 | | Anthracene | <12 | <1.52 | <2.61 | <2.07
<2.07 | <2.19 | <0.039 | | Benzo(a)Anthracene | <12 | <1.52 | <2.61 | | <2.19 | <0.039 | | Benzo(b)Fluoranthene | <12 | <1.52 | <2.61
<2.61 | <2.07
<2.07 | <2.19 | <0.039 | | Benzo(k)Fluoranthene | <12 | <1.52 | <2.61 | | <2.19 | <0.039 | | Benzo(a)fluorene | <12 | <1.52 | | <2.07 | <2.19 | <0.039 | | Benzo(b)fluorene | <12 | <1.52
<1.52 | <2.61 | <2.07 | <2.19 | <0.039 | | Benzo(g,h,i)Perylene | 61.1 | | <2.61 | <2.07 | <2.19 | <0.039 | | Benzo(a)Pyrene | <12 | 7.76 | 13.3 | 10.5 | 11.2 | 0.20 | | | | <1.52 | <2.61 | <2.07 | <2.19 | < 0.039 | | Benzo(e)Pyrene | <12 | <1.52 | <2.61 | <2.07 | <2.19 | <0.039 | | Biphenyl | 32.0 | 4.06 | 6.97 | 5.51 | 5.85 | 0.11 | | 2-Chloronaphthalene | <12 | <1.52 | <2.61 | <2.07 | <2.19 | <0.039 | | Chrysene/Triphenylene | <12 | <1.52 | <2.61 | <2.07 | <2.19 | <0.039 | | Coronene | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | Dibenzo(a,c/a,h)Anthracene | <12 | <1.52 | <2.61 | <2.07 | <2.19 | <0.039 | | Dibenzo(a,e)pyrene | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | 9,10-dimethylanthracene | <12 | <1.52 | <2.61 | <2.07 | <2.19 | <0.039 | | 7,12-Dimethylbenzo(a)anthracene | <12 | <1.52 | <2.61 | <2.07 | <2.19 | < 0.039 | | Fluoranthene | 19.4 | 2.46 | 4.23 | 3.34 | 3.55 | 0.064 | | Fluorene | <12 | <1.52 | <2.61 | <2.07 | <2.19 | < 0.039 | | Indeno(1,2,3-cd)Pyrene | <12 | <1.52 | <2.61 | <2.07 | <2.19 | < 0.039 | | 2-methylanthracene | 21.6 | 2.74 | 4.71 | 3.72 | 3.95 | 0.071 | | 3-Methylcholanthrene | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | 1-Methylnaphthalene | 22.3 | 2.83 | 4.86 | 3.84 | 4.08 | 0.073 | | 2-Methylnaphthalene | 39.1 | 4.97 | 8.52 | 6.73 | 7.15 | 0.13 | | 1-Methylphenanthrene | 36.4 | 4.62 | 7.93 | 6.27 | 6.65 | 0.12 | | 9-Methylphenanthrene | 13.1 | 1.66 | 2.85 | 2.26 | 2.39 | 0.043 | | Naphthalene | 290 | 36.8 | 63.2 | 49.9 | 53.0 | 0.95 | | Perylene | <12 | <1.52 | <2.61 | <2.07 | <2.19 | < 0.039 | | Phenanthrene | 78.5 | 9.97 | 17.1 | 13.5 | 14.3 | 0.26 | | Picene | <60 | <7.62 | <13.1 | <10.3 | <11.0 | <0.20 | | Pyrene | 20.3 | 2.58 | 4.42 | 3.50 | 3.71 | 0.067 | | Tetralin | 204 | 25.9 | 44.4 | 35.1 | 37.3 | 0.67 | | m-terphenyl | <12 | <1.52 | <2.61 | <2.07 | <2.19 | < 0.039 | | o-Terphenyl | <12 | <1.52 | <2.61 | <2.07 | <2.19 | <0.039 | | p-terphenyl | <12 | <1.52 | <2.61 | <2.07 | <2.19 | <0.039 | | Total | <1330 | <169 | <290 | <229 | <243 | <4.37 | | Dry Gas Volume Sampled (Rm ³ *) : | 4.590 | |--|-------| | Actual Flowrate (m³/s) : | 25.9 | | Dry Reference Flowrate (Rm³/s*) : | 15.1 | | Dry Adjusted Flowrate (Rm³/s**) : | 19.1 | | Wet Reference Flowrate (Rm³/s*): | 18.0 | ^{*} At 25°C and 1 atmosphere Note: "<" indicates that the analyte was not detected and the value of the detection limit was used to calculate the emission data. ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume **TABLE 72 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Polycyclic Aromatic Hydrocarbon Emission Data** Test No. 2 | Compound | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |---------------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Acenaphthene | 44.7 | 5.57 | 9.59 | 7.57 | 8.02 | 0.15 | | Acenaphthylene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | Anthracene | 12.4 | 1.55 | 2.66 | 2.10 | 2.23 | 0.041 | | Benzo(a)Anthracene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | Benzo(b)Fluoranthene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | Benzo(k)Fluoranthene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | Benzo(a)fluorene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | Benzo(b)fluorene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | Benzo(g,h,i)Perylene | 47.5 | 5.92 | 10.2 | 8.05 | 8.53 | 0.16 | | Benzo(a)Pyrene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | < 0.040 | | Benzo(e)Pyrene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | Biphenyl | 57.4 | 7.16 | 12.3 | 9.72 | 10.3 | 0.19 | | 2-Chloronaphthalene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | Chrysene/Triphenylene | 12.1 | 1.51 | 2.60 | 2.05 | 2.17 | 0.040 | | Coronene | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | Dibenzo(a,c/a,h)Anthracene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | < 0.040 | | Dibenzo(a,e)pyrene | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 9,10-dimethylanthracene | 21.1 | 2.63 | 4.53 | 3.57 | 3.79 | 0.070 | | 7,12-Dimethylbenzo(a)anthracene | <12 | <1.50 | <2 <i>.</i> 57 | <2.03 | <2.15 | <0.040 | | Fluoranthene | 64.0 | 7.98 | 13.7 | 10.8 | 11.5 | 0.21 | | Fluorene | 26.5 | 3.30 | 5.68 | 4.49 | 4.76 | 0.088 | | Indeno(1,2,3-cd)Pyrene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | 2-methylanthracene | 66.5 | 8.29 | 14.3 | 11.3 | 11.9 | 0.22 | | 3-Methylcholanthrene | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | 1-Methylnaphthalene | 25.4 | 3.17 | 5.45 | 4.30 | 4.56 | 0.084 | | 2-Methylnaphthalene | 54.1 | 6.74 | 11.6 | 9.16 | 9.71 | 0.18 | | 1-Methylphenanthrene | 42.2 | 5.26 | 9.05 | 7.15 | 7.58 | 0.14 | | 9-Methylphenanthrene | 67.4 | 8.40 | 14.5 | 11.4 | 12.1 | 0.22 | | Naphthalene | 277 | 34.5 | 59.4 | 46.9 | 49.7 | 0.92 | | Perylene | <12 | <1.50 | <2.57 | <2.03 | <2.15 | < 0.040 | | Phenanthrene | 230 | 28.7 | 49.3 | 39.0 | 41.3 | 0.76 | | Picene | <60 | <7.48 | <12.9 | <10.2 | <10.8 | <0.20 | | Pyrene | 66.2 | 8.25 | 14.2 | 11.2 | 11.9 | 0.22 | | Tetralin | 278 | 34.7 | 59.6 | 47.1 | 49.9 | 0.92 | | m-terphenyl | 25.0 | 3.12 | 5.36 | 4.24 | 4.49 | 0.083 | | o-Terphenyl | <12 | <1.50 | <2.57 | <2.03 | <2.15 | < 0.040 | | p-terphenyl | <12 | <1.50 | <2.57 | <2.03 | <2.15 | <0.040 | | Total | <1838 | <229 | <394 | <311 | <330 | <6.07 | | Dry Gas Volume Sampled (Rm ³ *) : | 4.662 | |--|-------| | Actual Flowrate (m³/s) : | 26.5 | | Dry Reference Flowrate (Rm³/s*) : | 15.4 | | Dry Adjusted Flowrate (Rm³/s**) : | 19.5 | | Wet Reference Flowrate (Rm³/s*) : | 18.4 | Note: "<" indicates that the analyte was not detected and the value of the detection limit was used to calculate the emission data. ^{*} At 25°C and 1 atmosphere ** At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume **TABLE 73 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet** Polycyclic Aromatic Hydrocarbon Emission Data Test No. 3 | Compound | Total
Collected | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | | |---------------------------------|--------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------|--| | | ng | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | | Acenaphthene | <12 | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | | Acenaphthylene | <12 | <1.61 | <2.70 | <2.13 | <2.31 | | | | Anthracene | <12 | <1.61 | <2.70 | <2.13 | <2.31
<2.31 | <0.040 | | | Benzo(a)Anthracene | <12 | <1.61 | <2.70 | <2.13 | <2.31
<2.31 | <0.040 | | | Benzo(b)Fluoranthene | <12 | <1.61 | <2.70 | <2.13 | <2.31
<2.31 | <0.040 | | | Benzo(k)Fluoranthene | <12 | <1.61 | <2.70 | <2.13 | | <0.040 | | | Benzo(a)fluorene | <12 | <1.61 | <2.70 | <2.13
<2.13 | <2.31 | <0.040 | | | Benzo(b)fluorene | <12 | <1.61 | <2.70
<2.70 | | <2.31 | <0.040 | | | Benzo(g,h,i)Perylene | 19.9 | 2.67 | 4.47 | <2.13
3.54 | <2.31 | <0.040 | | | Benzo(a)Pyrene | <12 | <1.61 | | | 3.82 | 0.066 | | | Benzo(e)Pyrene | <12 | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | | Biphenyl | 29.6 | 3.98 | <2.70 | <2.13 | <2.31 | <0.040 | | | 2-Chloronaphthalene | <12 | <1.61 | 6.65 | 5.26 | 5.69 | 0.098 | | | Chrysene/Triphenylene | <12
<12 | | <2.70 | <2.13 | <2.31 | <0.040 | | | Coronene | | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | | Dibenzo(a,c/a,h)Anthracene | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | | Dibenzo(a,e)pyrene | <12 | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | | | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | | 9,10-dimethylanthracene | <12 | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | | 7,12-Dimethylbenzo(a)anthracene | <12 | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | | Fluoranthene | 27.2 | 3.65 | 6.12 | 4.83 | 5.23 | 0.090 | | | Fluorene | <12 | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | | Indeno(1,2,3-cd)Pyrene | <12 | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | | 2-methylanthracene | 21.6 | 2.90 | 4.86 | 3.84 | 4.15 | 0.071 | | | 3-Methylcholanthrene | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | | 1-Methylnaphthalene | 22.0 | 2.96 | 4.95 | 3.91 | 4.23 | 0.073 | | | 2-Methylnaphthalene | 32.5 | 4.37 | 7.31 | 5.77 | 6.24 | 0.11 | | | 1-Methylphenanthrene | 21.1 | 2.83 | 4.74 | 3.75 | 4.05 | 0.070 | | | 9-Methylphenanthrene | 14.5 | 1.95 | 3.26 | 2.58 | 2.79 | 0.048 | | | Naphthalene | 224 | 30.1 | 50.4 | 39.8 | 43.0 | 0.74 | | | Perylene | <12 | <1.61 | <2.70 | <2.13 | <2.31 | < 0.040 | | | Phenanthrene | 66.1 | 8.88 | 14.9 | 11.7 | 12.7 | 0.22 | | | Picene | <60 | <8.06 | <13.5 | <10.7 | <11.5 | <0.20 | | | Pyrene | 18.5 | 2.49 | 4.16 | 3.29 | 3.55 | 0.061 | | | Tetralin | 288 | 38.7 | 64.7 | 51.2 | 55.3 | 0.95 | | | m-terphenyl | <12 | <1.61 | <2.70 | <2.13 | <2.31 | < 0.040 | | | o-Terphenyl | <12 | <1.61 | <2.70 | <2.13 | <2.31 | < 0.040 | | | p-terphenyl | <12 | <1.61 | <2.70 | <2.13 | <2.31 | <0.040 | | | Total | <1277 | <172 | <287 | <227 | <245 | <4.22 | |
 Dry Gas Volume Sampled (Rm³*) : | 4.448 | |-----------------------------------|-------| | Actual Flowrate (m³/s) : | 24.6 | | Dry Reference Flowrate (Rm³/s*) : | 14.7 | | Dry Adjusted Flowrate (Rm³/s**): | 18.6 | | Wet Reference Flowrate (Rm³/s*) : | 17.2 | Note: "<" indicates that the analyte was not detected and the value of the detection limit was used to calculate the emission data. ^{*} At 25°C and 1 atmosphere ** At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 74 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Polycyclic Aromatic Hydrocarbon Actual Concentrations | Compound | | | Coefficient | | | |---------------------------------|------------|------------|-------------|---------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/m³ | ng/m³ | ng/m³ | ng/m³ | % | | Acenaphthene | <1.52 | 5.57 | <1.61 | <2.90 | 79.6 | | Acenaphthylene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Anthracene | <1.52 | 1.55 | <1.61 | <1.56 | 2.9 | | Benzo(a)Anthracene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Benzo(b)Fluoranthene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Benzo(k)Fluoranthene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Benzo(a)fluorene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Benzo(b)fluorene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Benzo(g,h,i)Perylene | 7.76 | 5.92 | 2.67 | 5.45 | 47.2 | | Benzo(a)Pyrene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Benzo(e)Pyrene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Biphenyl | 4.06 | 7.16 | 3.98 | 5.07 | 35.7 | | 2-Chloronaphthalene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Chrysene/Triphenylene | <1.52 | 1.51 | <1.61 | <1.55 | 3.6 | | Coronene | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | Dibenzo(a,c/a,h)Anthracene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Dibenzo(a,e)pyrene | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | 9,10-dimethylanthracene | <1.52 | 2.63 | <1.61 | <1.92 | 32.0 | | 7,12-Dimethylbenzo(a)anthracene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Fluoranthene | 2.46 | 7.98 | 3.65 | 4.70 | 61.7 | | Fluorene | <1.52 | 3.30 | <1.61 | <2.15 | 46.7 | | Indeno(1,2,3-cd)Pyrene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | 2-methylanthracene | 2.74 | 8.29 | 2.90 | 4.64 | 68.0 | | 3-Methylcholanthrene | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | 1-Methylnaphthalene | 2.83 | 3.17 | 2.96 | 2.98 | 5.7 | | 2-Methylnaphthalene | 4.97 | 6.74 | 4.37 | 5.36 | 23.1 | | 1-Methylphenanthrene | 4.62 | 5.26 | 2.83 | 4.24 | 29.7 | | 9-Methylphenanthrene | 1.66 | 8.40 | 1.95 | 4.00 | 95.2 | | Naphthalene | 36.8 | 34.5 | 30.1 | 33.8 | 10.1 | | Perylene | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Phenanthrene | 9.97 | 28.7 | 8.88 | 15.8 | 70.2 | | Picene | <7.62 | <7.48 | <8.06 | <7.72 | 3.9 | | Pyrene | 2.58 | 8.25 | 2.49 | 4.44 | 3.9
74.4 | | Tetralin | 25.9 | 34.7 | 38.7 | 33.1 | 19.7 | | m-terphenyl | <1.52 | 3.12 | <1.61 | <2.08 | 42.9 | | o-Terphenyl | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | p-terphenyl | <1.52 | <1.50 | <1.61 | <1.54 | 3.9 | | Total | <169 | <229 | <172 | <190 | 17.9 | TABLE 75 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Polycyclic Aromatic Hydrocarbon Dry Reference Concentrations | Compound | | Dry Reference Concentration | | | | | |---------------------------------|------------|-----------------------------|------------|---------|--------------------------|--| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | Coefficient of Variation | | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | | Acenaphthene | <2.61 | 9.59 | <2.70 | <4.97 | 80.6 | | | Acenaphthylene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Anthracene | <2.61 | 2.66 | <2.70 | <2.66 | 1.6 | | | Benzo(a)Anthracene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Benzo(b)Fluoranthene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Benzo(k)Fluoranthene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Benzo(a)fluorene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Benzo(b)fluorene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Benzo(g,h,i)Perylene | 13.3 | 10.2 | 4.47 | 9.32 | 48.1 | | | Benzo(a)Pyrene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Benzo(e)Pyrene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Biphenyl | 6.97 | 12.3 | 6.65 | 8.65 | 36.8 | | | 2-Chloronaphthalene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Chrysene/Triphenylene | <2.61 | 2.60 | <2.70 | <2.64 | 2.1 | | | Coronene | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | | Dibenzo(a,c/a,h)Anthracene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Dibenzo(a,e)pyrene | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | | 9,10-dimethylanthracene | <2.61 | 4.53 | <2.70 | <3.28 | 32.9 | | | 7,12-Dimethylbenzo(a)anthracene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Fluoranthene | 4.23 | 13.7 | 6.12 | 8.02 | 62.7 | | | Fluorene | <2.61 | 5.68 | <2.70 | <3.67 | 47.7 | | | Indeno(1,2,3-cd)Pyrene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | 2-methylanthracene | 4.71 | 14.3 | 4.86 | 7.94 | 68.9 | | | 3-Methylcholanthrene | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | | 1-Methylnaphthalene | 4.86 | 5.45 | 4.95 | 5.08 | 6.3 | | | 2-Methylnaphthalene | 8.52 | 11.6 | 7.31 | 9.14 | 24.2 | | | 1-Methylphenanthrene | 7.93 | 9.05 | 4.74 | 7.24 | 30.9 | | | 9-Methylphenanthrene | 2.85 | 14.5 | 3.26 | 6.86 | 96.0 | | | Naphthalene | 63.2 | 59.4 | 50.4 | 57.7 | 11.4 | | | Perylene | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Phenanthrene | 17.1 | 49.3 | 14.9 | 27.1 | 71.2 | | | Picene | <13.1 | <12.9 | <13.5 | <13.1 | 2.4 | | | Pyrene | 4.42 | 14.2 | 4.16 | 7.59 | 75.4 | | | ,
Tetralin | 44.4 | 59.6 | 64.7 | 56.3 | 18.8 | | | m-terphenyl | <2.61 | 5.36 | <2.70 | <3.56 | 43.9 | | | o-Terphenyl | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | p-terphenyl | <2.61 | <2.57 | <2.70 | <2.63 | 2.4 | | | Total | <290 | <394 | <287 | <324 | 18.9 | | ^{*} At 25°C and 1 atmosphere TABLE 76 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Polycyclic Aromatic Hydrocarbon Dry Adjusted Concentrations | Compound | | Coefficient | | | | |---------------------------------|------------|-------------|-----------------------------|---------|--------------| | - | Test No. 1 | Test No. 2 | Concentration
Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | Acenaphthene | <2.07 | 7.57 | <2.13 | <3.92 | 80.5 | | Acenaphthylene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Anthracene | <2.07 | 2.10 | <2.13 | <2.10 | 1.6 | | Benzo(a)Anthracene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Benzo(b)Fluoranthene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Benzo(k)Fluoranthene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Benzo(a)fluorene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Benzo(b)fluorene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Benzo(g,h,i)Perylene | 10.5 | 8.05 | 3.54 | 7.37 | 48.1 | | Benzo(a)Pyrene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Benzo(e)Pyrene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Biphenyl | 5.51 | 9.72 | 5.26 | 6.83 | 36.7 | | 2-Chloronaphthalene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Chrysene/Triphenylene | <2.07 | 2.05 | <2.13 | <2.08 | 2.1 | | Coronene | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | Dibenzo(a,c/a,h)Anthracene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Dibenzo(a,e)pyrene | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | 9,10-dimethylanthracene | <2.07 | 3.57 | <2.13 | <2.59 | 32.9 | | 7,12-Dimethylbenzo(a)anthracene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Fluoranthene | 3.34 | 10.8 | 4.83 | 6.34 | 62.6 | | Fluorene | <2.07 | 4.49 | <2.13 | <2.90 | 47.7 | | Indeno(1,2,3-cd)Pyrene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | 2-methylanthracene | 3.72 | 11.3 | 3.84 | 6.27 | 68.9 | | 3-Methylcholanthrene | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | 1-Methylnaphthalene | 3.84 | 4.30 | 3.91 | 4.02 | 6.2 | | 2-Methylnaphthalene | 6.73 | 9.16 | 5.77 | 7.22 | 24.2 | | 1-Methylphenanthrene | 6.27 | 7.15 | 3.75 | 5.72 | 30.8 | | 9-Methylphenanthrene | 2.26 | 11.4 | 2.58 | 5.42 | 96.0 | | Naphthalene | 49.9 | 46.9 | 39.8 | 45.6 | 11.4 | | Perylene | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Phenanthrene | 13.5 | 39.0 | 11.7 | 21.4 | 71.1 | | Picene | <10.3 | <10.2 | <10.7 | <10.4 | 2.4 | | Pyrene | 3.50 | 11.2 | 3.29 | 6.00 | 75.3 | | Tetralin | 35.1 | 47.1 | 51.2 | 44.5 | 18.7 | | m-terphenyl | <2.07 | 4.24 | <2.13 | <2.81 | 43.9 | | o-Terphenyl | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | p-terphenyl | <2.07 | <2.03 | <2.13 | <2.08 | 2.4 | | Total | <229 | <311 | <227 | <256 | 18.8 | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 77 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Polycyclic Aromatic Hydrocarbon Wet Reference Concentrations | Compound | | | Coefficient | | | |---------------------------------|------------|------------|-------------|---------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | ng/Rm³* | ng/Rm³* | ng/Rm³* | ng/Rm³* | % | | Acenaphthene | <2.19 | 8.02 | <2.31 | <4.17 | 79.9 | | Acenaphthylene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Anthracene | <2.19 | 2.23 | <2.31 | <2.24 | 2.6 | | Benzo(a)Anthracene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Benzo(b)Fluoranthene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Benzo(k)Fluoranthene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Benzo(a)fluorene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Benzo(b)fluorene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Benzo(g,h,i)Perylene | 11.2 | 8.53 | 3.82 | 7.84 | 47.4 | | Benzo(a)Pyrene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Benzo(e)Pyrene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Biphenyl | 5.85 | 10.3 | 5.69 | 7.28 | 36.0 | | 2-Chloronaphthalene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Chrysene/Triphenylene | <2.19 | 2.17 | <2.31 | <2.22 | 3.2 | | Coronene | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | Dibenzo(a,c/a,h)Anthracene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Dibenzo(a,e)pyrene | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 9,10-dimethylanthracene | <2.19 | 3.79 | <2.31 | <2.76 | 32.2 | | 7,12-Dimethylbenzo(a)anthracene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Fluoranthene | 3.55 | 11.5 | 5.23 | 6.75 | 62.0 | | Fluorene | <2.19 | 4.76 | <2.31 |
<3.09 | 47.0 | | Indeno(1,2,3-cd)Pyrene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | 2-methylanthracene | 3.95 | 11.9 | 4.15 | 6.68 | 68.2 | | 3-Methylcholanthrene | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | 1-Methylnaphthalene | 4.08 | 4.56 | 4.23 | 4.29 | 5.8 | | 2-Methylnaphthalene | 7.15 | 9.71 | 6.24 | 7.70 | 23.4 | | 1-Methylphenanthrene | 6.65 | 7.58 | 4.05 | 6.09 | 30.0 | | 9-Methylphenanthrene | 2.39 | 12.1 | 2.79 | 5.76 | 95.4 | | Naphthalene | 53.0 | 49.7 | 43.0 | 48.6 | 10.4 | | Perylene | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Phenanthrene | 14.3 | 41.3 | 12.7 | 22.8 | 70.5 | | Picene | <11.0 | <10.8 | <11.5 | <11.1 | 3.5 | | Pyrene | 3.71 | 11.9 | 3.55 | 6.38 | 74.7 | | Tetralin | 37.3 | 49.9 | 55.3 | 47.5 | 19.5 | | m-terphenyl | <2.19 | 4.49 | <2.31 | <3.00 | 43.2 | | o-Terphenyl | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | p-terphenyl | <2.19 | <2.15 | <2.31 | <2.22 | 3.5 | | Total | <243 | <330 | <245 | <273 | 18.1 | ^{*} At 25°C and 1 atmosphere TABLE 78 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Polycyclic Aromatic Hydrocarbon Emission Rates | Compound | | Coefficient | | | | |---------------------------------|------------|-------------|-----------------------|---------|--------------| | · | Test No. 1 | Test No. 2 | on Rate
Test No. 3 | Average | of Variation | | | μg/s | μg/s | μg/s | μg/s | % | | | | | | | | | Acenaphthene | <0.039 | 0.15 | < 0.040 | <0.076 | 82.5 | | Acenaphthylene | <0.039 | <0.040 | <0.040 | < 0.040 | 0.3 | | Anthracene | <0.039 | 0.041 | < 0.040 | <0.040 | 2.0 | | Benzo(a)Anthracene | <0.039 | <0.040 | <0.040 | < 0.040 | 0.3 | | Benzo(b)Fluoranthene | <0.039 | <0.040 | <0.040 | <0.040 | 0.3 | | Benzo(k)Fluoranthene | < 0.039 | < 0.040 | <0.040 | <0.040 | 0.3 | | Benzo(a)fluorene | < 0.039 | < 0.040 | <0.040 | < 0.040 | 0.3 | | Benzo(b)fluorene | < 0.039 | <0.040 | < 0.040 | < 0.040 | 0.3 | | Benzo(g,h,i)Perylene | 0.20 | 0.16 | 0.066 | 0.14 | 48.8 | | Benzo(a)Pyrene | < 0.039 | < 0.040 | < 0.040 | < 0.040 | 0.3 | | Benzo(e)Pyrene | < 0.039 | < 0.040 | < 0.040 | < 0.040 | 0.3 | | Biphenyl | 0.11 | 0.19 | 0.098 | 0.13 | 38.9 | | 2-Chloronaphthalene | < 0.039 | < 0.040 | < 0.040 | < 0.040 | 0.3 | | Chrysene/Triphenylene | < 0.039 | 0.040 | < 0.040 | < 0.040 | 0.6 | | Coronene | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | Dibenzo(a,c/a,h)Anthracene | < 0.039 | <0.040 | <0.040 | <0.040 | 0.3 | | Dibenzo(a,e)pyrene | < 0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 9,10-dimethylanthracene | < 0.039 | 0.070 | <0.040 | <0.050 | 35.1 | | 7,12-Dimethylbenzo(a)anthracene | < 0.039 | <0.040 | <0.040 | <0.040 | 0.3 | | Fluoranthene | 0.064 | 0.21 | 0.090 | 0.12 | 64.7 | | Fluorene | <0.039 | 0.088 | <0.040 | <0.056 | 49.9 | | Indeno(1,2,3-cd)Pyrene | <0.039 | <0.040 | <0.040 | <0.040 | 0.3 | | 2-methylanthracene | 0.071 | 0.22 | 0.071 | 0.12 | 71.0 | | 3-Methylcholanthrene | <0.20 | <0.20 | <0.20 | <0.20 | 0.3 | | 1-Methylnaphthalene | 0.073 | 0.084 | 0.073 | 0.077 | 8.2 | | 2-Methylnaphthalene | 0.13 | 0.18 | 0.11 | 0.077 | 26.5 | | 1-Methylphenanthrene | 0.12 | 0.14 | 0.070 | 0.14 | 32.8 | | 9-Methylphenanthrene | 0.043 | 0.22 | 0.048 | 0.11 | 97.8 | | Naphthalene | 0.95 | 0.92 | 0.74 | 0.10 | 13.1 | | Perylene | <0.039 | <0.040 | <0.040 | <0.040 | | | Phenanthrene | 0.26 | 0.76 | 0.22 | 0.040 | 0.3 | | Picene | <0.20 | <0.20 | <0.20 | | 73.2 | | Pyrene | 0.067 | 0.22 | 0.061 | <0.20 | 0.3 | | Tetralin | 0.67 | 0.22 | | 0.12 | 77.4 | | m-terphenyl | <0.039 | | 0.95 | 0.85 | 18.1 | | o-Terphenyl | <0.039 | 0.083 | <0.040 | <0.054 | 46.1 | | p-terphenyl | | <0.040 | <0.040 | <0.040 | 0.3 | | p-cei pitettyi | <0.039 | <0.040 | <0.040 | <0.040 | 0.3 | | Total | <4.37 | <6.07 | <4.22 | <4.89 | 21.0 | TABLE 79 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Polycyclic Aromatic Hydrocarbon Emission Data | Compound | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |---------------------------------|---------------|---------------|---------------|---------------|----------| | | Concentration | Concentration | Concentration | Concentration | Rate | | | ng/m³ | ng/Rm³* | ng/Rm³** | ng/Rm³* | μg/s | | Acenaphthene | <2.90 | <4.97 | <3.92 | <4.17 | <0.076 | | Acenaphthylene | <1.54 | <2.63 | <2.08 | <2.22 | < 0.040 | | Anthracene | <1.56 | <2.66 | <2.10 | <2.24 | <0.040 | | Benzo(a)Anthracene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Benzo(b)Fluoranthene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Benzo(k)Fluoranthene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Benzo(a)fluorene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Benzo(b)fluorene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Benzo(g,h,i)Perylene | 5.45 | 9.32 | 7.37 | 7.84 | 0.14 | | Benzo(a)Pyrene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Benzo(e)Pyrene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Biphenyl | 5.07 | 8.65 | 6.83 | 7.28 | 0.13 | | 2-Chloronaphthalene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Chrysene/Triphenylene | <1.55 | <2.64 | <2.08 | <2.22 | <0.040 | | Coronene | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | Dibenzo(a,c/a,h)Anthracene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Dibenzo(a,e)pyrene | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | 9,10-dimethylanthracene | <1.92 | <3.28 | <2.59 | <2.76 | <0.050 | | 7,12-Dimethylbenzo(a)anthracene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Fluoranthene | 4.70 | 8.02 | 6.34 | 6.75 | 0.12 | | Fluorene | <2.15 | <3.67 | <2.90 | <3.09 | <0.056 | | Indeno(1,2,3-cd)Pyrene | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | 2-methylanthracene | 4.64 | 7.94 | 6.27 | 6.68 | 0.12 | | 3-Methylcholanthrene | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | 1-Methylnaphthalene | 2.98 | 5.08 | 4.02 | 4.29 | 0.077 | | 2-Methylnaphthalene | 5.36 | 9.14 | 7.22 | 7.70 | 0.14 | | 1-Methylphenanthrene | 4.24 | 7.24 | 5.72 | 6.09 | 0.11 | | 9-Methylphenanthrene | 4.00 | 6.86 | 5.42 | 5.76 | 0.10 | | Naphthalene | 33.8 | 57.7 | 45.6 | 48.6 | 0.87 | | Perylene | <1.54 | <2.63 | <2.08 | <2.22 | < 0.040 | | Phenanthrene | 15.8 | 27.1 | 21.4 | 22.8 | 0.41 | | Picene | <7.72 | <13.1 | <10.4 | <11.1 | <0.20 | | Pyrene | 4.44 | 7.59 | 6.00 | 6.38 | 0.12 | | Tetralin | 33.1 | 56.3 | 44.5 | 47.5 | 0.85 | | m-terphenyl | <2.08 | <3.56 | <2.81 | <3.00 | <0.054 | | o-Terphenyl | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | p-terphenyl | <1.54 | <2.63 | <2.08 | <2.22 | <0.040 | | Total | <190 | <324 | <256 | <273 | <4.89 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 80 Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Blank Polycyclic Aromatic Hydrocarbon Analyses | Compound | Blank
Train | Laboratory
Blank | |---------------------------------|----------------|---------------------| | | ng | ng | | Acenaphthene | <12 | <12 | | Acenaphthylene | <12 | <12 | | Anthracene | <12 | <12 | | Benzo(a)Anthracene | <12 | <12 | | Benzo(b)Fluoranthene | <12 | <12 | | Benzo(k)Fluoranthene | <12 | <12 | | Benzo(a)fluorene | <12 | <12 | | Benzo(b)fluorene | <12 | <12 | | Benzo(g,h,i)Perylene | <12 | <12 | | Benzo(a)Pyrene | <12 | <12 | | Benzo(e)Pyrene | <12 | <12 | | Biphenyl | <12 | .<12 | | 2-Chloronaphthalene | <12 | <12 | | Chrysene/Triphenylene | <12 | <12 | | Coronene | <60 | <60 | | Dibenzo(a,c/a,h)Anthracene | <12 | <12 | | Dibenzo(a,e)pyrene | <60 | <60 | | 9,10-dimethylanthracene | <12 | <12 | | 7,12-Dimethylbenzo(a)anthracene | <12 | <12 | | Fluoranthene | <12 | <12 | | Fluorene | <12 | <12 | | Indeno(1,2,3-cd)Pyrene | <12 | <12 | | 2-methylanthracene | <12 | <12 | | 3-Methylcholanthrene | <60 | <60 | | 1-Methylnaphthalene | <12 | <12 | | 2-Methylnaphthalene | <12 | <12 | | 1-Methylphenanthrene | <12 | <12 | | 9-Methylphenanthrene | <12 | <12 | | Naphthalene | 164 | 190 | | Perylene | <12 | <12 | | Phenanthrene | <12 | <12 | | Picene | <60 | <60 | | Pyrene | <12 | <12 | | Tetralin | 181 | 276 | | m-terphenyl | <12 | <12 | | o-Terphenyl | <12 | <12 | | p-terphenyl | <12 | <12 | | Total | <957 | <1078 | [&]quot;<" indicates that the amount detected is less than the detection limit. In these cases the value of the detection limit was used to calculate the total collected. # TABLE 81 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Acetaldehyde, Formaldehyde and Acrolein Emission Data ### Acetaldehyde | | Total | Dry Volume | Acetaldehyde Concentration Acetal | | | | | | |---------|-----------|-------------------|-----------------------------------|---------------|--------------|---------------|----------------------|--| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission Rate | | | No. | μg | Rm ³ * | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | | 1 | 2.12 | 0.0329 | 37.6 | 64.4 | 51.1 | 54.2 | 0.97 | | | 2 | 1.83 | 0.0306 | 34.6 | 59.8 | 47.1 | 50.0 | 0.92 | | | 3 | 2.17 | 0.0305 | 41.2 | 71.2 | 56.1 | 59.5 | 1.09 | | | Average | | | 37.8 | 65.1 | 51.4 | 54.6 | 0.99 | | | Blank | 1.44 | | | | | | | | #### Formaldehyde | | Total | Dry Volume | | Formaldehyde | | | | |---------|-----------|------------|--------|---------------|--------------|---------------|----------------------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission Rate | | No. | μg | Rm³* | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | 1 | 2.36 | 0.0329 | 41.9 | 71.6 | 56.8 | 60.4 | 1.08 | | 2 | 1.22 | 0.0306 | 23.1 | 39.9 | 31.4 | 33.3 | 0.61 | | 3 | 1.66 | 0.0305 | 31.5 | 54.5 | 42.9 | 45.5 | 0.84 | | Average | | | 32.2 | 55.3 | 43.7 | 46.4 | 0.84 | | Blank | 0.98 | | | | | | | #### Acrolein | | Total | Dry Volume | | Acrolein | | | | |---------|-----------|------------|--------|---------------|--------------|---------------|----------------------| | Test | Collected | Sampled | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission Rate | | No. | μg | Rm³* | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | 1 | <0.1 | 0.0329 | <1.78 | <3.04 | <2.41 | <2.56 | <0.046 | | 2 | <0.1 | 0.0306 | <1.89 | <3.27 |
<2.57 | <2.73 | <0.050 | | 3 | <0.1 | 0.0305 | <1.90 | <3.28 | <2.59 | <2.74 | <0.050 | | Average | | | <1.86 | <3.20 | <2.52 | <2.68 | <0.049 | | Blank | <0.1 | | | | | | | Note: "<" indicates that the analyte was not detected and the value of the detection limit was used to calculate the emission data. Sampling was conducted at a single point. Volumetric flowrates from corresponding isokinetic tests were used to calculate emission data. - * At 25 °C and 1 atmosphere - ** At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 82 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Volatile Organic Emission Data Test No. 1 | Compound | Total
Collected | Actual Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |---------------------------------------|--------------------|----------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | μg | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | | | | | | | | | Acetone | 1.36 | 37.3 | 64.0 | 50.6 | 53.7 | 0.97 | | Benzene | 0.11 | 3.14 | 5.38 | 4.25 | 4.51 | 0.081 | | Bromodichloromethane | 0.017 | 0.47 | 0.80 | 0.63 | 0.67 | 0.012 | | Bromoform | < 0.01 | <0.28 | < 0.47 | < 0.37 | <0.40 | <0.0071 | | Bromomethane | < 0.09 | <2.48 | <4.25 | <3.36 | <3.56 | < 0.064 | | 1,3-Butadiene | < 0.02 | <0.55 | < 0.94 | <0.75 | <0.79 | <0.014 | | 2-Butanone | 1.15 | 31.5 | 54.0 | 42.7 | 45.3 | 0.82 | | Carbon Tetrachloride | 0.031 | 0.85 | 1.46 | 1.16 | 1.23 | 0.022 | | Chloroform | 0.094 | 2.59 | 4.44 | 3.51 | 3.72 | 0.067 | | Cumene (Isopropylbenzene) | 0.033 | 0.91 | 1.56 | 1.23 | 1.31 | 0.024 | | Dibromochloromethane | < 0.01 | <0.28 | < 0.47 | < 0.37 | <0.40 | <0.0071 | | Dichlorodifluoromethane | < 0.02 | <0.55 | < 0.94 | <0.75 | <0.79 | < 0.014 | | 1,2-Dichloroethane | 0.017 | 0.47 | 0.80 | 0.63 | 0.67 | 0.012 | | trans,1,2-Dichloroethene | 0.016 | 0.44 | 0.76 | 0.60 | 0.63 | 0.011 | | 1,1-Dichloroethene | <0.01 | <0.28 | < 0.47 | <0.37 | <0.40 | < 0.0071 | | 1,2-Dichloropropane | < 0.01 | <0.28 | < 0.47 | <0.37 | < 0.40 | < 0.0071 | | Ethylbenzene | 0.20 | 5.39 | 9.25 | 7.31 | 7.76 | 0.14 | | Ethylene Dibromide | < 0.02 | <0.55 | <0.94 | <0.75 | <0.79 | <0.014 | | Mesitylene (1,3,5-Trimethylbenzene) | 0.24 | 6.69 | 11.5 | 9.07 | 9.62 | 0.17 | | Methylene Chloride | 0.70 | 19.4 | 33.2 | 26.3 | 27.9 | 0.50 | | Styrene | 0.11 | 3.08 | 5.29 | 4.18 | 4.44 | 0.080 | | Tetrachloroethene | 0.010 | 0.28 | 0.47 | 0.37 | 0.40 | 0.0071 | | Toluene | 0.80 | 22.1 | 38.0 | 30.0 | 31.8 | 0.57 | | 1,1,1-Trichloroethane | < 0.01 | <0.28 | < 0.47 | <0.37 | <0.40 | < 0.0071 | | Trichloroethene/1,1,2-Trichloroethene | <0.01 | <0.28 | <0.47 | <0.37 | <0.40 | < 0.0071 | | Trichlorotrifluoroethane | <0.02 | <0.55 | < 0.94 | <0.75 | <0.79 | < 0.014 | | Trichlorofluoromethane | 0.053 | 1.46 | 2.50 | 1.98 | 2.10 | 0.038 | | M&P-Xylene | 2.49 | 68.5 | 118 | 92.9 | 98.6 | 1.77 | | O-Xylene | 0.81 | 22.3 | 38.3 | 30.3 | 32.2 | 0.58 | | Vinyl Chloride | <0.02 | <0.55 | <0.94 | <0.75 | <0.79 | <0.014 | | Total | <8.50 | <234 | <401 | <317 | <336 | <6.06 | | Dry Gas Volume Sampled (Rm³*): | 0.0212 | |-----------------------------------|--------| | Actual Flowrate (m³/s) : | 25.9 | | Dry Reference Flowrate (Rm³/s*) : | 15.1 | | Dry Adjusted Flowrate (Rm³/s**): | 19.1 | | Wet Reference Flowrate (Rm³/s*) : | 18.0 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 83 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Volatile Organic Emission Data Test No. 2 | Compound | Total | Actual | Dry Reference | Dry Adjusted | Wet Reference | Emission | |---------------------------------------|-----------|---------------|---------------|--------------|---------------|----------| | | Collected | Concentration | | | Concentration | Rate | | | μg | μg/m³ | μg/Rm³* | μg/Rm³** | μg/Rm³* | mg/s | | | | | | | | | | Acetone | 1.67 | 47.3 | 81.1 | 64.1 | 68.0 | 1.22 | | Benzene | 0.14 | 3.99 | 6.84 | 5.41 | 5.74 | 0.10 | | Bromodichloromethane | 0.022 | 0.62 | 1.07 | 0.84 | 0.90 | 0.016 | | Bromoform | <0.01 | <0.28 | < 0.49 | <0.38 | <0.41 | <0.0073 | | Bromomethane | < 0.09 | <2.55 | <4.37 | <3.45 | <3.66 | <0.066 | | 1,3-Butadiene | < 0.02 | <0.57 | < 0.97 | <0.77 | <0.81 | < 0.015 | | 2-Butanone | 1.41 | 39.9 | 68.5 | 54.2 | 57.5 | 1.03 | | Carbon Tetrachloride | 0.038 | 1.07 | 1.84 | 1.46 | 1.55 | 0.028 | | Chloroform | 0.12 | 3.28 | 5.63 | 4.45 | 4.72 | 0.085 | | Cumene (Isopropylbenzene) | 0.041 | 1.16 | 1.99 | 1.57 | 1.67 | 0.030 | | Dibromochloromethane | < 0.01 | <0.28 | < 0.49 | <0.38 | <0.41 | <0.0073 | | Dichlorodifluoromethane | <0.02 | <0.57 | < 0.97 | <0.77 | <0.81 | <0.015 | | 1,2-Dichloroethane | 0.021 | 0.59 | 1.02 | 0.81 | 0.85 | 0.015 | | trans,1,2-Dichloroethene | 0.020 | 0.57 | 0.97 | 0.77 | 0.81 | 0.015 | | 1,1-Dichloroethene | < 0.01 | <0.28 | < 0.49 | <0.38 | < 0.41 | < 0.0073 | | 1,2-Dichloropropane | < 0.01 | <0.28 | <0.49 | <0.38 | <0.41 | < 0.0073 | | Ethylbenzene | 0.24 | 6.82 | 11.7 | 9.24 | 9.81 | 0.18 | | Ethylene Dibromide | < 0.02 | <0.57 | <0.97 | <0.77 | <0.81 | <0.015 | | Mesitylene (1,3,5-Trimethylbenzene) | 0.30 | 8.46 | 14.5 | 11.5 | 12.2 | 0.22 | | Methylene Chloride | 0.87 | 24.5 | 42.1 | 33.3 | 35.3 | 0.64 | | Styrene | 0.14 | 3.90 | 6.70 | 5.29 | 5.62 | 0.10 | | Tetrachloroethene | 0.013 | 0.37 | 0.63 | 0.50 | 0.53 | 0.0095 | | Toluene | 0.99 | 28.0 | 48.1 | 38.0 | 40.3 | 0.73 | | 1,1,1-Trichloroethane | < 0.01 | <0.28 | < 0.49 | <0.38 | <0.41 | <0.0073 | | Trichloroethene/1,1,2-Trichloroethene | < 0.01 | <0.28 | < 0.49 | <0.38 | <0.41 | < 0.0073 | | Trichlorotrifluoroethane | <0.02 | < 0.57 | <0.97 | <0.77 | <0.81 | <0.015 | | Trichlorofluoromethane | 0.065 | 1.84 | 3.15 | 2.49 | 2.65 | 0.048 | | M&P-Xylene | 3.07 | 86.8 | 149 | 118 | 125 | 2.25 | | O-Xylene | 1.00 | 28.3 | 48.5 | 38.4 | 40.7 | 0.73 | | Vinyl Chloride | <0.02 | <0.57 | <0.97 | <0.77 | <0.81 | <0.015 | | Total | <10.42 | <295 | <505 | <400 | <424 | <7.63 | | Dry Gas Volume Sampled (Rm ³ *): | 0.0206 | |---|--------| | Actual Flowrate (m³/s) : | 25.9 | | Dry Reference Flowrate (Rm³/s*): | 15.1 | | Dry Adjusted Flowrate (Rm³/s**): | 19.1 | | Wet Reference Flowrate (Rm³/s*) : | 18.0 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 84 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Volatile Organic Emission Data Test No. 3 | Compound | Compound Total | | Actual Dry Reference Concentration Concentration | | Wet Reference | Emission | | |---------------------------------------|----------------|--------|--|-----------------------|---------------|----------|--| | | Conecteu | | | | Concentration | Rate | | | | µg | μg/m³ | μg/Rm³* | μg/Rm ³ ** | μg/Rm³* | mg/s | | | A | | | | | | | | | Acetone | 1.47 | 40.7 | 69.9 | 55.3 | 58.6 | 1.06 | | | Benzene | 0.12 | 3.42 | 5.87 | 4.64 | 4.92 | 0.089 | | | Bromodichloromethane | 0.019 | 0.53 | 0.91 | 0.72 | 0.76 | 0.014 | | | Bromoform | < 0.01 | <0.28 | <0.48 | <0.38 | < 0.40 | <0.0072 | | | Bromomethane | <0.09 | <2.50 | <4.29 | <3.39 | <3.60 | < 0.065 | | | 1,3-Butadiene | <0.02 | <0.56 | <0.95 | <0.75 | <0.80 | < 0.014 | | | 2-Butanone | 1.24 | 34.4 | 59.1 | 46.7 | 49.5 | 0.89 | | | Carbon Tetrachloride | 0.034 | 0.95 | 1.62 | 1.28 | 1.36 | 0.024 | | | Chloroform | 0.10 | 2.84 | 4.87 | 3.85 | 4.08 | 0.073 | | | Cumene (Isopropylbenzene) | 0.036 | 1.00 | 1.72 | 1.36 | 1.44 | 0.026 | | | Dibromochloromethane | < 0.01 | <0.28 | < 0.48 | <0.38 | < 0.40 | <0.0072 | | | Dichlorodifluoromethane | <0.02 | <0.56 | <0.95 | <0.75 | <0.80 | <0.014 | | | 1,2-Dichloroethane | 0.018 | 0.50 | 0.86 | 0.68 | 0.72 | 0.013 | | | trans,1,2-Dichloroethene | 0.017 | 0.47 | 0.81 | 0.64 | 0.68 | 0.012 | | | 1,1-Dichloroethene | < 0.01 | <0.28 | < 0.48 | <0.38 | < 0.40 | < 0.0072 | | | 1,2-Dichloropropane | < 0.01 | <0.28 | <0.48 | <0.38 | <0.40 | < 0.0072 | | | Ethylbenzene | 0.21 | 5.90 | 10.1 | 8.00 | 8.48 | 0.15 | | | Ethylene Dibromide | < 0.02 | < 0.56 | <0.95 | <0.75 | <0.80 | < 0.014 | | | Mesitylene (1,3,5-Trimethylbenzene) | 0.26 | 7.29 | 12.5 | 9.88 | 10.5 | 0.19 | | | Methylene Chloride | 0.76 | 21.1 | 36.3 | 28.7 | 30.4 | 0.55 | | | Styrene | 0.12 | 3.37 | 5.77 | 4.56 | 4.84 | 0.087 | | | Tetrachloroethene | 0.011 | 0.31 | 0.52 | 0.41 | 0.44 | 0.0079 | | | Toluene | 0.87 | 24.1 | 41.4 | 32.7 | 34.7 | 0.63 | | | 1,1,1-Trichloroethane | < 0.01 | <0.28 | <0.48 | <0.38 | <0.40 | <0.0072 | | | Trichloroethene/1,1,2-Trichloroethene | < 0.01 | <0.28 | <0.48 | <0.38 | <0.40 | <0.0072 | | | Trichlorotrifluoroethane | < 0.02 | <0.56 | <0.95 | <0.75 | <0.80 | < 0.014 | | | Trichlorofluoromethane | 0.057 | 1.59 | 2.72 | 2.15 | 2.28 | 0.041 | | | M&P-Xylene | 2.69 | 74.8 | 128 | 101 | 108 | 1.94 | | | O-Xylene | 0.88 | 24.4 | 41.8 | 33.1 | 35.1 | 0.63 | | | Vinyl Chloride | <0.02 | <0.56 | <0.95 | <0.75 | <0.80 | < 0.014 | | | Total | <9.16 | <255 | <437 | <345 | <367 | <6.60 | | | Dry Gas Volume Sampled (Rm³*) : | 0.0210 | |-----------------------------------|--------| | Actual Flowrate (m³/s) : | 25.9 | | Dry Reference Flowrate (Rm³/s*): | 15.1 | | Dry Adjusted Flowrate (Rm³/s**): | 19.1 | | Wet Reference Flowrate (Rm³/s*) : | 18.0 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 85 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Volatile Organic Actual Concentrations | Compound | | Actual Concentration | | | | | | |---------------------------------------|------------|----------------------|------------|---------|--------------|--|--| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | | | μg/m³ | μg/m³ | μg/m³ | μg/m³ | % | | | | A | | | | | | | | | Acetone | 37.3 | 47.3 | 40.7 | 41.8 | 12.1 | | | | Benzene | 3.14 | 3.99 |
3.42 | 3.52 | 12.3 | | | | Bromodichloromethane | 0.47 | 0.62 | 0.53 | 0.54 | 14.4 | | | | Bromoform | <0.28 | <0.28 | <0.28 | <0.28 | 1.4 | | | | Bromomethane | <2.48 | <2.55 | <2.50 | <2.51 | 1.4 | | | | 1,3-Butadiene | <0.55 | <0.57 | <0.56 | <0.56 | 1.4 | | | | 2-Butanone | 31.5 | 39.9 | 34.4 | 35.3 | 12.1 | | | | Carbon Tetrachloride | 0.85 | 1.07 | 0.95 | 0.96 | 11.6 | | | | Chloroform | 2.59 | 3.28 | 2.84 | 2.90 | 12.1 | | | | Cumene (Isopropylbenzene) | 0.91 | 1.16 | 1.00 | 1.02 | 12.4 | | | | Dibromochloromethane | <0.28 | <0.28 | <0.28 | <0.28 | 1.4 | | | | Dichlorodifluoromethane | <0.55 | <0.57 | <0.56 | <0.56 | 1.4 | | | | 1,2-Dichloroethane | 0.47 | 0.59 | 0.50 | 0.52 | 12.6 | | | | trans,1,2-Dichloroethene | 0.44 | 0.57 | 0.47 | 0.49 | 13.2 | | | | 1,1-Dichloroethene | <0.28 | <0.28 | <0.28 | <0.28 | 1.4 | | | | 1,2-Dichloropropane | <0.28 | <0.28 | <0.28 | <0.28 | 1.4 | | | | Ethylbenzene | 5.39 | 6.82 | 5.90 | 6.04 | 12.0 | | | | Ethylene Dibromide | <0.55 | <0.57 | <0.56 | <0.56 | 1.4 | | | | Mesitylene (1,3,5-Trimethylbenzene) | 6.69 | 8.46 | 7.29 | 7.48 | 12.0 | | | | Methylene Chloride | 19.4 | 24.5 | 21.1 | 21.7 | 12.1 | | | | Styrene | 3.08 | 3.90 | 3.37 | 3.45 | 12.1 | | | | Tetrachloroethene | 0.28 | 0.37 | 0.31 | 0.32 | 14.9 | | | | Toluene | 22.1 | 28.0 | 24.1 | 24.8 | 12.1 | | | | 1,1,1-Trichloroethane | <0.28 | <0.28 | <0.28 | <0.28 | 1.4 | | | | Trichloroethene/1,1,2-Trichloroethene | <0.28 | <0.28 | <0.28 | <0.28 | 1.4 | | | | Trichlorotrifluoroethane | <0.55 | <0.57 | <0.56 | <0.56 | 1.4 | | | | Trichlorofluoromethane | 1.46 | 1.84 | 1.59 | 1.63 | 11.9 | | | | M&P-Xylene | 68.5 | 86.8 | 74.8 | 76.7 | 12.1 | | | | D-Xylene | 22.3 | 28.3 | 24.4 | 25.0 | 12.1 | | | | Vinyl Chloride | <0.55 | <0.57 | <0.56 | <0.56 | 1.4 | | | | Total | <234 | <295 | <255 | <261 | 11.8 | | | TABLE 86 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Volatile Organic Dry Reference Concentrations | Compound | | Coefficient | | | | | |---------------------------------------|--------------------------------|-------------|------------|---------|--------------|--| | | Test No. 1 Test No. 2 Test No. | | Test No. 3 | Average | of Variation | | | | μg/Rm³* | μg/Rm³* | μg/Rm³* | μg/Rm³* | % | | | | | | | | | | | Acetone | 64.0 | 81.1 | 69.9 | 71.7 | 12.1 | | | Benzene | 5.38 | 6.84 | 5.87 | 6.03 | 12.3 | | | Bromodichloromethane | 0.80 | 1.07 | 0.91 | 0.93 | 14.4 | | | Bromoform | < 0.47 | < 0.49 | <0.48 | <0.48 | 1.4 | | | Bromomethane | <4.25 | <4.37 | <4.29 | <4.30 | 1.4 | | | 1,3-Butadiene | < 0.94 | <0.97 | <0.95 | <0.96 | 1.4 | | | 2-Butanone | 54.0 | 68.5 | 59.1 | 60.5 | 12.1 | | | Carbon Tetrachloride | 1.46 | 1.84 | 1.62 | 1.64 | 11.6 | | | Chloroform | 4.44 | 5.63 | 4.87 | 4.98 | 12.1 | | | Cumene (Isopropylbenzene) | 1.56 | 1.99 | 1.72 | · 1.75 | 12.4 | | | Dibromochloromethane | < 0.47 | < 0.49 | <0.48 | <0.48 | 1.4 | | | Dichlorodifluoromethane | < 0.94 | <0.97 | <0.95 | <0.96 | 1.4 | | | 1,2-Dichloroethane | 0.80 | 1.02 | 0.86 | 0.89 | 12.6 | | | trans,1,2-Dichloroethene | 0.76 | 0.97 | 0.81 | 0.85 | 13.2 | | | 1,1-Dichloroethene | < 0.47 | < 0.49 | <0.48 | <0.48 | 1.4 | | | 1,2-Dichloropropane | < 0.47 | < 0.49 | <0.48 | <0.48 | 1.4 | | | Ethylbenzene | 9.25 | 11.7 | 10.1 | 10.4 | 12.0 | | | Ethylene Dibromide | < 0.94 | <0.97 | <0.95 | <0.96 | 1.4 | | | Mesitylene (1,3,5-Trimethylbenzene) | 11.5 | 14.5 | 12.5 | 12.8 | 12.0 | | | Methylene Chloride | 33.2 | 42.1 | 36.3 | 37.2 | 12.1 | | | Styrene | 5.29 | 6.70 | 5.77 | 5.92 | 12.1 | | | Tetrachloroethene | 0.47 | 0.63 | 0.52 | 0.54 | 14.9 | | | Toluene | 38.0 | 48.1 | 41.4 | 42.5 | 12.1 | | | 1,1,1-Trichloroethane | < 0.47 | < 0.49 | <0.48 | <0.48 | 1.4 | | | Trichloroethene/1,1,2-Trichloroethene | <0.47 | < 0.49 | <0.48 | <0.48 | 1.4 | | | Trichlorotrifluoroethane | < 0.94 | <0.97 | <0.95 | <0.96 | 1.4 | | | Trichlorofluoromethane | 2.50 | 3.15 | 2.72 | 2.79 | 11.9 | | | M&P-Xylene | 118 | 149 | 128 | 132 | 12.1 | | | O-Xylene | 38.3 | 48.5 | 41.8 | 42.9 | 12.1 | | | Vinyl Chloride | <0.94 | <0.97 | <0.95 | <0.96 | 1.4 | | | Total | <401 | <505 | <437 | <448 | 11.8 | | ^{*} At 25°C and 1 atmosphere TABLE 87 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Volatile Organic Dry Adjusted Concentrations | Compound | | Coefficient | | | | | |---------------------------------------|-----------------------|--------------|-------------------------------|---------|--------------|--| | | Test No. 1 Test No. 2 | | d Concentration
Test No. 3 | Average | of Variation | | | | μg/Rm³* | μg/Rm³* | μg/Rm³* | μg/Rm³* | % | | | Acetone | 50.6 | 64.1 | FF 3 | 567 | 10.4 | | | Benzene | 4.25 | 54.1
5.41 | 55.3 | 56.7 | 12.1 | | | Bromodichloromethane | 0.63 | | 4.64 | 4.77 | 12.3 | | | Bromoform | < 0.37 | 0.84 | 0.72 | 0.73 | 14.4 | | | Bromomethane | <0.37
<3.36 | < 0.38 | <0.38 | <0.38 | 1.4 | | | 1,3-Butadiene | | <3.45 | <3.39 | <3.40 | 1.4 | | | 2-Butanone | <0.75 | <0.77 | <0.75 | <0.76 | 1.4 | | | Z-Butanone
Carbon Tetrachloride | 42.7 | 54.2 | 46.7 | 47.9 | 12.1 | | | | 1.16 | 1.46 | 1.28 | 1.30 | 11.6 | | | Chloroform | 3.51 | 4.45 | 3.85 | 3.93 | 12.1 | | | Cumene (Isopropylbenzene) | 1.23 | 1.57 | 1.36 | 1.39 | 12.4 | | | Dibromochloromethane | <0.37 | <0.38 | <0.38 | <0.38 | 1.4 | | | Dichlorodifluoromethane | <0.75 | <0.77 | <0.75 | <0.76 | 1.4 | | | 1,2-Dichloroethane | 0.63 | 0.81 | 0.68 | 0.71 | 12.6 | | | trans,1,2-Dichloroethene | 0.60 | 0.77 | 0.64 | 0.67 | 13.2 | | | 1,1-Dichloroethene | <0.37 | <0.38 | <0.38 | <0.38 | 1.4 | | | 1,2-Dichloropropane | <0.37 | <0.38 | <0.38 | <0.38 | 1.4 | | | Ethylbenzene | 7.31 | 9.24 | 8.00 | 8.18 | 12.0 | | | Ethylene Dibromide | <0.75 | <0.77 | <0.75 | <0.76 | 1.4 | | | Mesitylene (1,3,5-Trimethylbenzene) | 9.07 | 11.5 | 9.88 | 10.1 | 12.0 | | | Methylene Chloride | 26.3 | 33.3 | 28.7 | 29.4 | 12.1 | | | Styrene | 4.18 | 5.29 | 4.56 | 4.68 | 12.1 | | | Tetrachloroethene | 0.37 | 0.50 | 0.41 | 0.43 | 14.9 | | | Toluene | 30.0 | 38.0 | 32.7 | 33.6 | 12.1 | | | 1,1,1-Trichloroethane | <0.37 | <0.38 | <0.38 | <0.38 | 1.4 | | | Trichloroethene/1,1,2-Trichloroethene | <0.37 | <0.38 | <0.38 | <0.38 | 1.4 | | | Trichlorotrifluoroethane | < 0.75 | <0.77 | <0.75 | <0.76 | 1.4 | | | Trichlorofluoromethane | 1.98 | 2.49 | 2.15 | 2.21 | 11.9 | | | M&P-Xylene | 92.9 | 118 | 101 | 104 | 12.1 | | | O-Xylene | 30.3 | 38.4 | 33.1 | 33.9 | 12.1 | | | Vinyl Chloride | <0.75 | <0.77 | <0.75 | <0.76 | 1.4 | | | Total | <317 | <400 | <345 | <354 | 11.8 | | ^{*} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 88 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Volatile Organic Wet Reference Concentrations | Compound | | Coefficient | | | | |---------------------------------------|------------|-------------|------------|---------|--------------| | | Test No. 1 | Test No. 2 | Test No. 3 | Average | of Variation | | | μg/Rm³* | μg/Rm³* | μg/Rm³* | μg/Rm³* | % | | | | | | | | | Acetone | 53.7 | 68.0 | 58.6 | 60.1 | 12.1 | | Benzene | 4.51 | 5.74 | 4.92 | 5.06 | 12.3 | | Bromodichloromethane | 0.67 | 0.90 | 0.76 | 0.78 | 14.4 | | Bromoform | <0.40 | <0.41 | <0.40 | < 0.40 | 1.4 | | Bromomethane | <3.56 | <3.66 | <3.60 | <3.61 | 1.4 | | 1,3-Butadiene | <0.79 | <0.81 | <0.80 | <0.80 | 1.4 | | 2-Butanone | 45.3 | 57.5 | 49.5 | 50.8 | 12.1 | | Carbon Tetrachloride | 1.23 | 1.55 | 1.36 | 1.38 | 11.6 | | Chloroform | 3.72 | 4.72 | 4.08 | 4.18 | 12.1 | | Cumene (Isopropylbenzene) | 1.31 | 1.67 | 1.44 | 1.47 | 12.4 | | Dibromochloromethane | < 0.40 | <0.41 | <0.40 | < 0.40 | 1.4 | | Dichlorodifluoromethane | <0.79 | <0.81 | <0.80 | <0.80 | 1.4 | | 1,2-Dichloroethane | 0.67 | 0.85 | 0.72 | 0.75 | 12.6 | | trans,1,2-Dichloroethene | 0.63 | 0.81 | 0.68 | 0.71 | 13.2 | | 1,1-Dichloroethene | < 0.40 | < 0.41 | < 0.40 | <0.40 | 1.4 | | 1,2-Dichloropropane | < 0.40 | < 0.41 | < 0.40 | <0.40 | 1.4 | | Ethylbenzene | 7.76 | 9.81 | 8.48 | 8.69 | 12.0 | | Ethylene Dibromide | < 0.79 | <0.81 | <0.80 | <0.80 | 1.4 | | Mesitylene (1,3,5-Trimethylbenzene) | 9.62 | 12.2 | 10.5 | 10.8 | 12.0 | | Methylene Chloride | 27.9 | 35.3 | 30.4 | 31,2 | 12.1 | | Styrene | 4.44 | 5.62 | 4.84 | 4.96 | 12.1 | | Tetrachloroethene | 0.40 | 0.53 | 0.44 | 0.46 | 14.9 | | Toluene | 31.8 | 40.3 | 34.7 | 35.6 | 12.1 | | 1,1,1-Trichloroethane | < 0.40 | < 0.41 | < 0.40 | < 0.40 | 1.4 | | Trichloroethene/1,1,2-Trichloroethene | < 0.40 | < 0.41 | <0.40 | <0.40 | 1.4 | | Trichlorotrifluoroethane | <0.79 | <0.81 | <0.80 | <0.80 | 1.4 | | Trichlorofluoromethane | 2.10 | 2.65 | 2.28 | 2.34 | 11.9 | | M&P-Xylene | 98.6 | 125 | 108 | 110 | 12.1 | | O-Xylene | 32.2 | 40.7 | 35.1 | 36.0 | 12.1 | | Vinyl Chloride | <0.79 | <0.81 | <0.80 | <0.80 | 1.4 | | Total | <336 | <424 | <367 | <376 | 11.8 | ^{*} At 25°C and 1 atmosphere TABLE 89 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Volatile Organic Emission Rates | Compound | | Emission Rate | | | | | | |---------------------------------------|------------|---------------|------------|---------------|--------------|--|--| | | Test No. 1 | Test No. 2 | Test No. 3 | lo. 3 Average | of Variation | | | | | mg/s | mg/s | mg/s | mg/s | % | | | | | | | | | | | | | Acetone | 0.97 | 1.22 | 1.06 | 1.08 | 12.1 | | | | Benzene | 0.081 | 0.10 | 0.089 | 0.091 | 12.3 | | | | Bromodichloromethane | 0.012 | 0.016 | 0.014 | 0.014 | 14.4 | | | | Bromoform | < 0.0071 | < 0.0073 | <0.0072 | <0.0072 | 1.4 | | | | Bromomethane | < 0.064 | < 0.066 | <0.065 | < 0.065 | 1.4 | | | | 1,3-Butadiene | < 0.014 | < 0.015 | < 0.014 | < 0.014 | 1.4 | | | | 2-Butanone | 0.82 | 1.03 | 0.89 | 0.91 | 12.1 | | | | Carbon Tetrachloride | 0.022 | 0.028 | 0.024 | 0.025 | 11.6 | | | | Chloroform | 0.067 | 0.085 | 0.073 | 0.075 | 12.1 | | | | Cumene (Isopropylbenzene) | 0.024 | 0.030 | 0.026 | 0.026 | 12.4 | | | | Dibromochloromethane | < 0.0071 | < 0.0073 | <0.0072 | <0.0072 | 1.4 | | | | Dichlorodifluoromethane | < 0.014 | < 0.015 | < 0.014 | < 0.014 | 1.4 | | | | 1,2-Dichloroethane | 0.012 | 0.015 | 0.013 | 0.013
| 12.6 | | | | trans,1,2-Dichloroethene | 0.011 | 0.015 | 0.012 | 0.013 | 13.2 | | | | 1,1-Dichloroethene | < 0.0071 | < 0.0073 | <0.0072 | ≪0.0072 | 1.4 | | | | 1,2-Dichloropropane | < 0.0071 | < 0.0073 | <0.0072 | <0.0072 | 1.4 | | | | Ethylbenzene | 0.14 | 0.18 | 0.15 | 0.16 | 12.0 | | | | Ethylene Dibromide | < 0.014 | < 0.015 | <0.014 | <0.014 | 1.4 | | | | Mesitylene (1,3,5-Trimethylbenzene) | 0.17 | 0.22 | 0.19 | 0.19 | 12.0 | | | | Methylene Chloride | 0.50 | 0.64 | 0.55 | 0.56 | 12.1 | | | | Styrene | 0.080 | 0.10 | 0.087 | 0.089 | 12.1 | | | | Tetrachloroethene | 0.0071 | 0.0095 | 0.0079 | 0.0082 | 14.9 | | | | Toluene | 0.57 | 0.73 | 0.63 | 0.64 | 12.1 | | | | 1,1,1-Trichloroethane | < 0.0071 | <0.0073 | <0.0072 | <0.0072 | 1.4 | | | | Trichloroethene/1,1,2-Trichloroethene | <0.0071 | <0.0073 | <0.0072 | <0.0072 | 1.4 | | | | Trichlorotrifluoroethane | <0.014 | <0.015 | < 0.014 | <0.014 | 1.4 | | | | Trichlorofluoromethane | 0.038 | 0.048 | 0.041 | 0.042 | 11.9 | | | | M&P-Xylene | 1.77 | 2.25 | 1.94 | 1.99 | 12.1 | | | | O-Xylene | 0.58 | 0.73 | 0.63 | 0.65 | 12.1 | | | | Vinyl Chloride | <0.014 | <0.015 | <0.014 | <0.014 | 1.4 | | | | Total | <6.06 | <7.63 | <6.60 | <6.76 | 11.8 | | | TABLE 90 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Summary of Volatile Organic Emission Data | Compound | Actual
Concentration | Dry Reference
Concentration | Dry Adjusted
Concentration | Wet Reference
Concentration | Emission
Rate | |---------------------------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|------------------| | | μg/m³ | μg/Rm³* | μg/Rm³* | μg/Rm³* | mg/s | | | | | | | | | Acetone | 41.8 | 71.7 | 56.7 | 60.1 | 1.08 | | Benzene | 3.52 | 6.03 | 4.77 | 5.06 | 0.091 | | Bromodichloromethane | 0.54 | 0.93 | 0.73 | 0.78 | 0.014 | | Bromoform | <0.28 | <0.48 | <0.38 | <0.40 | < 0.0072 | | Bromomethane | <2.51 | <4.30 | <3.40 | <3.61 | <0.065 | | 1,3-Butadiene | <0.56 | <0.96 | <0.76 | <0.80 | < 0.014 | | 2-Butanone | 35.3 | 60.5 | 47.9 | 50.8 | 0.91 | | Carbon Tetrachloride | 0.96 | 1.64 | 1.30 | 1.38 | 0.025 | | Chloroform | 2.90 | 4.98 | 3.93 | 4.18 | 0.075 | | Cumene (Isopropylbenzene) | 1.02 | 1.75 | 1.39 | 1.47 | 0.026 | | Dibromochloromethane | <0.28 | <0.48 | <0.38 | < 0.40 | <0.0072 | | Dichlorodifluoromethane | <0.56 | <0.96 | <0.76 | <0.80 | < 0.014 | | 1,2-Dichloroethane | 0.52 | 0.89 | 0.71 | 0.75 | 0.013 | | trans,1,2-Dichloroethene | 0.49 | 0.85 | 0.67 | 0.71 | 0.013 | | 1,1-Dichloroethene | <0.28 | <0.48 | <0.38 | < 0.40 | <0.0072 | | 1,2-Dichloropropane | <0.28 | <0.48 | <0.38 | < 0.40 | < 0.0072 | | Ethylbenzene | 6.04 | 10.4 | 8.18 | 8.69 | 0.16 | | Ethylene Dibromide | <0.56 | <0.96 | <0.76 | <0.80 | < 0.014 | | Mesitylene (1,3,5-Trimethylbenzene) | 7.48 | 12.8 | 10.1 | 10.8 | 0.19 | | Methylene Chloride | 21.7 | 37.2 | 29.4 | 31.2 | 0.56 | | Styrene | 3.45 | 5.92 | 4.68 | 4.96 | 0.089 | | Tetrachloroethene | 0.32 | 0.54 | 0.43 | 0.46 | 0.0082 | | Toluene | 24.8 | 42.5 | 33.6 | 35.6 | 0.64 | | 1,1,1-Trichloroethane | <0.28 | <0.48 | <0.38 | < 0.40 | <0.0072 | | Trichloroethene/1,1,2-Trichloroethene | <0.28 | <0.48 | <0.38 | <0.40 | <0.0072 | | Trichlorotrifluoroethane | <0.56 | <0.96 | <0.76 | <0.80 | <0.014 | | Trichlorofluoromethane | 1.63 | 2.79 | 2.21 | 2.34 | 0.042 | | M&P-Xylene | 76.7 | 132 | 104 | 110 | 1.99 | | O-Xylene | 25.0 | 42.9 | 33.9 | 36.0 | 0.65 | | Vinyl Chloride | <0.56 | <0.96 | <0.76 | <0.80 | <0.014 | | Total | <261 | <448 | <354 | <376 | <6.76 | ^{*} At 25°C and 1 atmosphere ^{**} At 25°C and 1 atmosphere, adjusted to 11% oxygen by volume TABLE 91 Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Blank Volatile Organic Analyses | Compound | Field Blank 1
Tube 5A/5B | Field Blank 2
Tube 11A/11B | Trip Blank
Tube 12A/12B | Method
Blank | |---------------------------------------|-----------------------------|-------------------------------|----------------------------|-----------------| | | μg | μg | μg | μg | | | | | | | | Acetone | 0.15 | 0.11 | 0.13 | <0.1 | | Benzene | < 0.05 | < 0.05 | <0.05 | <0.05 | | Bromodichloromethane | < 0.01 | < 0.01 | < 0.01 | <0.01 | | Bromoform | < 0.01 | < 0.01 | < 0.01 | <0.01 | | Bromomethane | < 0.09 | < 0.09 | <0.09 | <0.09 | | 1,3-Butadiene | <0.02 | <0.02 | <0.02 | <0.02 | | 2-Butanone | < 0.01 | < 0.01 | <0.01 | <0.01 | | Carbon Tetrachloride | < 0.01 | < 0.01 | <0.01 | <0.01 | | Chloroform | < 0.01 | < 0.01 | <0.01 | <0.01 | | Cumene (Isopropylbenzene) | <0.02 | <0.02 | <0.02 | <0.02 | | Dibromochloromethane | < 0.01 | < 0.01 | <0.01 | <0.01 | | Dichlorodifluoromethane | <0.02 | <0.02 | <0.02 | <0.02 | | 1,2-Dichloroethane | < 0.01 | < 0.01 | <0.01 | <0.01 | | trans,1,2-Dichloroethene | < 0.01 | < 0.01 | < 0.01 | <0.01 | | 1,1-Dichloroethene | < 0.01 | < 0.01 | <0.01 | <0.01 | | 1,2-Dichloropropane | < 0.01 | < 0.01 | <0.01 | <0.01 | | Ethylbenzene | < 0.01 | < 0.01 | <0.01 | <0.01 | | Ethylene Dibromide | <0.02 | < 0.02 | <0.02 | <0.02 | | Mesitylene (1,3,5-Trimethylbenzene) | < 0.02 | < 0.02 | <0.02 | <0.02 | | Methylene Chloride | 0.11 | < 0.1 | <0.1 | <0.1 | | Styrene | <0.02 | <0.02 | <0.02 | <0.02 | | Tetrachloroethene | < 0.01 | < 0.01 | <0.01 | <0.01 | | Toluene | < 0.05 | < 0.05 | <0.05 | <0.05 | | 1,1,1-Trichloroethane | < 0.01 | < 0.01 | <0.01 | < 0.01 | | Trichloroethene/1,1,2-Trichloroethene | <0.02 | <0.02 | <0.02 | <0.02 | | Trichlorotrifluoroethane | <0.02 | <0.02 | <0.02 | <0.02 | | Trichlorofluoromethane | < 0.02 | <0.02 | <0.02 | <0.02 | | M&P-Xylene | < 0.03 | < 0.03 | <0.03 | <0.03 | | O-Xylene | < 0.01 | < 0.01 | <0.01 | <0.01 | | Vinyl Chloride | <0.02 | <0.02 | <0.02 | <0.02 | | Total | <0.82 | <0.77 | <0.79 | <0.76 | # **APPENDIX 3** Pre-Test Plan Acceptance Letter and ECA No. 7306-8FDKNX (96 pages) # Ministry of the Environment, Conservation and Parks Technical Assessment and Standards Development Branch 40 St. Clair Avenue West 7th Floor Toronto ON M4V 1M2 Phone: 416.327.5519 Fax: 416.327.2936 #### Ministère de l'Environnement, de la Protection de la nature et des Parcs Direction des évaluations techniques et de l'élaboration des normes 40, avenue St. Clair Ouest 7° étage Toronto (Ontario) M4V 1M2 Tél: 416.327.5519 Téléc: 416.327.2936 Via email: <u>cbelore@ortech.ca</u> TSS File No.: CR:SA:109912:20 Ontario 🕅 #### 2020/10/14 Mr. Chris Belore **ORTECH Consulting Inc.** 804 Southdown Rd. Mississauga, Ontario L5J 2Y4 **Re.:** Pre-test plan for source testing to be conducted at Durham-York Energy Centre. Environmental Compliance Approval No. 7306-8FDKNX. #### Dear Mr. Belore: We reviewed your letter, dated 2020/09/08, prepared and submitted on behalf of Covanta Durham York Renewable Energy L.P. (DYEC), and referring to source testing (ORTECH Project 22050) to be conducted at DYEC's energy from waste facility, located at 72 Osbourne Rd., Clarington (Ontario). The testing is an annual requirement by Condition 7(1) of the Environmental Compliance Approval No. 7306-8FDKNX, issued on 2011/06/28. #### **Target Sources:** - Municipal Solid Waste Combustor Unit 1 (Baghouse Outlet Duct) - Municipal Solid Waste Combustor Unit 2 (Baghouse Outlet Duct) - Quench Inlet Unit 1 (Total Hydrocarbons only) - Quench Inlet Unit 2 (Total Hydrocarbons only) #### Target contaminants: - Total suspended particulate matter (TSP), - PM₁₀, - \bullet PM_{2.5}, - PM condensable, - Metals (17 selected metals, as listed in the ECA's Schedule "D"), - Semivolatile Organic Compounds (17 dioxins and furans isomers, 12 dioxin-like PCBs, 39 selected PAHs, 12 chlorobenzenes, and 19 chlorophenols) – as listed in ECA's Schedule "D", - Volatile Organic Compounds (33 selected VOCs, as listed in the ECA's Schedule "D"), - Aldehydes (acetaldehyde, acrolein and formaldehyde), - Halides (hydrogen fluoride and hydrogen chloride), - Ammonia, - Nitrogen oxides (NOx), - Sulphur dioxide (SO₂), - Combustion gases (oxygen, CO, and CO₂), and - Total organic matter (THC). # Reference methodologies: • TSP: OSTC Method ON-5 PM_{2.5}/PM₁₀: US EPA 40CFR60 Method 201A, PM condensable: US EPA 40CFR60 Method 202, Metals: US EPA 40CFR60 Method 29, SVOCs: Environment Canada's Report EPS 1/RM/2, VOCs: US EPA SW-846 Method 0030, (SLO-VOST) Aldehydes: NCASI Method ISS/FP-A105.01 Halides & Ammonia: US EPA 40CFR60 Method 26A, NOx: DYEC CEM, SO₂: DYEC CEM, CO₂: DYEC CEM, O₂: DYEC CEM, CO: DYEC CEM, • THC: US EPA 40CFR60 Method 25A, and • Stack Gas Parameters: Ontario Source Testing Code's Method ON-1 to ON-4. **Note:** ORTECH has indicated its intention at using the DYEC CEM system to determine compliance of some of the target contaminants listed in the ECA's Schedule "D", a relative accuracy certification (RATA) of the parameters of interest need to be conducted to validate that the DYEC CEM's parameters of interest meet the minimum specification listed in the ECA's Schedule "F", if the last RATA conducted at the DYEC CEM system is older than 1 year. The RATA report is to be appended to the source testing report. DYEC CEMS data will also be used to determine the molecular weight of the gas stream and correct results to 11% oxygen, as necessary. The following sampling modifications will be incorporated into the 2020 sampling program to enhance the collection efficiency and reliability of the specified targeted compounds. - <u>SVOC's</u> ORTECH will now soak the 3 pieces of front sampling train glassware (filter bottom, filter bottom u-tube and trap inlet stem) per the Method, in lieu of their previous enhanced rinsing procedure. (Regional Municipality of Durham-York letter dated 2020/03/05) - <u>VOC's</u> sampling will be conducted at a reduced sampling rate of 0.5 litres per minute (lpm) or SLO VOST. - <u>Aldehydes</u> determined using NCASI Method ISS/FP-A105.01; replacing California Air Resources Board (CARB) Method 430 Ashland Modification Procedure. #### **Brief Process Description:** The DYEC is an energy-from-waste
facility built with a maximum thermal/combustion processing rate of 140,000 tonnes per year of municipals solid waste (MSW). The facility operates on a continuous basis, hours/day, 7 days/week, 365 days/year, with the waste delivered initially set at 6 days per week between 07:00 and 19:00 hours. The facility consists of two thermal treatment lines, each equipped and operated independently operated boilers/furnaces and air pollution control equipment. Each thermal treatment line has a maximum continuous rating (MCR) of 218 t/d of MSW, with a heat content of 13 MJ/kg, and a steam MCR of 33.64 tonnes/hour, to generate 20 MW of electricity (nominal capacity). MSW arrives at the facility via covered refuse trucks and is deposited in a storage pit within the receiving building. Facility operators manage MSW by moving and mixing MSW within the storage pit with the overhead grapple cranes. The MSW is lifted from the pit by crane and fed into the fuel hopper for each thermal treatment train. Each thermal treatment line is equipped with independent air pollution control equipment; consisting of a Selective Non-Catalytic Reduction System with ammonia injection (for NOx control), an activated carbon injection system (to reduce mercury and dioxins in flue gas), a dry recirculation lime injection scrubber (to control acid gases), and a pulse jet type baghouse (to control particulate emissions). The treated exhaust gases from both lines are vented to the atmosphere via a common exhaust stack, having an exit diameter of 1.71 metres, extending 87.6 metres above grade. #### Target Process Condition during the Source Testing Program: It is stated in the pre-test plan states that during the source testing program, DYEC will target maximum load at each of the two thermal treatment lines. DYEC's personnel will be responsible for the monitoring, collection, compilation and reporting of pertinent process data during the test program, in order to establish MSW processing levels that can be properly correlated to the magnitude of the emissions of the contaminants of interest being exhausted from the process. The process parameters to be monitored and recorded include: - Power output (MWh/d) - Auxiliary fuel combusted (m³/d) - Average combustion zone temperature (°C) - Steam generated (t/d) - MSW combusted (t/d) - NOx reagent injection rate (L/d) - Carbon injection rate (kg/d) - Lime injection rate (kg/d) - DYEC CEMs (printouts to be appended to the source testing report) - Baghouses inlet temperature and pressure drop. - Any upset conditions during the source testing program (including actions taken to correct it, if applicable). Consistent with our request beginning with the 2017 compliance source testing program, we require digital data (in Excel) of DYEC and ORTECH's CEMS output. In the case of DYEC CEMS output, we require the 1-munute averages for the full days when source testing was conducted, to confirm that the in-stack emissions and process parameters were within the ECA requirements, in order to validate that the thermal treatment units and associated air pollution control equipment were operating as expected by the MECP. Our review indicated that the pre-test plan is suitable for conducting the 2020 source testing program, as the proposed reference methodologies and process monitoring strategies are still appropriate for this program. The sampling strategies are considered acceptable; but in the case of those contaminants that will be monitored by the DYEC CEM system, a relative accuracy certification (not older than 1 year) is required to assure the quality of the data generated meet the MECP expectations. We noted the sampling schedule is set to begin Monday November 9, 2020 and continue through Thursday November 12, 2020. If changes in the sampling schedule occur, please notify the MECP's York-Durham District Office, and the Technology Standards Section. Just a reminder that the source testing report is required to be submitted only in electronic format to the Technology Standards Section; and in electronic and hardcopy formats to the MECP's York-Durham District Office. If you have any questions with regard to this assessment, I can be reached by phone at 416-705-4660 #### Regards, Bill Fullerton Source Assessment Specialist (A) Willan Fullets **Technology Standards Section** cc: M. Neild – Covanta DYEC L.P. (via email: mneild@covanta.com) R. Kohler – Covanta DYEC L.P. (via email: rkholer@covant.com) A. Huxter – Covanta DYEC L.P. (via email: ahuxter@covanta.com) M. Januszkiewicz – Durham Region (via email: mirka.januszkiewicz@durham.ca) A. Evans – Durham Region (via email: andrew.evans@durham.ca) G. Anello – Durham Region (via email: gioseph.anello@durham.ca) M. Farid – York Region (via email: muneeb.farid@york.ca) L. McDowell – York Region (via email: laura.mcdowell@york.ca) S. Dittman – York Region (via email: seth.dittman@york.ca) C. Dugas – MECP York-Durham D.O. (via email: celeste.dugas@ontario.ca P. Dunn – MECP York-Durham D.O. (via email: philip.dunn@ontario.ca) J. Butchart – MECP York-Durham D.O. (via email jeff.butchart@ontario.ca) J. McKerrall – MECP TASDB TSS (via email: jeffrey.mckerrall@ontario.ca) G. Azocar -MECP TASDB TSS (via email: guillermo.azocar@ontario.ca) File AQ-02 (Durham-York Energy Centre – Clarington - 2020) #### **CERTIFICATE OF APPROVAL** MULTI-MEDIA Number 7306-8FDKNX Issue Date: June 28, 2011 The Regional Municipality of Durham 605 Rossland Rd E 5th Floor Whitby, Ontario L1N 6A3 and The Regional Municipality of York 17250 Yonge Street Newmarket, Ontario L3Y 6Z1 and Covanta Durham York Renewable Energy Limited Partnership 445 South Street Morristown, New Jersey United States of America 07960 Site Location: Durham York Energy Centre 72 Osbourne Road Lot 27, Concession Broken Front, Part 1 Clarington Municipality, Regional Municipality of Durham You have applied in accordance with Sections 9 and 27 of the Environmental Protection Act and Section 53 of the Ontario Water Resources Act for approval of: A thermal treatment facility to be used for the receipt and manual and/or mechanical sorting of solid non-hazardous post-diversion municipal waste (Waste), temporary storage and thermal treatment of the Waste, abatement of the emissions from the processes and activities undertaken at the Site, handling, screening, sorting and/or conditioning of the residual wastes and management of the wastewater and the non-contact stormwater generated at the Site. The Facility's maximum Waste thermal treatment rate is 140,000 tonnes per year of Waste, the nominal electricity generation rate is 20 Megawatts and the nominal steam generation rate 72,000 kilograms per hour of steam. The facility consists of the following major processes and support units: (1) two (2) identical combustion trains, each having a nominal capacity of 218 tonnes of Waste per day venting into the atmosphere via a common exhaust stack, having an exit diameter of 1.71 metres, extending 87.6 metres above grade. Each combustion train is an independent process train and it consists of the following main components: - (a) a stoker grate steam Boiler, having a design heat input of 118 Gigajoules per hour, equipped with a natural gas fired auxiliary Low NOx burner, having a nominal heat input of 59.5 Gigajoules per hour; and - (b) the following air pollution control equipment: - (i) a Selective Non Catalytic Reduction System (SNCR System) with ammonia injection for NOx control; - (ii) an activated carbon injection system, to reduce mercury and dioxins in flue gas; - (iii) a dry recirculation lime injection scrubber to control acid gases; - (iv) a pulse jet type baghouse to control particulate emissions; - (2) one (1) steam turbine generator set having a rated capacity of 20 Megawatts; - (3) waste and reagent storage as described in Condition 2.: - (4) fly ash conditioning system including two (2) surge bins, two (2) pugmills and seven (7) curing/storage bunkers; - (5) bottom ash sorting system including conveyors, screens, a rotary drum magnet and an eddy separator; - (6) one (1) emergency diesel generator, rated at 250 Kilowatts; - (7) natural gas-fired combustion equipment for comfort heating; - (8) a wastewater management system for collection, recirculation and reuse of the process water; and - (9) a stormwater management facility for collection, transmission and discharge of noncontact runoff at the Site, as described in the attached Schedule "G", Note: Use of the site for any other type of waste is not approved under this Certificate, and requires obtaining a separate approval amending this Certificate. For the purpose of this Provisional Certificate of Approval and the terms and conditions specified below, the following definitions apply: - "Acoustic Assessment Report" means the report, prepared in accordance with Publication NPC-233 by Paul Niejadlik / Golder Associates Ltd. and dated March 2011 submitted in support of the application, that documents all sources of noise emissions and Noise Control Measures present at the Facility; - "Acoustic Assessment Summary Table" means a table summarizing the results of the Acoustic Assessment Report; - "Acoustic Audit" means an investigative procedure consisting of measurements of all noise emissions due to the operation of the Facility, assessed in comparison to the Performance Limits for the Facility regarding noise emissions, completed in accordance with the procedures set in the Ministry's *Publication NPC-103* and reported in accordance with the Ministry's *Publication NPC-233*; - "Acoustic Audit Report" means a report presenting the results of an Acoustic Audit, prepared in accordance with the Ministry's *Publication NPC-233*; - "Acoustical Consultant" means a person currently active in the field of environmental acoustics and noise/vibration control, who is familiar with Ministry noise guidelines and procedures and has a combination of formal university education, training and experience
necessary to assess noise emissions from a Facility; - "Air Standards Manager" means the Manager, Human Toxicology and Air Standards Section, Standards Development Branch, or any other person who represents and carries out the duties of the Manager, Human Toxicology and Air Standards Section, Standards Development Branch, as those duties relate to the conditions of this Certificate; - "APC Building" means the building at the Site where the APC Equipment and the reagent indoor storage tanks are located; - "APC Equipment" means all the air pollution control equipment at the Facility, including the SNCR System, the activated carbon injection system, the dry recirculation lime injection scrubber and the pulse jet type baghouse to control emissions from the combustion chamber of the Boilers, the dust collectors to control emissions from the Residue Building and the dust collectors to control emissions from the reagent storage silos; - "Boiler Building" means the building at the Site where the Boilers, turbine generator and the air cooled condenser(s) are located; - "**Boilers**" means the two (2) steam boilers firing the approved Waste described in this Certificate: - "Bulky Unprocessable Items" means the incoming Waste received at the Site that cannot be processed in the Equipment; - "CEM Systems" means the continuous monitoring and recording systems used to measure and record the temperature and the emissions from the Boilers as specified in the attached Schedule "F"; - "Certificate" means this entire provisional Certificate of Approval, issued in accordance with Sections 39 and 9 of the *EPA* and Section 53 of the *OWRA*, and includes any schedules attached to it, the application and the supporting documentation listed in the attached Schedule "A; - "40 CFR 60" means title 40, part 60 under the Code of Federal Regulations (Air Programs, U.S. Environmental Protection Agency), revised as of July 1, 1990, published by the Office of the Federal Register, National Archives and Records, Administration in the United States of America; - "Complaint" means a complaint received either by the Owner or the District Manager that has been confirmed by staff of the Ministry and the cause of which is attributed to the Owner's activities at the Facility; - "Commencement Date of Operation" means the date when the approved Waste is first received at the Site; - "Compound of Concern" means a contaminant that, based on generally available information, may be emitted to the atmosphere in a quantity from any source at the Facility that is significant either in comparison to the relevant Ministry Point of Impingement Limit or if a Ministry Point of Impingement Limit is not available for the compound then, based on generally available toxicological information, the compound has the potential to cause an adverse effect as defined by the *EPA* at a Point of Impingement; - "Controlled Shutdown" means an immediate cut-off of all waste into the Boilers, while maintaining the operation of the combustion chamber and the APC Equipment within the Performance Requirements; - "**Description Section**" means the section on page one of the Certificate describing the Owner's operations and the Equipment located at the Facility and specifying the Facility Production Limit for the Facility; - "**Dioxins and Furans**" means polychlorinated dibenzo-dioxins and polychlorinated dibenzofurans; - "**Director**" means any person appointed in writing by the Minister of the Environment pursuant to section 5 of the *EPA* and pursuant to section 5 of the *OWRA* as a Director for the purposes of Part V of the *EPA*, section 9 of the *EPA* and section 53 of the *OWRA*; - "**District Manager**" means the District Manager of the York Durham District Office of the Ministry; - "Emergency Shutdown" means an immediate cut-off of all waste feed into the Boilers, followed by an accelerated extinction of all combustion in the Boilers, while maintaining the combustion temperature within the Performance Requirements, except when unreasonable; - "Emission Summary Table" means the table prepared in accordance with *O. Reg. 419/05* and the Procedure Document listing the appropriate Point of Impingement concentrations of each Compound of Concern from the Facility and providing comparison to the corresponding Ministry Point of Impingement Limit; - "EAA" means the Environmental Assessment Act, R.S.O. 1990, c. E.18, as amended; - "**EA Approval**" means the Notice of Approval to Proceed with the Undertaking signed by the Minister of the Environment on November 3, 2010, EA File No. 04-EA-02-08; - "EPA" means the Environmental Protection Act, R.S.O. 1990, c. E.19, as amended; - "**Equipment**" means equipment or processes associated with the thermal treatment of the approved Waste described in this Certificate and in the Supporting Documentation referred to herein and any other equipment or processes handling wastes and reagents; - "ESDM Report" means the Emission Summary and Dispersion Modelling Report prepared in accordance with the Procedure Document by Golder Associates and dated March 2011 submitted in support of the application, and includes any amendments to the ESDM Report listed in the attached Schedule "A" and all subsequent up-dated ESDM Reports as applicable; - "Facility" means the entire operation associated with thermal treatment of Waste located on the property where the Equipment is located; - "Facility Production Limit" means the production limit placed on the main product(s) or raw materials used by the Facility that represents the design capacity of the Facility and assists in the definition of the operations approved by the Director; - "Grizzly Building" means the building at the Site where the bottom ash is screened and where the oversized constituents of the bottom ash (grizzly overs) are temporarily stored prior to transport for subsequent storage in the Residue Building; - "Independent Acoustical Consultant" means an Acoustical Consultant who is not representing the Owner and was not involved in preparing the Acoustic Assessment Report or the design/implementation of Noise Control Measures for the Facility and/or Equipment. The Independent Acoustical Consultant shall not be retained by the Acoustical Consultant involved in the noise impact assessment or the design/implementation of Noise Control Measures for the Facility and/or Equipment; - "I-TEF" means International Toxic Equivalency Factor derived for each dioxin and furan congener by comparing its toxicity to the toxicity of 2,3,7,8 tetrachloro dibenzo-p-dioxin, as recommended by the North Atlantic Treaty Organization Committee on Challenges to Modern Society (NATO CCMS) in 1989 and adopted by Canada in 1990; - "I-TEQ" means International Toxic Equivalent of dioxins and furans calculated using the I-TEFs, as recommended by the NATO CCMS in 1989 and adopted by Canada in 1990; - "Manager" means the Manager, Technology Standards Section, Standards Development Branch, who has been appointed under Section 5 of the *EPA* for the purposes of Section 11(1)2 of the *O. Reg.* 419/05, or any other person who represents and carries out the duties of the Manager, Technology Standards Section, Standards Development Branch, as those duties relate to the conditions of this Certificate; "Ministry" means the ministry of the government of Ontario responsible for the *EPA* and the *OWRA* and includes all officials, employees or other persons acting on its behalf or the Ontario Ministry of the Environment; "Municipality" means the Municipality of Clarington; "NMA" means the Nutrient Management Act, 2002, S.O. 2002, c. 4, as amended; "Noise Control Measures" means measures to reduce the noise emission from the Facility and/or Equipment including, but not limited to silencers, acoustic louvers, enclosures, absorptive treatment, plenums and barriers; "LDR" means the Lands Disposal Restrictions referred to in sections 74 through 85 of the *O*. *Reg.* 347, which prohibit the disposal of hazardous wastes on land until they have been treated to meet the treatment standards under the *O*. *Reg.* 347; "Leachate Toxicity Criteria" means the concentrations of any of the contaminants listed in Schedule 4 at a concentration equal to or in excess of the concentration specified for that contaminant in Schedule 4 using the Toxicity Characteristic Leaching Procedure, defined in the *O. Reg.* 347; "O. Reg. 419/05" means the Ontario Regulation 419/05, Air Pollution – Local Air Quality enacted under the EPA, as amended; "O. Reg. 347" means the Ontario Regulation 347, R.R.O 1990 (General –Waste Management) enacted under the EPA, as amended; "OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40, as amended; "Owner" means any person that is responsible for the establishment and operation of the Site being approved by this Certificate, and it includes The Regional Municipality of Durham, The Regional Municipality of York, and Covanta Durham York Renewable Energy Limited Partnership (operator), their successors and assignees; "PA" means the Pesticides Act, R.S.O. 1990, c.P. 11, as amended; "**Performance Requirements**" means the performance requirements and emission limits specified in the section of this Certificate entitled "Performance Requirements"; "**Point of Impingement**" means any point outside the Facility in the natural environment and as defined by s.2 of the *O. Reg. 419/05*; "**Point of Reception**" means the Point of Reception as defined by *Publication NPC-205* and/or *Publication NPC-232*, as applicable; "**Pre-test Information**" means the information outlined in Section 1.1 of the Source Testing Code; - "**Procedure Document**" means the Ministry's document entitled "Procedure for Preparing an Emission Summary and Dispersion Modelling Report" dated July 2005, as amended; - "**Professional Engineer**" means a Professional Engineer as defined within the <u>Professional</u> Engineers Act, R.S.O. 1990, c. P.28, as
amended; - "**Provincial Officer**" means any person designated in writing by the Minister as a provincial officer pursuant to Section 5 of the *OWRA* or Section 5 of the *EPA* or Section 17 of the *PA* or Section 4 of the *NMA* or Section 8 of the *SDWA*; - "*Publication NPC-103*" means the Ministry's Publication NPC-103 of the Model Municipal Noise Control By-Law, Final Report, dated August 1978, published by the Ministry, as amended; - "Publication NPC-205" means the Ministry's Publication NPC-205, entitled "Sound Level Limits for Stationary Sources in Class 1 & 2 Areas (Urban)", dated October, 1995, as amended; - "Publication NPC-207" means the Ministry's draft technical publication entitled "Impulse Vibration in Residential Buildings", dated November 1983, supplementing the Model Municipal Noise Control By-Law, Final Report, dated August 1978, published by the Ministry, as amended; - "*Publication NPC-232*" means the Ministry's Publication NPC-232, entitled "Sound Level Limits for Stationary Sources in Class 3 Areas (Rural)", dated October, 1995, as amended; - "*Publication NPC-233*" means the Ministry's Publication NPC-233, entitled "Information to be Submitted for Approval of Stationary Sources of Sound", dated October, 1995, as amended; - "Rejected Waste" means either municipal waste which cannot be processed at the Facility or waste which the Site is not approved to accept. Rejected Waste includes but is not limited to the Bulky Unprocessable Items and the Unacceptable Waste; - "Regional Director" means the Regional Director of the Central Region of the Ministry; - "**Regions**" means The Regional Municipality of Durham and The Regional Municipality of York; - "Report EPS 1/PG/7" means the Environment Canada Report EPS 1/PG/7, entitled "Protocols and Performance Specifications for Continuous Monitoring of Gaseous Emissions from Thermal Generation", dated September, 1993, as amended; - "**Residual Waste**" means waste resulting from the Waste processing activities at the Site. Residual Waste is limited to the recovered ferrous metals, the recovered non-ferrous metals, the bottom ash (consisting of the ash fines and the grizzly overs) and the fly ash (untreated and following conditioning); - "Residue Building" means the building at the Site where the bottom ash and the fly ash are processed, temporarily stored and loaded in transport vehicles for off-site disposal; "**Schedules**" means the following schedules "A", "B", "C", "D", "F" and "G", attached to the Certificate and forming part of the Certificate; "SDWA" means the Safe Drinking Water Act, 2002, S.O. 2002, c. 32, as amended; "Sensitive Receptor" means any location where routine or normal activities occurring at reasonably expected times would experience adverse effect(s) from odour discharges from the Facility, including one or a combination of: - (a) private residences or public facilities where people sleep (e.g.: single and multi-unit dwellings, nursing homes, hospitals, trailer parks, camping grounds, etc.); - (b) institutional facilities (e.g.: schools, churches, community centres, day care centres, recreational centres, etc.); - (c) outdoor public recreational areas (e.g.: trailer parks, play grounds, picnic areas, etc.); and - (d) other outdoor public areas where there are continuous human activities (e.g.: commercial plazas and office buildings); "**Site**" means the property where the Owner has located and operates the Facility and the Works and located at 72 Osbourne Road, 27, Concession Broken Front, Part 1 in the Municipality of Clarington, Regional Municipality of Durham; "Source Testing" means monitoring, sampling and testing to measure emissions resulting from operating the Facility under conditions which yield the worst case emissions within the approved operating range of the Facility; "Source Testing Code" means the Ministry's document entitled "Source Testing Code, Version 2, Report No. ARB-66-80", dated November 1980, as amended; "Stack" means the stack that discharges emissions from the Boilers after those emissions have been controlled by the associated APC Equipment; "**Substantial Completion**" has the same meaning as "substantial performance" in the *Construction Lien Act* R.S.O. 1990, c.C-30, as amended; "Supporting Documentation" means the documents listed in the attached Schedule "A" of this Certificate which forms part of this Certificate; "Test Contaminants" means the contaminants set out in the attached Schedule "D"; "**Tipping Building**" means the building at the Site where the incoming Waste is received, sorted and temporarily stored; "Total Power Failure" means the loss of the external power supply and concurrent loss of all inplant power generation; "**Trained Personnel**" means one or more Site personnel trained in accordance with the requirements of Condition 9.; "Waste" means municipal solid waste as defined in the O. Reg. 347 and limited to the approved waste set out in Condition No. 2.(2); "Waste Processing Rate means the mass of Waste fed into one of the Boilers; "Works" means the sewage works described in the Owner's application, this Certificate and in the Supporting Documentation referred to herein, to the extent approved by this Certificate; "Unacceptable Waste" means the incoming Waste received at the Site that does not meet the incoming Waste quality criteria set out in this Certificate, is of hazardous nature and requires caution when handling; and "Undiluted Gases" means the flue gas stream which contains oxygen, carbon monoxide, total hydrocarbons and all contaminants in the same concentrations as they exist in the flue gas stream emerging from an individual piece of equipment, such as the combustion chamber of one Boiler or one baghouse, and into which gas stream no ambient air and/or no other gas stream originating from another piece of equipment, except for dilution air introduced within the CEM Systems, has been introduced. You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below: # **GENERAL PROVISIONS** #### 1. **GENERAL** #### **Compliance** - (1) The Owner shall ensure compliance with all the conditions of this Certificate and shall ensure that any person authorized to carry out work on or operate any aspect of the Site, including the Works, is notified of this Certificate and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same. - (2) Any person authorized to carry out work on or operate any aspect of the Site shall comply with the conditions of this Certificate. #### **Build in Accordance** - (3) (a) Except as otherwise provided by this Certificate, the Site shall be designed, developed, built, operated, monitored, inspected and maintained in accordance with the following applications: - (i) Applications for a Certificate of Approval (Air) dated March 2, 2011, each signed by Cliff Curtis, Commissioner of Works, The Regional Municipality of Durham, by Erin Mahoney, Commissioner of Environmental Services, The Regional Municipality of York and by Matthew R. Mulcahy, Senior Vice President, Business Development, Covanta Durham York Renewable Energy Limited Partnership, and the Supporting Documentation listed in the attached Schedule "A". - (ii) Applications for a Provisional Certificate of Approval (Waste Disposal Site) dated March 2, 2011, each signed by Cliff Curtis, Commissioner of Works, The Regional Municipality of Durham, by Erin Mahoney, Commissioner of Environmental Services, The Regional Municipality of York and by Matthew R. Mulcahy, Senior Vice President, Business Development, Covanta Durham York Renewable Energy Limited Partnership, and the Supporting Documentation listed in the attached Schedule "A". - (iii) Applications for a Certificate of Approval of Municipal and Private Sewage Works dated March 2, 2011, each signed by Cliff Curtis, Commissioner of Works, The Regional Municipality of Durham, by Erin Mahoney, Commissioner of Environmental Services, The Regional Municipality of York and by Matthew R. Mulcahy, Senior Vice President, Business Development, Covanta Durham York Renewable Energy Limited Partnership, and the Supporting Documentation listed in the attached Schedule "A". - (b) (i) Any design optimization or modification that is inconsistent with the conceptual design set out in the Supporting Documentation in Schedule "A" shall be clearly identified, along with an explanation of the reasons for the change and submitted to the Director for approval. - (ii) If a change to the conceptual design is submitted to the Director for approval, no construction of the Site shall commence prior to the Director approving, in writing, the final conceptual design of the Site. #### **As-built Drawings** - (4) (a) Within ninety (90) days of the completion of the initial successful Source Testing program, a set of as-built drawings showing the Facility and the Works and bearing the stamp of a Professional Engineer, shall be prepared and retained at the Site. - (b) These drawings shall be kept up-to-date through revisions undertaken from time to time and a copy shall be retained at the location of the Site or at the operational office of the Owner for the operational life of the Site. - (c) Notwithstanding provisions of Condition 1.(4)(b), an amendment to this Certificate shall be sought for changes to the as-built drawings, requiring approval. - (d) The as-built drawings shall be made available to Ministry staff upon request. ## **Interpretation** - (5) Where there is a conflict between a provision of any document, including the application referred to in this Certificate and the conditions of this Certificate, the conditions in this Certificate shall take precedence. - (6) Where there is a conflict between the applications and a provision in any documents listed in Schedule "A", the applications shall take precedence, unless it is clear that the purpose of the document was
to amend the applications and that the Ministry approved the amendment. - (7) Where there is a conflict between any two documents listed in Schedule "A", other than the applications, the document bearing the most recent date shall take precedence. - (8) The requirements of this Certificate are severable. If any requirement of this Certificate, or the application of any requirement of this Certificate to any circumstance, is held invalid or unenforceable, the application of such requirement to other circumstances and the remainder of this Certificate shall not be affected thereby. ### **Other Legal Obligations** - (9) The issuance of, and compliance with the conditions of this Certificate does not: - (a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; or - (b) limit in any way the authority of the Ministry to require certain steps be taken or to require the Owner to furnish any further information related to compliance with this Certificate. #### **Adverse Effects** - (10) The Site shall be constructed, operated and maintained in a manner which ensures the health and safety of all persons and prevents adverse effects on the natural environment or on any persons. - (11) The Owner shall take steps to minimize and ameliorate any adverse effect on the natural environment or impairment of water quality resulting from the approved operations at the Site, including such accelerated or additional monitoring as may be necessary to determine the nature and extent of the effect or impairment. - (12) Despite the Owner or any other person fulfilling any obligations imposed by this Certificate, the person remains responsible for any contravention of any other condition of this Certificate or any applicable statute, regulation, or other legal requirement resulting from any act or emission that caused the adverse effect to the natural environment or impairment of water quality. (13) If at any time odours, pests, litter, dust, noise or other such negative effects are generated at this Site and cause an adverse effect, the Owner shall take immediate appropriate remedial action that may be necessary to alleviate the adverse effect, including suspension of all waste management activities if necessary. ## **Change of Ownership** - (14) The Owner shall notify the Director in writing, and forward a copy of the notification to the District Manager, within thirty (30) days of the occurrence of any changes: - (a) the ownership of the Site; - (b) the operator of the Site; - (c) the address of the Owner; - (d) the partners, where the Owner is or at any time becomes a partnership and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R.S.O. 1990, c. B.17, as amended, shall be included in the notification; - (e) the name of the corporation where the Owner is or at any time becomes a corporation, other than a municipal corporation, and a copy of the most current information filed under the *Corporations Information Act*, R.S.O. 1990, c. C.39, as amended, shall be included in the notification. - (15) No portion of this Site shall be transferred or encumbered prior to or after closing of the Site unless the Director is notified in advance. In the event of any change in ownership of the Site, other than change to a successor municipality, the Owner shall notify the successor of and provide the successor with a copy of this Certificate, and the Owner shall provide a copy of the notification to the District Manager and the Director. #### **Inspections by the Ministry** - (16) No person shall hinder or obstruct a Provincial Officer from carrying out any and all inspections authorized by the *OWRA*, the *EPA*, the *PA*, the *SDWA* or the *NMA* of any place to which this Certificate relates, and without limiting the foregoing: - (a) to enter upon the premises where the approved processing is undertaken, or the location where the records required by the conditions of this Certificate are kept; - (b) to have access to, inspect, and copy any records required to be kept by the conditions of this Certificate; - (c) to inspect the Site, related equipment and appurtenances; - (d) to inspect the practices, procedures, or operations required by the conditions of this Certificate; - (e) to conduct interviews with staff, contractors, agents and assignees of the Owner; and - (f) to sample and monitor for the purposes of assessing compliance with the terms and conditions of this Certificate or the *EPA*, the *OWRA*, the *PA*, the *SDWA* or the *NMA*. #### **Information** - (17) Any information requested by the Ministry, concerning the operation of the Site and its operation under this Certificate, including but not limited to any records required to be kept by this Certificate, manuals, plans, records, data, procedures and supporting documentation shall be provided to the Ministry, in a timely manner, upon request. - (18) The receipt of any information by the Ministry or the failure of the Ministry to prosecute any person or to require any person to take any action, under this Certificate or under any statute, regulation or other legal requirement, in relation to the information, shall not be construed as: - (a) an approval, waiver, or justification by the Ministry of any act or omission of any person that contravenes any term or condition of this Certificate or any statute, regulation or other legal requirement; or - (b) acceptance by the Ministry of the information's completeness or accuracy. - (19) The Owner shall ensure that a copy of this Certificate, in its entirety and including all its Notices of Amendment and the Supporting Documentation listed in Schedule "A" are retained at the Site at all times. # 2. SERVICE AREA, APPROVED WASTE TYPES, RATES and STORAGE - (1) The service area for the Site is the area within the jurisdictional boundaries of The Regional Municipality of Durham and The Regional Municipality of York. - (2) The operation of this Site is limited to: - (a) receipt, temporary storage, transfer and processing, including thermal treatment, of solid non-hazardous waste remaining after Waste Diversion required by the EA Approval, limited to Waste from the following sources: - (i) domestic waste and Industrial Commercial and Institutional waste from the Regions' curbside collection and/or from the Regions' waste management facilities; and - (ii) waste generated on-Site through activities not relating to the handling and processing of Waste (ie. office, lunch room, etc.); - (b) collection and management of the stormwater run-off generated at the Site. - (3) The following Unacceptable Waste is prohibited from being accepted at the Site: - (a) hazardous waste, as defined in the O. Reg. 347; - (b) wastes which have been source-separated for the purposes of diversion; (c) international waste generated outside of Canada, but collected within the jurisdictional boundaries of The Regional Municipality of Durham and The Regional Municipality of York. # (4) Waste Receipt Rate: (a) The maximum daily amount of Waste that is approved to be accepted at the Site shall not exceed 1,520 tonnes per day. ### (5) Storage Restrictions: #### Solids: - (a) A maximum of 7,350 cubic metres shall be stored inside the Waste pit within the Tipping Building as shown in the Supporting Documentation. - (b) Rejected Waste, limited to the Bulky Unprocessable Items removed from the incoming Waste in the Tipping Building shall be stored: - (i) in two (2) roll-off bins having a maximum total storage capacity of 30 cubic metres, located within the confines of the Tipping Building; and/or - (ii) in the appropriate dedicated bunkers, located within the confines of the Residue Building and described in Conditions 2.(5)(c), 2.(5)(d) and 2.(5)(d), below. - (c) A maximum of approximately 77 tonnes or 106 cubic metres of the Residual Waste, limited to the recovered ferrous metals, shall be stored in one (1) dedicated bunker, located within the confines of the Residue Building, described in the Supporting Documentation. The storage duration is limited to a maximum of seven (7) days. - (d) A maximum of approximately 120 tonnes or 100 cubic metres of the Residual Waste, limited to the recovered non-ferrous metals, shall be stored in one (1) dedicated bunker, located within the confines of the Residue Building, described in the Supporting Documentation. The storage duration is limited to a maximum of seven (7) days. - (e) A maximum of 630 tonnes of the Residual Waste, limited to bottom ash shall be stored in two (2) dedicated bunkers, located within the confines of the Residue Building, described in the Supporting Documentation. The storage duration is limited to a maximum of seven (7) days. - (f) A maximum of 700 tonnes of the Residual Waste, limited to the fly ash shall be stored in seven (7) dedicated bunkers, located within the confines of the Residue Building, described in the Supporting Documentation. The storage duration is limited to a maximum of thirty six (36) days. - (g) A maximum of 85 cubic metres of activated carbon for the carbon injection system shall be stored in one (1) outdoor tank, located adjacent to the APC Building. - (h) A maximum of 150 cubic metres of lime for the dry scrubber shall be stored in one (1) or more indoor tank(s), located within the confines of the APC Building. - (i) If required, recirculated residue shall be stored in one (1) or more indoor tank(s), located within the confines of the APC Building. - (j) A maximum of 35 tonnes or 25 cubic metres of cement for fly ash conditioning shall be stored in one (1) outdoor silo, located adjacent to the Residue Building. - (k) A maximum of 25 tonnes or 45 cubic metres of pozzolan for fly ash conditioning shall be stored in one (1) outdoor silo, located adjacent to the Residue Building. ### Liquids: - (1) (i) A maximum of 36 cubic metres or 40 tonnes of aqueous ammonia for the SNCR System shall be
stored in one (1) outdoor tank, located adjacent to the APC Building. - (ii) The Owner shall ensure that the aqueous ammonia storage tank is equipped with a liquid level monitoring device designed to provide a visual and an auditory alarm when the high level setpoint is reached. - (iii) The aqueous ammonia storage tank spill containment area and the loading area shall be designed in accordance with the requirements in the Ministry's document entitled "Guidelines for Environmental Protection Measures at Chemical and Waste Storage Facilities" dated May 2007, as amended. - (6) No outdoor storage of waste, including storage in vehicles, is approved under this Certificate. - (7) The Owner shall ensure that storage of all wastes is undertaken in a manner that does not cause an adverse effect or a hazard to the environment or any person. - (8) (a) Waste received at the Site shall be processed within four (4) days from its receipt at the Site. - (b) Emergency Waste storage duration extension: - (i) The Owner may store the incoming Waste inside the tipping pit within the confines of the Tipping Building for up-to seven (7) days from its receipt at the Site, on an emergency basis only. - (ii) Within twenty four (24) hours from the start of the emergency storage of the incoming Waste, the Owner shall notify, in writing, the District Manager that the incoming Waste is being stored longer then four (4) days. - (iii) Should there be public complaints about the extended incoming Waste storage, the Owner, in consultation with the District Manager, shall determine the cause of the complaints, propose appropriate abatement measures, including but not be limited to the removal and off-site disposal of the Waste contained in the tipping pit, and implement the said measures upon receiving written concurrence from the District Manager within the time frame acceptable to the District Manager. - (9) In the event that Waste cannot be processed at the Site and the Site is at its approved storage capacity, the Owner shall cease accepting additional Waste. Receipt of additional Waste may be resumed once such receipt complies with the waste storage limitations approved in this Certificate. #### 3. SIGNS and SITE SECURITY - (1) Prior to receipt of Waste at the Site, the Owner shall ensure that a sign is posted at the entrance to the Site. The sign shall be visible from the main road leading to the Site. The following information shall be included on the sign: - (a) name of the Owner; - (b) this Certificate number; - (c) hours during which the Site is open; - (d) waste types that are approved to be accepted at the Site; - (e) Owner's telephone number to which complaints may be directed; - (f) Owner's twenty-four hour emergency telephone number (if different from above); - (g) a warning against unauthorized access; and - (h) a warning against dumping at the Site. - (2) The Owner shall ensure that appropriate and visible signs are posted at the Site clearly identifying the wastes and the process reagents and stating warnings about the nature and any possible hazards of the wastes and the reagents. - (3) The Owner shall ensure that appropriate and visible signs are posted at the Site to prohibit smoking, open flames or sources of ignition from being allowed near any flammable materials storage areas. - (4) The Owner shall install and maintain appropriate and visible signs at the Site to direct vehicles to the Waste receiving and Residual Waste removal areas and to the reagent unloading areas. - (5) The Owner shall post appropriate and visible signs along the traffic route providing clear directions to the Site. - (6) The Owner shall ensure that the Site is fenced in and that all entrances are secured by lockable gates to restrict access only to authorized personnel when the Site is not open. - (7) The Owner shall ensure that access to the Site, with the exception of the area designated as a Public Information Centre, is regulated and that no unauthorized persons are permitted at the Site without the Trained Personnel escort. - (8) The Owner shall ensure that the Site is operated in a safe and secure manner, and that Waste, the Residual Waste and the Unacceptable Waste are properly handled, packaged or contained and stored so as not to pose any threat to the general public and the Site personnel. # 4. <u>SITE OPERATIONS</u> ## (1) **Operating hours:** - (a) The Site is approved to operate twenty-four (24) hours per day three hundred and sixty-five (365) days per year. - (b) Notwithstanding Condition 4.(1)(a), Waste shall only be received at the Site and the Residual Waste shall only be transferred from the Site between 7:00 a.m. and 7:00 p.m. Monday to Saturday. No receipt of the Waste or transfer of the Residual Waste shall be undertaken on statutory holidays. - (c) Emergency Receipt of Waste: - (i) The Owner may receive Waste at the Site outside of the operating hours specified in Condition 4.(1)(b), above, on an emergency basis only. - (ii) Within twenty four (24) hours from the receipt of Waste outside of the approved receiving hours, the Owner shall notify, in writing, the District Manager that Waste was received outside of the approved receiving hours. - (iii) Should there be complaints about Waste shipments outside of the approved hours, the Owner, in consultation with the District Manager, shall determine the cause of the complaint, propose appropriate abatement measures and implement the said measures upon receiving written concurrence from the District Manager within the time frame acceptable to the District Manager. ### (2) **Incoming Waste receipt:** - (a) At the weigh scale, the Trained Personnel shall: - (i) inspect the required documentation prior to acceptance of the incoming Waste at the Site; and - (ii) inspect the incoming Waste with radiation detection equipment. - (b) In the Tipping Building, the Trained Personnel shall: - (i) visually inspect all incoming Waste being unloaded into the Waste pit; - (ii) once per hour, or as accepted by the District Manager, unload the incoming Waste on the tipping floor for a manual visual inspection and sorting of the incoming Waste. - (c) The Owner shall only accept the incoming Waste that is delivered in vehicles that have been approved by the Ministry. - (d) The Owner shall ensure that all unloading of incoming Waste at the Site takes place entirely within the confines of the Tipping Building. ### (3) Unacceptable Waste handling: - (a) In the event that waste that is not approved under this Certificate is inadvertently accepted at the Site, the Owner shall ensure that the Unacceptable Waste: - (i) is stored in a way that ensures that no adverse effects result from its storage; - (ii) is segregated from all other waste; - (iii) is handled and removed from the Site in accordance with the *O. Reg.* 347 and the *EPA*; and - (iv) is removed from the Site within (4) days of its receipt or as acceptable to the District Manager. - (b) The Owner shall ensure that all loading of the Unacceptable Waste into transport vehicles is carried out entirely within the confines of the Tipping Building. #### (4) Waste Sorting: - (a) The Trained Personnel shall remove the Bulky Unprocessable Items and Unacceptable Waste from the incoming Waste prior to charging of the Waste to the Boilers. - (b) All sorting of the incoming Waste at the Site shall be undertaken indoors, within the confines of the Tipping Building and/or the Refuse Building. #### (5) Residual Waste Handling and Disposal: (a) (i) Except for transportation of the Residual Waste between the Grizzly Building and the Residue Building, the Owner shall ensure that all - handling of the bottom ash and its segregated constituents, and of the fly ash, is undertaken within the confines of enclosed conveyors and enclosed buildings. - (ii) The Owner shall ensure that all loading of the Residual Waste into vehicles for its transport from the Site is carried out entirely within the confines of the Residue Building. - (b) (i) Different constituents of the Residual Waste shall not be comingled prior to the required compliance testing, unless all Residual Waste is to be disposed of at a Waste Disposal Site that is approved to accept hazardous waste. - (ii) The Owner shall ensure that the equipment used in handling of the hazardous wastes or that came in direct contact with the hazardous wastes is not used to handle other wastes. - (iii) On an emergency basis, the Owner may use equipment used to handle the hazardous wastes to handle other wastes provided that prior to such use the equipment has been thoroughly cleaned first. - (c) (i) Only haulers approved by the Ministry shall be used to transport the Residual Waste from the Site. - (ii) The Residual Waste shall be transported from the Site in appropriately covered vehicles that will not allow fugitive dust emissions to be emitted into the natural environment during the said transport. - d) Residual Waste generated at the Site shall be disposed of shall only be disposed of at an approved waste disposal site in accordance with the requirements in the *EPA* and the *O. Reg. 347* or at a location with the appropriate jurisdictional approval or a license, if required. - (e) Should the Residual Waste limited to the conditioned fly ash and/or the bottom ash be deemed a hazardous waste, the ash shall be disposed of at an approved waste disposal site in accordance with the Land Disposal Restrictions requirements in the *EPA* and the *O. Reg.* 347 or at a location with the appropriate jurisdictional approval or a license, if required. # (6) Wastewater Management - (a) The Owner shall ensure that all wastewater generated at the Site is contained within enclosed buildings, tanks, pipes and conveyors at the Site and the approved outdoor Wastewater Settling Basin. - (b) The Owner shall ensure that all wastewater generated at the Site is collected in leak-proof and sufficiently designed wastewater storage facilities: - (i)
Wastewater Holding Tank, to collect the continuous reject water flow from the Boiler make-up water treatment system and the Boiler blowdown, having an approximate holding capacity of 100 cubic metres, located within the confines of the Boiler Building and venting to the atmosphere; and - (ii) Wastewater Settling Basin, to collect the wastewater from the floor drains in the buildings at the Site, except for the Tipping Building and the Residue Building, the ash discharger overflow and drain water, the Boiler and turbine-generator washdown water and the APC Equipment area washdown water, having an approximate holding capacity of 38 cubic metres, located outdoors, open to the atmosphere and equipped with a filter basket and an oil skimmer board. - (c) The wastewater pumps shall be located in the area designed in accordance with the Supporting Documentation to ensure that any potential leaks or drips are contained and directed to the Wastewater Settling Basin. - (d) (i) The wastewater level in the Wastewater Holding Tank shall be monitored and controlled to ensure that the wastewater inflow to the Tank does not cause the Tank overflow. - (ii) The wastewater level in the Wastewater Settling Basin shall be monitored and controlled to ensure that the atmospheric precipitation does not cause an overflow from the Basin. - (e) The Owner shall regularly empty, and clean as necessary, all sumps, wastewater storage/holding areas and equipment that are used to contain, collect and handling the wastewater generated at the Site. - (f) Should the Owner find it necessary to remove the wastewater from the Site, the wastewater shall only be disposed of at a Ministry-approved site in accordance with the site's certificate of approval or be discharged to the sanitary sewer in accordance with the agreement with the municipality accepting the discharge. - (g) The floors of the Tipping Building and the Residue Building shall be sufficiently sloped to facilitate the flow of the wastewater generated from the floor cleaning activities and from the truck washdown towards the designated wastewater collection area. - (h) The Owner shall ensure that the Wastewater Settling Basin is regularly cleaned out and that it does not become a source of odour emissions. - (7) All activities approved under this Certificate shall only be carried out by appropriately Trained Personnel. ## 5. **EQUIPMENT and SITE INSPECTIONS and MAINTENANCE** #### **Operation and Maintenance** (1) Prior to the receipt of the Waste at the Site, the Owner shall prepare and update as necessary, an Operation and Maintenance Manual for all the Equipment, the APC Equipment, the CEM Systems, the Works and any other equipment associated with managing of the Waste and with the control of environmental impacts from the Facility. The Manual shall be prepared in accordance with the written manufacturer's and/or supplier's specifications and good engineering practice. As a minimum, the Operation and Maintenance Manual shall specify: - (a) operation procedures of the Equipment, the APC Equipment, the CEM Systems, the Works, and any other equipment associated with managing of the Waste and with the control of environmental impacts from the Facility, in accordance with manufacturers' recommendations and good engineering practices to achieve compliance with this Certificate, the *EPA*, the *OWRA* and their Regulations; - (b) calibration procedures for the CEM Systems as required by this Certificate; - (c) procedures for start-up and shutdown, including Controlled Shutdown and Emergency Shutdown; - (d) quality assurance procedures for the operation and calibration of the CEM Systems in accordance with 40 CFR 60, Appendix F or Report EPS 1/PG/7, as appropriate; - (e) Waste receiving and screening procedures; - (f) Waste, Rejected Waste and Residual Waste handling procedures; - (g) testing and monitoring procedures as required by this Certificate; - (h) maintenance and preventative maintenance procedures as required by this Certificate: - (i) Facility inspection, including frequency of inspections, procedures; - (j) procedure for handling complaints as required by this Certificate. - (k) contingency measures to resolve upset conditions and/or minimize the environmental impacts from the Facility; - (l) emergency response procedures, including procedures for dealing with power failure, fire, explosion, spills and any other potential emergencies; - (m) procedures for record keeping activities as required by this Certificate; - (n) description of the responsibilities of the Site personnel and the personnel training protocols; and - (o) a list of personnel positions responsible for operation and maintenance, including supervisory personnel and personnel responsible for handling of the emergency situations, recording and reporting pursuant to the requirements of this Certificate, along with the training and experience required for the positions and a description of the responsibilities. - (2) A copy of this Operations and Maintenance Manual shall be kept at the Site, be accessible to the Site personnel at all times and be updated, as required. The Operations and Maintenance Manual shall be available for inspection by a Provincial Officer upon request. (3) The Owner shall implement the operation, maintenance, preventative maintenance and calibration procedures set out in the Operations and Maintenance Manual required by this Certificate. ## **Critical Spare Parts** - (4) (a) The Owner shall prepare a list of critical spare parts, update this list annually or more frequently, if necessary, to ensure that this list is maintained up-to-date and shall be available for inspection by a Provincial Officer upon request. - (b) The Owner shall ensure that the critical spare parts are available at the Site at all times or are immediately available from an off-Site supplier. ## **Inspections** - (5) Prior to receipt of the Waste at the Site, the Owner shall prepare a comprehensive written inspection program which includes inspections of all aspects of the Site's operations including, but not limited to the following: - (a) buildings and the indoor waste storage facilities and presence of dust and odour and leaks in or near any openings, such as doorways, window, vent, louver or any other opening; - (b) outdoor Residual Waste transport equipment, and the presence of dust and leaks at or near transfer points or the equipment seams; - (c) the Equipment, the APC Equipment, the CEM Systems, the Works and any other equipment associated with managing of the Waste and with the control of environmental impacts from the Facility; - (d) spill containment areas, loading areas and the conditions around the Wastewater Settling Basin; - (e) security fencing, gates, barriers and signs; - (f) off-site nuisance impacts such as odour, dust, litter, etc. - (g) presence of stormwater pooling at the Site; and - (h) condition of the on-Site roads for presence of leaks and drips from the waste delivery trucks or excessive dust emissions. - (6) The inspections, except for the inspection of the Works, are to be undertaken daily by the Trained Personnel in accordance with the inspection program to ensure that the Facility is maintained in good working order at all times and that no off-Site impacts are occurring. Any deficiencies detected during these regular inspections must be promptly corrected. #### **Inspections and Maintenance of the Works** (7) The Owner shall inspect the Works at least once a year and, if necessary, clean and maintain the Works to prevent the excessive build-up of sediments and/or vegetation. #### 6. PERFORMANCE REQUIREMENTS - (1) The Owner shall, ensure that the Facility/Equipment is designed and operated in such a manner as to ensure that the following Performance Requirements are met: - (a) the maximum 10-minute average concentration of odour at the most impacted Sensitive Receptor, resulting from the operation of the Facility/Equipment, calculated in accordance with the procedures outlined in the attached Schedule "B", shall not exceed 1 odour unit; - (b) the noise emissions from the Facility shall comply with the limits set out in Ministry *Publication NPC-205*; - (c) the vibration emissions from the Facility shall comply with the limits set out in Ministry *Publication NPC-207*. - (2) The Owner shall ensure that the Boilers and the associated APC Equipment and the CEM Systems are designed and operated in such a manner as to ensure that the following Performance Requirements are met: - (a) (i) The temperature in the combustion zone of each Boiler shall reach a minimum of 1000 degrees Celsius (°C) for one second, prior to introduction of the Waste into the combustion chamber of the Boiler during the start-up, and thereafter maintained during the entire thermal treatment cycle and subsequent shutdown until all Waste combustion is completed. - (ii) Compliance with the minimum temperature requirement shall be demonstrated by direct measurement at the location where the combustion gases have achieved the residence time of one second at a minimum temperature of 1000°C (the Target Location) or by correlation of the required temperature of 1000°C for one second to the temperature measured downstream of the Target Location as proven by a method acceptable to the Director. - (b) The concentration of residual oxygen in the Undiluted Gases leaving the combustion zone via the economizer outlet of each Boiler, as measured and recorded by the CEM System, shall not be less than 6 percent by volume on a dry basis. - (c) (i) The operational target for the concentration of carbon monoxide in the Undiluted Gases leaving the combustion zone via the economizer outlet of each Boiler is 40 milligrams per dry cubic metre, as a 4-hour rolling average, normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as measured and recorded by the CEM System, for the period from and
including initial commissioning of the facility to twelve months following the completion of the first Source Testing program. - (ii) The 4-hour average concentration of carbon monoxide in the Undiluted Gases leaving the combustion zone via the economizer outlet of each Boiler, as measured and recorded by the CEM System, shall not be more than 40 milligrams per dry cubic metre, normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, after the first twelve months following the completion of the first Source Testing program. - (d) The emissions from the Boilers after those emissions have been controlled by the associated APC Equipment for discharge into the atmosphere via the Stack shall comply with the emission concentration limits listed in the attached Schedule "C", as measured by a CEM System or by Source Testing as applicable. - (e) The Boilers shall include combustion air control systems, which are capable of automatically adjusting the distribution and the quantity of combustion air, in such a manner that changes in the Waste Processing Rate and/or Waste composition or irregularities in the loading and/or combustion shall not adversely affect the performance of the Boilers. - (f) The Boilers shall provide and maintain a high degree of gas turbulence and mixing in the combustion chamber. - (g) The Boilers shall achieve the temperature, oxygen availability and turbulence requirements over the complete range of operating parameters, including feed rate, feed characteristics, combustion air, flue gas flow rate and heat losses. - (h) The inlet temperature into each baghouse of the APC Equipment of the Boilers shall not be less than 120°C and not more than 185°C. - (3) The Owner shall install and maintain visual and audible alarm systems to alert the Facility/Equipment operators of any potential deviation from the above Performance Requirements for parameters that are continuously monitored by applicable CEM Systems and shall forthwith take all reasonable actions to bring the Equipment/Facility into compliance with all Performance Conditions. - (4) In the event that the CEM Systems indicate that emissions from the Boilers and the Stack exceed any Performance Requirements in the attached Schedule "C" for a continuous three (3) hour period, the Owner shall forthwith cut-off all Waste feed into the affected Boiler and initiate an Emergency Shutdown, while maintaining a temperature of 1000°C, as practicable, in the combustion zone of the Boiler. #### **Residual Waste Compliance Criteria** (5) (a) The Residual Waste generated at the Site and destined for a non-hazardous waste disposal site in Ontario shall not meet any of the criteria from the definition of "hazardous waste" set out in the *O. Reg. 347*. - (b) The Residual Waste that meets any of the criteria from the definition of "hazardous waste" set out in the *O. Reg.* 347 shall be handled and disposed of in accordance with the LDR requirements set out in the *EPA* and the *O. Reg.* 347. - (6) The Residual Waste, limited to the bottom ash, destined for a non-hazardous waste disposal site shall meet the definition of "incinerator ash" set out in the *O. Reg. 347*. ### 7. TESTING, MONITORING and AUDITING ### **Source Testing** (1) The Owner shall perform annual Source Testing in accordance with the procedures and schedule outlined in the attached Schedule "E", to determine the rate of emission of the Test Contaminants from the Stack. The first Source Testing program shall be conducted not later than six (6) months after the Commencement Date of Operation of the Facility/Equipment and subsequent Source Testing program shall be conducted once (1) every calendar year thereafter. ### **Continuous Monitoring** - (2) The Owner shall select, test and install appropriate CEM Systems and continuous recording devices in accordance with the requirements outlined in the attached Schedule "F" to conduct and maintain a program to continuously monitor, as a minimum, the following parameters prior to commencement of operation of the Boilers: - (a) the temperature at one (1) second downstream of the combustion zone of each Boiler where most of the combustion has been completed and the combustion temperature is fully developed; - (b) the inlet temperature of the gases into each baghouse of the APC Equipment of each Boiler; - (c) the concentration of carbon monoxide, oxygen and organic matter (as methane) in the Undiluted Gases leaving the combustion zone via the economizer outlet of each Boiler; - (d) the opacity and moisture content of the flue gas and the concentration of oxygen, nitrogen oxides, sulphur dioxide, hydrogen chloride, hydrogen fluoride and ammonia in the Undiluted Gases leaving the baghouse of the APC Equipment of each Boiler. ### **Long-Term Sampling for Dioxins and Furans** (3) (a) The Owner shall develop, install, maintain and update as necessary a longterm sampling system, with a minimum monthly sampling frequency, to measure the concentration of Dioxins and Furans in the Undiluted Gases leaving the APC Equipment associated with each Boiler. The performance of - this sampling system will be evaluated during the annual Source Testing programs in accordance with the principles outlined by 40 CFR 60, Appendix B, Specification 4. - (b) The Owner shall evaluate the performance of the long-term sampling system in determining Dioxins and Furans emission trends and/or fluctuations as well as demonstrating the ongoing performance of the APC Equipment associated with the Boilers. # **Ambient Air Monitoring** - (4) (a) The Regions shall develop and implement the Ambient Air Monitoring and Reporting Plan, in accordance with the requirements set out in the EA Approval and as determined to be acceptable by the Regional Director. - (b) The Regions shall report the results of the Ambient Air Monitoring program to the Regional Director in accordance with the Ambient Air Monitoring and Reporting Plan and in accordance with the requirements of Condition 14. - (c) The Regions shall post the Ambient Air Monitoring and Reporting Plan and the results of the Ambient Air Monitoring program on the Owner's web site for the Facility in accordance with the requirements of the EA Approval and Condition 15. ## **Noise Monitoring - Acoustic Audit** #### (5) The Owner: - (a) shall carry out Acoustic Audit measurements on the actual noise emissions due to the operation of the Facility. The Acoustic Audit measurements shall be carried out in accordance with the procedures in *Publication NPC-103* and in accordance to the Noise Monitoring and Reporting Plan prepared in accordance with the requirements set out in the EA Approval and as approved by the Director; - (b) shall submit an Acoustic Audit Report on the results of the Acoustic Audit, prepared by an Independent Acoustical Consultant, in accordance with the requirements of *Publication NPC-233* and the Noise Monitoring and Reporting Plan prepared in accordance with the requirements set out in the EA Approval and as approved by the Director, to the District Manager and the Director, not later than three (3) months after the commencement of operation of the Facility. #### (6) The Director: (a) may not accept the results of the Acoustic Audit if the requirements of *Publication NPC-233* or the approved Noise Monitoring and Reporting Plan were not followed; (b) may require the Owner to repeat the Acoustic Audit if the results of the Acoustic Audit are found unacceptable to the Director. # **Residual Waste Testing** - (7) (a) A minimum of six (6) months prior to the Commencement Date of Operation, the Owner shall submit to the Director for approval, a Testing Protocol for testing of the bottom ash for compliance with the criteria set out in the "incinerator ash" definition from the *O. Reg.* 347 and for testing of the Residual Waste for compliance with the criteria set out in this Certificate. - (b) As a minimum, the Testing Protocol shall comply with the Ministry's regulatory requirements for sampling and testing of waste, including the requirements set out in the Ministry's document entitled "Principles of Sampling and Analysis of Waste for TCLP under Ontario Regulation 347", dated February 2002, as amended. - (c) The Testing Protocol shall include the rationale for the proposed methods and the following: - (i) a sampling protocol, including the proposed number of samples to be taken and their locations, to ensure that representative sample(s) are being tested for compliance with this Certificate; - (ii) sample(s) handling and preserving procedures; - (iii) analytical protocol for the applicable contaminants to ensure that appropriate analytical method(s) are being used for compliance testing required by this Certificate; and - (iv) a testing protocol for the bottom ash during the Site commissioning period. - (d) The Owner shall implement the Testing Protocol on the Commencement Date of Operation. - (8) For handling of the bottom ash as a solid non-hazardous waste, the Owner shall follow the following schedule for compliance testing: - (a) for the Site commissioning period, the bottom ash shall be tested in accordance with the Testing Protocol approved by the Director; - (b) for the period following the Site commissioning period, the bottom ash shall be tested for the content of the combustible materials on an annual basis, until the compliance testing results indicate that the bottom ash meets the "incinerator ash" definition from the *O. Reg. 347* for three (3) consecutive years, following which a triennial compliance testing event may be carried out; - (c) should any annual or triennial compliance testing event indicate that the bottom ash does not meet the "incinerator ash" definition, prior to each of the next three (3) shipments from the Site, compliance testing of each of the three (3) shipments shall be carried out. Once three (3) consecutive tests re establish compliance with
the "incinerator ash" definition from the *O. Reg.* 347 and that the bottom ash does not exceed the Leachate Toxicity Criteria, the compliance testing schedule set out in Condition 7.(8)(b) may be resumed; and - (d) should the results of any compliance testing of the bottom ash indicate that the concentrations of the leachate toxic contaminants in the bottom ash equal to or exceed the Leachate Toxicity Criteria, the bottom ash shall be handled as a hazardous waste. Once three (3) consecutive tests re establish that the bottom ash does not exceed the Leachate Toxicity Criteria, the bottom ash compliance testing schedule set out in Condition 7.(8)(b) may be resumed. - (9) (a) For handling of the bottom ash as a hazardous waste and for handling of the fly ash, prior to final disposal at a hazardous waste landfill site in Ontario, the Owner shall undertake any sampling and testing that would be required to comply with the LDR requirements set out in the *EPA* and the *O. Reg. 347*. - (b) The Owner shall follow the following schedule for compliance testing: - (i) prior to each of the first three (3) shipments of the ash from the Site, the ash shall be tested so that for the compliance with the LDR requirements can be demonstrated; - (ii) following the three (3) initial compliance testing events, the ash shall be tested on an annual basis, until the compliance testing results indicate that the ash meets the LDR requirements during the three (3) consecutive years, following which a triennial compliance testing may be carried out; and - (iii) should any annual or triennial compliance testing event indicate that the ash does not meet the LDR requirements, prior to next three (3) shipments from the Site, compliance testing of each of the three (3) shipments shall be carried out. Once three (3) consecutive tests reestablish compliance with the LDR requirements, the compliance testing schedule set out in Condition 7.(9)(b)(ii) may be resumed. #### **Soil Testing:** - (10) (a) Within one hundred and twenty (120) days from the date of this Certificate, the Regions shall undertake the soil testing in accordance with the Soil Testing Plan required by this Certificate. - (b) The soil testing shall be repeated every three (3) years or as agreed upon in writing by the Regional Director. ## **Disposal of Residual Waste** - (11) The Owners shall ensure that no portion of the Residual Waste undergoing compliance testing is transferred from the Site until the results of the compliance testing required by this Certificate demonstrate compliance with the relevant Ministry's requirements. - (12) Bottom ash that is not a hazardous waste, as defined in the *O. Reg. 347*, may be disposed of at an approved non-hazardous waste landfill site or at a site approved to accept such waste by an appropriate government agency of equivalent jurisdiction. - (13) Residual Waste shall be treated to comply with the LDR requirements set out in the *EPA* and the *O. Reg. 347* prior to disposal of at an approved hazardous waste landfill site or at a site approved to accept such waste by an appropriate government agency of equivalent jurisdiction. ## **Groundwater and Surface Water Monitoring** - (14) (a) The Regions shall develop and implement the Groundwater and Surface Water Monitoring Plan, in accordance with the requirements set out in the EA Approval and as determined to be acceptable to the Regional Director. - (b) The Regions shall report the results of the Groundwater and Surface Water Monitoring program to the Regional Director and to the Director in accordance with the schedule set out in the EA Approval and in accordance with the requirements of Condition 14. - (c) The Regions shall post the Groundwater and Surface Water Monitoring Plan and the results of the Groundwater and Surface Water Monitoring program on the Owner's web site for the Facility in accordance with the requirements of the EA Approval and Condition 15. #### 8. NUISANCE IMPACT CONTROL and HOUSEKEEPING ### **Odour Management** - (1) (a) The Owner shall maintain a negative air pressure atmosphere in the Tipping Building at all times to contain any potential odours within the confines of the Tipping Building. - (b) (i) Once per year, or as required by the District Manager, the Owner shall undertake a test to measure the worse case scenario negative air pressure atmosphere throughout the Tipping Building, while the activities approved in this Certificate are carried out in the Tipping Building. - (ii) Notwithstanding the requirements set out in Condition 8.(1)(b)(i), the Owner shall install sufficient instrumentation to measure the air flow into the Boilers and demonstrate that adequate air flow is maintained to maintain a negative air pressure atmosphere throughout the Tipping Building. - (c) In the event that adequate negative air pressure cannot be maintained, the Owner shall implement any necessary additional odour containment and control measures, including, but not necessarily limited to, those in the required Contingency and Emergency Response Plan. - (2) The Owner shall ensure that the entrance and exit doors into the Tipping Building, the Residue Building and the Grizzly Building are kept closed at all times except to permit the entry or exit of the respective waste transport vehicles and waste handling equipment into and out of these Buildings. - (3) The Owner shall ensure that, at all times, the air from the Tipping Building, the Residue Building, the Grizzly Building and from the Equipment is exhausted through an appropriate and fully functional APC Equipment approved by this Certificate. - (4) The Owner shall undertake appropriate housekeeping activities, including regular cleaning of the tipping floor to control potential sources of fugitive odour emissions. - (5) The Owner shall ensure that no Waste handling equipment or empty storage containers are stored outside, unless they have been washed to prevent fugitive odour emissions. - (6) The Owner shall regularly clean all equipment and storage areas that are used to handle, process and store waste at the Site, including the surfaces of the outdoor spill containment areas, as required. - (7) (i) Prior to the receipt of Waste at the Site, the Owner shall provide documentation which outlines the testing carried out by a licensed structural engineer to confirm the effectiveness of the containment in the buildings, conveyors and tanks and silos at the Site. - (ii) The testing shall be carried out and repeated as directed by the District Manager in accordance with the test protocol prepared in consultation with and approved by the District Manager. - (iii) These tests shall be repeated as directed or agreed by the District Manager. - (8) The Owner shall prepare and implement an Odour Management and Mitigation Plan in accordance with the requirements set out in the EA Approval and as determined to be acceptable to the Regional Director. - (9) (a) In addition to the requirements set out in the EA Approval, the Odour Management and Mitigation Plan shall include the following: - (i) identification of all potential sources of odourous emissions; - (ii) description of the preventative and control measures to minimize odourous emissions from the identified sources; - (iii) procedures for the implementation of the Odour Management and Mitigation Plan; - (iv) inspection and maintenance procedures to ensure effective implementation of the Odour Management and Mitigation Plan; and - (v) procedures for verification and recording the progress of the implementation of the Odour Management and Mitigation Plan. - (b) The Owner shall continue to submit an updated Odour Management and Mitigation Plan until such time as the Regional Director notifies the Owner in writing that further submissions are no longer required. #### **Vehicles and Traffic** - (10) (a) The Owner shall ensure that all vehicles transporting waste to and from the Site are not leaking or dripping waste when arriving at or leaving the Site. - (b) Should the Owner become aware that the truck(s) delivering waste to the Site have leaked wastewater on the municipal roadways, the Owner shall immediately report the violation to the owner of the vehicle(s) and to the District Manager. - (c) The Owner shall ensure that the exterior of all vehicles delivering Waste to the Site or hauling waste from the Site is washed prior to the trucks' departure from the Site, if necessary. - (d) Any necessary truck washing shall occur only in the designated wash down area of the Tipping Building or the Residue Building. - (11) The Owner shall ensure that there is no queuing or parking of vehicles that are waiting to enter the Site on any roadway that is not a distinct part of the Site. #### Litter - (12) The Owner shall: - (a) take all practical steps to prevent the escape of litter from the Site; - (b) pick up litter around the Site on a daily basis, or more frequently if necessary; and - (c) if necessary, erect litter fences around the areas causing a litter problem. #### **Dust** (13) The Owner shall ensure that all on-site roads and operations/yard areas are regularly swept/washed to prevent dust impacts off-Site. #### **Vermin and Vectors** - (14) The Owner shall: - (a) implement necessary housekeeping procedures to eliminate sources and potential sources of attraction for vermin and vectors; and - (b) hire a qualified, licensed pest control professional to design and implement a pest control plan for the Site. The pest control plan shall remain in place, and be updated from time to time as necessary, until the Site has been closed and this Certificate has been revoked. ### **Visual Screening** (15) The Owner shall provide visual screening for the Site in accordance with the documentation included in the attached Schedule "A". ### 9. **STAFF TRAINING** - (1) (a) The Owner shall ensure that all operators of the Site are trained with respect to the following, as per the specific job
requirements of each individual operator: - (i) terms and conditions of this Certificate and the requirements of the EA Approval; - (ii) operation and management of the Site, or area(s) within the Site, as per the specific job requirements of each individual operator, and which may include procedures for receiving, screening and identifying Waste, refusal, handling, processing and temporarily storing wastes, operation of the Equipment, the APC Equipment, the CEM System and the Works; - (iii) testing, monitoring and operating requirements; - (iv) maintenance and inspection procedures; - (v) recording procedures; - (vi) nuisance impact control and housekeeping procedures; - (vii) procedures for recording and responding to public complaints; - (viii) an outline of the responsibilities of Site personnel including roles and responsibilities during emergency situations; - (ix) the Contingency and Emergency Response Plan including exit locations and evacuation routing, and location of relevant equipment available for emergency situations; - (x) environmental, and occupational health and safety concerns pertaining to the wastes to be handled; - (xi) emergency first-aid information; and - (xii) relevant waste management legislation and regulations, including the *EPA*, the *OWRA*, the *O. Reg. 347*, the *O. Reg. 419/05* and the Ministry guidelines affecting thermal treatment facilities. - (2) The Owner shall ensure that all personnel are trained in the requirements of this Certificate relevant to the employee's position: - (a) upon commencing employment at the Site in a particular position; - (b) whenever items listed in Condition 9.(1) are changed or updated; and - (c) during the planned refresher training. # 10. <u>COMPLAINTS / ODOUR-CONTAMINANT EMISSIONS RESPONSE</u> <u>PROCEDURE</u> - (1) The Owner or a designated representative of the Owner shall be available to receive public complaints caused by the operations at the Site twenty-four (24) hours per day, seven (7) days per week. - (2) If at any time, the Owner or the Ministry receives a complaint or the Owner or the Provincial Officer detects an emission of odour or any contaminant, (Emission Event), from the Site, in addition to the requirements set out in the EA approval, the Owner shall record all relevant information in the computerized tracking system and shall respond to the complaint/Emission Event according to the following procedure: # Step 1: Record of Complaint/Emission Event - (a) (i) The Owner shall record each complaint/Emission Event and each record shall include the following: - (A) name, address and the telephone number of the complainant, if known; - (B) time and date of the complaint/Emission Event; - (C) details of the complaint; and - (ii) After the complaint/Emission Event has been recorded in the tracking system, the Owner shall immediately report to the District Manager by phone or e-mail during office hours and to the Ministry's Spills Actions Centre at 1-800-268-6060 after office hours on the receipt of the complaint or occurrence of the Emission Event. #### Step 2: Investigation and Handling of Complaint/Emission Event - (b) The Owner shall immediately initiate investigation of the complaint/Emission Event. As a minimum, the investigation shall include the following: - (i) determination of the activities being undertaken at the Site at the time of the complaint/Emission Event; - (ii) meteorological conditions including, but not limited to the ambient temperature, approximate wind speed and its direction. - (iii) determination if the complaint is attributed to activities being undertaken at the Site and if so, the possible cause(s) of the complaint/Emission Event; and - (iv) determination of the remedial action(s) to address the cause(s) of the Complaint/Emission Event, and the schedule for the implementation of the necessary remedial action(s). - (c) The Owner shall respond to the complainant, if known, and the response shall include the results of the investigation of the Complaint, the action(s) taken or planned to be taken to address the cause(s) of the Complaint, and if any follow-up response(s) will be provided. - (d) Upon completed investigation of the Complaint/Emission event, the Owner shall, within three (3) business days, submit a report to the District Manager on the Complaint, on the action(s) taken or planned to be taken to address the cause(s) of the Complaint and on all proposed action(s) to prevent recurrence of the Complaint/Emission Event in the future. - (3) If, in the opinion of the District Manager, failure of the APC Equipment and/or any other process or equipment upset or malfunction results in off-site Complaint/Emission Event, confirmed by the Owner or a Provincial Officer of the Ministry, the Owner shall, immediately upon notification from the District Manager, implement any necessary additional control measures, including, but not necessarily limited to, those in the Contingency and Emergency Response Plan required by this Certificate. - (4) If the District Manager deems the additional control measures taken as per condition 10.(3) to be unsuitable, insufficient or ineffective, the District Manager may direct the Owner, in writing, to take further measures to address the noted failure, upset or malfunction including pursuant to section 39 of the *EPA* requiring a reduction in the receipt of Waste, cessation of the receipt of Waste, removal and off-site disposal of Waste from the Tipping Building as well as making repairs or modifications to equipment or processes. #### 11. CONTINGENCY and EMERGENCY RESPONSE PLAN - (1) (a) The Owner shall develop and implement a Contingency and Emergency Response Plan in accordance with the requirements set out in the EA Approval. - (b) Notwithstanding the requirements set out in the EA Approval, the Contingency and Emergency Response Plan shall be prepared in consultation with the District Manager or designate, the local Municipality and the Fire Department. - (2) In addition to the requirements set out in the EA Approval, the Contingency and Emergency Response Plan, as a minimum, shall include the following: - (a) the Site plan clearly showing the equipment layout and all storage areas for wastes and reagents; - (b) a list of Site personnel responsible for the implementation of the contingency measures and various emergency response tasks and their training requirements; - (c) a list of equipment and materials required for the implementation of the contingency measures and the emergency situation response; - (d) maintenance and testing program for equipment required for the implementation of the contingency measures and the emergency situation response; - (e) procedures to be undertaken as part of the implementation of the contingency measures and the emergency situation response; - (f) names and telephone numbers of waste management companies available for emergency response; - (g) notification protocol, with names and telephone numbers of persons to be contacted, including the Owner, the Site personnel, the Ministry of the Environment Spills Action Centre and the York Durham District, the local Fire and Police Departments, the local Municipality, the local Medical Officer of Health, and the Ministry of Labour; - (h) procedures and actions to be taken should the incoming Waste not meet the applicable quality criteria specified in this Certificate; - (i) procedures and actions to be taken should the outgoing Residual Waste fail to meet the criteria specified in this Certificate; - (j) procedures and actions to be taken should the current disposal options for the outgoing Residual Waste become unavailable; - (k) design of the contingency measure, procedures and actions should the emissions from the Site, including the fugitive odour/dust emissions, cause occurrences of public Complaints; - (l) procedures and actions to be taken should the Owner be unable to maintain the negative pressure in the Tipping Building; - (m) procedures and actions to be taken should the occurrence of Complaints require the Owner to suspend the waste processing activities at the Site; and - (n) identification and risk assessment of all reasonably foreseeable incidents that may result in a discharge into the natural environment of any contaminant in an amount, concentration or level in excess of that prescribed by the Regulations and/or imposed by this Certificate, including but not limited to: - (i) a breakdown of the Facility/Equipment or part of the Facility/Equipment, including the APC Equipment and the CEM Systems associated with the Boilers; - (ii) CEM Systems indicate that the Boilers and associated APC Equipment have been out of compliance with the Performance Requirements; - (iii) any change in process parameters which may result in non compliance with the Performance Requirements; - (iv) power failure resulting in the use of the Emergency Diesel Generator or Total Power Failure; and - (v) description of the preventative and control measures to minimize the occurrence or impacts of the above incidents; and - (vi) procedures for corrective measures and timelines to take to address the above incidents in a timely manner to effectively prevent or minimize the discharge of any contaminant into the natural environment and continue to maintain compliance with the *EPA*, the Regulations and this Certificate, including procedures for Waste Processing Rate reduction, waste feed cut-off, Controlled Shutdown or Emergency Shutdown of the Boilers as applicable. - (3) The Owner shall submit the finalized Contingency and Emergency Response Plan to the Director a minimum of one hundred and twenty (120) days prior to the Commencement Date of Operation, for approval. - (4) An up-to-date version of the Contingency and Emergency Response Plan shall be kept at the Site at all times, in a central location available to all staff, and it shall be available for inspection by a Provincial Officer upon request. - (5)
The Owner shall ensure that the names and telephone numbers of the persons to be contacted in the event of an emergency situation are kept up-to-date, and that these numbers are prominently displayed at the Site and at all times available to all staff and emergency response personnel. - (6) The Contingency and Emergency Response Plan shall be reviewed on a regular basis and updated, as necessary. The revised version of the Contingency and Emergency Response Plan shall be submitted to the local Municipality and the Fire Department for comments and to the District Manager for comments and concurrence. - (7) The Owner shall implement the recommendations of the updated Contingency and Emergency Response Plan, immediately upon receipt of the written concurrence from the District Manager. ## 12. EMERGENCY SITUATION RESPONSE and REPORTING - (1) The Owner shall immediately take all measures necessary to contain and clean up any spill or leak which may result from the operation at this Site and manage any emergency situation in accordance with the Contingency and Emergency Response Plan. - (2) The Owner shall ensure that the equipment and materials listed in the Contingency and Emergency Response Plan are immediately available at the Site, are in a good state of repair, and fully operational at all times. - (3) The Owner shall ensure that all Site personnel responsible for the emergency situation response are fully trained in the use of the equipment and related materials, and in the procedures to be employed in the event of an emergency. - (4) All Spills as defined in the *EPA* shall be immediately reported to the **Ministry's Spills Action Centre at 1-800-268-6060** and shall be recorded in the log book as to the nature of the emergency situation, and the action taken for clean-up, correction and prevention of future occurrences. ## 13. SUBMISSIONS to the REGIONAL DIRECTOR or DISTRICT MANAGER - (1) The Owner shall notify the District Manager in writing, at least six (60) days prior to the scheduled date for the first receipt of Waste at the Site, as to whether or not the construction of the Facility has been carried out in accordance with this Certificate to a point of Substantial Completion. - (2) (a) The Owner shall forthwith notify the District Manager and the Spills Action Centre by telephone, when any of the following incidents occur that may result in a discharge into the natural environment of any contaminant in an amount, concentration or level in excess of that prescribed by the Regulations and/or imposed by this Certificate: - (i) CEM Systems indicate that the Boilers and associated APC Equipment have been out of compliance with the Performance Requirements triggering a Waste Processing Rate Reduction, Waste Feed cut-off, Controlled Shutdown or Emergency Shutdown as specified in the Emergency Response and Contingency Plan; - (ii) failure of the APC Equipment associated with the Boilers; and - (iii) power failure resulting in the use of the emergency diesel generator or Total Power Failure; - (b) In addition to fulfilling the notification requirements from the *EPA*, the Owner shall prepare and submit a written report to the District Manager with respect to any of the above said occurrences, within five (5) calendar days of the occurrence, in the following format: - (i) date of the occurrence; - (ii) general description of the occurrence; - (iii) duration of the occurrence; - (iv) effect of the occurrence on the emissions from the Facility; - (v) measures taken to alleviate the effect of the occurrence on the emissions from the Facility; and - (vi) measures taken to prevent the occurrence of the same or similar occurrence in the future. - (3) Should a Spill, as defined in the *EPA*, occur at the Site, in addition to fulfilling the requirements from the *EPA* and applicable regulations, the Owner shall submit to the District Manager a written report within three (3) calendar days outlining the nature of the Spill, remedial measure taken and the measures taken to prevent future occurrences at the Site. - (4) (a) Within ninety (90) days from the date of this Certificate, the Regions shall prepare and submit to the District Manager for concurrence, a Soil Testing Plan to monitor the impact of the Site operations at the locations where the ambient air monitoring is proposed by the Owner in accordance with the requirements set out in the EA Approval. - (b) (i) This Plan shall ensure that representative samples of the soil to be tested are collected in sufficient numbers and that the samples are properly preserved and tested so that reliable data on the soil characteristics is collected. - (ii) As a minimum, the Plan shall include testing for cadmium, lead, chromium, nickel, cobalt, copper, molybdenum, selenium, zinc and mercury, Dioxins and Furans. - (iii) This Plan shall comply with the Ministry's regulatory requirements for sampling and testing of soil and it shall include the rationale for the proposed methods. - (iv) This Plan be kept at the Site at all times and be available for inspection by a Provincial Officer upon request. ### 14. **RECORDS KEEPING** - (1) Any information requested by the Ministry concerning the Facility and its operation under this Certificate, including, but not limited to, any records required to be kept by this Certificate, shall be provided to the Ministry, upon request, in a timely manner. - (2) The Owner shall retain, for a minimum of seven (7) years from the date of their creation, except as noted below, all reports, records and information described in this Certificate. #### **Daily Activities** - (3) The Owner shall maintain an on-Site written or digital record of activities undertaken at the Site. All measurements shall be recorded in consistent metric units of measurement. As a minimum, the record shall include the following: - (a) date of record and the name and signature of the person completing the report; - (b) quantity and source of the incoming Waste received at the Site; - (c) records of the estimated quantity of Waste thermally treated in the Boilers; - (d) quantity of the Unacceptable Waste received at the Site by the end of the approved Waste receipt period and the type(s) of the Unacceptable Waste received; - (e) quantity and type of the Residual Waste shipped from the Site, including any required outgoing Residual Waste characterization results; - (f) destination and/or receiving site(s) for the Residual Waste shipped from the Site: - (g) quantity and type of any Rejected Waste accepted at the Site; - (h) destination and/or receiving site(s) for the Rejected Waste shipped from the Site; - (i) housekeeping activities, including litter collection and washing/cleaning activities, etc. - (j) amount of electricity produced; (k) amount of excess electricity exported to the electrical grid. # **Monitoring and Testing Records** - (4) The Owner shall maintain an on-Site written or digital record of activities undertaken at the Site. All measurements shall be recorded in consistent metric units of measurement. As a minimum, the record shall include the following: - (a) day and time of the activity; - (b) all original records produced by the recording devices associated with the CEM Systems; - (c) a summary of daily records of readings of the CEM Systems, including: - (i) the daily minimum and maximum 4-hour average readings for carbon monoxide; - (ii) the daily minimum and maximum one hour average readings for oxygen; - (iii) the daily minimum and maximum 10-minute average readings for organic matter; - (iv) the daily minimum and maximum 24-hour average readings for sulphur dioxide; - (v) the daily minimum and maximum 24-hour average readings for nitrogen oxides; - (vi) the daily minimum and maximum 24-hour average readings for hydrogen chloride; - (vii) the daily minimum and maximum 6-minute average and 2-hour average opacity readings; and - (viii) the daily minimum and maximum one-hour average readings for temperature measurements. - (d) records of all excursions from the applicable Performance Requirements as measured by the CEM Systems, duration of the excursions, reasons for the excursions and corrective measures taken to eliminate the excursions; - (e) all records produced during any Acoustic Audit; - (f) all records produced during any Source Testing; - (g) all records produced by the long term sampling program for Dioxins and Furans required by this Certificate; - (h) all records produced during the Residual Waste compliance testing; - (i) all records produced during the Soil Testing; - (j) all records produced during the Groundwater and Surface Water Monitoring required by this Certificate; - (k) all records produced during the Ambient Air Monitoring required by this Certificate; - (l) all records associated with radiation monitoring of the incoming Waste, including but not limited to: - (i) transaction number; - (ii) hauler; - (iii) vehicle ID; - (iv) alarm level; - (v) maximum CPS: - (vi) uSv/hr; - (vii) comment; - (viii) background CPS; - (ix) driver time in and out; and - (x) name of the Trainer Personnel that carried out the monitoring. - (m) results of the containment testing carried out in the buildings, conveyors, tanks and silos, as required; - (n) results the negative pressure in the Tipping Building carried out, as required. ### **Inspections/Maintenance/Repairs** - (5) The Owner shall maintain an on-Site written or digital record of inspections and maintenance as required by this Certificate. As a minimum, the record shall include the following: - (a) the name and signature of the Trained Personnel that conducted the inspection; - (b) the date and time of the inspection; - (c) the list of any deficiencies discovered, including the need for a maintenance or repair activity; - (d) the recommendations for remedial action; - (e) the date, time and description of actions (repair or maintenance) undertaken; - (f) the name and signature of the Trained
Personnel who undertook the remedial action; and - (g) an estimate of the quantity of any materials removed during cleaning of the Works. ### **Emergency Situations** - (6) The Owner shall maintain an on-Site written or digital record of the emergency situations. As a minimum, the record shall include the following: - (a) the type of an emergency situation; - (b) description of how the emergency situation was handled; - (c) the type and amount of material spilled, if applicable; - (d) a description of how the material was cleaned up and stored, if generated; and - (e) the location and time of final disposal, if applicable; and - (f) description of the preventative and control measures undertaken to minimize the potential for re-occurrence of the emergency situation in the future. # **Complaints Response Records** (7) The Owner shall establish and maintain a written or digital record of complaints received and the responses made as required by this Certificate. #### **Training** (8) The Owner shall maintain an on-Site written or digital record of training as required by this Certificate. As a minimum, the record shall include the following: - (a) date of training; - (b) name and signature of person who has been trained; and - (c) description of the training provided. #### Reports - (9) The Owner shall keep at the Site the following reports required by this Certificate: - (a) the ESDM Report - (b) the Acoustic Assessment Report; - (c) the Annual Report; and - (d) the Third Party Audit. ## 15. **REPORTING** ## **Annual Report** - (1) By March 31st following the end of each operating year, the Owner shall prepare and submit to the District Manager and to the Advisory Committee, an Annual Report summarizing the operation of the Site covering the previous calendar year. This Annual Report shall include, as a minimum, the following information: - (a) a summary of the quality and the quantity of the Wastes accepted at the Site, including the maximum amount of the Waste received annually and daily and the sources of the Waste: - (b) a summary of the quality and the quantity of the Residual Waste shipped from the Site, including the analytical data required to characterize the Residual Waste, the off-Site destinations for the Residual Waste and its subsequent use, if known; - (c) estimated material balance for each month documenting the maximum amount of wastes stored at the Site; - (d) annual water usage; - (e) annual amount of the electricity produced and the annual amount of the electricity exported to the electrical grid; - (f) summaries and conclusions from the records required by Conditions 14.(3) through 14.(8) of this Certificate; - (g) the Emission Summary Table and the Acoustic Assessment Summary Table for the Facility as of December 31 from the previous calendar year; - (h) a summary of dates, duration and reasons for any environmental and operational problems, Boilers downtime, APC Equipment and CEM System malfunctions that may have negatively impacted the quality of the environment or any incidents triggered by the Emergency Response and - Contingency Plan and corrective measures taken to eliminate the environmental impacts of the incidents; - (i) a summary of the dates, duration and reasons for all excursions from the applicable Performance Requirements as measured by the CEM Systems or as reported by the annual Source Testing, reasons for the excursions and corrective measures taken to eliminate the excursions; - (j) results of the evaluation of the performance of the long-term sampling system in determining the Dioxins and Furans emission trends and/or fluctuations for the year reported on as well as demonstrating the ongoing performance of the APC Equipment associated with the Boilers; - (k) dates of all environmental complaints relating to the Site together with cause of the Complaints and actions taken to prevent future Complaints and/or events that could lead to future Complaints; - (l) any environmental and operational problems that could have negatively impacted the environment, discovered as a result of daily inspections or otherwise and any mitigative actions taken; - (m) a summary of any emergency situations that have occurred at the Site and how they were handled; - (n) the results and an interpretive analysis of the results of the groundwater and surface water, including an assessment of the need to amend the monitoring programs; - (o) summaries of the Advisory Committee meetings, including the issues raised by the public and their current status; - (p) any recommendations to improve the environmental and process performance of the Site in the future: - (q) statement of compliance with this Certificate, including compliance with the *O. Reg. 419/05* and all air emission limits based on the results of source testing, continuous monitoring and engineering calculations, as may be appropriate; and - (r) interpretation of the results and comparison to the results from previous Annual Reports to demonstrate the Facility's impact on the environment. #### **Third Party Audit** - (2) (a) The Regions shall ensure that an independent technical review of the operations at the Site is undertaken in accordance with the requirements of the EA Approval. - (b) In addition to the Third Party Audit requirements set out in the EA approval, the Third Party Audit shall include the following: - (i) a review of the data from the monitoring and testing required by this Certificate: - (ii) a review of all complaints received about the operation of the Facility; - (iii) any recommendations for improving the operation of the Facility received from the Advisory Committee; and - (iv) a recommendation of any improvements that could be made to ensure that the operation of the Facility is optimized and is protective of the health and safety of people and the environment. - (3) The Regions shall submit a Written Audit Report on the results of the independent technical review to the Regional Director in accordance with the Audit Plan and retain a copy at the Site. #### **Soil Testing Report** (4) Within one (1) month of completion of each Soil Testing event, the Regions shall submit to the District Manager a Soil Testing Report, which includes the details on the sampling/testing procedures, the results of the testing and a comparison with the results obtained during the previous Soil Testing. #### 16. PUBLIC ACCESS TO DOCUMENTATION - (1) The Owner shall, at all times, maintain documentation that describes the current operations of the Facility. The Owner shall post the documentation at the website for the undertaking and during regular business hours, the Owner shall make the following documents available for inspection at the Site by any interested member of the public, upon submission to the Ministry for review: - (a) a current ESDM Report that demonstrates compliance with the Performance Limits for the Facility regarding all Compounds of Concern; - (b) a current Acoustic Assessment Report that demonstrates compliance with the Performance Limits for the Facility regarding noise emissions; - (c) the most recent Annual Report; - (d) the most current Third Party Audit Report; - (e) Odour Management and Mitigation Plan, prepared in accordance with the requirements of the EA Approval; - (f) Noise Monitoring and Reporting Plan, prepared in accordance with the requirements of the EA Approval; and - (g) Groundwater and Surface Water Monitoring and Reporting Plan, prepared in accordance with the requirements of the EA Approval. (2) The Owner shall ensure that necessary hardware and software are provided at a location available to the public, to provide on-line real-time reporting of the operating parameter data for the Facility, including acceptable operating limits, stack emissions, and all other parameters for which continuous monitoring is required and that continuous records of the same be kept and made available to the public. #### 17. <u>ADVISORY COMMITTEE</u> (1) The Regions shall establish an Advisory Committee in accordance with the requirements set out in the EA Approval. #### 18. **CLOSURE of the SITE** - (1) A minimum of nine (9) months prior to closure of the Site, the Owner shall submit, for approval by the Director, a written Closure Plan for the Site. This Plan shall include, as a minimum, a description of the work that will be done to facilitate closure of the Site and a schedule for completion of that work. - (2) Within ten (10) days after closure of the Site, the Owner shall notify the Director and the District Manager, in writing, that the Site is closed and that the approved Closure Plan has been implemented. #### SCHEDULE "A" #### **Supporting Documentation** - (1) Applications for a Certificate of Approval (Air) dated March 2, 2011, each signed by Cliff Curtis, Commissioner of Works, The Regional Municipality of Durham, by Erin Mahoney, Commissioner of Environmental Services, The Regional Municipality of York and by Matthew R. Mulcahy, Senior Vice President, Business Development, Covanta Durham York Renewable Energy Limited Partnership, and the following supporting documentation: - (a) Emission Summary and Dispersion Modelling Report, dated March 2011, prepared by Golder Associates; - (b) Acoustic Assessment Report prepared by Golder Associates Ltd., dated March 2011 and signed by Paul Niejadlik. - (2) Applications for a Provisional Certificate of Approval (Waste Disposal Site) dated March 2, 2011, each signed by Cliff Curtis, Commissioner of Works, The Regional Municipality of Durham, by Erin Mahoney, Commissioner of Environmental Services, The Regional Municipality of York and by Matthew R. Mulcahy, Senior Vice President, Business Development, Covanta Durham York Renewable Energy Limited Partnership, and the following supporting documentation: - (a) Attachment #1 containing the "Design and Operations Report", dated March 2011, prepared by Golder Associates Ltd.; - (b) Attachment #3 containing the "Public
Consultation Report", dated March 2011, prepared by Golder Associates Ltd.; - (c) Attachment #4 containing the Host Community Agreement - (d) Attachment #5 containing the proof of legal name for Covanta Durham York Renewable Energy Limited Partnership; and - (e) A letter May 24, 2011 from Anthony Ciccone, Golder Associates Ltd., to Margaret Wojcik, Ontario Ministry of the Environment, providing additional technical information on the proposal and attaching a report entitled "Amendment #1 Durham York Energy Centre Design and Operations Report", dated May 2011; - (3) Applications for a Certificate of Approval of Municipal and Private Sewage Works dated March 2, 2011, each signed by Cliff Curtis, Commissioner of Works, The Regional Municipality of Durham, by Erin Mahoney, Commissioner of Environmental Services, The Regional Municipality of Durham and by Matthew R. Mulcahy, Senior Vice President, Business Development, Covanta Durham York Renewable Energy Limited Partnership, and the following supporting documentation: - (a) "Surface Water and Groundwater Technical Study Report" dated July 2009, prepared by Jacques Whitford, Markham, Ontario (CD Report). - (b) "Stormwater Design Model Output" prepared by Sigma Energy, dated March 2001 (CD Report). - (c) Clearance letter from Central Lake Ontario Conservation date February 22, 2011. - (d) A letter dated March 23, 2011, from Brian Bahor, Covanta Energy Corporation, to Stefanos Habtom, Ontario Ministry of the Environment, providing additional technical design information on the proposed stormwater management ponds. #### SCHEDULE "B" ## Procedure to calculate and record the 10-minute average concentration of odour at the Point of Impingement and at the most impacted Sensitive Receptor - (a) Calculate and record one-hour average concentration of odour at the Point of Impingement and at the most impacted Sensitive Receptor, employing CALPUFF atmospheric dispersion model or the dispersion model acceptable to the Director that employs at least five (5) years of hourly local meteorological data and that can provide results reported as individual one-hour average odour concentrations. - (b) Convert and record each of the one-hour average concentrations predicted over the five (5) years of hourly local meteorological data at the Point of Impingement and at the most impacted Sensitive Receptor to 10-minute average concentrations using the One-hour Average to 10-Minute Average Conversion described below; and - (c) Record and present the 10-Minute Average concentrations predicted to occur over a five (5) year period at the Point of Impingement and at the most impacted Sensitive Receptor in a histogram. The histogram shall identify all predicted 10-minute average odour concentration occurrences in terms of frequency, identifying the number of occurrences over the entire range of predicted odour concentration in increments of not more than 1/10 of one odour unit. The maximum 10-minute average concentration of odour at the Sensitive Receptor will be considered to be the maximum odour concentration at the most impacted Sensitive Receptor that occurs and is represented in the histogram, disregarding outlying data points on the histogram as agreed to by the Director. #### **One-hour Average To 10-minute Average Conversion** 1. Use the following formula to convert and record one-hour average concentrations predicted by the CALPUFF atmospheric dispersion model or by the dispersion model acceptable to the Director to 10-minute average concentrations: X10min = X60min*1.65 where X10min = 10-minute average concentration X60min = one-hour average concentration ## SCHEDULE "C" # PERFORMANCE REQUIREMENTS In-Stack Emission Limits | Parameter | In-Stack Emission Limit | Verification of Compliance | | |---|-------------------------|--|--| | Total Suspended Particulate Matter (filterable particulate measured in accordance with the Ontario Source Testing Code) | 9 mg/Rm3 | Results from compliance Source Testing | | | cadmium | 7 μg/Rm3 | Results from compliance Source Testing | | | lead | 50 μg/Rm3 | Results from compliance Source Testing | | | mercury | 15 μg/Rm3 | Results from compliance Source Testing | | | dioxins and furans | 60 pg/Rm3 | Results from compliance Source Testing; results expressed as I-TEQ | | | hydrochloric acid (HCl) | 9 mg/Rm3 | Calculated as the rolling arithmetic average of 24 hours of data measured by a CEM System that provides data at least once every 15 minutes | | | sulphur dioxide (SO2) | 35 mg/Rm3 | Calculated as the rolling arithmetic average of 24 hours of data measured by a CEM System that provides data at least once every 15 minutes | | | nitrogen oxides (NOx) | 121 mg/ Rm3 | Calculated as the rolling arithmetic average of 24 hours of data measured by a CEM System that provides data at least once every 15 minutes | | | organic matter | 50 ppmdv (33 mg/ Rm3) | Results from compliance source testing | | | (undiluted, expressed as equivalent methane) | | | | | carbon monoxide | 35 ppmdv (40 mg/Rm3) | Calculated as the rolling arithmetic average of four (4) hours of data measured by a CEM System that provides data at least once every fifteen minutes, in accordance with condition 6 (2) (c) | | | opacity | 10 percent | Calculated as the rolling arithmetic average of six (6) minutes of data measured by a CEM System that provides data at least once every minute | | | | 5 percent | Calculated as the rolling arithmetic average of two (2) hours of data measured by a CEM System that provides data at least once every | | | | fifteen minutes | |--|-----------------| | | | mg/Rm3- milligrams per reference cubic metre; pg/Rm3 - picograms per reference cubic metre ppmdv parts per million by dry volume, $\mu\text{g}/\text{Rm}3$ - micrograms per reference cubic metre R- reference conditions - 25 degrees Celsius, 101.3 kilopascals, dry basis, 11% oxygen ### SCHEDULE "D" ### **TEST CONTAMINANTS** Hydrogen Chloride Hydrogen Fluoride Oxides of Nitrogen expressed as Nitrogen Dioxide Sulphur Dioxide Total Hydrocarbons, expressed as methane on wet basis Carbon Dioxide Total Suspended Particulate Matter (< 44 microns) Total PM-10 including condensables Total PM-2.5 including condensables #### **Metals** Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc ## Schedule "D" - Cont'd | Chlorobenzenes | Chlorophenols | |---|--| | | 2-monochlorophenol (2-MCP) | | Monochlorobenzene (MCB) | 3-monochlorophenol (3-MCP) | | 1,2-Dichlorobenzene (1,2-DCB) | 4-monochlorophenol (4-MCP) | | 1,3-Dichlorobenzene (1,3-DCB) | 2,3-dichlorophenol (2,3-DCP) | | 1,4-Dichlorobenzene (1,4-DCB) | 2,4-dichlorophenol (2,4-DCP) | | 1,2,3-Trichlorobenzene (1,2,3-TCB) | 2,5-dichlorophenol (2,5-DCP) | | 1,2,4-Trichlorobenzene (1,2,4-TCB) | 2,6-dichlorophenol (2,6-DCP) | | 1,3,5-Trichlorobenzene (1,3,5-TCB) | 3,4-dichlorophenol (3,4-DCP) | | 1,2,3,4-Tetrachlorobenzene (1,2,3,4-TeCB) | 3,5-dichlorophenol (3,5-DCP) | | 1,2,3,5-Tetrachlorobenzene (1,2,3,5-TeCB) | 2,3,4-trichlorophenol (2,3,4-T3CP) | | 1,2,4,5-Tetrachlorobenzene (1,2,4,5-TeCB) | 2,3,5-trichlorophenol (2,3,5-T3CP) | | Pentachlorobenzene (PeCB) | 2,3,6-trichlorophenol (2,3,6-T3CP) | | Hexachlorobenzene (HxCB) 2,4,5-trichlorophenol (2,4,5-T3CP) | | | | 2,4,6-trichlorophenol (2,4,6-T3CP) | | | 3,4,5-trichlorophenol (3,4,5-T3CP) | | | 2,3,4,5-tetrachlorophenol (2,3,4,5-T4CP) | | | 2,3,4,6-tetrachlorophenol (2,3,4,6-T4CP) | | | 2,3,5,6-tetrachlorophenol (2,3,5,6-T4CP) | | | Pentachlorophenol (PeCP) | | | | | | | ## Schedule "D" - Cont'd | Co-Planar PCBs (Dioxin-like PCBs) | Volatile Organic Matter | |-----------------------------------|-----------------------------| | PCB-077 (3,3',4,4'-TCB) | Acetaldehyde | | PCB-081 (3,4,4',5-TCB) | Acetone | | PCB-105 (2,3,3',4,4'-PeCB) | Acrolein | | PCB-114 (2,3,4,4',5-PeCB) | Benzene | | PCB-118 (2,3',4,4',5-PeCB) | Bromodichloromethane | | PCB-123 (2',3,4,4',5-PeCB) | Bromoform | | PCB-126 (3,3',4,4',5-PeCB) | Bromomethane | | PCB-156 (2,3,3',4,4',5-HxCB) | Butadiene, 1,3 - | | PCB-157 (2,3,3',4,4',5'-HxCB) | Butanone, 2 - | | PCB-167 (2,3',4,4',5,5'-HxCB) | Carbon Tetrachloride | | PCB-169 (3,3',4,4',5,5'-HxCB) | Chloroform | | PCB-189 (2,3,3',4,4',5,5'-HpCB) | Cumene | | | Dibromochloromethane | | | Dichlorodifluoromethane | | | Dichloroethane, 1,2 - | | | Dichloroethene, Trans - 1,2 | | | Dichloroethene, 1,1 - | | | Dichloropropane, 1,2 - | | | Ethylbenzene | | | Ethylene Dibromide | | | Formaldehyde | | | Mesitylene | | | Methylene Chloride | | | Styrene | | | Tetrachloroethene | | | Toluene | | | Trichloroethane, 1,1,1 - | | | Trichloroethene | | | Trichloroethylene, 1,1,2 - | | | Trichlorotrifluoroethane | | | Trichlorofluoromethane | | | Xylenes, M-, P- and O- | | | Vinyl Chloride | | | | ### Schedule "D" - Cont'd | Polycyclic Organic Matter | Dioxin/Furan Isomers | |---------------------------------|--| | Acenaphthylene | | | Acenaphthene | 2,3,7,8-Tetrachlorodibenzo-p-dioxin | | Anthracene | 1,2,3,7,8-Pentachlorodibenzo-p-dioxin | | Benzo(a)anthracene | 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin | | Benzo(b)fluoranthene | 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin | | Benzo(k)fluoranthene | 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin | | Benzo(a)fluorene | 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin | | Benzo(b)fluorene | 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin | | Benzo(ghi)perylene | 1 | | Benzo(a)pyrene | 2,3,7,8-Tetrachlorodibenzofuran | | Benzo(e)pyrene | 2,3,4,7,8-Pentachlorodibenzofuran | | Biphenyl |
1,2,3,7,8-Pentachlorodibenzofuran | | 2-Chloronaphthalene | 1,2,3,4,7,8-Hexachlorodibenzofuran | | Chrysene | 1,2,3,6,7,8-Hexachlorodibenzofuran | | Coronene | 1,2,3,7,8,9-Hexachlorodibenzofuran | | Dibenzo(a,c)anthracene | 2,3,4,6,7,8-Hexachlorodibenzofuran | | Dibenzo(a,h)anthracene | 1,2,3,4,6,7,8-Heptachlorodibenzofuran | | Dibenzo(a,e)pyrene | 1,2,3,4,7,8,9-Heptachlorodibenzofuran | | 9,10-Dimethylanthracene | 1,2,3,4,6,7,8,9-Octachlorodibenzofuran | | 7,12-Dimethylbenzo(a)anthracene | | | Fluoranthene | | | Fluorene | | | Indeno(1,2,3-cd)pyrene | | | 2-Methylanthracene | | | 3-Methylcholanthrene | | | 1-Methylnaphthalene | | | 2-Methylnaphthalene | | | 1-Methylphenanthrene | | | 9-Methylphenanthrene | | | Naphthalene | | | Perylene | | | Phenanthrene | | | Picene | | | Pyrene | | | Tetralin | | | M-terphenyl | | | O-terphenyl | | | P-terphenyl | | | Triphenylene | | | | | #### **SCHEDULE "E"** #### SOURCE TESTING PROCEDURES - 1. The Owner shall submit, to the Manager a test protocol including the Pre-Test Information required by the Source Testing Code, at least two (2) months prior to the scheduled Source Testing date. - 2. (1) For the purpose of the Source Testing program, the Owner is temporarily permitted to operate the Boilers at a residual oxygen concentration below the performance limit outlined in Condition 6.(2)(b) during the period of the Source Testing. The Owner shall ensure that the concentration of residual oxygen in the Undiluted Gases leaving the combustion zone of the Boilers, as measured and recorded by the CEM System, shall not be less than 5 percent by volume on a dry basis, during this Source Testing program. - (2) If the Source Testing results demonstrate that compliance with the Performance Requirements can be maintained at a residual oxygen concentration below the performance limit outlined in Condition 6.(2)(b), the Owner may apply to the Director for approval to alter the required residual oxygen concentration. - 3. The Owner shall finalize the test protocol in consultation with the Manager. - 4. The Owner shall not commence the Source Testing until the Manager has accepted the test protocol. - 5. The Owner shall complete the first Source Testing not later than six (6) months after Commencement of Operation of the Facility/Equipment. - 6. The Owner shall conduct subsequent Source Testing at least once (1) every calendar year thereafter. - 7. The Owner shall notify the District Manager and the Manager in writing of the location, date and time of any impending Source Testing required by this Certificate, at least fifteen (15) days prior to the Source Testing. - 8. The Owner shall submit a report on the Source Testing programs to the District Manager and the Manager not later than three (3) months after completing each Source Testing program. The report shall be in the format described in the Source Testing Code, and shall also include, but not be limited to: - (1) an executive summary; - (2) records of operating conditions; including process description, records of waste composition and feed rate during the Source Testing; - (3) all records produced by the CEM Equipment; - (4) procedures followed during the Source Testing and any deviation from the proposed test protocol and the reasons therefore; - (5) the results of the analyses of the stack emissions; - a summary table that compares the Source Testing results, the monitoring data and the records of operating conditions during the Source Testing to the requirements imposed by the *EPA*, the Regulation and/or the Performance Requirements; - (7) the results of dispersion calculations in accordance with the *O. Reg. 419/05*, indicating the maximum concentration of the Test Contaminants, at the Point of Impingement. - (8) an updated site wide emission source inventory to assess the aggregate point of impingement concentrations of the Test Contaminants. - 9. The Owner shall ensure that the Source Testing Report is made available and easily accessible for review by the public at the Facility, immediately after the document is submitted to the Ministry. - 10. The Director may not accept the results of the Source Testing if: - (1) the Source Testing Code or the requirements of the Manager were not followed; or - (2) the Owner did not notify the District Manager and the Manager of the Source Testing; or - (3) the Owner failed to provide a complete report on the Source Testing. - 11. If the Director does not accept the results of the Source Testing, the Director may require re-testing. #### SCHEDULE "F" #### **PARAMETER:** Temperature #### LOCATION: The sample point for the Continuous Temperature Monitor shall be located at a point where the temperature in the combustion zone of the Boilers has reached at least 1000°C for a period of not less than one second. Compliance shall be proven by direct measurement or/and a correlation between the measured temperature and the intended target proven by a method acceptable to the Director. #### **PERFORMANCE:** The Continuous Temperature Monitor shall meet the following minimum performance specifications for the following parameters. #### **PARAMETERS** #### **SPECIFICATION** | 1) | Type: | "K", "J" or other type or alternative measurement | |----|-------|---| | | | device with equivalent measurement accuracy and | | | | suitable to the temperature range being measured | 2) Accuracy: ± 1.5 percent of the minimum gas temperature #### **DATA RECORDER:** The data recorder must be capable of registering continuously the measurement of the monitor without a significant loss of accuracy and with a time resolution of 1 minutes or better. Temperature readings for record keeping and reporting purposes shall be kept as one-hour average values. #### **RELIABILITY:** The monitor shall be operated and maintained so that accurate data is obtained during a minimum of 95 percent of the time for each calendar quarter. Carbon Monoxide #### **INSTALLATION:** The Continuous Carbon Monoxide Monitor shall be installed at an accessible location where the measurements are representative of the actual concentration of carbon monoxide in the Undiluted Gases leaving the combustion zone via the economizer outlet of each Boiler, and shall meet the following installation specifications. #### **PARAMETERS** #### **SPECIFICATION** 1) Range (parts per million, ppm): $0 \text{ to } \ge 100 \text{ ppm}$ 2) Calibration Gas Ports: close to the sample point #### **PERFORMANCE:** The Continuous Carbon Monoxide Monitor shall meet the following minimum performance specifications for the following parameters. #### **PARAMETERS** #### **SPECIFICATION** | 1) Span Value (nearest ppm equivalent): | 2 times the average normal | | |---|---|--| | 2) Relative Accuracy: | concentration of the source
≤10 percent of the mean value of the
reference method test data | | | | or ± 5 ppm whichever is greater | | | 3) Calibration Error: | ≤ 2.5 percent of actual concentration | | | 4) System Bias: | ≤ 4 percent of the mean value of the | | | | reference method test data | | | 5) Procedure for Zero and Span Calibration Check: | all system components checked | | | 6) Zero Calibration Drift (24-hour): | ≤ 5 percent of span value | | | 7) Span Calibration Drift (24-hour): | ≤5 percent of span value | | 8) Response Time (90 percent response to a step change): ≤180 seconds 9) Operational Test Period: ≥168 hours without corrective maintenance #### **CALIBRATION:** Daily calibration drift checks on the monitor shall be performed and recorded in accordance with the requirements of Report EPS 1/PG/7. #### **DATA RECORDER:** The data recorder must be capable of registering continuously the measurement of the monitor with an accuracy of 0.5 percent of a full scale reading or better and with a time resolution of 2 minutes or better. #### **RELIABILITY:** Oxygen #### **INSTALLATION:** The Continuous Oxygen Monitor shall be installed at an accessible location where the measurements are representative of the actual concentration of oxygen in the Undiluted Gases leaving the combustion zone via the economizer outlet of each Boiler and in the Undiluted Gases leaving the APC Equipment associated with each Boiler, and shall meet the following installation specifications. #### **PARAMETERS** #### **SPECIFICATION** 1) Range (percentage): 0 - 20 or 0 - 25 2) Calibration Gas Ports: close to the sample point #### **PERFORMANCE:** The Continuous Oxygen Monitor shall meet the following minimum performance specifications for the following parameters. | PARAMETERS | SPECIFICATION | |------------|----------------------| | PARAMETERS | SPECIFICATION | 1) Span Value (percentage): 2 times the average normal concentration of the source 2) Relative Accuracy: ≤10 percent of the mean value of the reference method test data 3) Calibration Error: 0.25 percent O_2 4) System Bias: \leq 4 percent of the mean value of the reference method test data 5) Procedure for Zero and Span Calibration Check: all system components checked 6) Zero Calibration Drift (24-hour): ≤ 0.5 percent O₂ 7) Span Calibration Drift (24-hour): ≤ 0.5 percent O_2 8) Response Time (90 percent response to a step change): ≤ 90 seconds 9) Operational Test Period: ≥ 168 hours without corrective maintenance #### **CALIBRATION:** Daily calibration drift checks on the monitor shall be performed and recorded in accordance with the requirements of Report EPS 1/PG/7. #### DATA RECORDER: The data recorder must be capable of registering continuously the measurement of the monitor with an accuracy of 0.5 percent of a full scale reading or better and with a time resolution of 2 minutes or better. Oxygen concentration readings for record keeping and reporting purposes shall be kept as one-hour average values. ####
RELIABILITY: Hydrogen Chloride #### **INSTALLATION:** The Continuous Hydrogen Chloride Monitor shall be installed at an accessible location where the measurements are representative of the actual concentration of hydrogen chloride in the Undiluted Gases leaving the APC Equipment associated with each Boiler, and shall meet the following installation specifications. #### PARAMETERS #### **SPECIFICATION** 1) Range (parts per million, ppm): $0 \text{ to } \ge 100 \text{ ppm}$ 2) Calibration Gas Ports: close to the sample point #### **PERFORMANCE:** The Continuous Hydrogen Chloride Monitor shall meet the following minimum performance specifications for the following parameters. #### PARAMETERS SPECIFICATION 1) Span Value (nearest ppm equivalent): 2 times the average normal concentration of the source 2) Relative Accuracy: ≤ 20 percent of the mean value of the reference method test data or ± 5 ppm whichever is greater 3) Calibration Error: ≤ 2 percent of actual concentration 4) System Bias: \leq 4 percent of the mean value of the reference method test data 5) Procedure for Zero and Span Calibration Check: all system components checked 6) Zero Calibration Drift (24-hour): ≤ 5 percent of span value 7) Span Calibration Drift (24-hour): ≤ 5 percent of span value 8) Response Time (90 percent response to a step change): ≤ 240 seconds 9) Operational Test Period: ≥168 hours without corrective maintenance #### **CALIBRATION:** The monitor shall be calibrated daily at the sample point, to ensure that it meets the drift limits specified above, during the periods of the operation of the . The results of all calibrations shall be recorded at the time of calibration. #### **DATA RECORDER:** The data recorder must be capable of registering continuously the measurement of the monitor with an accuracy of 0.5 percent of a full scale reading or better and with a time resolution of 5 minutes or better. #### **RELIABILITY:** Nitrogen Oxides #### **INSTALLATION:** The Continuous Nitrogen Oxide Monitor shall be installed at an accessible location where the measurements are representative of the actual concentration of nitrogen oxides in the Undiluted Gases leaving the APC Equipment associated with each Boiler, and shall meet the following installation specifications. #### PARAMETERS SPECIFICATION 1) Analyzer Operating Range (parts per million, ppm): 0 to ≥200 ppm 2) Calibration Gas Ports: close to the sample point #### **PERFORMANCE:** The Continuous Nitrogen Oxides Monitor shall meet the following minimum performance specifications for the following parameters. #### PARAMETERS SPECIFICATION | 1) | Span Value (nearest ppm equivalent): | 2 times the average normal concentration of the source | |----|--|--| | 2) | Relative Accuracy: | ≤ 10 percent of the mean value of the reference method test data | | 3) | Calibration Error: | ≤ 2 percent of actual concentration | | 4) | System Bias: | ≤4 percent of the mean value of the | | | | reference method test data | | 5) | Procedure for Zero and Span Calibration Check: | all system components checked | | 6) | Zero Calibration Drift (24-hour): | ≤ 2.5 percent of span value | | 7) | Span Calibration Drift (24-hour): | ≤ 2.5 percent of span value | | 8) | Response Time (90 percent | | | | response to a step change): | ≤ 240 seconds | | 9) | Operational Test Period: | ≥ 168 hours without corrective maintenance | #### **CALIBRATION:** Daily calibration drift checks on the monitor shall be performed and recorded in accordance with the requirements of Report EPS 1/PG/7. #### **DATA RECORDER:** The data recorder must be capable of registering continuously the measurement of the monitor with an accuracy of 0.5 percent of a full scale reading or better and with a time resolution of 2 minutes or better. #### **RELIABILITY:** Sulphur Dioxide #### **INSTALLATION:** The Continuous Sulphur Dioxide Monitor shall be installed at an accessible location where the measurements are representative of the actual concentration of sulphur dioxide in the Undiluted Gases leaving the APC Equipment associated with each Boiler, and shall meet the following installation specifications. #### **PARAMETERS** #### **SPECIFICATION** 1. Range (parts per million, ppm): 0 to ≥100 ppm 2. Calibration Gas Ports: close to the sample point #### **PERFORMANCE:** The Continuous Sulphur Dioxide Monitor shall meet the following minimum performance specifications for the following parameters. #### **PARAMETERS** #### **SPECIFICATION** 1. Span Value (nearest ppm equivalent): 2 times the average normal concentration of the source 2. Relative Accuracy: ≤ 10 percent of the mean value of the reference method test data 3. Calibration Error: ≤ 2 percent of actual concentration 4. System Bias: ≤ 4 percent of the mean value of the reference method test data 5. Procedure for Zero and Span Calibration Check: all system components checked 6. Zero Calibration Drift (24-hour): ≤ 2.5 percent of span value 7. Span Calibration Drift (24-hour): ≤ 2.5 percent of span value 8. Response Time (90 percent response to a step change): ≤ 200 seconds 9. Operational Test Period: ≥168 hours without corrective maintenance #### **CALIBRATION:** Daily calibration drift checks on the monitor shall be performed and recorded in accordance with the requirements of Report EPS 1/PG/7. #### **DATA RECORDER:** The data recorder must be capable of registering continuously the measurement of the monitor with an accuracy of 0.5 percent of a full scale reading or better and with a time resolution of 2 minutes or better. #### **RELIABILITY:** **Total Hydrocarbons** #### **INSTALLATION:** The Total Hydrocarbons Monitor shall be installed at an accessible location where the measurements are representative of the concentrations of Organic Matter (as methane) in the Undiluted Gases leaving the combustion zone via the economizer outlet of each Boiler and shall meet the following installation specifications. #### PARAMETERS SPECIFICATION | 1. | Detector Type: | Flame Ionization | |----|---------------------------------|----------------------------------| | 2. | Oven Temperature: | 160°C minimum | | 3. | Flame Temperature: | 1800 °C minimum at the corona of | | | | the hydrogen flame | | 4. | Range (parts per million, ppm): | 0 to ≥200 ppm | | 5. | Calibration Gas: | propane in air or nitrogen | | 6. | Calibration Gas Ports: | close to the sample point | #### **PERFORMANCE:** The Continuous Total Hydrocarbons Monitor shall meet the following minimum performance specifications for the following parameters. #### PARAMETERS SPECIFICATION | 1. | Span Value (nearest ppm equivalent): | 2 times the average normal | |-----|---|---| | 2. | Relative Accuracy: | concentration of the source
≤ 10 percent of the mean value of the
reference method test data or ± 5 | | 3. | System Bias: | ppm whichever is greater ≤ 4 percent of the mean value of the reference method test data | | 4. | Noise: | ≤ 1 percent of span value on most sensitive range | | 5. | Repeatability: | ≤ 1 percent of span value | | 6. | Linearity (response with propane in air): | ≤ 3 percent of span value over all ranges | | 7. | Calibration Error: | ≤ 2 percent of actual concentration | | 8. | Procedure for Zero and Span Calibration Check | _ | | 9. | Zero Calibration Drift (24-hours): | ≤ 2.5 percent of span value on all ranges | | 10. | Span Calibration Drift (24-hours): | ≤ 2.5 percent of span value | | 11. | Response Time (90 percent | | | | response to a step change): | ≤ 60 seconds | | 12. | Operational Test Period: | ≥ 168 hours without corrective maintenance | #### **CALIBRATION:** Daily calibration drift checks on the monitor shall be performed and recorded in accordance with the requirements of Report EPS 1/PG/7. #### **DATA RECORDER:** The data recorder must be capable of registering continuously the measurement of the monitor with an accuracy of 0.5 percent of a full scale reading or better and with a time resolution of 2 minutes or better. Measurements of concentrations of organic matter (as methane) shall be kept as 10 minute average values for record keeping and reporting purposes. #### **RELIABILITY:** **PARAMETER:** Opacity **INSTALLATION:** The Continuous Opacity Monitor shall be installed at an accessible location where the measurements are representative of the actual opacity of the Undiluted Gases leaving the APC Equipment associated with each Boiler and shall meet the following design and installation specifications. | PARAMETERS | | SPECIFICATION | |------------|--|----------------------| | 1) | Wavelength at Peak Spectral Response (nanometres, nm): | 500 - 600 | | 2) | Wavelength at Mean Spectral Response (nm): | 500 - 600 | | 3) | Detector Angle of View: | ≤ 5 degrees | | 4) | Angle of Projection: | ≤ 5 degrees | | 5) | Range (percent of opacity): | 0 -100 | #### **PERFORMANCE:** The Continuous Opacity Monitor shall meet the following minimum performance specifications for the following parameters. | PARAMETERS | | SPECIFICATION | |------------|--|--| | 1) | Span Value (percent opacity): | 2 times the average normal opacity | | | | of the source | | 2) | Calibration Error: | ≤3 percent opacity | | 3) | Attenuator Calibration: | ≤2 percent opacity | | 4) | Response Time | ≤ 10 seconds | | | (95 percent response to a step change): | | | 5) | Schedule for Zero and Calibration Checks: | daily minimum | | 6) | Procedure for Zero and Calibration Checks: | all system components checked | | 7) | Zero Calibration Drift (24-hours): | ≤ 2 percent opacity | | 8) | Span Calibration Drift (24-hours): | ≤ 2
percent opacity | | 9) | Conditioning Test Period: | ≥ 168 hours without corrective maintenance | | 10) | Operational Test Period: | ≥ 168 hours without corrective maintenance | #### **CALIBRATION:** The monitor shall be calibrated, to ensure that it meets the drift limits specified above, during the periods of the operation of the Equipment. The results of all calibrations shall be recorded at the time of calibration. #### **DATA RECORDER:** The data recorder must be capable of registering continuously the measurement of the monitor with an accuracy of 0.5 percent of a full scale reading or better and with a time resolution of 30 seconds or better. #### **RELIABILITY:** #### Moisture, Hydrogen Fluoride and Ammonia #### **Selection and Installation** The Owner shall select and install a CEM System, to measure moisture content of the stack gases, the concentration of hydrogen fluoride and ammonia in the Undiluted Gases leaving the APC Equipment associated with each Boiler, as follows: - a) Design and Performance Specifications shall be in accordance with 40 CFR 60, Appendix B, Specification 4. - b) The Owner shall select the probe locations in compliance with 40 CFR 60, Appendix B, Specification 2. #### **Test Procedures** The Owner shall verify compliance with the Design and Performance Specifications in accordance with 40 CFR 60, Appendix B, Specification 4, with the reference method for the relative accuracy test being Method 4. of the Source Testing Code. In furtherance of, but without limiting the generality of the foregoing, the mean difference between the calibration gas value and the analyzer response value at each of the four test concentrations shall be less than 5 percent of the measurement range. #### **SCHEDULE "G"** A stormwater management facility to service a 10.0 ha drainage area of the Durham York Energy Centre located on the west side of Osbourne Road and north of the CN Rail, Lot 27, Concession Broken Front, Part, Municipality of Clarington, Regional Municipality of Durham, designed to provide quality and quantity control of stormwater run-off by attenuating runoff from storm events up to 1:100 years return frequency to or below the pre-development levels, consisting of: #### East Stormwater Management Pond (East SWM Pond) A stormwater management facility to service a 5.7 ha drainage area comprising of the eastern part of the Durham York Energy Centre consisting of the following: - one (1) approximately 128 m long drainage ditch collecting stormwater runoff from the north eastern part of the site, having an average horizontal slope of 1.56%, depth of 0.5 m, bottom width of 1.0 m, and side slopes of 2.5H:1V, discharging to storm sewers described below; - one (1) approximately 199 m long drainage ditch collecting stormwater runoff from the eastern part of the site, having an average horizontal slope of 2.77%, depth of 0.5 m, bottom width of 1.0 m, and side slopes of 2.5H:1V, discharging to storm sewers described below; - approximately fourteen (14) catch basins/maintenance holes and a total of 466.8 m long 450 mm diameter and 34.6 m of 600 mm diameter corrugated PE stormwater sewers conveying stormwater runoff collected from the north and north eastern part of the site, discharging to a forebay of a wet extended detention stormwater management pond described below; - one (1) forebay with approximate bottom dimensions of 11.0 m wide and 34.8 m long and depth of 1.0 m, equipped with 600 mm diameter corrugated HDPE inlet pipe, a rip-rap covered inlet structure, and a forebay berm with top elevation of 95.0 m masl, discharging to a wet extended detention pond described below; - one (1) wet extended detention stormwater management pond located at the south east part of the site, with approximate bottom dimensions of 21.0 m wide and 71.4 m long and a maximum depth of 2.7 m at 96.70 m masl elevation, having side slopes of 3H:1V and 5H:1V near the outlet structure, providing a permanent pool storage capacity of 1,008 m³ at elevation 95.0 m masl, an active storage capacity of 3,099 m³ at 96.70 m masl elevation, and total storage capacity of 4,107 m³, equipped with an outlet structure consisting of a 150 mm diameter reverse slope inlet pipe with a gate valve and a 450 mm diameter perforated pipe riser fitted with 75 mm diameter orifice plate, a 75 mm diameter maintenance discharge pipe with a gate valve, and an emergency overflow structure at elevation 97.0 m masl, discharging through a 450 mm diameter outlet pipe to existing swale along the northern side of the CN Rail line to Tooley Creek and eventually to Lake Ontario; #### West Stormwater Management Pond (West SWM Pond) A stormwater management facility to service a 4.3 ha drainage area comprising of the western part of the Durham York Energy Centre consisting of the following: - one (1) approximately 296 m long drainage ditch collecting stormwater runoff from the north western part of the site, having an average horizontal slope of 1.0%, depth of 0.5 m, bottom width of 1.0 m, and side slopes of 2.5H:1V, discharging to storm sewers described below: - approximately five (5) catch basins/maintenance holes and a total of 272.2 m long 450 mm diameter corrugated PE stormwater sewers conveying stormwater runoff collected from the western part of the site, discharging to a forebay of a wet extended detention stormwater management pond described below; - one (1) forebay with approximate bottom dimensions of 13.0 m wide and 26.0 m long and depth of 1.0 m, equipped with 450 mm diameter corrugated HDPE inlet pipe, a rip-rap covered inlet structure, and a forebay berm with top elevation of 95.0 m masl, discharging to a wet extended detention pond described below; - one (1) wet extended detention stormwater management pond located at the south western part of the site, with approximate bottom dimensions of 13.0 m wide and 58.0 m long and a maximum depth of 2.5 m at 96.5 m masl elevation, having side slopes of 3H:1V and 5H:1V near the outlet structure, providing a permanent storage capacity of 623 m³ at elevation 95.0 m masl, an active storage capacity of 2,054 m³ at 96.50 m masl elevation, and total storage capacity of 2,677 m³, equipped with an outlet structure consisting of a 150 mm diameter reverse slope inlet pipe with a gate valve and a 450 mm diameter perforated pipe riser fitted with 75 mm diameter orifice plate, a 75 mm diameter maintenance discharge pipe with a gate valve, and an emergency overflow structure at elevation 96.80 m masl, discharging through a 450 mm diameter outlet pipe to existing swale along the northern side of the CN Rail line to Tooley Creek and eventually to Lake Ontario; including all associated controls and appurtenances. *The reasons for the imposition of these terms and conditions are as follows:* #### <u>GENERAL</u> Conditions 1.(1), (2), (5), (6), (7), (8), (9), (10), (11), (12), (13), (17), (18) and (19) are included to clarify the legal rights and responsibilities of the Owner. Conditions Nos.1.(3) and (4) are included to ensure that the Site is operated in accordance with the application and supporting documentation submitted by the Owner, and not in a manner which the Director has not been asked to consider. Condition No. 1.(14) is included to ensure that the Site is operated under the corporate name which appears on the application form submitted for this approval and to ensure that the Director is informed of any changes. Condition No.1.(15) is included to restrict potential transfer or encumbrance of the Site without the notification to the Director and to ensure that any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this Certificate. Condition No. 1.(16) is included to ensure that the appropriate Ministry staff has ready access to the operations of the Site which are approved under this Certificate. The Condition is supplementary to the powers of entry afforded a Provincial Officer pursuant to the *EPA*, the *OWRA*, the *PA*, the *NMA* and the *SDWA*. #### SERVICE AREA, APPROVED WASTE TYPES, RATES and STORAGE Condition No. 2. is included to specify the approved waste receipt rates, the approved waste types and the service area from which waste may be accepted at the Site based on the Owner's application and supporting documentation. Condition No. 2. is also included to specify the maximum amount of waste that is approved to be stored at the Site. #### **SIGNS and SITE SECURITY** Condition No. 3. is included to ensure that the Site's users, operators and the public are fully aware of important information and restrictions related to the operation of the Site. Condition No. 3. is also included to ensure that the Site is sufficiently secured, supervised and operated by properly trained personnel and to ensure controlled access and integrity of the Site by preventing unauthorized access when the Site is closed and no site personnel is on duty. #### SITE OPERATIONS Condition No. 4. is included to outline the operational requirements for the Facility to ensure that the said operation does not result in an adverse effect or a hazard to the natural environment or any person. #### **EQUIPMENT and SITE INSPECTIONS and MAINTENANCE** Condition No. 5. is included to require the Site to be maintained and inspected thoroughly on a regular basis to ensure that the operations at the Site are undertaken in a manner which does not result in an adverse effect or a hazard to the health and safety of the environment or any person. #### **PERFORMANCE REQUIREMENTS** Condition No. 6 is included to set out the minimum performance requirements considered necessary to prevent an adverse effect resulting from the operation of the Facility. #### TESTING, MONITORING and AUDITING Condition No. 7. is to require the Owner to gather accurate information on the operation of the Facility so that the environmental impact and subsequent compliance with the *EPA*, the *OWRA*, their Regulations and this
Certificate can be verified. #### NUISANCE IMPACT CONTROL and HOUSEKEEPING Condition No. 8. is included to ensure that the Site is operated and maintained in an environmentally acceptable manner which does not result in a negative impact on the natural environment or any person. Condition No. 8 is also included to specify odour control measures to minimize a potential for odour emissions from the Site. #### **STAFF TRAINING** Condition No. 9. is included to ensure that staff are properly trained in the operation of the equipment and instrumentation used at the Site, in the emergency response procedures and on the requirements and restrictions related to the Site operations under this Certificate. #### COMPLAINTS RECORDING PROCEDURE Condition No.10. is included to require the Owner to respond to any environmental complaints resulting from the Facility appropriately and in a timely manner and that appropriate actions are taken to prevent any further incidents that may cause complaints in the future. ## <u>CONTINGENCY and EMERGENCY RESPONSE PLAN</u> and <u>EMERGENCY</u> SITUATIONS RESPONSE AND REPORTING Conditions Nos.11. and 12. are included to ensure that the Owner is prepared and properly equipped to take immediate action in the event of an emergency situation. #### SUBMISSIONS to the REGIONAL DIRECTOR or DISTRICT MANAGER Condition No. 13. is included to set out the requirements for the submissions to the District Manager and the Regional Director regarding the operation of the Facility and the activities required by this Certificate. #### **RECORDS KEEPING** Condition No.14. is included to ensure that detailed records of Site activities, inspections, monitoring and upsets are recorded and maintained for inspection and information purposes. #### **REPORTING** Condition No.15. is to ensure that regular review of site, operations and monitoring is carried out and findings documented by a third party for determining whether or not the Site is being operated in compliance with this Certificate of Approval, the EPA and its regulations and whether or not any changes should be considered. #### PUBLIC ACCESS to DOCUMENTATION Condition No.16. is included to ensure that the public has access to information on the operation of the Site in order to participate in the activities of the Advisory Committee in a meaningful and effective way. #### **ADVISORY COMMITTEE** Condition No.17. is included to require the Owner to establish a forum for the exchange of information and public dialogue on activities carried out at the Site and to ensure that the local residents are properly informed of the activities at the Site and that their concerns can be heard and acted upon , as necessary. Open communication with the public and local authorities is important in helping to maintain high standards for the operation of the Site and protection of the natural environment. Condition 16. is also included to ensure that the requirements of the EA Approval are fulfilled. #### **CLOSURE of the SITE** Condition No.18. is included to ensure that the final closure of the Site is completed in accordance with Ministry's standards. In accordance with Section 139 of the Environmental Protection Act, R.S.O. 1990, Chapter E-19, as amended, and in accordance with Section 100 of the Ontario Water Resources Act, R.S.O. 1990, Chapter 0.40, as amended, you may by written Notice served upon me, the Environmental Review Tribunal, within 15 days after receipt of this Notice, require a hearing by the Tribunal. The Environmental Commissioner will place notice of your appeal on the Environmental Registry. Section 142 of the Environmental Protection Act and Section 101 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state: - 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and; - 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed. The Notice should also include: - 3. The name of the appellant; - 4. The address of the appellant; - 5. The Certificate of Approval number; - 6. The date of the Certificate of Approval; - 7. The name of the Director; - 8. The municipality within which the works are located; And the Notice should be signed and dated by the appellant. This Notice must be served upon: The Secretary* Environmental Review Tribunal 655 Bay Street, 15th Floor Toronto, Ontario M5G 1E5 <u>AND</u> The Director Section 9 and 39, Environmental Protection Act Section 53, Ontario Water Resources Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5 * Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca The above noted site is approved under Section 9 and Section 27 of the Environmental Protection Act and Section 53 of the Ontario Water Resources Act. DATED AT TORONTO this 28th day of June, 2011 Signature Ian Parrott, P .Eng. Director Section 9, *EPA*Section 39, *EPA*Section 53, *OWRA* MW,QN,SH/ c: District Manager, MOE York-Durham Regional Director, MOE Central Region #### **Content Copy Of Original** #### Ministry of the Environment Ministère de l'Environnement #### AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL NUMBER 7306-8FDKNX Notice No. 1 Issue Date: August 12, 2014 The Regional Municipality of Durham 605 Rossland Rd E 5th Floor Whitby, Ontario L1N 6A3 and The Regional Municipality of York 17250 Yonge Street Newmarket, Ontario L3Y 6Z1 and Covanta Durham York Renewable Energy Limited Partnership 445 South Street Morristown, New Jersey United States of America 07960 Site Location: Durham York Energy Centre 72 Osbourne Rd Lot 27, Concession Broken Front, Part 1 Clarington Municipality, Regional Municipality of Durham L1E 2R2 You are hereby notified that I have amended Approval No. 7306-8FDKNX issued on June 28, 2011 for Waste Disposal Site (Incineration), complete with an Energy from Waste Facility and associated equipment, , as follows: 1. The following definition has been added: "Contingency and Emergency Response Plan" also means the document entitled "Spill Contingency and Emergency Response Plan"; - 2. The following Conditions are amended to read as follows: - 2.(5)(b)(iii) The Owner may use equipment used to handle the hazardous wastes to handle other wastes provided that prior to such use the equipment has been thoroughly cleaned first. - 4.(5)(e) A maximum of 630 tonnes of the Residual Waste, limited to the bottom ash shall be stored in two (2) dedicated bunkers, located within the confines of the Residue Building, described in the Supporting Documentation. The storage duration is as follows: - (i) The storage duration is limited to a maximum of seven (7) days. - (ii) Should longer storage duration be required to accommodate the duration of the required compliance testing, a minimum of forty eight (48) hours before the storage extension is commenced, the Owner shall notify the District Manager of the required extension. The notification shall include the duration of the extension and the reasons. - 3. The following Conditions are added: - 7.(7) (e) The Owner shall carry out the required bottom and fly ash compliance testing in accordance with the document entitled "Ash Sampling and Testing Protocol", listed in the attached Schedule. - 11.8 Containment evaluations performed under the Spill Contingency and Emergency Response Plan shall be conducted by the Owner in accordance to procedures agreed by the District Manager pursuant to Conditions 8.(7)(i),(ii) and (iii). - 4. The following documents have been added to Schedule "A": - 4. October 31, 2013 letter from Mirka Januszkiewicz, the Regional Municipality of Durham to Ian Parrott, Ministry of the Environment and Climate Change, requesting approval of the Ash Sampling and Testing Protocol and the document entitled "Durham York Energy Centre, Ash Sampling and Testing Protocol", prepared by by Golder Associates and dated June 2014. - 5. Document entitled "Durham York Energy Centre, Spill Contingency & Emergency Response Plan" prepared by Covanta Durham York Renewable Energy Limited Partnership and dated January 13, 2014, excluding section entitled "Containment Evaluation". - 6. Document entitled "Durham York Energy Centre, Protocol for the Measurement of Combustion Temperature and the Development of Time and Temperature Correlations", prepared by Covanta Durham York Renewable Energy Limited Partnership and dated June 2014. - 7. Document entitled "Durham York Energy Centre, Noise Monitoring and Reporting Plan", prepared by Golder Associates and dated September 2011. The reasons for this amendment to the Approval are as follows: to approve the "Ash Sampling and Testing Protocol" as required Condition 7.(7)(a), the "Durham York Energy Centre, Spill Contingency & Emergency Response Plan", as required Condition 11.(3), "Durham York Energy Centre, Noise Monitoring and Reporting Plan" as required Condition 7.(5)(a) and "Durham York Energy Centre, Protocol for the Measurement of Combustion Temperature and the Development of Time and Temperature Correlations" as proposed by the applicant. This Notice shall constitute part of the approval issued under Approval No. 7306-8FDKNX dated June 28, 2011, as amended. In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state: - 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and; - 2. The grounds on which you intend to rely at
the hearing in relation to each portion appealed. Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval. The Notice should also include: - 3. The name of the appellant; - 4. The address of the appellant; - 5. The environmental compliance approval number; - 6. The date of the environmental compliance approval; - 7. The name of the Director, and; - 8. The municipality or municipalities within which the project is to be engaged in. And the Notice should be signed and dated by the appellant. This Notice must be served upon: The Secretary* Environmental Review Tribunal 655 Bay Street, Suite 1500 Toronto, Ontario M5G 1E5 AND The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5 * Further information on the Environmental Review Tribunal 's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 314-3717 or www.ert.gov.on.ca The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act. DATED AT TORONTO this 12th day of August, 2014 Ian Parrott, P.Eng. Director appointed for the purposes of Part II.1 of the Environmental Protection Act MW/ c: District Manager, MOE York-Durham n/a, The Regional Municipality of Durham #### **Content Copy Of Original** #### Ministry of the Environment Ministère de l'Environnement #### AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL NUMBER 7306-8FDKNX Notice No. 2 Issue Date: October 24, 2014 The Regional Municipality of Durham 605 Rossland Rd E 5th Floor Whitby, Ontario L1N 6A3 and The Regional Municipality of York 17250 Yonge Street Newmarket, Ontario L3Y 6Z1 and TransRiver Canada Incorporated, as general partner for and on behalf of Covanta Durham York Renewable Energy Limited Partnership 445 South St Morristown, New Jersey USA 07960 Site Location: Durham York Energy Centre 1835 Energy Drive Clarington Municipality, Regional Municipality of Durham L1E 2R2 You are hereby notified that I have amended Approval No. 7306-8FDKNX issued on June 28, 2011 for Waste Disposal Site (Incineration), complete with an Energy from Waste Facility and associated equipment, as follows: 1. The address of the Site has been changed to read as follows: Durham York Energy Centre 1835 Energy Drive Clarington Municipality, Regional Municipality of Durham L1E 2R2 - 2. The following definitions have been added: - "Operator" means any person other than the Regions' employees, authorized by the Regions as having the charge, management or control of any aspect of the Site and includes TransRiver Canada Incorporated, as general partner for and on behalf of Covanta Durham York Renewable Energy Limited Partnership, the partnership under the laws of Nova Scotia more particularly described in the October 6, 2014 letter from Joanna Rosengarten to the Ministry of Environment and Climate Change, and includes its successors and assignees, their successors and assignees; - "Regions" means any person that is responsible for the establishment or operation of the Site being approved by this Approval, and it includes The Regional Municipality of Durham and The Regional Municipality of York, their successors and assignees; - 2. The following definition has been amended to read as follows: - " **Site** " means the property referred to as Durham York Energy Centre where the Owner has located and operates the Facility and the Works and located at 1835 Energy Drive in the Municipality of Clarington, Regional Municipality of Durham; - " Owner " within the context of this Approval, means the Regions and the Operator; - 3. The following Conditions have been amended to read as follows: #### "General: Change of Ownership" Conditions 1.(14) and 1.(15): - (14) The Regions shall notify the Director in writing, and forward a copy of the notification to the District Manager, within thirty (30) days of the occurrence of any changes: - (a) the ownership of the Site; - (b) the operator of the Site; - (c) the address of the Regions; - (d) the partners, where the Regions are or at any time become a partnership and a copy of the most recent declaration filed under the *Business Names Act*, R.S.O. 1990, c. B.17, as amended, shall be included in the notification: - (e) the name of the corporation where the Regions are or at any time become a corporation, other than a municipal corporation, and a copy of the most current information filed under the *Corporations Information Act*, R.S.O. 1990, c. C.39, as amended, shall be included in the notification. - (15) No portion of this Site shall be transferred or encumbered prior to or after closing of the Site unless the Director is notified in advance. In the event of any change in ownership of the Site, other than change to a successor municipality, the Regions shall notify the successor of and provide the successor with a copy of this Approval, and the Regions shall provide a copy of the notification to the District Manager and the Director. ## "Service Area, Approved Waste Types, Rates And Storage: Storage Restrictions" Condition 2.(5)(e): - 2.(5)(e) (i) A maximum of 630 tonnes of the Residual Waste, limited to the bottom ash shall be stored in two (2) dedicated bunkers, located within the confines of the Residue Building, described in the Supporting Documentation. - (ii) The storage duration of bottom ash in the bunkers is limited to a maximum of seven (7) days. - (iii) Should additional storage location(s) and a longer storage duration be required during testing, a minimum of forty eight (48) hours before the storage parameters are changed from those approved in Condition 2.(5)(e)(i) and (ii), the Owner shall notify the District Manager, in writing, of the proposed changes and provide the reasons for the changes. #### "Site Operations: Residual Waste Handling and Disposal" Condition 4.(5)(b)(iii): 4.(5)(b)(iii) The Owner may use the equipment that comes in contact with the hazardous wastes to handle other wastes provided that prior to such use, the equipment has been cleaned, as confirmed by visual inspections, to ensure the removal of any hazardous waste residues and to prevent cross contamination. #### "Closure of the Site" Conditions 18.(1) and 18.(2): - (1) A minimum of nine (9) months prior to closure of the Site, the Regions shall submit, for approval by the Director, a written Closure Plan for the Site. This Plan shall include, as a minimum, a description of the work that will be done to facilitate closure of the Site and a schedule for completion of that work. - (2) Within ten (10) days after closure of the Site, the Regions shall notify the Director and the District Manager, in writing, that the Site is closed and that the approved Closure Plan has been implemented. - 4. "Covanta Durham York Renewable Energy Limited Partnership" is replaced with "TransRiver Canada Incorporated, as general partner for and on behalf of Covanta Durham York Renewable Energy Limited Partnership, the partnership under the laws of Nova Scotia more particularly described in the October 6, 2014 letter from Joanna Rosengarten to the Ministry of Environment and Climate Change and includes its successors and assignees", in the Environmental Compliance Approval dated June 28, 2011 and in the Notice of Amendment dated August 12, 2014. - 5. The following documents are added to Schedule "A": - 8. Application for Environmental Compliance Approval Application dated May 23, 2014, signed by Matthew R. Mulcahy, Covanta Durham York Renewable Energy Limited Partnership, Application for Environmental Compliance Approval Application dated May 23, 2014, signed by Cliff Curtis, The Regional Municipality of Durham and Application for Environmental Compliance Approval Application dated May 23, 2014, signed by Laura McDowell, The Regional Municipality of York, including the following attached supporting documentation: - (a) revised Section 8.0 "Ash Handling and Associated System" and revised Section 10.0 "Potable Process and Wastewater" dated May 2014, of the document entitled "Design and Operations Report", dated March 2011, prepared by Golder Associates Ltd. - (b) Drawing No. M-2530, entitled "Piping & Instrumentation Diagram Bottom Ash Lime Slurry System" - (c) Drawing No. 70258-1-ME-GA-SK-001, entitled "Covanta Durham York Hydrated Lime System for Boiler Bottom Ash" - 9. E-mail dated September 10, 2014 (2:26 p.m.) from Leon Brasowski, Covanta Durham York Renewable Energy Limited Partnership, to Margaret Wojcik, Ontario Ministry of the Environment and Climate Change, providing additional supporting documentation on the proposal, including an attachment entitled "M-1500^0360 Highlighted for MOE.pdf". - 10. E-mail dated October 13, 2014 (3:23 p.m.) from Leon Brasowski, Covanta Durham York Renewable Energy Limited Partnership, to Ricki Allum, Ontario Ministry of the Environment and Climate Change, providing additional supporting documentation on the legal name of the applicant, including an attachment entitled "Partnership Legal Clarification.pdf". The reasons for this amendment to the Approval are as follows: to approve the proposed Bottom Ash Lime Conditioning System, to correct the typographical errors in the Notice of Amendment dated August 12, 2014, to clarify the intent of the Residual Waste equipment cleaning condition and to allow different bottom ash storage conditions during testing. This Notice shall constitute part of the approval issued under Approval No. 7306-8FDKNX dated June 28, 2011, as amended. In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal
within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state: - 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and; - 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed. Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval. The Notice should also include: - 3. The name of the appellant; - 4. The address of the appellant; - 5. The environmental compliance approval number; - 6. The date of the environmental compliance approval; - 7. The name of the Director, and; - 8. The municipality or municipalities within which the project is to be engaged in. And the Notice should be signed and dated by the appellant. This Notice must be served upon: The Secretary* Environmental Review Tribunal 655 Bay Street, Suite 1500 Toronto, Ontario M5G 1E5 AND The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5 * Further information on the Environmental Review Tribunal 's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 314-3717 or www.ert.gov.on.ca The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act. DATED AT TORONTO this 24th day of October, 2014 Tesfaye Gebrezghi, P.Eng. Tesfaye Gebrezghi, P.Eng. Director appointed for the purposes of Part II.1 of the *Environmental Protection Act* MW/ c: District Manager, MOE York-Durham Leon Brasowski, Covanta Energy Corporation #### **Content Copy Of Original** ### Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique #### AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL NUMBER 7306-8FDKNX Notice No. 3 Issue Date: December 23, 2015 The Regional Municipality of Durham 605 Rossland Road Level 5 Whitby, Ontario L1N 6A3 Site Location: Durham York Energy Centre 1835 Energy Dr Lot 27, Concession Broken Front, Part 1 Clarington Municipality, Regional Municipality of Durham L1E 2R2 You are hereby notified that I have amended Approval No. 7306-8FDKNX issued on June 28, 2011 for Waste Disposal Site (Incineration), complete with an Energy from Waste Facility and associated equipment, as follows: The following Conditions are revoked: #### 7. TESTING, MONITORING and AUDITING #### **Noise Monitoring - Acoustic Audit** #### (5) The Owner: - (a) shall carry out Acoustic Audit measurements on the actual noise emissions due to the operation of the Facility. The Acoustic Audit measurements shall be carried out in accordance with the procedures in *Publication NPC-103* and in accordance to the Noise Monitoring and Reporting Plan prepared in accordance with the requirements set out in the EA Approval and as approved by the Director: - (b) shall submit an Acoustic Audit Report on the results of the Acoustic Audit, prepared by an Independent Acoustical Consultant, in accordance with the requirements of *Publication NPC-233* and the Noise Monitoring and Reporting Plan prepared in accordance with the requirements set out in the EA Approval and as approved by the Director, to the District Manager and the Director, not later than three (3) months after the commencement of operation of the Facility. #### (6) The Director: (a) may not accept the results of the Acoustic Audit if the requirements of *Publication NPC-233* or the approved noise Monitoring and Reporting Plan were not followed; (b) may require the Owner to repeat the Acoustic Audit if the results of the Acoustic Audit are found unacceptable to the Director. #### All other Terms and Conditions remain the same. The reason for this amendment to the Approval is to address the information provided in the following documents: Acoustic Audit Report prepared by Valcoustics Canada Ltd., dated May 8, 2015 and signed by Kathryn Katsiroumpas, P.Eng.; and Acoustic Audit Report prepared by Valcoustics Canada Ltd., dated November 23, 2015 and signed by Kathryn Katsiroumpas, P.Eng. ### This Notice shall constitute part of the approval issued under Approval No. 7306-8FDKNX dated June 28, 2011 In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state: - 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and; - 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed. Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval. The Notice should also include: - 3. The name of the appellant; - 4. The address of the appellant; - 5. The environmental compliance approval number; - 6. The date of the environmental compliance approval; - 7. The name of the Director, and; - 8. The municipality or municipalities within which the project is to be engaged in. And the Notice should be signed and dated by the appellant. This Notice must be served upon: The Secretary* Environmental Review Tribunal 655 Bay Street, Suite 1500 Toronto, Ontario AND The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and M5G 1E5 Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5 * Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act. DATED AT TORONTO this 23rd day of December, 2015 lan Greason, P.Eng. Director appointed for the purposes of Part II.1 of the Environmental Protection Act HM/ c: District Manager, MOECC York-Durham Kathryn Katsiroumpas, Valcoustics Canada Ltd. #### **Content Copy Of Original** ### Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique #### AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL NUMBER 7306-8FDKNX Notice No. 4 Issue Date: February 24, 2016 The Regional Municipality of Durham 605 Rossland Road East, Level 5 Whitby, Ontario L1N 6A3 The Regional Municipality of York 17250 Yonge Street Newmarket, Ontario L3Y 6Z1 TransRiver Canada Incorporated operating as Covanta Durham York Renewable Energy Limited Partnership 445 South Street Morristown, New Jersey USA 07960 Site Location: Durham York Energy Centre 1835 Energy Dr Lot 27, Concession Broken Front, Part 1 Clarington Municipality, Regional Municipality of Durham L1E 2R2 You are hereby notified that I have amended Approval No. 7306-8FDKNX issued on June 28, 2011 for a Waste Disposal Site (Incineration), complete with an Energy from Waste Facility and associated equipment, , as follows: The following Conditions are revoked: #### 7. TESTING, MONITORING and AUDITING #### **Noise Monitoring - Acoustic Audit** - (5) The Owner: - (a) shall carry out Acoustic Audit measurements on the actual noise emissions due to the operation of the Facility. The Acoustic Audit measurements shall be carried out in accordance with the procedures in *Publication NPC-103* and in accordance to the Noise Monitoring and Reporting Plan prepared in accordance with the requirements set out in the EA Approval and as approved by the Director: - (b) shall submit an Acoustic Audit Report on the results of the Acoustic Audit, prepared by an Independent Acoustical Consultant, in accordance with the requirements of *Publication NPC-233* and the Noise Monitoring and Reporting Plan prepared in accordance with the requirements set out in the EA Approval and as approved by the Director, to the District Manager and the Director, not later than three (3) months after the commencement of operation of the Facility. #### (6) The Director: - (a) may not accept the results of the Acoustic Audit if the requirements of *Publication NPC-233* or the approved Noise Monitoring and Reporting Plan were not followed; - (b) may require the Owner to repeat the Acoustic Audit if the results of the Acoustic Audit are found unacceptable to the Director. #### All other Terms and Conditions remain the same. The reason for this amendment to the Approval is to address the information provided in the following documents: Acoustic Audit Report prepared by Valcoustics Canada Ltd., dated May 8, 2015 and signed by Kathryn Katsiroumpas, P.Eng.; and Acoustic Audit Report prepared by Valcoustics Canada Ltd., dated November 23, 2015 and signed by Kathryn Katsiroumpas, P.Eng. ### This Notice shall constitute part of the approval issued under Approval No. 7306-8FDKNX dated June 28, 2011 In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act
provides that the Notice requiring the hearing shall state: - 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and; - 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed. Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval. The Notice should also include: - 3. The name of the appellant; - 4. The address of the appellant; - 5. The environmental compliance approval number; - 6. The date of the environmental compliance approval; - 7. The name of the Director, and; - 8. The municipality or municipalities within which the project is to be engaged in. And the Notice should be signed and dated by the appellant. This Notice must be served upon: The Secretary* Environmental Review Tribunal 655 Bay Street, Suite 1500 Toronto, Ontario M5G 1E5 **AND** The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5 * Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act. DATED AT TORONTO this 24th day of February, 2016 Ian Greason, P.Eng. Director appointed for the purposes of Part II.1 of the Environmental Protection Act HM/ c: District Manager, MOECC York-Durham Kathryn Katsiroumpas, Valcoustics Canada Ltd. #### **Content Copy Of Original** ### Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique #### AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL NUMBER 7306-8FDKNX Notice No. 5 Issue Date: March 14, 2016 The Regional Municipality of Durham 605 Rossland Rd E 5th Floor Whitby, Ontario L1N 6A3 and The Regional Municipality of York 17250 Yonge Street Newmarket, Ontario L3Y 6Z1 and TransRiver Canada Incorporated, as general partner for and on behalf of Covanta Durham York Renewable Energy Limited Partnership 445 South St Morristown, New Jersey USA 07960 Site Location: Durham York Energy Centre 1835 Energy Dr Lot 27, Concession Broken Front, Part 1 Clarington Municipality, Regional Municipality of Durham L1E 2R2 You are hereby notified that I have amended Approval No. 7306-8FDKNX issued on June 28, 2011 for Waste Disposal Site (Incineration), complete with an Energy from Waste Facility and associated equipment, as follows: - I. The following conditions have been amended to read as follows: - 2. SERVICE AREA, APPROVED WASTE TYPES, RATES and STORAGE - (5) Storage Restrictions: #### Solids: (c) A maximum of approximately 77 tonnes or 106 cubic metres of the Residual Waste, limited to the recovered ferrous metals, shall be stored in one (1) dedicated bunker, located within the confines of the Residue Building, described in the Supporting Documentation. (d) A maximum of approximately 120 tonnes or 100 cubic metres of the Residual Waste, limited to the recovered non-ferrous metals, shall be stored in one (1) dedicated bunker, located within the confines of the Residue Building, described in the Supporting Documentation. - (e) A maximum of 630 tonnes of the Residual Waste, limited to bottom ash shall be stored in two (2) dedicated bunkers, located within the confines of the Residue Building, described in the Supporting Documentation. - (f) A maximum of 700 tonnes of the Residual Waste, limited to the fly ash shall be stored in seven (7) dedicated bunkers, located within the confines of the Residue Building, described in the Supporting Documentation. - (j) A maximum of 65 cubic metres of cement for fly ash conditioning shall be stored in one (1) outdoor silo, located adjacent to the Residue Building. - (k) A maximum of 105 cubic metres of pozzolan for fly ash conditioning shall be stored in one (1) outdoor silo, located adjacent to the Residue Building. - Liquids: (I) (i) A maximum of 57 cubic metres of aqueous ammonia for the SNCR System shall be stored in one (1) outdoor tank, located adjacent to the Residue Building. - (8) (a) Waste received at the Site shall be processed within six (6) days from its receipt at the Site. - (b) Emergency storage of Waste requirements: - (i) On an emergency basis only, the storage duration of Waste inside the tipping pit may be extended beyond the limit set out in Condition 2.(8)(a), above, subject to compliance with the following requirements: - (A) prior to the start of the emergency storage of Waste, the Owner shall notify, in writing, the District Manager that the incoming Waste will be stored longer than six (6) days from its receipt; - (B) any additional information that the District Manager may require shall be submitted within a time period acceptable to the District Manager; - (C) the proposed preventative measures for emergency storage of Waste as identified in the Operations and Maintenance Manual shall be implemented upon commencement of the emergency storage of Waste and shall remain in effect for the entire duration of the emergency storage, unless otherwise advised by the District Manager; and - (D) the Owner shall notify, in writing, the District Manager when emergency storage is no longer required. #### 5. EQUIPMENT and SITE INSPECTIONS and MAINTENANCE - (p) all measures deemed necessary to prevent an occurrence of an adverse effect from the emergency storage of Waste. - II. The following section of Schedule "F" has been amended to read as follows: #### **PARAMETER:** **Total Hydrocarbons** #### **INSTALLATION:** The Total Hydrocarbons Monitor shall be installed at an accessible location where the measurements are representative of the concentrations of Organic Matter (as methane) in the Undiluted Gases leaving the combustion zone via the economizer outlet of each Boiler or at any other location that has been determined in consultation with the Ministry to be suitable/equivalent for the determination of Total Hydrocarbons leaving the combustion zone of each Boiler and has been approved by the Director. The Total Hydrocarbons Monitor shall meet the following installation specifications: #### PARAMETERS SPECIFICATION - 1. Detector Type: Flame Ionization - 2. Oven Temperature: 160 o C minimum - 3. Flame Temperature: 1800 o C minimum at the corona of the hydrogen flame - 4. Range (parts per million, ppm): 0 to 3 200 ppm - 5. Calibration Gas: propane in air or nitrogen - 6. Calibration Gas Ports: close to the sample point #### PERFORMANCE: The Continuous Total Hydrocarbons Monitor shall meet the following minimum performance specifications for the following parameters. #### PARAMETERS SPECIFICATION - 1. Span Value (nearest ppm equivalent): 2 times the average normal concentration of the source - 2. Relative Accuracy: £ 10 percent of the mean value of the reference method test data or \pm 5 ppm whichever is greater - 3. System Bias: £ 4 percent of the mean value of the reference method test data - 4. Noise: £ 1 percent of span value on most sensitive range - 5. Repeatability: £ 1 percent of span value - 6. Linearity (response with propane in air): £ 3 percent of span value over all ranges - 7. Calibration Error: £ 2 percent of actual concentration - 8. Procedure for Zero and Span Calibration Check: all system components checked on all ranges - 9. Zero Calibration Drift (24-hours): £ 2.5 percent of span value on all ranges - 10. Span Calibration Drift (24-hours): £ 2.5 percent of span value - 11. Response Time (90 percent response £ 60 seconds to a step change): - 12. Operational Test Period: 3 168 hours without corrective maintenance #### **CALIBRATION:** Daily calibration drift checks on the monitor shall be performed and recorded in accordance with the requirements of Report EPS 1/PG/7. #### DATA RECORDER: The data recorder must be capable of registering continuously the measurement of the monitor with an accuracy of 0.5 percent of a full scale reading or better and with a time resolution of 2 minutes or better. Measurements of concentrations of organic matter (as methane) shall be kept as 10 minute average values for record keeping and reporting purposes. #### **RELIABILITY:** The monitor shall be operated and maintained so that accurate data is obtained during a minimum of 90 percent of the time for each calendar quarter during the first full year of operation, and 95 percent thereafter. - III. The following Item #4 in Schedule "A" has been amended to read as follows: - 4. Letter dated October 31, 2013 from Mirka Januszkiewicz, The Regional Municipality of Durham to Ian Parrott, Ministry of the Environment and Climate Change, requesting approval of the Ash Sampling and Testing Protocol and the document entitled "Durham York Energy Centre, Ash Sampling and Testing Protocol", excluding a reference to the Loss-on-Ignition test method on page 6, prepared by Golder Associates and dated June 2014. - IV. The following document has been added to Schedule "A": - 5. Letter dated February 29, 2016 from Leon Brasowski, TransRiver Canada Incorporated, to Dale Gable, Ministry of the Environment and Climate Change, requesting change to the total hydrocarbon monitor location as reviewed and accepted by the Ministry's Standards Development Branch. The reasons for this amendment to the Approval are as follows: - 1. to remove the storage duration limits on storage of recovered ferrous and non-ferrous metals since such storage does not pose an environmental risk; - 2. to increase the amounts of cement, pozzolan and
aqueous ammonia approved for storage at the Site since the currently approved amounts result in partial filling of the tanks, necessitating more frequent deliveries resulting in increased truck traffic and a chance of interrupting fly ash and flue gas treatment; - 3. to revise the protocol for an emergency storage of the incoming Waste so that the Owner is able to deal more effectively with emergency situations occurring at the Site while providing more flexibility to the Districting Manager to oversee management of such situations; - 4. to remove a reference to an incorrect bottom ash testing method erroneously included within the text of the DYEC Ash Sampling and Testing Protocol included as Item #4 in Schedule "A" in order to ensure that only the approved testing method for compliance testing is referenced in the supporting documentation. - 5. to approve the revised location of the Total Hydrocarbons Monitor following the Ministry's acceptance of the results of the test program in which two (2) Total Hydrocarbons Monitor monitors were operated in the existing and the proposed locations simultaneously. This Notice shall constitute part of the approval issued under Approval No. 7306-8FDKNX dated June 28, 2011, as amended. In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state: - 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and; - 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed. Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval. The Notice should also include: - 3. The name of the appellant; - 4. The address of the appellant; - 5. The environmental compliance approval number; - 6. The date of the environmental compliance approval; - 7. The name of the Director, and; - 8. The municipality or municipalities within which the project is to be engaged in. And the Notice should be signed and dated by the appellant. This Notice must be served upon: The Secretary* Environmental Review Tribunal 655 Bay Street, Suite 1500 Toronto, Ontario M5G 1E5 AND The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5 * Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act. DATED AT TORONTO this 14th day of March, 2016 Dale Gable, P.Eng. Director appointed for the purposes of Part II.1 of the Environmental Protection Act MW/ c: District Manager, MOECC York-Durham | n/a, TransRiver Canada Incorporated operating as Covanta Durham York Renewable Energy Limited Partnership | |---| #### **APPENDIX 4** Particulate and Metals Field Data Sheets (30 pages) # ORTECH Consulting Inc. | Plant | Covanta DYEC | |-----------------------|--------------------| | Plant Location | Courtice, Ontario | | Test No.: 中 | Particulate/Metals | | Test Date Nov 9, 2020 | ωv_0 | | Test Location | APC Outlet No. | | Operator Signature | | | Pitot Factor 851 | | | |------------------------|------|--| | DGMCF Jacq | | | | Barometric Pressure | 5. K | "Hg | | Static Pressure - 8.83 | | "H20 | | Nozzle Size 12573 | | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | 른 | inches | | | | THE PERSON NAMED IN COLUMN TO SERVICE OF | | Reading Interval | 2.5 | |-----------------------|-----| | Number of Ports | 2 | | Number of Points/Port | 12 | Probe Liner (Glass)/ Metal /Teflon / Other_ Site Diagram Glass Metal / Other_ Nozzle None / Metal (Teflon) Other Pitot Leak Checked? (Yes) Union S Notes: | | このワップ | | |-----|-------|--| = | - 3 | | | ₹ | | | | 3 | | | | 3 | | | - 3 | Ę | | | | 3 | | | i | 3 | - | | į | 3 | | | | 3 | | | ** | - | | | ** | - | | | | - | | | | - | | | | - | | | | - | The same of sa | | | - | The second name of the least | | 400 | - | The second name of the last | | | - | The state of the latest designation l | | | - | The second name of the last | | | - | The second name of the last | | | - | The second name of the last | | | - | Charles and and an artist of the last | | | - | Contraction of the o | | | - | Contraction of the o | | | - | Total Control of the | | ł | 00 [| 00 | |---|--------|---------| | į | E | mg | | ŝ | ١ | - I | | į | | | | ŧ | 1 | | | ì | | Ĭ | | Ĭ | \$ | 1 | | ł | 3 | | | Į | 3 | | | l | 1 | | | ŧ | 1 | | | i | 1 | | | ļ | 1 | | | Ì | | | | ŧ | - 4 | 1 | | l | 3 | - 1 | | ł | 1 | | | ŧ | | - 1 | | ì | - 1 | - 1 | | ŧ | - 1 | Same of | | ŧ | - 1 | | | ł | 40,620 | | | Ĭ | - 1 | _ "1 | | ŧ | - 1 | - | | ł | 1 | -J | | į | No. | 200400 | | ŧ | | ~ 1 | | ŧ | 0 | | | ł | | - 1 | | ŧ | | | | ţ | | | | ŧ | | | | ŧ | | - 1 | | ı | | | | Ī | - 1 | | | Ĭ | | | | ì | | - 1 | | Ī | | | | ŧ | | 1.1 | | ŧ | | 0 | | ŧ | er | 20 | | ŧ | | 6 | | ŧ | | ~ 1 | | Ĭ |
Filter | Prob | | Ł | 627G | | | | | | SPA POSTER Probe / Pitot MII Numbers Measuring Device Co & 20074 Meter Box No.: Term Probe No.: Page Impinger Box No.: 🤍 Project No.: CAE 20097 いるでいるのかり Incline Manometer Comb.Gas.Analyzer Control Box **Trendicator** Micromanometer Barometer Calipers ### Moisture Gain | 0.0 | 0.01 | |--------------|-------| | - 1 | 1 | | - 1 | 1 | | | | | 1 | | | 1 | | | | 1 | | | 1 | | - 1 | | | - 1 | 1 | | - 1 | 1 | | - 1 | | | | | | | | | - 1 | | | NI | 1 | | 10 | (3) | | | 100 | | | | | | | | - 1 | 10 /1 | | | 11 | | い。まなず | 1 | | 111 | 200 | | - controller | | | | | | 100 | | | | | | 1,11 | | | | | | 10.00 | | | | | | 1000 | | | 11.1 | | | | | | 100 | | | 10.00 | | | | | | | 121 | | WIR | VCBDA | | - Same | 001 | | - | () | | 5 | - | | 6 3 | - | ## Combustion Gas Concentration | Oxygen ○ → | 8 | |----------------------|-----| | Carbon Dioxide 、、こうろ | % | | Carbon Monoxide | Had | Nozzle Measurements 12310 3270 25/2 200 Average: , 7513 | 7 | 2 Mars 1970 Carry | | | , , | | | יייייייייייייייייייייייייייייייייייייי | | ついりとしていること | | | 1) [| | |---|--|-----------------|-------------------|-----------------------|-------------|-------------|--|---|---|--|---
--|--| | pronouncement production (pronouncement) | | Plant Location: | Courtice, Ontario | ntario | | | Test Location: | | APC Outlet No. | 10° | en inschination de production de la company | Market and an action of the property pr | MANAGORIAN AND AND AND AND AND AND AND AND AND A | | | * | * | * | | * | | e de la compression della comp | *************************************** | House of the feet | ************************************** | * | * | * | | Vedestraumung-tracer-surrocks katropi-stratum tressa. | NAMES OF THE PROPERTY P | Drry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | ΔР | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | Inlet | Pressure | Vacuum | | | ine | #3 | "H ₂ 0 | cfm | Ľ. | ŭ. | LL
o | Ų- | L. | L | ۴ | T V | <u>=</u> | | | | | | | | | | | | | | 02H" | Gauge | | ~ | 0 | 015/10 | 34. | 12 C | 285 | 7,50 | 78 | V | ∞ | Š | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \$ 7. Y | ~ | | | 2.5 | G(6,35/ | 75 | 24 | Z
Z | 1,524 | 250 | <i>\V</i> | 22° | ્ડ | &0
.9 | Op. / | W | | | Ŋ | 69.819 | £. | 12. | 785 | 755 | 255 | 25 | 1224 | <u>5</u> | М | 1.70 | Λ | | 2 | 7.5 | 75.029 | \28°. | 72 | 249 | 250 | 256 | 2.5 | 238 | 59 | 00
و | 1.80 | ۰۸ | | | 10 | 6.22.18 | -79 | Į, | 283 | 523 | 255 | 53 | 282 | 50 | le
J | 000 | W | | | 12.5 | | ۶. | 1). | 5%2 | 202 | 255 | Š | 25.0 | 69 | Х
У | \$
\
\
\ | Μ | | ന | 15 | XT \ \$29 | 54 | 7 | 28% | 254 | なか | 8 | 235 | 50 | کر
ا | 1.30 | ٨ | | | 17.5 | 627. 55 | 27. | 7 | 282 | h52 | 252 | 7 | 234 | 60 | k
N | 1,33 | Ç | | . 2. | 20 | 629.31 | tet. | 170 | 282 | 7534 | さい | 8 | 12.6 | 5,9 | %
9 | 8 | οΛ | | Þ | 22.5 | 63/09 | 135 | 0 | 3
7
7 | 73 | 7, 7, | ر
د
د | 8.
2.5.
7.5. | 9 | Λ
(2) | 7.80 | Μ | | | 25 | 632.87 | 26 | Ϋ́. | 28% | 757 | 255 | 00 | 23.2 | (O) | 9 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | М | | | 27.5 | 4.77759 | 21.3 | 59/ | 286 | 2<5 | 255 | 8 | 226 | 0 | X)
C | 1-75 | \sim | | S | 30 | 636.43 | . (8 | ر
ر
2 | 1 % | 252 | K
K | ድ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | %
9 | 1,60 | M | | | 32.5 | L 53 14 | 39: | \
\
\
\
\ | 587 | 9
7
7 | Z
Z | (% | 73.4 | 0 | 07
Q | 7.55 | M | | | 35 | 689,78 | \S
S | Š | 十82 | 877 | 256 | 1)
X | 236 | 2 | 00 | 7.50 | 8 | | 9 | 37.5 | ST 159 | \
 }
 | 78.87 | 287 | 222 | 256 | 20 | 234 | 5 | 9 | 6
5,7 | 8 | | | 40 | (343,85) | 09' | 70, | 227 | 254 | 257 | Ç | 234 | 26 | 0 | 7.45 | ~ | | | 42.5 | F 2, 440 | . 60 | .62 | 20,6 | K | 28 | 2 | 22 | 7 | 5
9 | 1,40 | Μ | | 7 | 45 | 6.46,226 | | ,
0
7 | 222 | アペス | 228 | 22 | 235 | 7,7 | 9 | 067 | Μ | | | 47.5 | 16.77.63
1 |), C.9. | , 6 V | 282 | 252 | 282 | 7 | 236 | 7 | 0.0 | 0.5%
/ | Μ | | | 200 | 70 079 | 89 | 50 | 4.82 | 222 | 258 | 7 | ナジ | 2 | e. | \$\
\
\ | 6 /) | | | 00 | 0.0 | |-------------|--------------------------|-------------------| | | I | I | | | äH" | = | | | | | | | | | | | 6 | | | | 30. 5 | | | | P. Sale | | | | | | | | | | | | രം | p. | | | 9 | 9 | | | cfm@ 120 | cfm@ | | | To | To | | | | | | | | | | | | | | | 90 | | | | | | | | 1 | | | | | | | | | | | | | | | | 13.15 | | | | ¥ | | | | 30 | 중 | | | Ĕ | ě | | | O | = | | | يد. | 2 | | | 8 | -K | | | 2 | ŏ | | | - | | | | | æ | | | | 2 | | | - | <u>u</u> | | | ィ・3字 Initial Leak Check: | Final Leak Check: | | | | | | | ć.,, | | | | 52 | | | | M | | | | | | | | 64970 | | | | | | | -50000 | | 8 | | | O | اقا | | Ű. | 18 | | | 2 | = | | | 'n | تبد | 동 | | ב
ב
ב | ē | inish | | 1000 | Start Time: < | l:= | | | 10, | ليسا | | | | | Project No.: 22050 Operator: \\S_ | 32 | Date: Nov 9, 2022) | | Covanta DYEC | נ | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Particulate/Metals | Metals | | Page 3 | n
Ö | |--
--|---|--|--|--|-------
--|---|--|-------------|---------------|---|--------------| | | • | Plant Location: | Courtice, Ontario | ntario | | | Test Location: | ın: | APC Outlet No. | Vo. | | | | | | * | * | * | | * | | | * | | * | * | * | * | | | The state of s | Dry Gas | Pitot | | Stack | Probe | Oven | mping | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | d Ø | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | Inlet | Pressure | Vacuum | | | Ţme | === | "H ⁵ 0 | d | i. | 0 | LL
C | LL
o | L. | illa
C | Ľ. | ΔH. | "Hg
Gauge | | හ | 52.5 | 81.759 | 0.65 | 59.0 | £82 | 252 | 25% | 7 | 222 | 22 | 0 | 7 | Μ | | | S. | 6572.2 | \S_0^* | ,
(6.0 | 287 | 282 | 7.
7. | % | 22,5 | 7 | S
N | 7. | 0 | | | 57.5 | 654,45 | ()(() | ئ
ئ | £ 82 | S | 2574 | \$ | 2377 | Ŧ | 2 | \
\
! | N | | 6 | 09 | 656.08 | , (% | 99) | 2,83 | 124 | J.S.C. | | 236 | S | <u>ر</u>
ا | 1.55 | Υ. | | | 62.5 | 657, 77 | | 1111 | -E82 | 22 | 255 | \$ | 1234 | 22 | ر
ا | - X3 | M | | | 65 | (557 . 44 | 167 | 3 | | 25.4 | 222 | 23 | 236 | 5 | ř | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | M | | 10 | 67.5 | C1:100 | \s\s\cdot\ | (65/ | | 282 | 254 | 2.5 | 7.25 | 27 | ę | (C) | Μ | | | 7.0 | ا
الالا: عام | 1.65 | \$
\$ | 286 | 082 | اگا | 2 | 222 | 3 | | Ç
V | Ø | | · 12 | 72.5 | (GG4, 43 | t s | 99: | 7 % T | 282 | 22 | 8 | 7 22 | 70 | ř | YE
In | M | | (기
(기 | 75 | 01.933 | \S | ري
ارد | 78 | 32.53 | Š | 7 | 322 | Ś |) 2 m | (V) | 8 | | | 77.5 | 20000 | (05 | 9, | 11.2 | 253 | 254 | Ç | 23 | \
\
! | ř | 08. | M | | | 80 | (P.C. 9.3) | \&
 | 3 | 275 | 25.2 | 2 | 7 | 7
7
7 | <u>ک</u> | 5 | 08°, | W | | 12 | 82.5 | +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ | Ž |)
(0) | 7.7 | 25.4 | 2576 | Ç | 7.2 | \
[| r | 6.7 | Μ | | | 85 | (22,73 | | ر
ا | 7.1% | 254 | rs
S | 7 | 22% | ۲
ا | 2 | 2,2 | M | | | 87.5 | 5. 2.0
- | 1 50 | \frac{1}{2} | - 25 | 225 | ジグ | Z) | 23.6 | \
\
! | ? | 2000 | Μ | | | 06 | (57.6°) | A CONTRACTOR OF THE | | | | | | | | | | | | | | | | | en de la companya | | The second secon | | | | | | | | | | this recommendation of the second | Andrew (constitution of the constitution th | | namen kentakan dalam kentakan | | The state of s | | A CONTRACTOR AND CONT | | | | | | | | - Control of the Cont | | | | | ococcidat populari en mana partir de managarina esta de menos | | ACT LANGUAGE CONTRACTOR CONTRACTO | (And Andreas Control of the | | | | | | | | e de la composition della composition de la composition della comp | | And Andrews Control of the o | THE STATE OF S | | | | ministration engine | New Address of the Control Co | | | | | | raverse: | | | | MACHINET CONTRACTOR CO | | | | | | | | | | | Start Imp. | | Intial Leak Check: | | ctm@ | D.O. | | | | | | | | | | Initial Leak Check: cfm@ ''Hg
: です Final Leak Check: 、八〇 じ cfm@ 省 "Hg | |--| |--| | Project No.: | | | | |-----------------|---------------------|------|------------| | | | | | | | | | į | | - 1 | | | l | | | | | | | | | | | | | | | ŀ | | | | | | | | | | | | 0 | | | | | Ö | | | ĺ | | 8 | | | l | | | | | l | | | | | | | | | - 13 | | | | | | | | | | | l | | | 100 |) | | | | GING | | | | | COLUMN TO SERVICE | | | | | | | | | ol | 8.0 | | | | Z | š | | - | | ᡖ | 33.6 | | | | <u>o</u> | £- | | | | 9 | ğ | | | | ۵. | 0 | | TO SERVICE | | | | | Manage | | | | | | | | | | | | | - 2 | | | | | Operator: Λ | 1.0 | | | | | 4.1 | | |
 | | | | 1 | | 1.1 | 13 | | | | | | | | | | | | ı. | | | | | l | | | | | | | | | | l | | | | | ı | | | | | l | | | | | l | | | | | ı | | - | | | l | | | | | | | | | | ı | | | | | ١ | | | | | | | - | | | | | | | | | | | | | ľ | | - 1 | 1 | - 1 | | | | I | | | | | | | | | | 1 | - 1 | | | | - 1 | | | | | - | 1 | | | | | | | | | | | | | | - | | - 1 | | | | 1 | | | | 1 | - | | | | 1 | ı | | | | - | | | | | - | | | | | - | | | | | 1 | | | | | | ı | | | | | | | | | | | | | | | 1 | | | | 1 | 1 | | | | į | | | | | 9 | - 1 | | | | and the same of | I | - | | | **** | - | | | | Î | 1 | - | | | 1 | - | | | | | 07877 | | | | | | The same of sa | | | | | | | |--|--|--|--|---|--------------
--|--|--------|--|-------------|--
--|--------------| | | | Plant Location: | Courtice, Ontario | ntario | | | Test Location: | | APC Outlet No. | 10 . | NOTANCIAL REPRESENTATION OF THE PROPERTY TH | The second secon | - 1 | | | * | Conscribing to the contract of | earisceanium mariam | менения поменения поменен | A A | with demonstration of the second description | and contrast of the o | * | Springing in the property of the springing sprin | * | * | * | * | | NATIONAL REPORT OF THE PROPERTY PROPERT | mentale de la companya company | Dry Gas | Pitot | | Stack | Probe | Oven | migm | Impinger Temp | Metel | Meter Temp | Meter | Pump | | Point | Clock | Meter | ΔP | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | Inlet | Pressure | Vacuum | | : | _ me | £ | "H,0 | ctm | . | 마 | <u>u</u> . | L. | u. | <u>u</u> | Ľ. | Δ.H." | "Hg
Gauge | | T | 0 | 1 676 MY | 175 | 01, | 7 8 2 | 1222 | 325 | 25 | 2.3% | S Roman | | 081 | M | | | 2.5 | 57.87.0 | ×. | 9, | ±87 | 224 | 7.87 | 5 | S | K | 23 | 087 | ~ | | | ß | 30 089 | 9) [| 1 | 187 | 222 | 254 | 15 | 236 | Ý | 22 | 1.80 | ^ | | 7 | 7.5 | Qb:\29 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 9 | 288 | 782 | 07. | 7 | 236 | ž | 2 | \
\
\
\ | ~ | | | 10 | 683.69 | 35 | 00. | 288 | 7.57 | 266 | S | 572 | 52 | ~ | .80 | 3 | | PHIROPATHAGAINAGAINAGAINAGAINAGAINAGAINAGAINAGAI | 12.5 | 84.589 | 32 | 95. | 387 | 23.4 | 7.59 | Š | 228 | 25 | 73 | 1.80 | M | | 8 | 15 | 62, 783 | C 2 | 96. | 588 | 587 | 259 | 25 | 225 | 52 | 7 | | M | | | 17.5 | 688.98 | ļ°. | 83 | 287 | 255 | 252 | 25 | 228 | 25 | 72 | C | ~ | | Management of the o | 20 | (8.069 | 12. | 168 | 7.87 | 288 | 766 | 72 | 22,5 | SL | 7.3 | 0&1 | ~ | | 4 | 22.5 | 19.7% | 8 | 5 | 72 | 23 | 260 | 2 | 225 | 51 | 73 | 1.€¢ | } | | Description of the second t | 25 | 694.33 | 1.68 | 5 | 787 | 25% | 260 | 23 | 328 | 52 | () | 0 | ~ | | Average of the state sta | 27.5 | 10.319 | 89` | 19: | 187 | 255 | 260 | 25 | L22 | 9 L | 7 | 07.7 | m | | S | 30 | 18.263 | 591 | 597 | 28 | 2.55 | 280 | 22 | 227 | 9 2 | <i>FL</i> | 051 | | | | 32.5 | 699.43 | S 9° | 591 | 580 | 255 | 097 | 2,5 | 2.26 | <u> </u> | î | (.So | ~ | | AN ANALYSIS (MANAGORIAN AND ANALYSIS ANALYSIS AND ANALYSIS AND ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANAL | 35 | S | 59. | 191 | 327 | 255 | 197 | S | 225 | <i>SL</i> | 22 | 2000 | M | | 9 | 37.5 | 167.81 | 3 | 59 | 289 | 53 | 992 | 23 | 322 | Ş | 313 | 1.50 | ^ | | | 40 | 704,46 | 3.0 | 3 | 7.38 | 3.
2. | 782 | 末 | 228 | 91_ | エア | 9 | Μ | | 1- | 42.5 | 106.09 | 3 | 200 | 228 | . 252 | 23,73 | Š. | 22 | 97. | 3 | 977 | 3 | | r | 45 | P. 1501 | 59,7 | +9: | 229 | 254 | 200 | R | 0
7
8
9 | 9 | Ž | 9h? | O | | | 47.5 | ただ。このし | %3
 | 3 | 289 | 72.50 | 124c | Ī | 12 | ٢ | 56- | 1.60 | ∾ | | | 20 | | \$ ° | وا ا | 250 | B | 097 | ß | K | | 72 | 8: | 2 | | | 20 | | | |--|---
--|--| | | 22050 | Š.
V | | | | | | | | | | 9 | | | | | | | | | :: | | | | | z
t | stor. | | | | roje | per | | | | ۵. | 0 | 1 | | | | | Ē | | | | | | | | | | | | | | | | | *************************************** | | | 9 | | - | | | 85 | | | | | | | - | | | | | - | | | | | | | | | | | | | 120 | | No. | | | 100 | | Liveries despise | | | Les 2 | | | | | Imail | TO COLUMN A | ************************************** | | | F | | and the statement of th | | | | | Disprostupino | | | Series and series of the serie | | Particular Vandari | | | | ounder-deienmen | - Comment of Comment | | | 100 | | 1 | | | Point Clock Point Counting Offset Point Point Counting Offset Point Point Time R' R' R' Counting Offset R' R' R' R' R' R' R' R | the second secon | Haddonin departe experience blookers completende | | | | | | | ************************************** | n/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | L | L
16 | |--|--|--|--
--|-------------|--|--|--------------|---|--|------------------|----------|--------------------------|--| | Plant Location: Courties Ontaile Plant Location: APC Outlet No. Location: APC Outlet Plant Location: APC Outlet Plant Location: APC Outlet Plant | Date: NO | 19, 763B | Plant: | Covanta | YEC | | | lest No.: | | Karticulate/I | vietais | | ი | - 1 | | Clock Mater Probe Over ImpingerTemp Mater Probe Over ImpingerTemp Outlet Imite Probe Over ImpingerTemp Outlet Imite Probe Over ImpingerTemp Outlet Imite Prossure Over ImpingerTemp Outlet Imite Prossure Over ImpingerTemp Outlet Imite Probe Imite Outlet Imite Imite Imite Imite Outlet Imite | and the state of t | | Plant Location: | Courtice, O | ntario | | | Test Locatio | ï | APC Outlet N | 0 | | | The state of s | | Clock Dry Gas | | * |
Eurotemannetramentenannetrament | * | | * | | | * | 12. | * | * | * | * | | Clock Meter 0.P Desired Temp Tem | | | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | er Temp | Meter | .Temp | Meter | bumb | | Time R ³ "H ₁ O cfm "F "F "F "F "F "F "F "F "H ₂ O Cfm "F "F "F "H ₂ O Cfm "H ₂ O Cfm "F "F "F "F "F "F "F "F "F " | Point | <u> </u> | Meter | ۷۵ | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | inlet | Pressure | Vacuum | | 555 190, 84 140 251 241 570 144 140 63 144 140 572 144 140 <t< th=""><th>Martin Marin Indonesia Salama a salama</th><th>0</th><th>#</th><th>"H₂O</th><th>£</th><th><u>1</u>.</th><th>11
0</th><th><u></u></th><th>ᇿ</th><th>LL.</th><th>ii.</th><th>L.</th><th>Δ H
"H₂O</th><th>"Hg
Gauge</th></t<> | Martin Marin Indonesia Salama a | 0 | # | "H ₂ O | £ | <u>1</u> . | 11
0 | <u></u> | ᇿ | LL. | ii. | L. | Δ H
"H ₂ O | "Hg
Gauge | | 55 144,575 1,67 720 142 720 142 120 122 131 142 143 < | 88 | 52.5 | 702,84 | 69 |)
(*) | ر
چ | 12
12
12 | 1972 | 0 | Į. | Ę | J
F | 097 | 6 | | 8.5. 114, 94, 75, 133, 172, 183, 183, 177, 180, 180, 180, 180, 180, 180, 180, 180 | | 55 | 714,55 | (0.0 | 150. | 7007 | Š | .097
 - | 0 | 놁 | C | 7 | Q9.7 | M | | 8.5. 14.7. 7.1 1.4.8 1.5. 2.5. 2.5. 1.2. 1.2. 2.5. 1.7. 1.4.8. 1.7. 1.4.8. 1.7. 1.4.8. 1.7. 1.4.8. 1.7. 1.4.8. 1.7. 1.4.8. 1.7. 1.7. 1.4.8. 1.7. 1.7. 1.4.8. 1.7. 1.7. 1.7. 1.7. 1.7. 1.7. 1.7. 1 | | 57.5 | 22.91 | 59
 | ار
ا | 789 | また, | 92 | Ĉ | え | | 5 | 7.60 | M | | 625 17 27 18 25 123 17 27 17 25 25 15 25 17 25 17 25 17 25 17 25 17 25 17 25 18 < | 6 | 09 | 75'7 | 2 | 3
9 | 583 | 23 | 999 | b | 22 | Standard Company | 25 | 087 | ~ | | 875 | nego da de la componencia della dell | 62.5 | 74.72 | Ţ. | 800 | 283 | المحط | 158 | Ī | 233 | 77 | <u>σ</u> | |) m | | 67.5 7.2 7.2 2.5 | Solar-bendurandeliji mendeleji disantina paraten deletara | 92 | 85.72 | | %
J | 289 | 33 | 202 | 7 | 2,42 | 22 | 81 | 1.7% | ^ | | 7.7 7.7 1145 125 125 124 1284 125 125 127 <td< td=""><th>10</th><th>67.5</th><td>173.78</td><td>22</td><td>\$9</td><td>789</td><td>15.5
15.5</td><td>097</td><td></td><td>240</td><td>47</td><td>12/</td><td>144</td><td>Λ</td></td<> | 10 | 67.5 | 173.78 | 22 | \$9 | 789 | 15.5
15.5 | 097 | | 240 | 47 | 12/ | 144 | Λ | | 27.1 27.1 77.1 04.2 87.2 42.2 42.1 27.1 | | 20 | 23 27 | | 5 | 2 X C | 202 | 88 | 2 | 173 | | | 1,75 | 8 | | 15 128.1 15 163 185 18 | A CONTRACTOR OF THE PROPERTY O | 72.5 | 37.37.1 | Z C | 50 | 182 | ずら | 25.8 | 25 | 240 | 2-2 | 7 | 1,75 | ^ | | 80 731, 7c 1c 0u 285 254 260 50 240 77 75 1,40 81 825 723 34 0u 60 1,64 285 254 260 50 240 77 75 1,40 82 825 734,93 10, 0u 128, 252 240 50 240 77 75 1,40 83.5 734,93 10, 0u 128, 254 259 50 238 77 75 1,40 80 90 738,14 | T. | 75 | 12.87 | 891 | , s | 78% | 757 | 2007 | J | 25 | ۲ | | 05 / | Μ | | 82.5 72. 24.0 72. 72.0 72.0 73.0 72.1 75.1 73.0 72.1 82.8 83.5 72.1 72.1 72.1 72.1 72.1 72.1 72.1 72.1 | Transcruting and the second se | 77.5 | | 79 | 7
9
` | 785 | 3 | 260 | (b) | 2,40 | | 100 | 97.1 | <u>~</u> | | 85.5 753 24 1.0 1 284 256 200 1 258 77 75 140 180 885 75 258 77 75 140 180 180 180 180 180 180 180 180 180 18 | ************************************** | 80 | 97
 25
 1 | 9 | 2°, | 285 | 2.024
2.024 | 260 | 20 | 240 | ? | -S2 | 9 | 5 | | 134 93 1.00 1.04 185 92 82 146 32 146
146 | 12 | 82.5 | 7.52 12.1 | 3 | 3
3 | 783 | 220 | 097 | 25 | 2% | 7 | 2 | 02/ | Ν | | 1886.57 「LD LO LO LO LO LO LOS SEC 73.8 The Los Long Long Long Long Long Long Long Long | | 85 | 26 KSL | 3 | 79 | 787 | 252 | 260 | 29 | £ | | 8 | 05% | ^ | | | | 87.5 | 136,52 | 9 3 | 3
3 | 787 | 7,7 | 22 | 25 | 233 | | 1 | 04.7 | M | | | | 06 | | | | | | } | | | | | | | | | ACCUPATION OF THE PROPERTY | | | | | | | | | | | | | | | | ACT AND A STATE OF THE | | | | | | | | | | | | | | | | | | | OCEAN THE PROPERTY AND ADDRESS OF PROP | | CONTRACTOR | | | | | | | | | | | Name and descriptions and descriptions and descriptions are a second as seco | | | | | SHIP OF THE OFFICE AND AN | and the second s | | | | | | | | | | Marie de principa de principa de la constitución | | | | | mental seminar mental m | - | | THE | | | | | | | | 13.3 | | |-----------|---------------------|----------------| | 1 | as | 0.0 | | | I | I | | | - | - I | | | | | | | | | | | | 3 | | | | 1 | | | | | | - 1 | | | | | | | | | @ | @ | | | 8 | 2 | | | 4 | cfm@ | | | ~ | ~ | | | 1.0 | | | | | | | | | | | | | 0 | | | 100 | - | | | | U | | | | | | | | 1 | | | | | | | Initial Leak Check: | | | | C | 3 | | | S | nal Leak Check | | | U | 5 | | | _ | | | | ä | Ö | | | | 9 | | | 76 | CHARLES | | | 4 | 2 | | | Ξ | -=- | | | ewes: | ledin . | | | | | | | | | | | | 3 | | | | 3 | | | | -3 | | . 0 | | M | | ~ | | 4042/000 | | 16 | | 1 :: | | | نه | 8 | | رن | E | - | | Z. | | | | 8 | سه | 8 | | Traverse: | लि | inis | | - | Start Time: | 工 | | | | | | 1 | | l | |--------------|--------------|----| | 1 | | | | - 1 | | | | | | | | - 1 | | | | - 1 | | ١. | | - 1 | | | | - 1 | | 1 | | - : 1 | | | | | | ١. | | pm 1 | | | | 7 | | | | 2 | | | | \simeq | | | | 011 | | | | 4.4 | | 1 | | | | | | | | ١. | | | | | | | 1.11 | | | | 1.5 | | | | | | | 1 | | | | | and or | | | | 1 | ř. | | | Bar. | | | | - | 3 | | . 1 | 100 | 6 | | | | ١. | | | 1.1 | | | _ | 1,11 | 1 | | 0 | ** | | | 2 | San I | | | | 4 | 1 | | υl | 703 | | | 0 | 2. | | | 0 0000 | 0 | 1 | | 0 | Q. | ŧ | | ~ | 6 | | | | ~ | 1 | | - 1 | | ı | | | | | | | | l | | | | Į. | | - 1 | | • | | 1 | | | | 1 | | | | - 1 | | | | - 1 | | | | | | | | | | 1 | | - 1 | | | | | | | | | | 1 | | 3.11 | | | | | | | | 1 | | | | - 1 | | | | | | | | | | 1 | | | | | | | | 1 | | | | | | - 1 | | | | 5.53 | | 1 | | | | 1 | | | | | | | | | | | | | | | | | | - 1 | | ١. | | | | | | | | 1 | | . 1 | | | | | | i | | - 1 | | | | 1 | | 1 | | - 1 | 11.1 | 1 | | | | | | . 1 | | 1 | | | | 1 | | | | | | | | 1 | | 3 13 | | 1 | | | | | | | | | | | | | | 100 | | | | | | | | | 100 | | | | | | | 15.1 | | | | | | 1 | | | | | | Project No.: | Operator: 八八 | | # ORTECH Consulting Inc. | Plant | Covanta DYEC | |--------------------|-----------------------| | Plant Location | Courtice, Ontario | | Test No.: | #2 Particulate/Metals | | Test Date | * Nov. 9/2020 | | Test Location | APC Outlet No. | | Operator Signature | ture AAM | COE ZOOTY Legin L D Impinger Box No.: Meter Box No.: Project No .: Probe No.: Page | Pitot Factor | 1283 | | |---------------------|------------|--------| | DGMCF | 20,00 | | | Barometric Pressure | sure DD D1 | "Hg | | Static Pressure | 2,43 | "H20 | | Nozzle Size | .7.2.4.2 | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | 17 | inches | | Reading Interval | 2.5 | |-----------------------|--| | Number of Ports | more consistence and consisten | | Number of Points/Port | 12 | Probe Liner (GTass)/ Metal /Teflon / Other_ Site Diagram Glass/ Metal / Other Nozzle None /Metal / Teflon / Other_ Union Pitot Leak Checked? (Yes Notes: Š | | | | | Ŧ | | |-----|----|----|---|----|----| | | | | | Į | | | | | | | ı | | | | | | | \$ | | | | | | | ı | | | | | | | Ŧ | | | | | | | ž | | | | | | 4 | ŧ | | | | | | | ł | £. | | | | | | ٤ | 8 | | | | | | ŧ | | | | | | | ŧ | | | | | | | ž | | | | | | | ŧ | | | | | | | 1 | | | | | | | ž | | | | | | | ß. | | | | | | | ł | | | | | | | ŧ | | | | | | | Ŧ | | | | | | | ŧ | | | | | | | ŧ | | | 1 | ~ | • | | ŧ | | | O | - | 3 | | ş | | | | - | • | | ŧ | | | - 1 | | 5 | | Ŧ | | | | B | i | | ī | | | ٠ | - | , | ÷ | ŧ | | | - 5 | _ | | | ł | | | - 1 | n | 4 | | ŧ | | | - | - | • | | ŧ | | | 10 | - | ₽ | | Ł | | | | m | Ł | | ì | | | | | • | | ŧ | | | ~ | - | ; | | E | | | 1 | _ | ۶. | | ž | | | . 3 | | 8 | | £ | | | | ~ | : | | ŧ | | | - | | | | ı | | | | ~ | • | | ŧ | | | | ⋍ | • | | ٤ | | | - 1 | rč | ĭ | | ı | | | | • | • | | ŧ | ٠ | | £ | å, | | | Ī | -1 | | | | | | ŧ, | 1 | 00 | 00 | |-----|--------|-------------| | - | m 8 | mg | | 1 | | | | 1 | | | | . 1 | | | | 1 | | | | 1 | | 1 | | - 1 | | | | . 1 | | 1 | | 1 | | | | 1 | | | | . 1 | | | | 1 | | | | 1 | | 1 | | 1 | | 1 | | - | | | | | 200 | × 1 | | | (7) | 1 2 | | 1 | 4 | Marrie Land | | 1 | 2% | | | - 1 | W.) | Sizes | | 1 | 1.4 | | | | 1 1 | | | | | 1 | | 1 | | | | | 5.5 | - 1 | | - 1 | 1.0 | | | 1 | | | | -3 | | | | | | | | | . 11.3 | | | | 3.14 | | | 1 | 50.00 | | | 1 | | | | 1 | | | | | S | 9 | | | tel | rob | | | - | 0 | | 3 | 0 0000 | | | | L. | 0 | | | | | Moisture Gain | 0.0 | 0.0 | |---------------|-------------| | 20 | CO I | | - 1 | • | | | | | 1 | 1 | | - 1 | | | 1 | | | | 1 | | - 1 | ı | | - 1 | | | 1 | 1 | | - 1 | | | - 1 | 1 | | 1 | - 1 | | - 1 | . 1 | | | | | | | | | | | | 171 | | - 1 | 7 111 | | - 1 | A V | | - 1 | 1,100 | | $\sim \sim 1$ | 200 | | 3 | 7 11 | | α | | | | - (/) | | 1 1 1 | - 7/ | | 8 1 | ~1 | | -) [| | | 1 | | | - | 1 | | | 1 | | - 1 | | | 1 1 | 1 | | | | | | - 1 | | 1 | | | | | | | | | 1 | | | | | | 1 | 1.1 | | 1 | . 1 | | | | | | - | | 0 | α | | 1 | 60 | | James 1 | SLI I | | > | ω | | 5 | = 1 | | 6 3 | ages . | | ~ | escent | | - | oneneneed . | | | | Combustion Gas Concentration | Oxygen S:75 | % | |-----------------------|-----| | Carbon Dioxide しこし子 | % | | Carbon Monoxide (<) 🔾 | mdd | | Measuring Device | MII Numbers |
---|--| | | | | Probe / Pitot | S8803769 | | Trendicator | | | Control Box | COR 2009 4 | | Incline Manometer | COS 2009 4 | | Comb.Gas.Analyzer | | | Micromanometer | | | Barometer | | | Calipers | | | Seamony and control to the control of of | energy and the control of contro | | - | 60000 | District. | | 717 | | | T-2.8.81 | | Daniel Land | Marketh | | 6 | <u>L</u>
00 | |--|--|---------------------------------------|-------------------|-------------|--
--|--|--|-------------------|--|------------|---|--| | Date: Na./, 1/2/20 | 382 | 7 | Covanta DIEC | נ | A STATE OF THE PARTY PAR | | est No: | de | rainculate/welais | VIELGIS | | rdge 4 | n
5 | | | | Plant Location: | Courtice, Ontario | ntario | | | Test Location: | - | APC Outlet No. | lo. | | | | | | * | * | * | | * | | | * | | * | * | * | * | | | | Dry Gas | Pitot | | Stack | Probe | Oven | moing | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | 00
00
00
00
00
00
00
00
00
00
00
00
00 | Weter | ΔР | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | Inlet | Pressure | Vacuum | | (beliagonna documen | T. | en
dual
dual | "H ₂ 0 | £ | <u></u> | <u>u</u> . | <u>LL</u> | Ľ. | Ŀ | LLo | <u>.</u> | H O | "Hg
Gauge | | -1 | 0 | 738,52 | 190 | | 787 | 255 | 256 | 21 | 1.23 | 78 | 1,7 | 2,5 | 8 | | | 2.5 | CH. OH.C | 283 | C | 288 | 3 | 259 | 2 | 205 | CF | C | 2,2 | M | | | 2 | 34771 | 683 | 5 | 290 | 255 | 529 | ŝ | | 7 | 92 | 7.7 | 8~ | | 7 | 7.5 | すぎた | ક્ | E | 289 | 255 | 253 | 0 % | 221 | S 7 | 2 | 2.2 | ^ | | | 10 | 05.37 | 90 | F | 290 | 253 | 258 | e
S | 727 | 72 | 7.5 | Ñ | M | | | 12.5 | 75.85. | 967 | F. | 28% | 255 | 2.58 | 85 | 225 | 2 | 22 | ふ | ~ | | m | 15 | 150.4 | 881 | 35 | 1.82 | 257 | 0% | 87 | 122 | 2 | \$7. | 2,0 | M | | 1 2 | 17.5 | 752.31 | 上8 | 1,7% | 289 | 286 | 253 | 9 | 22% | 75 | 15 | 2,0 | ~ | | ₹., | 20 | 21:16 | £8. | , s | 637 | 1274 | 0
72 | 5 | 230 | -52 | 78/ | 2 | 0 | | 4 | 22.5 | 756.07 | Į
K | 1.73 | 239 | 222 | 160 | ょ | ~~~ | ۴ | N
P |
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | ^ | | | 25 | PB 122 | Ø | . 72 | 289 | 097
 - | 1072 | T
T | | 5 | 7 | 26.7 | ~ | | | 27.5 | 759,75 | ٥, ١ | 172 | 587 | 200
200
200
200
200
200
200
200
200
200 | 097 | χ
Τ | 737 | 9 | 8 | 28.7 | M | | រភ | 30 | 0 NS | 0 | %
(
) | 33 | 000 | ()
()
() | 80 | 22,27 | 92 | Š | 9/::/ | M | | | 32.5 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | \$
- | ю
С | 789 | 222 | 259 | ∞
J | 230 | 9
L | 8 | 0h/ | N | | | 35 | 765.00 | Ť | (X) | 22 | 3 | 3 | و
ت | 230 | 2 | 13 | 1,7 | Μ | | ပ | 37.5 | 76.30 | \
\
 | 75 g | 28.6 | 93 | 7,5% | <i>S</i> | 200 | 32 | Y | 1,55 | Μ | | | 40 | 16837 | \ | 1,60% | 788 | 22 | 3 | J
J | 230 | 92 | 12 | 122 | ~ | | | 42.5 | 2 OL | \
9
- | 59. | 282 | 20 | 2,00 | <u>3</u> | 232 | 9/_ | 7 | 1,53 | ~ | | 7 | 45 | 7-1/28 | 000 | 7: | 887
7 | 250 | 097 | J | 230 | 8 | 2 | 1,00 | M | | | 47.5 | 773.5% | 50% | 89, | 288 | 2
2
2 | 297 | ブ | 7.82 | 82 | ٥ | 0017 | M | | | 20 | 22/201 | 63). | 29, | 788 | 7.97 | 252 | 25 | 23.2 | 133 | 2 | 933 | c^1 | | Secretaria de la companya del companya de la companya del companya de la del la companya de company | | | | | | Andrew Comments of the Comment | - CONTRACTOR CONTRACTO | PATRICIA CONTINUES CONTINU | | And delication of the Control | | | A PARTICULAR AND | | Traverse: | | |---------------------|--| | Start Time: ારુ. 2વ | $[3:24]$ initial Leak Check: , 006 cfm@ (${\cal F}$ "Hg | | Finish Time: | Final Leak Check: cfm@ "Hg | Project No.: 22050 Operator: $\hbar \sqrt{JB}$ Project No. | Dry Gas | Date: A. | * | Disnt | Covanta DVEC | VEC | | Toc | No. | | Darticulate/Motals | Motale | NAME OF THE PROPERTY PR | Dage 3 | r, | |--|--|--
--|--|--|--
--|--------------|--|--------------------|----------|--|---|--------------| | Color | Nate: Nate: | 4.200 | 01224 | | , to the contract of contr | | | | 7. | A DC Outlot N | Cimona d | - | , | : 1 | | Clock Mater Pitot Proble Over Impliage Temp Meter Proble Over Impliage Temp Pitot Proble Over Impliage Temp Pitot Pito | | | Mant Location: | Coursee, O | ntario | *************************************** | THE PROPERTY OF THE PERSON NAMED | lest rocatio | *** | APC Cutter i | MG. | APPRILITY OF THE PROPERTY T | *************************************** | | | Clock Mater Lab Stack Probe Outen Impiger Termp Mater Time Mater Lab Termp T | | * | *************************************** | * | | * | | | * | | * | * | * | * | | Time Ref. No. Cont. No. Cont. No. Cont. No. Cont. No. Cont. No. Cont. Co | | | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | er Temp | Mete | rTemp | Meter | Pump | | Time | 2 | Clock | Meter | Δ D | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | <u>5</u> | Pressure | Vacuum | | 825 788 252 244 235 178 1 | ं य. | Time | £ | O,H. | J | | L. | u. | LL. | • | ide
o | Ľ. | ΔH
"H ₂ 0 | "Hg
Gauge | | 55 778, 74 7,68 288 252 74 77 76 77 | co | 52.5 | 177.00 | 040 | 89" | 288 | 252 | 25% | 77 | 230 | 67 | | 9// | M | | 575 786,43 3, 45 1.8 260 242 44 230 79 77 76 60 785 785 240 261 262 744 1232 79 77 77 76 60 785 785 240 261 262 744 1232 79 77 77 77 75 75 75 75 75 75 75 75 75 75 | | 55 | | P.: | Х
У
У | 288 | X82 | 0°37 | I
I | 222 | 52 | C | 9 | M | | 6.5 782.87 7.40 1.62 1.88 2.44 2.52 79 77 1.6 6.5 785.87 2.44 2.52 79 77 1.4 1.5 6.5 785.87 2.44 2.44 2.32 79 77 1.4 1.5 6.5 785.83 2.44 2.44 2.32 79 77 1.4 1.4 1.5 77 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 | | 57.5 | 7(80,43 | 24. | , K | 7.88 | 760 | 7,87 | J | 220 | 5 | | | ∞ | | 6.55 782.88 | o, | 09 | 782,15 | 1. The | 299 |)
(조전 | 3 | 3 | 3 | 223 | | Company of the same | S | M | | 65 785.453 41 64 788 264 44 232 79 70, 174 675 787 878 875 878 875 79 70 70 70 70 70 70 70 70 70 70 70 70 70 | 2 | 62.5 | 783,88 | Carrent 1 | 59 | 283 | 264 | 200 | 3, | 222 | 82 | | | 0 | | 100
100 10 | | 65 | 785/63 | 7 | 691 | 222 | 707 | 7,7% | ž | 23.2 | 9 | S | 4 | ~ | | 7.5 | 10 | 67.5 | 187,39 | 24/ | 693 | 287 | カタて | 202 | 7, | 22.0 | | 97 | 1.7 | M | | 7.5 196,90 1-4 | | 70 | 21.187 | 26 | 5° ° ° | 7.7.7 | 7.62 | 097 |)
J | 232 | 5 | # | * | ď | | 13 147 | | 72.5 | 790.90 | 74. | 699 | 982 | 7
3
2 | 300 | Ş | 282 | QQ | # | 7:1 | M | | 80 | ç=4
v=1 | 75 | 2017 | , 7.4
4 | 3 | 226 | プロス | 78.5 | \$ | 222 | 0% | Ref. | J., | ~ | | 82.5 年 28.7 34 12.1 54.7 48.7 元3. 年 3.2 59.7 73. 82.8 1.4 1.4 元 3.5 元3. 34.7 元3.7 元3.7 元3.7 元3.7 元3.7 元3.7 元3.7 元3 | *************************************** | 77.5 | 9 72 MbL. | ナン・ | -C9 | 286 | 2.6 L | 1972 | ر
ا | 232 | 00 | 1 | 3 | · 0 | | 82.5 47.48 , 54 , 62 324 44 34 145 252 80 78 14 14 87 800. 82 52 80 78 14 14 87.5 800. 82 53 . 58 . 59 . 59 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 2 | | 80 | 795.87 | (A) | ر
ارئ | 187 | 263 | 332 | 95 | 222 | 8 | 1 | 7. | C | | 800.63 59 162 284 260 46 232 80 78 1/4
800.63 58 162 284 260 261 46 232 81 78 1/4
802.21 8 78 1/4 | 12 | 82.5 | N T COL | J. | 7.097 | 734 | 597 | 200 | 9
T | 32 | 0% | The state of s | 3 | ~ | | 800.63 53 50.02 284 260 261 46 232 81 78 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 | | 85 | 20605 | 4 | -
2
2 | 182 | 202 | 7,60 | S | 22.2 | 0 | <i>></i> | 3 | <u> </u> | | 862.7 | | 87.5 | 800.63 | 8 | 7.9 | 787 | 260 | 3 | J
2 | 22.5 | ~ | 8 | 51 | M | | | | 06 | Se 2. 2. 1 | repaint (Chinase and Chinase) and the control of th | - Commission of the property o | | AND THE PROPERTY OF PROPER | | | | | | | | | | | | | | TANAMAN DE SE TRANSPORTE TRANSPORT | | | | The control of co | | | | | | | | - | | | | - Announcement of the Control | THE REAL PROPERTY AND ADDRESS OF THE ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY T | ONE OF THE PROPERTY PRO | | STATES AND THE | | | | | | | | | | | *************************************** | | | | | | | | AND THE PROPERTY OF PROPER | | | | | | cfm@ cfm@ Start Time: ユルチラ | Initial Leak Check: Finish Time: ノイ:シラ | Final Leak Check: 、このと Traverse: ? Operator: NG RW Project No .: | Date: Nov 9,7678 | \$200 b | \neg | Covanta UYEC | יל
הל | | | lest No.: | 7 | Particulate/Metals | vietals. | | rage 4 | 01.0 | |--|---------|--|--
--|--|-----------|--|--|--------------------|------------|------------
--|--| | | | ľ | The state of S | and the second name of secon | Commission of the o | | The second secon | The second secon | | • | | | | | | | Plant Location: | Courtice, Ontario | ntario | | | Test Location: | Ë | APC Outlet No. | 9. | | ACCOUNTY OF THE PROPERTY TH | Language Confedent Confede | | | * | * | * | | * | | | * | | * | * | * | * | | | | Dry Gas | Pitot | | Stack | Probe | Oven | 3uidwi | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | <u>م</u> | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | Tet | Pressure | Vacuum | | A A A A A A A A A A A A A A A A A A A | Time | £ | "H ₂ O | Ę | LL-
o | u. | ۴ | ! - | LL | U. | LL. | # 0° H ZO | "Hg
Gauge | | The state of s | 0 | 19:208 | 98.0 | 92.9 | 286 | 725 | 265 | (9) | 745 |
.% | 67 | 1.9 | Μ | | P. ANALISA (CONTRACTOR CONTRACTOR | 2.5 | 92.7.08 | 98.0 | 91.0 | 286 | 797 | 3 | <u></u> | 218 | 86 | 81 | 61 | ~ | | | 10 | 806.33 | 0,00 | 0 08 | 7.86 | 132 | 197 | 9 | 228 | 86 | 29 | <u>ر</u>
ز | \sim | | 3 | 7.5 | 208, 29 | 200 | £. | £82 | 797 | 260 | 3 | 736 | 08 | 84 | 1.8 | ~ | | Communication and Complete of the American Complete of | 10 | 40.00 | \$
\$ | 2, | 482 | 797 | 097 | 35 | 232 | 7.9 | 82 | | 9 | | | 12.5 | 84:18 | | 7. | Z87 | 792 | 760 | \mathfrak{T} | 232 | 80 | <i>چ</i> و | 8/1 | M | | m | 135 | 86,78 | 78, | - T
T, | £32 | 507 | J60 | <u> </u> | 232 | 88 | 212 | 0 | 67 | | | 17.5 | 5).
SIS: | 78) | <u> </u> | せるし | 787 | 200 | <i>J</i> | 225 | Ş | C
C | 3 | ď | | | 20 | 1817.49 | 187 | | 7.87 | 737 | 7.60 | 3 | 724 | <u>%</u> | 64
F | N | Q | | ্ব | 22.5 | (2) (4) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | . 8 | | 737 | 26.3 | 0,97 | 3 | 22 | 80 | 8/ | 0; | ~ | | NA CONTRACTOR DE | 25 | [2:128] | - 100
- 100 | P, | 422 | 767 | 260 | 55 | 235 | R | 82 | 67 | 0 | | | 27.5 | 823 (9 | ; ;
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | 2, | £27 | 2002 | 260 | J | 787 | 8 | 2 | 5.7 | M | | ro. | 30 | \$2.50 K | jî. | 1 | £272 | 263 | 2.60 | チ | ふ | 0 | <u>5</u> | 81/ | ~ | | | 32.5 | 821978 | 14 | 7 | 282 | 202 | 260 | ゔ | 22. | Ş | 7 | X
' | ~ | | | 32 | 85,728 | 77 | 1 | 7.89 | 26.3 | 7 | I
N | 382 | N | 5
[| 8// | M | | 9 | 37.5 | 87.088 | 3. | 993 | 6×2 | 24.3 | | か | 22
2 | 8 | ς
[| 1,5 | <u>۸</u> | | | 40 | 432.14 | 3, | 9) | 28% | 3
 3 | 1977 | ς
Σ | 3 | 81 | 51 | \
\
\ | ~ | | The second of th | 42.5 | 8837.79 | 50) (| 30/ | 682 | 292 | 260 | + | 234 | ~ | 5 | 1.5 | ^ | | 7 | 45 | 835.43 | 87, | 59 | 687 | 7.07 | 262 | け | 2,2,2 | (XO | 5 1 | 1.7 | ~ | | The security of o | 47.5 | 837,19 | ト
ト
・ | 59
9 | 1,82 | 997
 | 1260 | 7 | 72.52 | K | 7 | 7.1 | M | | | 20 | 36.858 | 1.00 | <u>5</u> | 0
5 | \$92
2 | 1972 | ئ
بر | 235 | √ 0 | 61 | 1.7 | M | | | 50 | | |-----------|---|--------| | | = | = | | | | - | | | | - | | | | - | | | *************************************** | - | | | | | | | cfm@ | 6 | | | Ш | ٤ | | | ਹ | Ø, | | | | | | | | | | | sites ² | | | | 0 | | | | 0 | | | | | 100 | | | | | | | Ç | Z | | | k Check | 8 | | | S | k Cha | | 1 | C. | 뀵 | | | ĭ | Š | | | Initial Leak C | | | | nit | £ | | | totalia. | ۲ | | | | | | | 1 | | | | 2 | | | O-Control | , page | | | | | | | | | 8 | | انة | ű | E | | LS | Ē | ۲ | | Ne | 14.0
14.0
14.0 | dan da | | Fa | Start Time: | 2 | | | 00 | 100 | Project No.: Operator : ্যান্ত | | | | | networkstonesson was reconstructed as | | NAME OF THE PROPERTY PR | - ž | Management and an analysis of the second se | The same of sa | A . A | ************************************** | L | 7 | |--
---	--	-------------------	--	--
--	--	-------------		Date: No
--		Pitot Factor	8h8 '	
--		# * * * * * * * * * * * * * Clock	ired m m m red 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Annual Control	annual of			
--	--	--	--	--------
--	-----------	------------	----------	------------------
--	---	---	-------------------	---
--	-------	--	--	--
--		Date: Nov. (0	0202 0	
--	--	--	--	
--	--	--	--	--------------
--	--	--	----------	--------------
121,74 8.5 1		57.5	130, 23	23.
--	----------	---	------	------
--		DGMCF	500	
--		Clock Time 0 0 2.5 5 7.5 10		Dontario Desired cfm .81 .81 .74 .74
---	--	--	--	
--	---	------------	------------	---------------
U. .	ΔH "H ₂ 0	"Hg Gauge		555 674, 11 1,41 1,44 1,45 1,55 <
Printerpr	77.5	8元十	**************************************	.88
---	-------------------	--------------	--	--
--	--	-----------		Date: 866
--	---	--		Project No.:
--	--	--	-------	-------
--	-------------------	--------------		Plant Location: Countice, Ontario Plant Location: APC Counter, Nater Plant Location: Stack Probe Oven Impiriger Temp Temp Temp Outlet Inlet/Trap
227	77	93	2.2	0
--	--	--	---	-------
--	--	--	--	
--	--	--	--	----------
--	---------------	--	-------------------	--
---	-----------------	---	--	------------
--	--------------------	---	--	----------------------
--	--	---	--	--
---	---	--	--	--------------------
--------------------	-----------------------		Plant Location	Courtice, Ontario
--	--	---	--	--
--	---	--------------	-----------------	---
--	--		8 2	0 2020
	And the second s			1
--|--|--|--
--|---|--|--|--
--| | Date: 252 1570 | 10,2020 | ::
6
2 | Covanta DYEC | Z
L | | | lest No.: | ^ | Particulate/Inversis | vietais | | гаве з | Of 5 | | | construction of the contraction | Plant Location: | Courtice, Ontario | ntario | | | Test Location: | n: | APC Outlet No. | ್ಲಿ | | | | | 100m | * | * | * | | * | | | * | | * | * | * | ¥ | | | | Dry Gas | Pitot | | Stack | Probe | Oven | Buidml | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | A A | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | net | Pressure | Nacuum | | | E | £ 3 | "H ₂ O | ctm | 13.
0 | LL
0 | <u> </u> | ¥. | Liu
o | G G | <u>u</u> | T O | E C | | *************************************** | Acres (1997) | | | | | | | | | | | 7 | 200 | | 80 | 52.5 | 1 \$ '229 | ,
,
, | 10.5 | 982 | 2°97 | 976 | σ
Σ | 23.5 | 9 | 26 | 0,1 | Ø | | | 55 | 1020, 21 | 39). | T+ () | 222 | 837 | 3 | ح
ک | 22.2 | 0 | 8 | 9. | M | | | 57.5 | 1630, 93 | f-0; | 75 | 286 | 3,0 | 030 | J | 230 | 8 | X | 9 | ^ | | O | 09 | [0.52.63 | \$9° | (0,0) | 286 | 2.63 | 2.66.1 | T
T | 232 | <i>و</i>
لا | 00 | 27 | M | | | 62.5 | 1034, 32 | 3 | 799: | 285 | 203 | 3 | 5 | 23.1 | 30 | | 1,5% | ~ | | | 65 | 635.99 | 3 | 39, | 282 | 202 | 197. | प्व | 23.2 | 8 | and the second | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ľ | | 9 | 67.5 | 16377.68 | 99) | £9- | 285 | 263 | - 1972 | ざゴ | 232 | 80 | | 6.53 | M | | | 20 | 10.59.35 | 75, | 150 | 285 | 593 | 797 | 7 | 182 | - 82 | 6 | 1.58 | M | | and an article of the state | 72.5 | TO TO | 2 | から | 285 | 78 | 133 | 5 | 182 | \(\) | C T | The 'V | <u>۲</u> | | Ţ | 75 | 1642 F | 745 | 18 | 285 | 223 | 707 | \$ | [23] | % | 22 | 7.07 | Μ | | | 77.5 | F1. F1.02 | \$h: | ,55 | 285 | ?9
? | 1077 | * | 787 | Š | 0 | ン
の
・ | ~ | | | 80 | 1045,576 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ٤, | 285 | h9'C | 762 | なり | TO CO | Ş | 200 | 10 N | S. 18037 | | 12 | 82.5 | 10 72 40/ | ,
1 | 35. | 285 | 707 | 7.61 | T
T | 7,07 | Q | ж
Г | 700 | M | | | 82 | 77,840 | | 25 | 285 | <i>ከግ</i> ጌ | 797 | 5 | 122 | 20 | (X)
[| \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | 0)
0,0 | | w. | 87.5 | 10.4g, 450 | 5, | S | 285 | 52 | 26! | ナゴ | 222 | <u>~</u> | × | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | رم
زم | | and because the second | 06 | 1051, 28 | | | | | | | | | Ø. | | | | | | | | | | | | : | ì | | | | | | | | | | | | | | | - 1, | tionalahan madat pengangkan anakan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan | The state of s | | THE STATE OF S | o entropriorismente de la companya d | | | *** | | | | | | | | Andre de la company comp | | | | | | | | | | | | | | | designations of the second | | edicemental control of the o | | ACCOMENDATION OF THE PROPERTY | ANTONIO MENTENDE ANTONIO MENTENDE DE PROPERTO PROPE | Topocontestina de la companida dela companida del companida del companida dela companida del l | Angelegensternen in den kommen in einer Schale in den der Schale in | ACTION OF THE PROPERTY | Name and particular and the property of the particular and particu | deconverses com anno en entre en | Periodical Control of the | | Iraverse: | | | | A CONTRACTOR OF THE PARTY TH | |------------------|---------------------|----------|----------|--| | Start Time: | Initial Leak Check: | | cfm@ | E
E | | Finish Time: パンロ | Final Leak Check: | 9
00' | clm@ S | <u>8</u> | Project No.: Operator : 22050 BRW | edirent-francesische des eine entwerten eine eine eine eine eine eine eine e | | | | ~ · · · · · · · · · · · · · · · · · · · | | | 1 1 1 1 1 1 | 60 | a/ | A - A - 8 | | | | |--
--|--|--|--|--
--|--|--|---
--|--|---|--| | Date: Now 16, year | 0, 2020 | Fant: | Covanta DYEC | אה.
רבינ | | | lest No.: | ^) | Particulate/Wetais | vietais | A STATE OF THE STA | rage 4 | o io | | | • | Plant Location: | Courtice, Ontario | ntario | | | Test Location: | | APC Outlet No. | 10. | | | | | | * | * | * | | 劳 | | | * | - % | * | * | * | # | | No seal Europe Course of Control Con | NOT THE TOTAL CHANGES TO SERVICE CONTROL CONTR | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Meter Temp | Meter | dwnd | | Point | Clock | Meter | 0 V | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | met | Pressure | Vacuum | | *************************************** | Time | m | 0
| Ç
H | L. | 바 | LL-
O | <u></u> | U. o | u. | ᄔ | T V | T. | | | | | | | | | | | | | | "H ₂ 0 | Gauge | | 4 | 0 | 1051.70 | ×
×
× | th, | 285 | 7
7 | X 97 | 9
I | 282 | - R | ₩
₩ | 00.7 | ς
Ω | | | 2.5 | 10573, 66 | 80 | ۲, | ۸
۷
۷ | 750 | 500 | 9 | 223 | 22 | R | 2.50 | 8 | | | ហ | 1035 102 | 82 | | 880 | 260 | 201 | X
T | 20 X | 2× | %
© | 0 7 | 0 | | ~ | 7.5 | (057,53 | , Z, | 7 | 288 | 3 | 202 | 9
7 | 230 | (X) | G
V | 93 | 0
13 | | | 10 | 25'6591 | 68. | 144 | 223 | 0
0
0 | 263 |)
T | 78 | × | 5 | 2,10 | 0 ~ | | | 12.5 | | 1 8a | F. | 5%2 | 192 | 797 | 95 | 232 | 200 | 79 | 2.10 | 3.0 | | m | 15 | 27.592 | 0%3 | 6. | 583 | 137 | 255 | 93 | 232 | 80 | 79 | (1.90 | 20 2 | | THE THE PROPERTY OF PROPER | 17.5 | 1065,34 | 200 | 22: | 28 | 260 | 797 | ÿ | 232 | 80 | 29 | Ç. | (N | | м-даминистичный урожностим поветь метом (поветь метом поветь по | 20 | 5,592 | 800 | .72 | 3 | 797 | 3 | 9
5 | 23.3 | 20 | 29 | 8 | M | | 4 | 22.5 | 10,69,07 | 0% | ĉ | 580 | 797 | 53 | 3 | 233 | 18 | 7.9 | ♂ : | 2 | | Омерния вения возразе |
25 | 2.0.0 | 89 | 2 | 0,57 | \$63 | 3 | 9 ₁ | 233 |)
% | | 63 | ~ | | | 27.5 | 08.71.0 | 983 | ~ | 290 | 592 | 792 | 3 | 233 | ક | 62. | ري ح | m | | N | 30 | 19 hU03 | 01، | 691 | 240 | 263 | 2.59 | 9 | 233 | 8 | 80 | | M | | | 32.5 | 1676.43 | Ç | <u>ر</u> ع | 290 | 593 | 155 | 3 | 233 | 80 | 80 | | €~ | | | 35 | 81.8131 | 2 | 92, | 290 | 97 | 652 | 95 | 233 | <i>-</i>
00 | 0 | ~ | ~ | | o | 37.5 | 10 NO | 20, | ŝ | รี้ | 572 | 22 | 95 | 232 | 70 | 80 | V) | ~ | | Description of the second t | 40 | (9,180) | 9, | \$9; | 291 | 762 | 2.58 | ş | 232 | Š | 80 | ņ | M | | | 42.5 | 683.30 | 59 \ | 99 | 79 | 797 | 192 | ? | 23.1 | <u>~</u> | e., | 8) | 2 | | - | 45 | 36,7801 | Com- | 293 | 1,62 | 26) | 28.1 | 5 | 231 | 25 | % | | N | | | 47.5 | 0%0,0 | 7 | Ş | 150 | 263 | 260 | S | 23.1 | 2% | 80 | | M | | | SS | (r. 880) | <u></u> | 693 | 152 | 797 | 192 | L), | 23.2 | 20 | 80 | - | N | | CONTRACTOR OF THE PROPERTY | | nin den skalander staten en staten skalander kompanisk en skalander skalander skalander en skalander skalander
Kantalisten kander staten skalander skalander skalander skalander skalander en skalander skalander skalander s | Actorial experience control of the c | all described to the second se | acjobal Caracita de manda esta Caracita de Marcela de Antidos de Caracita C | edinamentary material and control entering cont | ADVOORDE DANSESTITUTORING CONTRACTORING CONT | Antiprocession of the contract | TOTAL CONTRACTOR STATEMENT OF THE PROPERTY | Constitution of the Consti | ANAMAGEMENT CONTROL OF THE PROPERTY OF THE PARTY P | Name of the Party | Appearance and American Committee of the | | Traverse: 2
Start Time: 19/13 Initial Leak Check: 、ららら cfm@ 1 9 "Hg mass vines: 13/13 Initial Leak Check: 1800 19 "Hg mass vines: 18/13 Initial Leak Check: 1800 19 19 19 19 19 19 19 19 19 19 19 19 19 | жения в применяющий приме | Construence and a second secon | |---|---|--| | | raverse: 🦙 | | | William Strategies of the second strategies of the second | Start Time: 13:12 Initial Leak Check | | | | Phish Time: Final Leak Check: | CIM (D) | F 00 : 子三年 Project No.: Operator:)似 水心 | D-55. | newsoners and an analysis | Disak | Courses DVEC | VEC | | 101 | Tort No . | - Pariodistria del Caracteria Ca | Dartionitato (Matale | Mobale | | 2000 | LI
S | |--
--|--|--|---
--|--|----------------|--|--|--|--
---|--| | Vale: No | Vale: New 16 2026 Figure | | רטעמוומ ה | ונ | | | יים ביים | | רמו הרחומה לו | Victory | | ۱ د | - 1 | | | | Plant Location: | Courtice, Ontario | ntario | * OF THE PROPERTY PROPE | O DESCRIPTION OF THE PROPERTY | Test Location: | .: | APC Outlet No. | 40. | | | | | ~ å | * | * | * | | * | | | * | | * | * | * | * | | TORRESCHIPTOMOCONIA CELESCOCIONI VACADA DE ESCUCIONA PARA | | Dry Gas | Pitot | | Stack | Probe | Oven | guidm | Impinger Temp | Meter | Meter Temp | Meter | Pump | | ë
ë
ë | Clock | Meter | A A | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | inet | Pressure | Vacuum | | | Tine | en
No. | "H20 | cfm | <u></u> | <u>.</u> | <u>u</u> | ų. | ų. | <u></u> | LL. | T d | T
T | | | | | | | | | | | | | | H ₂ 0 | Gauge | | 00 | 52.5 | [] (000) | Ē | 59; | -57 | 3 | 3 | T | 782 | 8 | 0 8 | | Ç | | | 22 | (0a) (80) | r, | 2 | 29,1 | 15972 | 133 | T | 272 | 28 | 0
W | 8.7 | m | | | 57.5 | \$ (B) | | ور ، | 291 | 763 | 780 | f. | 272 | 28 | 20 | 90, | ~ | | თ | 09 | 15.500 | 2. | C | 12 | 13 | 761 | 35 | 231 | 82 | R | , SQ | end. | | | 62.5 | 047.30 | 36. | 21, | 289 | 263 | 260 | Ş | 231 | 82 | 0
% | \$ | M | | | 65 | <u> </u> | | - | 182 | 563 | 097 | 5 | 231 | 28 | 00 | × | \sim | | 10 | 67.5 | 1,001 | 2, | 69 | 289 | (92 | £92 | 7 | 0(2 | 83 | 2,0 | L') | <u>~</u> | | | 20 | \$ 70 E | 2. | ر
د و ع | 289 | 263 | 263 | Ŗ | 230 | 83 | 80 | 2,7 | W | | Amministration and the second | 72.5 | (S TS) | P | 69 | 282 | 592 | 792 | 39
F | 200 | 82 | 98 | 3 | M | | 11 | 75 | 105.31 | SS | 19 | 290 | 797 | 292 | 87 | 230 | 7 | 80 | ĭ | 8n | | Average management of the control | 77.5 | (2. (2) | S | 59. | 290 | (97 | 792 | ጸኑ | 2.28 | 83 | 18 | ~ | <u>~</u> | | | 80 | (5.00) | \$\$ | \$9.1
 | 290 | 263 | 292 | X.7 | 228 | 83 |
 | £.3 | Μ | | 12 | 82.5 | Co. 117 | Ş | 19, | 220 | 263 | 7% | × | 222 | 83 | 10 | M | M | | | 82 | 79773 | J, | - | 74 | 263 | 197 | e j | 227 | 22 | 80 | ~ | 8M | | маринария по | 87.5 | Parent Pa | \$ | 3 | \$ | 725 | 7.97 | 5 | 22 | 28 | 80 | ^ | M | | Market Michigan Company (Market Company) (Market Company) | 06 | 98:5111 | | | Ŧ | | | | | | | | | | Apparence of the state s | | | | | оомиченосемили по | | | | | | | | | | | | | | | TO THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OW | | ê | TO THE PROPERTY OF PROPERT | A THE STATE OF | | | NA de la composition della com | Notes de la constitución c | | Managed Control of the th | Support Procedural State (Support State (Support Support Suppo | STATES CONTRACTOR ASSOCIATION OF CONTRACTOR | and compared to the contract of o | and the special contract of th | MATCHES AND THE CONTRACTOR OF | mentalpresedanters before the control of contro | | | ADDAMENT PROPERTY OF THE PARTY | NATIONAL PROPERTY OF THE PROPE | Toposettistatistististatististatististatististatististista | ************************************** | Control and the supplemental property of | Perturbation of the Control C | | Iraverse: 2 | | |-------------|------------------------------| | Start Time: | Initial Leak Check: cfm@ "Hg | | Finsh ime: | Final Leak Check: "Hg | Project No.: Operator: 315 12W #### **APPENDIX 5** Particle Size Distribution Field Data Sheets (12 pages) | Plant | Covanta DYEC | |--------------------|-------------------| | Plant Location | Courtice, Ontario | | Test No.: | 1 Particle Size | | Test Date | NNEMBER 10, 2020 | | Test Location | APC Outlet No. 1 | | Operator Signature | ē | | Pitot Factor | のながら | | |---------------------|-------|--------| | DGMCF (| 200.0 | | | Barometric Pressure | まる | "Hg | | Static Pressure | 800 | "H20 | | Nozzle Size | Ē | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | 7 | inches | | | 2 | t 12 | |------------------|-----------------|-----------------------| | Reading Interval | Number of Ports | Number of Points/Port | Probe Liner Glass / Metal /Teflon //Other PFA Glass (Metal)Other_ Nozzle None (Metal) Teflon / Other_ Union S Pitot Leak Checked? cady to toat a 145 Notes: Particulate Gain | Fitter | олучном минения верененно сключения предведенностью предведен | an B |
--|--|--| | Probe | | mg | | Moisture Gain | | | | | | | | CWTR | いざり | 60 | | The state of s | AND DESCRIPTION OF THE PROPERTY PROPERT | The state of s | | mbustion Gas Concentration | | |----------------------------|--| | Gas | | | ō | | | bust | | | <u>_</u> | | WCBDA | Oxygen 8.36 | % | |----------------------|-----| | Carbon Dioxide 10,93 | % | | Carbon Monoxide (3.8 | mdd | | Project No.: | | | 22050 | | |----------------|-----|------|-------|--| | Page | | qual | of | | | Probe No.: | | | | | | Meter Box No.: | ::0 | | | | | * * | | |-----|--| el. | 80 | | | | | | 100 | - | Measuring Device | Probe / Pitot | Trendicator | Control Box | Incline Manometer | Comb.Gas.Analyzer | Micromanometer | Barometer C | Calipers | |------------------|---------------|-------------|-------------|-------------------|-------------------|----------------|-------------|----------| | MII Numbers | | |) (32) | | | | | | | 1 2 6 4 9 | Nozzle Measurements | | 7 | m) | 4 | Average: | |-----------|---------------------|--|---|----|---|----------| |-----------|---------------------|--|---|----|---|----------| | Point Code Print | | 1 | | | | | | | | | The second secon | | Seattle Committee | 10000 | |---
--|--|--|--
--|--|--------------|--|--|----------------
--|--|-------------------|--| | Cook Mycora Phot Photo | | | Plant Location: | Courtice, On | tario | | | Test Location | n: | APC Outlet N | 10. | | | | | Clock Dry Gass Pitch Stack Probe Over Implinger Temp Meter Prope Over Implinger Temp Prope Over Implinger Temp Prope Over Implinger Temp Prope Over Impline Implied Impl | | 쑛 | * | * | | * | | | * | | * | * | * | * | | Clock Maker AP Desired Temp | A CONTRACTOR OF THE PROPERTY O | MATERIAL PROPERTY OF THE PROPE | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | er Temp | Meter | Temp | Meter | Pump | | Time If The Hole of The Third Control of The Third Control of The Third Control of The Third Control of Thir | Point | Clock | Meter | ۵ | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | met | Pressure | Vacuum | | O O O O O O O O O O | | 2 | 7 | D
H
H | cfm | | LL. | L | il. | LL. | <u> </u> | <u>.</u> | # 0,7
1,70 | "Hg
Gauge | | 10 to 3.64 126 288 246 53 40 11 13 38 3 3 4 10 10 10 10 10 10 10 | | 0 | 000 | .82 | .35 | | 1 | 745 | 07 | 000 | 0 | | W. | 3 | | 21.1 10.70 71 128. 240 53 40 71 74 38 3 50 40 71 74 38 3 50 71 74 10 30 3 71 74 10 30 3 71 74 10 30 3 71 74 10 30 3 71 74 10 30 3 71 74 10 3 71 74 10 3 71 74 10 3 71 74 10 3 71 74 10 3 71 74 10 | 7 | 5.0 | 12°50 | | | 280 | など | 290 | 75 | N | Ţ | 7 | W. | V | | \$\frac{900}{900}\$ \text{ intial teak Check: } \frac{0.5}{900}\$ \te | m | - | -5/2
 Σ/2
 -5/2 | 7 | | 0,80 | 1822 | 953 | N | ' S | F | 7 | <i>w</i> | M | | 1.0.4 14. 10 10 226 2164 249 54 10 73 74 38 3 50 1 7 14 38 3 50 1 7 14 38 3 50 1 7 14 38 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 3 50 1 7 14 15 8 50 1 7 14 15 8 50 1 7 14 15 8 50 1 7 14 15 8 50 1 7 14 15 8 50 1 7 14 15 8 50 1 7 14 15 8 50 1 7 14 15 8 50 1 7
14 15 8 50 1 7 14 15 8 | 8 | V | | 500 | | 0.80 | 188 | 882 | 25 | 20 | 777 | 77 | <i>W</i> | N | | \$\pi_{\text{0.00000000000000000000000000000000000 | Ŋ | 1 | 0.41 | 3 | | 880 | がなって | 249 | W
2 | R | 7.7 | J. J. Commercial | Ø, | M | | 31.8 31.65 1.8 256 2.61 247 59 67 74 75 28 3 21.3 28.00 45 288 2.22 249 61 60 74 76 38 3 31.8 31.65 55 20 74 289 2.23 249 61 60 75 76 38 3 31.8 35.65 5 38 228 228 249 61 60 75 76 38 3 31.8 35.65 5 38 228 228 249 61 60 75 76 38 3 31.8 35.65 5 38 289 22 249 61 60 75 76 38 3 31.8 35.65 5 38 289 22 249 61 60 75 76 38 3 31.8 35.65 5 38 3 28 3 28 3 28 3 28 3 3 3 3 3 3 3 3 | 9 | 1000 | I I | 3 | | 281 | 223 | | T S | 8 | R | X | w
100 | W | | 10.6 24, 26 36 226 226 21 61 60 74 75 .38 3 21.3 28.0 34 26 228 229 61 60 74 76 .38 3 21.3 28.0 34 28 228 229 61 61 75 76 .38 3 21.3 35.5 5 .60 2 228 229 24 61 62 75 76 .38 3 21.3 35.5 5 .60 2 228 225 229 61 62 75 76 .38 3 20.3 41.30 4.30 4.40 61 62 8 .48 8.48 8.48 8.40 8.40 9.3 8.40 9.0 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6. | and the second s | 15 | 1800 | | | | | | | | | | | | | 10.6 24, 26 38 248 243 54 62 61 75 76 38 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | p=4 | 0 | TN 90 | 90, | | 288 | 3 | 252 | (V) | Z | 2 | X | B | M | | 21.3 78.00 .45 289 249 62 61 75 76 .28 3 31.8 31.65 .68 289 22 249 61 61 75 76 .28 3 51.8 35.20 .74 289 22 249 61 61 75 76 .28 3 51.8 36.55 .68 289 22 249 61 61 75 76 .38 3 51.8 36.55 .68 289 22 249 61 61 62 .38 3 51.8 36.55 .68 289 22 249 61 62 .38 36 25 36 36 36 36 36 36 36 36 36 36 36 36 36 | 2 | 10.0 | J | 14. | | 0000 | 27.3 | ったろ | Š | 9 | 7 | W. | K. | G) | | 31.8 | 3 | 2.54 | do
i | | | 1200 | 252 | Z | 60 | 3 | 52 | 97 | Ŋ | M | | 41.9 35.20 74 289 250 245 61 60 75 76 58 5 51.3 36.55 36 56 57 36 78 250 245 61 60 75 76 58 5 50.3 47.50 1 mital Leak Check: 0.0 4 cfm@ 1/8 "Hg Finish Time: 0.0 3 Final Leak Check: cfm@ 2000 Final Leak Check: cfm@ 22050 90.0 Final Leak Check: cfm@ 1/8 "Hg Finish Time: 0.0 3 Final Leak Check: cfm@ 22050 | 4 | 10 M | S | 100 | | 1 D | 1,
18 | 250 | 51 | | 2 | New | Ŋ | m | | 51.3 \$6.55 .68 \$ 289 250 249 61 60 75 76 .35 3 60.3 4f.80 \$ 60.5 | 2 | 700 | | R | | | N | 249 | 10 | 2 | X | | 8 | M | | 10.3 41.80 1 | 9 | 1 | 4 | 8 | | 700 | 28 | 256 | Ĭ | \mathcal{R} | 7 | 92 | ,
K | M | | Traverse: | | | 08. F | | > | | | | | | | | | | | Traverse: | | | | | | | | | | | | | | | | Traverse: | | | незичения в незиче | | | ALL MANAGEMENT AND MANAGEMEN | | The state of s | THE THIRD CONTRACTOR C | No. 1 | 2. | | | | | Traverse: | | | | | | | | | | | | | | | | Traverse: | A PARTICULAR AND A CONTRACTOR CONT | No. to partie and province and description of the control c | The description of descripti | | | | | | | | | | | | | Traverse: Cfm@ R "Hg Finish Time: Cfm @ Cf | | | AND AND THE PROPERTY OF PR | A PARTICIO CONTRACTO DE LA CONTRACTORIO DEL CONTRACTORIO DE LA CONTRACTORIO DEL CONTRACTORIO DE LA DEL CONTRACTORIO DEL CONTRACTORIO DE LA CONTRACTORIO DEL CONTRACTORIO DEL CONTRACTORIO DEL CONTRACTORIO DE LA DEL CONTRACTORIO DEL CONTRACTORIO DEL CONTRACTORIO DEL CONTRACTORIO DE LA CONTRACTORIO DE LA CONTRACTORIO DEL CONT | The state of s | | | | | - Tu - 1 | | | | | | Traverse: Cfm @ Finish Time: Cfm Final Leak Check: Cfm @ | | | · Video programa de la companio del la companio del la companio de la companio del | | O CONTRACTOR OF THE | And the second distribution of distri | | | | | | | | | | Traverse: 1 Tr | | | | | | | | | | | | | | | | 紹の Initial Leak Check: , 00 cfm / B "Hg Finish Time: 913 Initial Leak Check: cfm @ cfm / B Finish Time: から Final Leak Check: cfm / | , oononca | · · · | | | | | Traverse: | насинализмення в пределения п | BARBACQUARRACCIONINO NEL BARBACANA CONTREPENDA | | | | | | | GOO, Final Leak Check: cfm@ "Hg Finish Time: DD Final Leak Check: cfm @ 22050 -9.36 // Project No:: 22050 | Start Time: | 7500 | Initial Leak Check: | 1 | cfm@ | 1. | Start Time: | 0 | 2 | Initial Leak C | heck: | Managed and State of Tree Envelope of Tree State S | cfm @ | I | | .36 // Project No.: 05 // Operator: 1 // | inish Time: | | Final Leak Check: | 11 | cfm@ |] [| Finish Time: | | Q | Final Leak Ch | eck: | interpretation for the control of th | cfm @ | 2 | | Operator: 1 > / / / | : "J | | | | | | | • | | | Project No.: | | 22050 | | | | | And designation and an advantage of the contract contra | ARTICLE CONTRACTOR CON | ancesones appropriate the contract of cont | | | | | | | Operator: | | | The state of s | 22050 40 Project No.: Probe No.: Page Impinger Box No.: Meter Box No.: | Plant | Covanta DYEC | - | |--------------------|--------------------|---| | Plant Location | Courtice, Ontario | | | Test No.: | 2 Particle Size | | | Test Date | NOJEMBER 10, 2020 | | | Test Location | APC Outlet No | | | Operator Signature | ture O - D / K = - | | | Pitot Factor | S. S. | | |---------------------|-------------|--------| | DGMCF | 1 | | | Barometric Pressure | ゆれてあ | H
E | | Static Pressure | り
で
・ | "H2O | | Nozzle Size | 07-12-40 | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | T | inches | | BB | 7 | is/Port 12 | |------------------|------------------------|------------------------------| | Reading Interval | Number of Ports | Number of Points/Port | | Sue Co | 7 | 12 | |------------------|-----------------|-----------------------| | Reading Interval | Number of Ports | Number of Points/Port | Probe Liner Glass / Metal /Teflon /Other) Glass / Metal / Other_ Nozzle None (Metal /) eflon / Other Union Pitot Leak Checked? (Yes Notes: | ,2200 | |----------| | Acres . | | O MINO | | Œ | | O | | _ | | O | | alpadi . | | 10 | | Oversio | | -3 | | O | | e come | | Ž-m | | rs | | 0. | | | | COLUMN CONTRACTOR | mg | mg | dependent orespectively. | |--|-------|-------
--| | A STATE OF THE PERSON NAMED IN | | | CONTRACTOR AND ADDRESS | | - | | | CANNOT SELECTION OF O | | Contractor of the Party | | | Mark Company of the Park | | - | - | | *********** | | (Antipotent principals | | | The second of the second of the second | | designation of the last | | | Selection contraction of the least | | one-section and section se | | | Company of the Compan | | Security Sections of the Section | ter | Probe | THE PERSON NAMED IN COLUMN | | | Filte | Ě | Transport Court | | | 2 | * | • | | |---|----|---|----|--| | | Z | ь | • | | | ¢ | | æ | 0 | | | | ŧ | 7 | 7 | | | | 2 | ١ | v | | | á | ٠ | r | Q | | | £ | L. | : | ö | | | | • | • | ٠. | | | | 2 | | | | | | ۱ | 3 | J | | | | ė | 7 | - | | | | ۰ | 4 | 8 | | | | | - | ٩ | | | | * | 7 | ۰ | | | ٠ | | × | ø | | | | ž | , | A | | | | 3 | 9 | 1 | | | ۰ | | × | • | | | | t | , | ٠, | | | | 3 | b | o | | | ŧ | | • | - | | | | 7 | 3 | 6 | | | 1 | | 5 | | | | i | 7 | 1 | - | 0.0 | 0.0 | |--|--------------|-----------------------| | e principal de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición dela composición de la composición dela composición dela composición dela composición dela composición dela composición dela compo | - | | | and the second | Continuent | | | - | | | | - | anno di Anno | | | - | | | | - | 0. | | | - | 10 | 0 | | - | V | - market
enteredak | | and distance of | | | | - | Accountance | | | SCHOOL STREET | | | | - | - | 4 | | and a second | Œ | 9 | | Metal Services | 3 | NC. | | L | \preceq 1 | | #### Combustion Gas Concentration | % | % | چ | |------------------|----------------|-----------------| | % √ S | $\Im S \%$ | mdd O: S | | 1 | V_{j} | Ω. | | IIA | No. of Section | 1 | | 141 | V_{-} | () | | | 1 | .0 | | 100 | 200 | V | | 1 | .5. | | | | 169 | 1 | | 0 | 3 | М. | | 14 | JY | and the same | | À | | - | | | 1 | | | M | 1 | | | IVY | ARTON A | | | | | | | 1 | | Ü | | | αı | 2 | | | Ŏ | 6 | | | × | Ç | | | .0 | 2 | | | | 2 | | Ç | 2 | C | | 80 | 0 | Š | | Oxygen | Ī | | | 16 | Carbon Dioxide | Carbon Monoxide | | 1 | | | Site Diagram | | Measuring Device | MII Numbers | |---------------|-------------------|-------------| | 1975 | | | | 745.53 | Probe / Pitot | and Sand | | 100,540 | Trendicator | | | | Control Box | 7357 | | Sever. | Incline Manometer | | | in the second | Comb.Gas.Analyzer | | | ::(5.0) | Micromanometer | | | 10000 | Barometer | | | | Calipers | | | | Nozzle Measurements | |----------|---------------------------------------| | | | | 2 | | | ന | · · · · · · · · · · · · · · · · · · · | | 4 | | | Average: | | | ź | | | | | .u. | Field Data Sheet | eet | | | | | | | |--
--|---------------------------|--|--|--
--|--|--|---------------------|--|--|-----------------------
--| | Date: | 26 | Plant: | Covanta DYEC | 3: | | | Test No.: | N | Particle Size | чествення менен при | erora re-produced de la companya | Pageof | of 7 | | 1 | La Ministeriore de la company | Plant Location: | Courtice, Ontario | Itario | | | Test Location: | | APC Outlet No. | No. | The state of s | | | | | * | | * | | * | | | * | | * | * | * | * | | - Interconnection of the t | - | Dry Gas | Pitot | A CONTRACTOR OF THE PROPERTY O | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | <u>C</u> | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | met | Pressure | Vacuum | | | Time | % = | "H20 | £ | <u>u</u> . | LL | LL. |
• | 0 | ide
O | u. | ± 0, | "Hg
Gauge | | | | する。そ | 8 | R | 877 | 232 | 50 | | | | 05

 |

 次
 | 45 | | 2 | 75.01 | 40.00 | Q | | らかん | 229 | B | N | 3 | 1 | 1.8 | K) |)
J | | n | 20.6 | 40,00 | K. | | りあり | Ę | 28.7 | B | <u>.</u> | | 9 | .38 | Ť | | 7 | 19.00 | 02.20 | B | | るが、 | 08 | N | 200 | 3 | 2 | 96 | K | Ź | | S | 12
12 | | 8 | | 2002 | 142 | 28 | S | 3 | 12/2 | Q
[| , 88
1987 | ÷ | | 9 | 7.87 | 70.07 | V | 0,00000 | 一次 | S | N | 3 | Z. | X | 7 | , 32
25 | Ţ | | The state of s | 12 | 8.70 | | | | | | | | | | | | | - | 0 | 9.00 | 0 | | 7 (22) | NEG | N
N | 8 | 2 | Q. | % | 180
180 | J | | 2 | 200 | 52 23 | 19 | | T 1/2 | 2,4 | K | Ś | <u>.</u> | 'K | 8 | . 5% | 7 | | m | ローの | 15.8 | S | <u>B</u> | | 17/1 | 20
100 | 2 | R | R | 22 | 8 | J | | Ď | 7 128
137 27 27 27 27 27 27 27 27 27 27 27 27 27 | 15.60 | S | | 7.83 | グス |)5% | B | | 20
20 | <i>M</i> C | (%)
(%) | J | | ស | 524 | NO FI | 8
 | | 283 | 270 | 200 | Z, | 3 | 8 | 3 | 8 | 5 | | 9 | 875 | 4.02 | Š
— | | 258 | 270 | 156 | S | R | <u></u> | 20 | γ,
(A) | J | | | 6.29 | NO. 78 | | | | | | | | The second secon | | | To the second se | | | | | | > | to a construction of the c | | | | | - | | | | | | | And the second s | | | *************************************** | | | | | | | | | | | | | | | | | Proposition of the second control sec | | | | | | | | | 100 min. | | | | | | And a second sec | encontrate proprieta de la constante con | Traverse: | uzusainista yakeezokoonees paalistainti yakeesisteesisteesi | | | | | Traverse: | | | | | | | | | Start Time: | 5
N | 10 SS Initial Leak Check: | and describe the second se | cfm@ | <u> </u> | Start Time: | X | \$ | Initial Leak Check: | Sheck: | | cfm @ | A. | | | | I-mailtear Chean | | S) EU Ja | | | R | | | | | | | | *************************************** | *************************************** | | ANALO MARIANCA PROPRIATA DE COMPANION ANALOS D | | Annual Control of the | ADDITION OF THE PROPERTY TH | ************************************** | den de periode parente de la p | | Project No.: | Mary Control of the C | 22050 | Barrelanine reconstitution of the second sec | | | | | | | | | | | | | | | | | Page | Page | Plant | Covanta DYEC | | | | | | Proje | Project No.: | 22050 | |--|--
--|--|--|--
--|--|--|---|--|--| | Probe Note of Particle Size Probe Note Note Note Note Note Note Note Not | Probe Note Note Properties | Plant Location | Courtice, Ontario | | Alexandria de la companya del companya de la companya del companya de la del la companya de company | | | | Page | | | | Meter Box No.: 12 Californ APC Outlet No. Californ APC Outlet No. Californ APC Outlet No. Californ Cali | Meter Box No.: 2 2 2 2 2 2 2 2 2 | | Particle Size | unionalistica properties de la constitución c | indescription description of the control con | | | | Prob | Z | 72.5 | | The particulate Gain and the control of | Impiregr Box No.: 153 To Signature 10 - 0 (1) - 0
(1) - 0 (1) | | がなばら | | | | | | Mete | r Box No.: | 2 | | Trendicator and the period of the filter and the following feet of points/port 12 carbon blookide (10, 20, 30, 30, 30, 30, 30, 30, 30, 30, 30, 3 | Trendicator and Probe Peritor actor | | APC Outlet No. | | | | | | E C | ger Box No.: | a | | Average: Actor (247) Particulate Gain Filter Filte | Activity Pearity Particulate Gain Filter Filter Filter Freed Probe Filter Freed Probe Filter Freed Probe Freed Probe Moisture Gain Freed Probe | Operator Signature | | 17 | | | | | | | | | Filter mg | Filter mg Moisture Gain Moisture Gain Moisture Gain Moisture Gain Filter Gain Moisture Gain Moisture Gain Moisture Gain Filter Gain Moisture Gain Filter Gain Moisture Gain Control! WCBDA S.C. g Filter Comb.G Control! Moisture Gain Comb.G Control! Moisture Gain Comb.G Control Contro | | and the second s | | | | į | | | Measuring Device | | | Fersure 39.C.T. "Higher Fressure 39.C.T." "Higher Fressure 39.C.T." "Highersure 39.C.T." "Highersure 39.C.T." "Highersure 39.C.T." "Highersure 30.C.T." "Hig | Fersure 29 The Probe inches | PIOT PACTOF | 848 | | | Farriculate Gal | | de app quantum controvation or dissistantial designation of the control co | | | | | Trendical Probability Probe mg Probe mg Probe mg Probability Pressure — 4.3 "H2O Moisture Gain Feet Feet Feet Feet Feet Feet Feet Fee | Probe mg Probe Pro | DGMCF | | | | Fite | қадарындаға дередінен жана ала ана кезізден мас сейлеленін алақтық кезекезекезекезекезекезекезекезекезекез | mg | | Probe / Pitot | Contraction of the o | | Size 177 6 inches Moisture Gain Incline Moisture Gain Moisture Gain Incline Incli | Noisture Gain Gai | Barometric Pressure | 0 | BH. | | Probe | | mg | | Trendicator | | | Size (TOTIC inches Diameter 4.5 feet CWTR ILC3.1 E COmb.Ga Com | Size (1776) inches None(Metal Teflon / Other None Checked? (Ves.) No Size inches Moisture Gain Moisture Gain Moisture Gain Moisture Gain Moisture Gain Cowbustion Gas Concentration Combustion Concentrati | Static Pressure | 1
20.02 | 'Н20 | | | | | | Control Box | 1822 | | Diameter 4.5 feet feet feet feet feet feet feet fee | Diameter 4.5 feet CoVTR IC3.11 g Microma Microma feet feet feet feet wCBDA S.O. g Microma Microma feet feet feet feet feet feet Combustion Gas Concentration Oxygen Carbon Dioxide IO. PS Microma Glass / Metal /Teflon / Other Glass / Metal / Teflon Othe | Nozzle Size | | ches | | Moisture Gain | | | | Incline Manometer | | | WCBDA | WCBDA | Stack Diameter | The state of s | feet | | CWTR | て の 2 | 60 | | Comb.Gas.Analyzer | | | Combustion Gas Concentration Galipers | In the linches of Ports 2 Ear of Ports 2 Ear of Points/Port 12 Carbon Monoxide N. 2 9 Carbon Monoxide N. 2 9 Liner Glass / Metal / Teflon / Other None Metal / Teflon / Other None / Metal | Length | улитерия при | feet | | WCBDA | 0,0 | 6.0 | | Micromanometer | | | ngth: 11 inches Combustion Gas Concentration Carbon Dioxide Carbon Dioxide Carbon Dioxide Carbon Monoxide Carbo | Till inches Combustion Gas Concentration Carbon Dioxide By 13 By 14 Carbon Monoxide Ca | Width | живания при | feet | | | | | | Barometer |) | | Carbon Dioxide Carbon Dioxide Carbon Dioxide Carbon Dioxide Carbon Monoxide Monoxid | Carbon Dioxide Carbon Dioxide Carbon Dioxide Carbon Dioxide Carbon Dioxide Carbon Monoxide | Port length: | | ches | | Combustion Ga | is Concentration | | | Calipers | | | Carbon Dioxide Carbon Pomide Carbon Monoxide Monoxi | Carbon Monoxide Mon | - And the state of | | Control | | Oxygen | | % | | | | | Liner Glass / Metal / Teflon / Other | Liner Glass / Metal / Teflon / Other Glass / Metal / Teflon / Other None/Metal / Teflon / Other Beak Checked? Yes No | Reading Interval | と収る | CATEGORIA | | Carbon Dioxide | 91.0 | % | | Nozzle Mea | surements | | Liner Glass / Metal / Teflon / Other Glass / Metal Other Glass / Metal Other Nong/Metal Other Nong/Metal Teflon / No | Liner Glass / Metal / Teflon / Other A-A-Bite Diagram Glass / Metal / Other None / Metal / Teflon / Other eak Checked? Yes No | Number of Ports | Z | | | Carbon Monoxi | | mod | | • • • • • • • • • • • • • • • • • • • | | | Liner Glass / Metal / Teflon / Other Glass / Metal / Teflon / Other None / Metal / Teflon / Other eak Checked? Ves No | Liner Glass / Metal / Teflon / Other Glass / Metal Other Glass / Metal Other Glass / Metal Teflon / Other Glass / Wes No | Number of Points/Pc | defendentier op de gewone g | and the second | | Kuspisanelukounalukoistississississississississississississi | | | | 2 | | | Glass / Metal / Dither Jother Site Diagram Glass / Metal / Other Site Diagram None / Metal / Other Site Diagram None / Metal / Other Site Diagram None / Metal / Other Site Diagram | Glass / Metal / Terlon / Other | | | 7 | | Control of the Contro | | AS ALUDOJANNIKA MATORIAN IMBERIJASKI BRRANIKA JALAKVI KONSKRIVA KAJOSI SEKON | · · · · · | 8 | венимменне неменентельной переводительной переводительном переводительном переводительном переводительном переводительном переводительном пере | | Glass / Metal Other | Glass / Metal Other | | / Metal / leflon /Other | | | Site Diagram | | | . 4 . 14 | Average: | полемення полеме | | eak Che | eak Che | | /Metal / Other | | | стычнатичног | | | | | | | eak Che | eak Che | | | | | | | | economista de la constanta | | | | , kes | Yes | | /Metal / Teflon / Other | | | nintana ang ang ang ang ang ang ang ang ang | | | | | | | Yes | Yes | | No constant and the con | | | 242475°-720 | | | -wowanie | | | | Notes: | Notes: | Pitot Leak Checked? | (Yes | | | | | | AND TO BE THE STREET | | | | Notes: | Notes: | | | | | on Louis extremo | | | | | | | Notes: | Notes: | | | | | ************************************** | | | | | | | | | Notes: | | | | Total authorities of the state | | желения в поставления по | 1 | | | | | | - PRINSPILLONDONED PERFOUNDERSCHIPTING FORTIGLE (PRÀSTILLONG CONTINUE PRESENTATION DE PRESENTATION DE PRESENTA | лин дей англиний и ментиний балан бай | wegivan entertribetrale veniente | | наконорова и серениција је је до | энсіські комесне коромы составляння мунку в составлення при | encionales de Arianne en entre en entre en entre en e | standwardwardwardwardwardwardwardwardwardwar | Annia de la companya | | | | 10/10/10 | | | And in contrast of the last | | - | | A STATE OF THE PARTY PAR | | - | | de la commencia del la commencia de la commencia de la commencia de la commencia de la commenc | ANTIGENESS CONTRACTOR | |--
--|--|--|--|--
--|---|--|--|--------------
--|--|---| | | Tags | ロック・こうつかいこと・ | Courting Ontario | 2.2 | | | Tost location: | | APC Outlet No. | C | | | | | | * | 1 | ************************************** | | * | Net recommendation of the second seco | | * | | | # 2 Propression of the Propressi | * | * | | | Angelia | Drv Gas | Pitot | Wilderson Assessment State September 1990 | NJE45 | Probe | Oven | moing | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | ٩ | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | met | Pressure | Vacuum | | | e
E | * | °, | Ę | l.c. | l- | LL
o | r. | Ediso C | ļ. | <u></u> | ± °Z | "Hg
Gauge | | 1 | 00 | とのナング | 0,1 | K. | 228 | 13/2 | 8 | 2 | 12 | R
R | 182 | 86 | V | | 7 | | | R | | 1887 | 1 | N | W. | 6 | 8 | N. | 186
186 | V | | 8 | 200 | 0000 | 200 | | 787 | 3 | TO TO | IV | 30 | B | 80 | 8 | 2 | | 4 | 200 | のいのい | 2 | | 1878 | S S S S S S S S S S S S S S S S S S S | K | M | 3 | \ <u>v</u> | 100 M | K | Ŋ | | n | 287 | | 29 | | が別 | 00 | W | | B | N | l N | 18 | N | | 9 | N
N | 10200 | 8 | | N/K | | K | | | S. | 80 | K) | (V | | - | S. | 100 B | | | The same of sa | | | | | | | | | | | 0 | 10000 | S. | | NEW MEN | 0770 | 200 | | 200 | 2% | 35 | 88 | M | | 2 | 5.8 | | O
I | | 1202 | 200 | 282 | 3 | 00 | 8,
10 | So. | 150
100
100
100
100
100
100
100
100
100 | M | | m | 202 | 100 | V | | 1282 | 10/0 | N | 3 | V) | N. | Ž. | 90
90
90 | M | | 4 | 1000 | 1
1
2
2
2
8 | | | 1891 | V | - CSS C | C | 3 | 200 | No. | 86. | M | | r, | 2.03 | 16.97 | | | 0%0 | 128 | 252 | 13 | 130 | 8 | 28 | ,
88 | M | | 9 | 17.00 | 12.55.02 | W. | | 12/2 | 100 | N | R | 2 | <i>X</i> | 200 | 86 | V | | | NON | 18110 | | * | | | | | | | | | | | | | ves di manuscrimina de la companya de comp | | | CONTRACTOR | - Andreas Andr | The section of se | and designation of the second | | | | | | | | | And the state of t | | | CONTRACTORISM AND | Control Company and Control Co | Description of the Control Co | DONATA POLITICA DE TRANSPORTA DE LA CONTRA DE | | | | | Ų | | | ALTER DESCRIPTION OF THE PROPERTY PROPE | A PARTIE A STATE OF THE PARTIE | | | | | The second secon | A control of the cont | | | | | | | | And the second s | And the second s | | | | | | | | | | | | | And the state of t | | | | | | | | | | | | | enalisaneemaan minimaan enaliseeda ee | | | | | | | | On the second se | Traverse: | | | | | | Traverse: | | | Total Control State Control Co | | | | | | Start Time: | 23 | Initial Leak Check: | (00) | | // "Hg | Start Time: |
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15
15.15 | <i>S</i> | Initial Leak Check: | heck: | | cfm @ | H B | | Finish Time: | | Final Leak Check: | | cfm@ | "Hg | Finish Time: | | | Final Leak Check: | neck: | | cfm @ | Hg | | | ines | | | | | | 47 | . ^ | | Project No.: | | 22050 | | | - | The state of s | ************************************** | | | Medical territorial production of the second | THE SAME AND ASSOCIATION OF THE PROPERTY OF THE PARTY | Total Auditor Commence of the | WHITE WAS AND THE PROPERTY OF THE PERSON | AND STATEMENT OF THE PROPERTY | A | | - Andrews | | | Plant | Covanta DYEC | |--------------------|-------------------| | Plant Location | Courtice, Ontario | | Test No.: | Particle Size | | Test Date | NOVEMBER 9, 2020 | | Test Location | APC Outlet No. | | Operator Signature | ture 7 / L | | | | Bayes de la constante co | |----------------------------------|-------|--| | Pitot Factor 0.849 | S) | | | DGMCF 0, 0972 | ~ | | | Barometric Pressure 3℃. | 10 | F F | | Static Pressure $-\mathscr{C}$. | . 2 | "H20 | | Nozzle Size / (177) (| ni . | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: |
- | inches | | | | | | | Reading Interval ${\mathcal Q}_{\mathcal U}$ | umber of Ports | umber of Points/Port 12 | |--|--|----------------|-------------------------| |--|--|----------------|-------------------------| Probe Liner Glass / Metal /Teflon / Other Nozzle Glass / (Metal / Other Union None/Metal / Jeflon / Other_ Pitot Leak Checked? / Yes / No Notes: Particulate Gain | SOMEONIC CONTRACTOR | mg | mg | The second secon | |--|--------|-----
--| | STREET, STREET | | | The second second | | STREET STREETS STREET | | | AND DESCRIPTION OF THE PERSON | | HORSESSON | | | The state of s | | SAMONE ENTRANCE | | | | | DIRECTO CONTRACTOR OF THE PARTY | | | | | TAXABLE PARTICIPATE OF THE PARTI | | | The second second | | AND STREET, ST | | | | | ************************************** | | | Contract Con | | *************************************** | ō | ope | Contract of the last | | - | Filter | 8 | Postoren englishmen. | | | | | | #### Moisture Gain | 0.0 | 00 | |----------|----------| | | - 1 | | | 1 | | 1 | - 1 | | 1 | - 1 | | - | - 1 | | | - 1 | | | - 1 | | | - 1 | | | - 1 | | | - 1 | | | - 1 | | | | | | 1 | | ~ | - | | 14 | | | 200 | | | - 2 | | | mineral. | | | - | W. | | 1 | | | | 1 | | | 1 | | | | | | . 1 | | | - 1 | | | | | | | | | - 1 | | | | | | 1 | | | 4 | | 1 | α | | Seefer | 66 | | | 71 | | 5 | 2 | | U | 5 | | 1 | | #### Combustion Gas Concentration | % | Carbon Dioxide // 0.7 | |---|-----------------------| | | | Site Diagram | Project No.: | 22050 | |-------------------|----------| | Page | 1 of | | Probe No.: | Ph. 25/0 | | Meter Box No.: | 2 NB22 | | Impinger Box No.: | 100 | | Measuring Device | MII Numbers | |-------------------|-------------| | | | | Probe / Pitot | SOLONO | | Trendicator | 6 | | Control Box | 11.000 m | | Incline Manometer | | | Comb.Gas.Analyzer | | | Micromanometer | | | Barometer | のおうらな | | Calipers | C28827 | | 2 11:
287:
3 277:
4 4 77: | Nozzie Weasurements | |------------------------------------|---------------------| | .020401 | | | U U U | | | la de la companya | unionseries infantalistic interestration in the contract of th | Plant Location: | Courtice, Ontario | ıtario | | | Test Location: | 7 5 | APC Outlet No. | Jo. 0 | | | enantenante de proposition de la companya del la companya de del la companya de c | |--|--
--|-------------------------|---------|--|-----------------------------|--|--
--|--|--|--
--| | | * | * | * | | * | | | ¥ | | * | * | * | * | | *************************************** | | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Weter Temp | Meter | Pump | | Point | Clock | Meter
ft ³ | ΔP
"H ₂ O | Desired | Temp | Temp | Temp
F | Outlet | Inlet/Trap | outlet. | net | Pressure
A H | Vacuum
"Hg | | The state of s | | | | 77 | B | 2/2 | 150 | 2 | 2 | Z | 01 | 2/25 | Gauge | | 2 | 10.00 | | | |
 ひ
 ロ | 12 | | | 2 | 12 | | 100 kg | W^ | | 8 | 000 | 186 | ĮS, | | 7000 | 157 | 1000 | M
M | (N) | 2 | 10 | Solve Solve | r | | 4 | 120 | 190 | 3 | | 1387 | 2 | 7007 | 77 | 188 | 0,7 | 72 | K
o | M | | rs. | 7 | |
 | | 128 | | 1200 | X | K | 26 | | 160
160 | 8 | | 9 | 8 | TX1.00 | 18 | | 282 | 200 | 200 | Z. | | 72 | 7.5 | . 38 | \mathbb{C} | | | 1 | なっての | S | | | | | Andrees of the state sta | | | | | | | *** | 0 | 07.7°G | S | | 282 | 200 | 286 | Same Same | 3 | 27 | 2 | K | V | | 2 | 10.3 | 25,05 | 10 | | 086 | 22 | Z. | V | N. | 7 | X | 1,4
1,0 | W | | 33 | 198 | W. 83 | Ş | | 188 | 13 | N | 18 | M | 100 | | . 28 | V | | 4 | 2.
N | 17.79 | 22 | | 13% | 37. | N | Ŋ | W | K | 1 | 100
100 | M | | 5 | 1
N | - | N. | | つぞっ | 18 | 200% | W | Ñ | N. | S | .W | M | | 9 | 12:12 | | R | P | 100 | 2% | N | ¥ | 6 | Y | 7 | (A) | M | | Company and a second a second and a | 850 | | | | | | | eniminate of community of the | | | | | | | | | Canada and | | | INCODANCIA EDANGARACIONA CONTRA DA CONTRA DE C | | | and a supplementary of the sup | | | | | | | MALLER MALLER STATES OF THE ST | | THE THE PROPERTY OF PROPER | | | A CONTRACTOR OF THE PROPERTY O | | | New Park Andreas de Constante d | | | | | | | жампандародномомомом рамаж | | | | | | | | reserves de la composition della del | The second secon | Procedural de la companya del la companya de com | | | 1. | | NA PARTICIPATION NO CONTRACTOR N | ACTIVITIES OF THE PROPERTY | addination proprieta in the case of construction when the construction of construc | | | | | | | - Parameter and the second sec | | | The same of sa | | | lezzosichwicz (hruduktik/opoliek | A punction of the superior | | | | | | | NO DESCRIPTION OF THE PROPERTY | | And | | | | | - Marian Chapter Services | | THE STATE OF S | | | ne e e en la companya de | | | and the second s | | | | | | | THE STREET STREET, STR | | | | | | | enter experience acceptance property and a second s | And a second sec | | | | | | | Andreas de la companya del la companya de compan | | | Basel | | | | | And the second s | | et retendente de la companya del la companya de | The second secon | | phistorian productive and the second product | | Traverse: | Ne | | | | | Traverse: | | | | agunossaci i i i i i i i i i i i i i i i i i i | NACCES DO CONTRACTOR DE CONTRA | | 200 | | Start Time: | | בינים בינים בינים | And the Assessment | | | The same of the same of the | | | 2000 100 100 | | · · · | Co custo | 2 | | Traverse: | | | Traverse: | | The parameters are consistent or | |--|--|--|----------------------|---------------------
---| | Start Time: 9.39 In | Initial Leak Check: | Initial Leak Check: 00% cfm@ 72\"Hg | Start Time: 10 % | Initial Leak Check: | Cfm @ "Hg | | | り名 Final Leak Check: | cfm@ "Hg | Finish Time: // (4/う | Final Leak Check: | cfm @ "Hg | | generation of the second secon | атмабельный темпесьный какентый какентый праводущей пра | LOSSICONINGARATORISPINATESIATEMONISPINATESIATEMONISPINATESIATEMONISPINATESIATEMONISPINATESIATEMONISPINATESIATEMONISPINATESIATEMONISPINATESIATEMONISPINATESIATEMONISPINATESIATEMONISPINATESIATEMONISPINATESIATEMONISPINATESIA | | | | 22050 Project No.: Operator : 22050 1 of Project No.: 0270 | Plant | Covanta DYEC | |--------------------|-------------------| | Plant Location | Courtice, Ontario | | Test No.: | 2 Particle Size | | Test Date | November 9, 2020 | | Test Location | APC Outlet No | | Operator Signature | | | Pitot Factor | 0 24 2 | | |---------------------|--------|--------| | DGMCF | しての。 | | | Barometric Pressure | で あ | gH" | | Static Pressure | - 26.2 | "H2O | | Nozzle Size | ر
ا | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | T | inches | | Contract of the th | STREET, STREET | |--|--| | ng Interval | and the Summer | | ser of Ports | 2 | | oer of Points/Port | 12 | | The state of s | Reading Interval Number of Ports Number of Points/Port | | Reading Interval | and the | |-----------------------|---------| | Number of Ports | 2 | | Number of Points/Port | 12 | Probe Liner Glass / Metal / Teflon / Other Site Diagram Glass // Wetal /Other_ Nozzle None (Metal / Feflon / Other_ Union Pitot Leak Checked? Ž | 2 | |---| **MII Numbers** Measuring Device Impinger Box No.: Meter Box No.: Probe No.: Page 226 Probe / Pitot Control Box Trendicator | Bm | Probe | | |--|--------|---| | mg | Filter | | | ************************************** | | L | #### Moisture Gain | 0.0 | 00 | |-----------|-------------| | | _ | | - 1 | 1 | | 1 | 1 | | - 1 | - 1 | | - 1 | 1 | | - 1 | - 1 | | 1 | 1 | | - 1 | | | 1 | 1 | | | 1 | | - | ı | | | | | | ŧ | | | 1 | | ŧ | | | 2000 | 1 | | () [| Δ | | 9.1 | (4) | | - 1 | V 1 | | 5 | | | ₹ 3 | () | | 1/1 | V | | V-1 | - carboning | | -300720 | - | | | 31 | | 64 | 4 | | - | 00 | | 20 | O I | | - | > | | CWTR | 2 | | | | Comb. Gas. Analyzer Incline Manometer Micromanometer Barometer Calipers #### Combustion Gas Concentration | Oxygen | % | |-------------------------|-----| | Carbon Dioxide // / / 3 | % | | Carbon Monoxide | mda | | 3 3 4 | | Nozzle Measurements | |---|--------|--| | 4 3 2 | (pred) | | | 3 4 | ~ | | | encontresses en encontresses en encontresses en encontresses en encontres en encontres en encontresses en encontresses. | ന | vydziranyministicki kalektyk kolektyk kalektyk kalektyk kalektyk kalektyk kalektyk kalektyk kalektyk kalektyk
Vydziranyministicki kalektyk | | | 4 | | Notes: | Date: A h | 70/5/2 | Plant: | Covanta DYEC | | | | Test No.: | | Particle Size | | Established and the control of c | Page Z of | of T |
--|--|--|--
--|--|---|--
---|--|--|--|---
--| | | 1 | Plant Location: | Courtice, Ontario | ntario | | | Test Location: | :- | APC Outlet No. | No. / | | | | | | * | | A A A A A A A A A A A A A A A A A A A | AND THE PROPERTY OF PROPER | * | | | * | | * | * | * | * | | не при | | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Meter Temp | Meter | dund | | Point | Clock | Meter
ft³ | 0°H | Desired | Temp
°F | Temp | E . | Outlet
°F | miet/Trap
°F | Outlet
°F | j r | Pressure
DH | Vacuum
"Hg | | | | | | | | | | | | | AND PARTY OF THE P | D ₂ C | Gauge | | ęн | 0 | 213 | 7 | 100 N | 700
7 | 28 | N
N | 2 | or
C | 1/2 | | W | 3 | | 7 | 20.0 | 8.0 | | | 化 | 3 | 780 | Z | S | | L
Ø | R | J | | C. | 200 | 22.22 | 5
10
10 | | 2007 | 80 | 562 | 53 | んり | | 1
0 | *8 | J- | | 4 | 10. | 50.60 | S | | 787 | 812 | 992 | 23 | 75 | K | X | 8 | 3 | | S | 5 | 08.80 | W. | | 7867 | 200 | ある | 50 | Ž | 1,9 | ď | 1.
1.0. | 5 | | 9 | N. | | | | 2007 | N
N | N N | B | Ĩ0 | 81 | 199 | 70 | 5 | | The second secon | 12.2 | | The same of sa | | | | | | | | | | | | | 0 | 27.7% | 2 | | 1661 | 83 | ながっ | Z | 12 K | 75% | SS | K. | J | | 7 | 10.3 | 2000 | 2 | | 282 | 1/1/2K | N | 20 | 28.KK | ,
,
, | 200 | .38 | J | | က | 17 | 20.02 | 13 | | 180 | 7000 | N | 22 | | B | 8 | 38 | 5 | | 4 | N I | 1000 | 123 | 2000 | 087 | 28% | R | 22 | 68 | K | | 18
18
18 | J | | 2 | がき | 1616 | 9 | | 1.8% | 1.0% | X | 53 | 11 | R | 77 | K) | ঠ | | 9 | 10 | N 2 N | N | | 185 | 735 | K | Z | 3 | 19 | W. | K) | 7 | | regeneracy pure construent and secure se | 20.7 | 18.8/ | | | | | | | | | | | AND THE PARTY OF T | | Antonia terrativa de la constitución constitu | | | | | | | | | | | | | | | oponian veri me umanim pripavoja deli delementa del menore | And an interest resemble of the control cont | in the second control of | | | | | | | | | | | | | | | NO. TO THE PROPERTY OF PRO | | | enterleanne on transportunitation of the contraction contractio | | | | | | | | | | | Name and the second sec | The second secon | | | ANTERNACIONAL PROPERTY CONTRACTOR | | | | 3 | | | | | | The same of sa | - Contraction of the | | | | No. | | A CONTRACTOR OF THE | NAMES DE LA CONTRACTOR | | | | | | | a production description of the contract th | Management of the second th | | | | | | | ANA TRANSPORTE AND TR | A PARTICULAR PROPERTY AND A PARTICULAR PARTI | жавандайа бак кеңенден айын меңен беземен айымда менен айымда байын айымда жара | | | | | | * | Anna de la companya d | | | | | | Traverse: | 7 | | | | | I raverse: | And the second s | Jacobs Co. | | | NATIONAL SECTION AND AND AND AND AND AND AND AND AND AN | مۇسى ئ | DII. | | Start Time: | 전
I | Initial Leak Check: | 700 | ctm@ | | Start lime: | | | Minda Leak Check. | nech: | | DE
E | | | | が | | | | | | | ^ | | Project No.: | | 22050 | | | TO THE PROPERTY OF PROPERT | e kontra en | | | | | | e consideration de la constant | Valazione de la company | | Operator: | | | | | | | де да именен де под | | *************************************** | | | 25.07 | Neispidagea-airpise-coven-action-woodgetes | | William Company of the th | | AND | | | | Teras secondarios de compresentación de constitución consti | - AND THE REPORT OF THE PROPERTY PROPER | Astronomental de la constitución | ACCIPITATION OF THE PROPERTY O | | HANDOMOGRAFIA DI PARA DE LA PROPERTA DEL PROPERTA DEL PROPERTA DE LA DEL PROPERTA DEL PROPERTA DE LA DEL PROPERTA DE LA PROPERTA DE LA PROPERTA DE LA PROPERTA DEL PROPERTA DEL PROPERTA DEL PROPERTA DE LA PROPERTA DE LA PROPERTA DEL | anna ann ann an Aireann Airean | <u>каления спантичення на применя примена на применя примена на примена на примена на примена на примена </u> | AND AND ASSESSMENT OF THE PROPERTY PROP | | | | | | | | | | | | | | | | | Come of some | | | 100 シレン 22050 1 of Project No.: Impinger Box No.: Meter Box No.: Page Probe No.: | Plant | Covanta DYEC | |--------------------|-------------------| | Plant Location | Courtice, Ontario | | Test No.: | 3 Particle Size | | Test Date | 02/6 100 | | Test Location | APC Outlet No. | | Onorator Signaturo | | | | | STATE OF THE PARTY | |---------------------|------------|--| | Pitot Factor | みても、 | | | DGMCF | 7.50 | | | Barometric Pressure | 8 K | "Hg | | Static Pressure | C 0 0 - | "H20 | | Nozzle Size | | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | end
(md | inches | | | | | | Reading Interval | and the second s | |-----------------------
--| | Number of Ports | 7 | | Number of Points/Port | 12 | Probe Liner Glass / Metal /Teflon / Other Aff Nozzle Glass // Glass / Métal / Other_ None (Metal / Teflon / Other Union Pitot Leak Checked? / Yes Notes: Particulate Gain | * | - | | ********** | 44 | |----|---------|-----|------------|----| | ì | mg | Ł | mg | ŧ | | ž. | | 8 | - | ı | | 1 | _ | Ł | -2- | å | | Ŧ | kon | ž. | - Dame | 8 | | 8 | | 8 | | 1 | | ī | | £ | | 8 | | â | | ı | | 8 | | ŧ | | ħ. | | ŧ | | 1 | | 1 | | ı | | ŧ | | 8 | | ŧ | | 3 | | 8 | | 1 | | 1 | | ŧ | | 3 | | 1 | | 1 | | 1 | | 1 | | 8 | | 1 | | ł | | 1 | | 1 | | 1 | | 1 | | ž | | š | | ĕ | | ŧ | | 1 | | ž | | 3 | | ł | | 8 | | 3 | | 1 | | £ | | ł | | Ĭ | | 1 | | ł | | ł | | 1 | | 1 | | 1 | | 8 | | 1 | | ŧ | | * | | ŧ | | ŧ | | ř | | 1 | | 1 | | 8 | | 1 | | ì | | 1 | | ł | | 1 | | 8 | | ł | | ٤ | | 3 | | ŧ | | ١ | | 8 | | ł | | ŧ | | 1 | | Ł | | ě | | 1 | | £ | | ŧ | | ž | | Ł | | Ł | | 1 | | ŧ | | 1 | | 8 | | ŧ | | ě | | | | ě | | 3 | | 8 | | 1 | | 3 | | 1 | | ē | | ŧ | | 8 | | ì | | ŧ | | 8 | | ŧ | | š | | | | £ | | 8 | | £ | | 8 | | 1 | | ŧ | | 1 | | ž | | ŧ | | Ł | | ŧ | | 1 | | ł | | 1 | | Ł | | 1 | | ă. | | 1 | | ŧ | | 1 | | .1 | | 1 | | 1 | | . 8 | | 1 | | ı | | 1 | | 1 | | 1 | | £ | O.) | 1 | | 1 | - Marie | 1 | - | 1 | | 1 | ധ | 1 | - | 1 | | ı | 4.0 | 1 | 0 | 1 | | ī | Ţ | 1 | ~ | 1 | | 1 | 4 1990 | 1 | Probe | 1 | | 1 | Lebe | ŧ | in la | 1 | | L | - | 4 | ********** | "ž | | | | | | | | 2 | | |-----------------------|--| | £Q. | | | O | | | Q) | | | 3 | | | - | | | | | | $\stackrel{\circ}{=}$ | | | 2 | | | | | | 0.0 | 0.0 | |------------|-------| | CWTR (SS.) | J. W. | | CWTR | WCBDA | #### Combustion Gas Concentration | Oxygen | 00 | % | |-----------------|------|-----| | Carbon Dioxide | 450 | % | | Carbon Monoxide | 9.00 | mdd | Site Diagram Measuring Device MII Numbers Probe / Pitot SEE Trendicator Control Box Incline Manometer Comb.Gas.Analyzer Micromanometer Barometer Calipers | | Nozzle Measurements | |-----|--| | 4-4 | | | ~ | | | ന | тем температельный примента примента предоставления | | 4 | | | | resource recognition and an article of the control | | U | | | ************************************** | | To be not be | Carrente DVEC | - | CALANCE STREET, STREET | | Tock No . | | Darticlo Sizo | | | Dage O | | |--
--|--|--|---|--
--|--|--|--|--
--|---|--| | 100 Sec. | 3 | Plant Location: | Courtice, Ontario | itario | NAMES AND ADDRESS OF THE STATE OF THE PROPERTY OF THE STATE STA | description of the second t | Test Location: | | APC Outlet No. | 10. | | 1 | | | | * | ************************************** | * | | | MERCHANICAL PROCESSOR AND | Autorioristico de la companya de la | * | | * | * | * | * | | TANKAN TORIOTEN TORIO | | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter Temp | Temp | Meter | Pump | | Point | Clock | Meter | ۵ | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | niet | Pressure | Vacuum | | no sono del constante cons | E | ~ <u>*</u> | "H ₂ 0 | £ | u. | Mar. | LL. | L | L | ħ. | Ļ. | Δ H. | "Hg
Gauge | | - | | ころの | | R. | 188 | 285 | 232 | 7 | 120 | 8 | 82 | 88. | 3 | | 2 | 100 | | が形式 | | 28% | 82 | W. | S. | H | 100 | 200 | 989, | S | | 3 | りまる |
 2
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1 | 15 | emes. | N. | S | B | V V | Y) | 100 | 72 | K, | M | | 4 | 7.47 | 100 LO | \
P | | 2000 | 122 | 192 | 8 | 30 | 77 | 12.
12. | 1.00
100 | 8) | | | 0,00 | 1012 | 10 L | | 1287 | 18 | 8 | 2 | \$ | | &Z | 8 | δ | | 9 | 138 | 12.00 | 12 | | 1/2/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/ | 3 | 37 | 8 | Y | 35 |)A | 3 | M | | | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | CONTRACTOR DESCRIPTION OF THE PROPERTY | | | | | | | | | | - | 0 | 1000 | 28 | | 280 | 3 | 2008 | ()
() | 8 | 77.00 | 1 | .088 | M | | 2 | 0.0 | がらなり | 1 | | 080 | 220 | S. | 3 | R | S |) V | W. | M | | m | 0.0 | O S | 100 A | | N N N | K | NV N | K | V | SV C | Š | W. | W | | 4 | | 名の人 | No. | | | N C | N | M | R | 128 | N
N | 30 | M | | S | 1.
(N | 02.20 | 1 | | | 2628 | 100 | 1 | K | 32 | 83 | . 1
100 | M | | 9 | N S | | 12 | | 787 | N | 20 | S | \mathcal{S} | 8 | 82 | 8 | M | | | 7:0% | 100 NO | | * | | | | | | | | | | | | | and the second s | | | | | 1 | | | | | | | | | | | | | Name of the contract co | | | | | - The state of | | | | | Water transfer or grave production of the first fi | Constitution of the Parket | | | | | | | | | | | | | | ************************************** | ANY PORTOR OF THE PROPERTY | or agenty and the second secon | | | westerances in military and a control of the contro | | | | | | | | | | desprise surmane transfer and considerable to the surmane surm | ereacionempurationalistica dases enoticación de la contracticación de la contracticación de la contracticación | territoria del productivo de la companya de la comp | | | the contract of o | | | And in company with the fact that t | | | | | | | - | A STATE OF THE PARTY PAR | | and a management of the state o | | | | | enancia managana de la companya l | | THE REPORT OF THE PROPERTY | | | | | | | | | | The state of s | | | | | | | | | | Traverse: | | | | | | Traverse: | | | | | | | | | Start Time: | 1543 | Initial Leak Check: | 500 | cfm@
efm@ | BH. 2/ | Start Time: | 79) | 앗. | Initial Leak Check: | heck: | | cfm @ | 00 a | | | 640 | | | | | | | ્ | | Project No.: | | 22050 | | | P. CANADA CONTRACTOR C | stances and considerate and confidence confiden | negarine et en | Enterpression and the second s | | | | | | | Operator: | d | <u> </u> | THE STATE OF S | | | SERVICE STATE OF THE S | адаруу бай ауардын дай адарын адарын аламын аламын адарын адарын адарын адарын адарын адарын адарын адарын ада | minementers and entered en | samidalas contanto com deligibili en manere | | | | | and demonstration of the latest states and the second of t | | ary and the second seco | es que en | este este de la companya de la comp | | | | | | | | | | | | 1 | | | - 8 | **APPENDIX 6** SVOC Data Sheets (30 pages) 22050 Project No.: Probe No.: アカラン エ Impinger Box No.: Meter Box No.: | Plant | Covanta DYEC | |----------------|---------------------------------| | Plant Location | Courtice, Ontario | | Test No.: | Semi-Volatile Organic Compounds | | Test Date | November II 2010 | | Test Location | APC Outlet No. | | Pitot Factor | Š | | |---------------------|-------|--------| | DGMCF | 100- | | | Barometric Pressure | TO TO | gH" | | Static Pressure | 60 K- | "H20 | | Nozzle Size | 1597 | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | 7 | inches | | Reading Interval | ഗ | |----------------------|----| | lumber of Ports | 7 | | umber of Points/Port | 12 | Probe Liner Glass / Metal /Teflon / Other_ Site Diagram Glass / Metal / Other_ Nozzle None /Metal /Tefloh / Other_ Cu.o. Pitot Leak Checked? (Yes Notes: | | | - 5 | |------|---------|-----------| | | | 1 | | | | | | | | - 1 | | | | | | | | 3 | | | | 1 | | | | d | | | | - 3 | | | | - 1 | | | | 4 | | | | | | | | | | | | - 3 | | | | - 1 | | | | | | | | | | | | - 1 | | | | 1 | - 3 | | | | ٠, | | | | ٠. | ٠. | ٠, | | | | ١. | | | | 1 | | | | 1 | 2 | | | | 2. | | | | 2.2 | | | | 2. | = | | | 2 | 200 | | | | 200 | | | | 200 | | | 2.00 | = 50 | | | 2.00 | = 500 U | | | 27.2 | | | | 2.00 | | | | ř | | | | ř | | | | ř | | | | ř | | | | ř | | | | ř | | | | ř | | | | ř | | 化二氢化物 医遗嘱 | | ř | | 化二氢化物 医遗嘱 | | ř | | | | ř | | | | ř | | | | ř | | | | 1 | | | |-----------------|----------------|----------| | ſ | P. O. F | | | ٠. | mg | mg | | -1 | | | | - | >- 1 | 2m 1 | | 1 | COTO . | See 1 | | -1 | | | | 1 | 1 | | | 1 | | | | 1 | | - 1 | | 1 | | | | 1 | | 3 | | 3 | | | | 1 | | | | ٤ | - 1 | | | | | | | | | 1 | | | | 1 | | 1 | | - 1 | | .1 | | - 1 | | . ŧ | | - 1 | | 1 | - 1 | | | - 1 | - 1 | - 1 | | 1 | | | | - | - 1 | - 1 | | 1 | - 1 | - 1 | | and or the last | | - 1 | | - 1 | - 1 | - 1 | | 18 | | . 3 | | 1 | | - 1 | | | - 1 | | | 1 | - 1 | | | 1 | | - 1 | | 3 | - 1 | | | 8 | | -
1 | | 3 | . 3 | - 1 | | . 1 | : 1 | - 1 | | | | | | 3 | - 4 | - 1 | | .3 | - 1 | | | 3 | - 1 | | | \$ | | | | - 1 | - 1 | | | ٠ | - 1 | | | 1 | | | | 1 | | | | 1 | - 1 | | | 1 | 1 | | | 1 | | | | 1 | | | | | | | | -1 | | - 1 · 1 | | | 1 | | | - 1 | | | | 1 | - 1 | - 1 | | | | | | ě | - 1 | | | š | - 1 | | | .1 | | w i | | | Per 8 | - | | -1 | ai i | ألصف | | | ~ 1 | A 1 | | - 1 | wine, | ~ 1 | | | ilte | Probe | | 1 | 1. | A 1 | | 8 | See I | tentra (| | - | | | | | | | | | T | Telepoor to the contract of th | |---------------|--------------|--| | | Ŏ | 1 | | | 7 | The state of s | | | The state of | | | e | | 1 | | iei | | | | õ | | | | isture G | 8 | 6 | | Moisture Gain | CWTR | ACOUNT | | \geq | U | 4 | | がwgen の の の の の の の の の の の の の の の の の の の | % | |---|---| | Carbon Dioxide しかい | % | | | Albaria Managara | |---------|---| | | יייט ביווכוויט | | | 1 , 2635 | | | | | : -, | 2635 | | | 377C | | | | | | , 76%> | | Average | / \\ /\\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | Measuring Device | MII Numbers | |-------------------|-------------| | | | | Probe / Pitot 574 | COE 20 112 | | Trendicator | COLE 20090 | | Control Box | COE 20090 | | Incline Manometer | 06000 300 | | Comb.Gas.Analyzer | | | Micromanometer | | | Barometer | Day Careda | | Calipers | 8 | | 2 2635
2 2635
3 2650 | |----------------------------| |----------------------------| | Date: Nov. | 2020 | | Covanta DYEC | EC | | | lest No.: | - | SVOC | | | 7 986 4 | o
o | |--|--|----------------------|--|-------------|---------|----------|----------------|--------|----------------|----------|----------------|--------------------|--------------| | | l | Plant Location: | Courtice, Ontario | ntario | | | Test Location: | j: | APC Outlet
No. | lo. | | | | | | ¥ | * | * | | * | | | * | | * | * | * | * | | | Mindaine Commission (Commission Commission C | Dry Gas | Pitotie | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | ФФ | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | net
t | Pressure | Vacuum | | 77-117-11-11-11-11-11-11-11-11-11-11-11- | T me | E | O, H, | ctm | LL
o | u. | u. | L ° | i.i. | L | U.
o | 0,4
"H,0 | "Hg
Gauge | | - Cont | 0 | 55:43 | 13 | IT. | 285 | 2.5% | 253 | 7 | 37 | 70 | 100 | 2.2 | | | | ĸ | 54, 45 | # | 0%" | 2.83 | 1257 | 250 | 19 | 22 | 40 | 75 | 2.25 | Ø | | 2 | 10 | 20 CE CE | 4. | 25 | 283 | 258 | 252 | 26 | 245 | 20 | 92 | 7'2 | B | | The state of s | 15 | 1 | * | 78, | 187 | 2,58 | 254 | 36 | 77 | 74 | 7. | 2,3 | 800 | | m | 20 | 72, 24 | A | æ | 087 | 25% | CS 2 | S | 77 | 74 | 18 | 17 | 8 | | | 25 | 76, 19 | X | 28. | 280 | 93
73 | 248 | 27 | 43 | 77 | 83 | 7'1 | × | | A Same | 30 | 80,24 | The second secon | 8 | 28/ | 2.5% | 247 | 52 | 53 | 7.5 | 3,0 | 2.1 | Ø | | And the second s | 35 | 94, 16 | 9.77 | 22. | 282 | 259 | 15.2 | 7.5 | 3 | .73 | ×
×
× | 211 | Ø | | S | 40 | 50 XX | 593 | F. | 283 | 35.2 | 0,7 | 25 | 3 | 23 | \
& | 53 | 90 | | The second secon | 45 | \\ \frac{1}{2} | 80% | (A) | 2.83 | 2,5% | 7.7 | 7.5 | Z | 43 | 98 | 0.2 | 8 | | 9 | 20 | 25,60 | <u></u> | 1,2 | 7,87 | 258 | 33 | 25 | 7.4 | 77 | 4% | 8' | 8 | | Control of the Contro | 52 | 2 | 9. | 12 | 7,87 | 25% | 25.5 | 25 | 3 | 7.7 | / % | %
 | ∞ | | 7 | 09 | 162,83 | 1993 | (2) | 587 | 259 | 2,5% | S | 7,7 | 7 | 4 | 2.0 | 9 | | | 65 | 19 30 | 79 | ឝ | 7.84 | 258 | 2.57 | 25 | 2,7 | ht | £8 | 2) | 90 | | 8 | 70 | 大 。 | 3 | 7. | 7,8% | 857 | 757 | 23 | 3,5 | SA. | £.5 | \
(% ?) | S | | - Andrewson of the Control Co | 75 |
 -
 -
 - | | ř, | 7.84 | 258 | 25.4 | 23 | 44 | だ | 200 | <i>y</i> ' | % | | 6 | 80 | 1 | 99, | 2 | 700% | 22 | 35 | 23 | 3 | 3 | 88 | + | × | | - Carteria de Cart | 85 | +65 | 3. | 2. | 2.84 | 255 | 252 | 5.3 | 43 | 12 | 80 | 9'2 | Do. | | 10 | 06 | 125.6 | 6 | 1 4. | 787 | 258 | 7.75
7.75 | 53 | 3 | 12 | %
% | 0
ک | 8 | | | 96 | [2.82.2] | 59 | í: | 2.83 | 2.58 | 2.48 | (S | 35 | 91 | 88 | 2,0 | Ś | | 11 | 100 | 34. 8 C | S9 1 | 25. | 2,83 | 258 | 2.50 | 7. | S | 91 | 88 | 5.0 | elo | | | 08 | | | | |------------------|---|---|------|--| | | = | = | | | | | | dental | | | | | | 200000 | | | | | | 1 | | | | | | 96000 | | | | | രം | | | | | | ر
د | | | | | | 4 | | | | | | | 100 | | | | | | 300 | | | | | | 9 | • | | | | | - | | | | | N | | | | | | | V | | | | | | | | | | | | | | | | | 3 | - | | | | | he | E | | | | | Ü | 8 | | | | | ë | ¥ | | | | | Initial Leal | 9 | | | | | ë | 4 | | | | 1 | Ē | 8 | | | | | | П | | | | 1 | | П | 2000 | | | 1. | | | 2 | | | 1 | | | | | | | | | | | | | | N | 0.00 | П | | | | | | 3 | | | | | 0 | | | | | ö | - | | | | | rse: | III. | Ē | | | | verse: | irt Tim | leh Tir | | | | Traverse: | Start Tim | Finish Tir | | | | Traverse: | Start Tim | Fines | | | | Traverse: | Hg Start Tim | | | | | Traverse: | "Hg Start Tim | | | | | Traverse: | "Hg Start Tim | Traine Shi | | | | <u>Traverse:</u> | Fart Tim | | | | | <u>Traverse:</u> | 以 "Hg Start Tim | T delay | | | | Traverse: | 15 | T dela Parish T | | | | Traverse: | 15 | THE PRINTS OF | | | | Traverse: | 15 | THE SHIP IN THE | | | | Traverse: | 15 | THE Bluish Til | | | | <u>Traverse:</u> | cfm@ (1 | THE SMIT SHIP SHIP | | | | <u>Traverse:</u> | cfm@ (1 | | | | | Traverse: | cfm@ (1 | THE SINE THE THE THE THE | | | | Traverse: | cfm@ (1 | il deline "Me "Me " | | | | Traverse: | cfm@ (1 | II. NaINS SAN | | | | Traverse: | cfm@ (1 | | | | | Traverse: | cfm@ (1 | il delinia IMBI IMBI II | | | | Traverse: | cfm@ (1 | THE STATES THE STATES | | | | Traverse: | cfm@ (1 | Sheaki Shine ofme "Me Hill Hilleh Tir | | | | <u>C</u> | cfm@ (1 | The heati | | | | Traverse: | cfm@ (1 | The Mark Sheek | | | | 323 | cfm@ (1 | alteant Sheati efm as "HE Finish Ti | | | | M 分に) Traverse: | cfm@ (1 | That team shear I was I man | | | | が正式 | Initial Leak Check: , 🛇 (cfm@ (' | Pinal teast Chasti ofm@ "ME (Finish Tir | | | | が正式 | Initial Leak Check: , 🛇 (cfm@ (' | Final beat cheat: Final Final III | | | | 323 | Initial Leak Check: , 🛇 (cfm@ (' | Pinel kesak Sheski sfm® ''Ha (Finish Tir | | | | が正式 | cfm@ (1 | Final beek Cheski efm® "Mg (Finish Tir | | | | が正式 | 仏科 Initial Leak Check: , se cfm@ († | | | | | が正式 | 仏科 Initial Leak Check: , se cfm@ († | 1. [Final teads Gheats] effm@ "Mg [Finish Tir | | | | で下る人 | 仏科 Initial Leak Check: , se cfm@ († | me: Final seat cheek: efme final Finish Tir | | | | で下る人 | 仏科 Initial Leak Check: , se cfm@ († | Time: Einal teat Sheak: sime i'Ma (Finish Tir | | | | で下る人 | 仏科 Initial Leak Check: , se cfm@ († | ISB TIME: Final Leak Sheak! Afmes "Me Finish Tir | | | | が正式 | Initial Leak Check: , 🛇 (cfm@ (' | Finish Time: Final Seals Cheek: # # # Finish Tir | | | | で下る人 | 仏科 Initial Leak Check: , se cfm@ († | (Pinjsh Time: Pinal Leads Sheak: efma) "HE Finjsh Tir | | | Project No.: Operator : " | | # * * * * * * Clock Plant Location: Courtice, Ontario * Time Phy Gas Pitot Stack Clock Meter AP Desired Temp FF Time Phy Gas 110 Ue, 61 120 Ue, 61 120 Uf, 46 | Probe
Temp | | llet No. | | * | | |--|---|---------------|--
--|--|---|---| | 100 | Clock Meter AP Desired Temp Time ft ³ "H ₂ O cfm °F 110 [40,6] ,68 ,77 284 120 [44, 2, 46 284 284 120 [44, 4, 46 8, 56 4, 6] 284 144, 3, 46 8, 56 4, 6] 284 150 [44, 4, 46 8, 56 4, 6] 284 150 [44, 4, 46 8, 56 4, 6] 284 150 [44, 4, 46 8, 46 8, 46] 284 150 [44, 4, 46 8, 46] 284 150 [44, 46 8, 46] 284 150 [44, 46 8, 46] 284 150 [44, 46 8, 46] 284 150 [44, 46 8, 46] 284 150 [44, 46 8, 46] 284 150 [44, 46 8, 46] 284 150 [44, 46] 284 | Probe
Temp | * | | * | * | | | Clock Day Gas Plots Stack Probe Oven Impliger Temp Meter Temp Temp Outlet Inter/Trap Outlet Temp Temp Temp Outlet Inter/Trap Outlet Temp Temp Temp Outlet Temp Temp Outlet Temp Temp Temp Outlet Temp | Clock Meter | Probe
Temp | | | | | * | | Clock Mares AP Desired Temp Temp Temp Outlet Iniet/Trap Outlet 105 13.6.6.1 .5% .2% .2% .2% .2%
.2% | Clock Meter | e . | | | eter Temp | Meter | Pump | | 110 140,64 1,68 171 281 258 253 54 46 76 76 130 140,46 1,56 1,68 171 281 254 254 54 45 76 76 130 147,46 160,64 16 | 105 136.69 , 68 , 77 2.81 110 140,61 ,55 ,69 2.84 115 144, 21 ,56 ,69 2.84 120 147, 46 ,69 2.84 | | трефилогични | | t inlet | Pressure | Vacuum | | 110 \(\lambda \chi \eta \rangle \chi \ran | 1105 136.69 ,68 ,77 2.84
110 140.61 ,55 ,69 2.84
110 142.46 ,56 ,69 2.84
120 142.46 ,56 ,69 2.84 | | | | | 0 H D | ng
Gauge | | 110 \(\lambda \chi_0 \end{array} \rightarrow \frac{15}{16} \) \(\lambda \chi_0 \end{array} \rightarrow \frac{15}{16} \right | 110 140,66 | 258 | S | | 18 | 2 | ۵ | | 115 | 120 44, 21 56 584 284 120 144, 21 120 144, 21 120 144, 21 120 | - A32 | | 7 | 200 | ナルニ | ∞ | | 120 47, 46 1 | 120 147, 46 | - 452 | | | | 1,5 | | | Traverse: | | | | | | | | | Initial Leak Check: | | | | | | | | | | | | | | | | | | 7. Initial Leak Check: | | | | | | | | | T. Initial Leak Check: | | | | | | | | | して Initial Leak Check: | | | | | | | | | Traverse: | | | | | | | | | した | | | | | | | | | ا Cfm@ "Hg Final Leak Check: Initial Leak Check: Initial Leak Check: Initial Leak Check: Initial Leak Check: If mitial Check: If mitia | | | | | | | | | して initial Leak Check: | | | | | | | | | した Initial Leak Check: | | | | | | | | | ্ | | | | | | | | | 1 | | | | | and the second s | | | | した Initial Leak Check: | | | | Administrative Annual Control of the | | | | | Traverse: Initial Leak Check: | | | | | | | | | Linitial Leak Check: — cfm@ — "Hg Start Time: Initial Leak Check: • 00 (| | | | | | | | | Traverse: Initial Leak Check: | | | | на виденти под при под | | | | | 1. Initial Leak Check: cfm@ — "Hg Start Time: Initial Leak Create Check: cfm@ — "Hg Final Crea | | | | | | | | | Initial Leak Check: — cfm@ — "Hg Start Time: / Initial Leak Check: efm@ Final Leak Greek Gre | | Traverse: | en e | Appendix and a sign of community communi | | | | | 1612.3 (Titled Baren Withdow) 6 00 (| Initial Leak Check: cfm@ "Hg | | | nitial Leak Check: | | cfm @ | Z Z | | Operator | 16:23 (************************************ | | | Project | % () ' ::ON | 22050 | | | | | | | Operator : | r: 42 | CAS CONTRACTOR DESCRIPTION OF THE CONTRACTOR | der verschaften er en | | | | | | | • | | | | Date: NAW !! | 1000 | Diant: | Covanta DYEC | 22 | | | Test No.: | | SVOC | | | Page 4 | of
S | |--|-------
--|-------------------|------------|--|--|--|-------------|--|--------|--|--------------------------
---| | Non-inches de la companya comp | | Plant Location: | Courtice, Ontario | ntario | Market Company of the | | Test Location: | n: | APC Outlet No | 10. | | - | | | | * | Seminaria de la compositio composi | * | | * | THE PROPERTY OF O | - Company of the contract t | * | NACTOR AND | * | * | * | * | | | | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Temp. | Meter | Pump | | Point | Clock | Meter | ΔD | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | Inlet | Pressure | Vacuum | | | Ţ, | Cn
ded
ded | .H2O | m
C | <u></u> | LL.
O | LL
o | LLs
o | <u>u</u> | LL. | LL
o | Δ H
"H ₂ O | "Hg
Gauge | | | | 77.75 | | 89. | 787 | 256 | 253 | 3 | \$ | 2 | * | 2.2 | 3 | | | N | 4.5.5 | 1 × 1 | 70, | 7.84 | 257 | カジで | 25 | 20 | 2 | K
X | 7,7 | σ | | 2 | 19 | 15.5 84 | 2,3 | 788 | 582 | 25.7 | 2.54 | 5.4 | 5.2 | 4 | かの | 2,25 | Ġ | | ALTO THE PROPERTY OF PROPE | 15 | 159,46 | * | 78, | 2.84 | 257 | 249 | 22 | 23 | 52 | 88 | 225 | • | | m | 20 | %9.F91 | 7 1 | 0 %* | 7.84 | 257 | 2.50 | 15 | ずる | 32 | 85 | 2,15 | ű. | | - C | 25 | %0 %91
 | 件。 | 3 | <i>S</i> 82 | 23 | 252 | かし | ħS. | 4 | 98 | 2.25 | 5 | | 4 | 30 | + | l d | 7P. | 285 | 258 | 472 | رم
1 | 27 | 尖 | 98 | 7,2 | σ | | - The state of | 35 | 12,12 | l-, | <u>ن</u> ، | 285 | 2.58 | 252 | 7 | 23 | 12 | <i>9</i> % | 1'2 | Œ. | | 2 | 40 | 180,07 | 3. | 注 | 582 | 258 | ぞら | -
5 | 27 | 2 | %
\} | <u>0</u> - | σ- | | The second of th | 45 | 183, 89 | 500 | 考 | 2.8.5 | 25% | 222 | 21 | 23 | 3 | £8 | 1.9 | 8,5 | | 9 | 20 | なき | 9, | 12, | 582 | 258 | 233 | 57 | 13 | 12 | £8 | %
 | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | | | 52 | 81.181 | 2 | Ŧ, | √82
28 | 2.58 | 於 27 | 75 | 4 | K | -28 | 1.75 | 8.5 | | Land the second | 09 | 144,78 | \$65 | \r. | 2%5 | 25% | 523 | 2 | ل ر | 72 | X+ | (3) |)
672 | | MACINETICAL PROPERTY AND ELECTRICAL PROPERTY AND | 9 | 198,55 | 1.59. | 73. | 582 | 258 | 523 | ıs | 7.9 | X | 87- | 1.25 | \
%' | | 8 | 20 | 202,33 | 99, | ·
次 | 987 | 852 | たわっ | 8h | 59 | 75 | £8 | 1.95 | 8,5 | | | 75 | 206,17 | 99. | î, | 782 | 2.58 | 248 | 94 | Ť, | ナイ | -L.S | 1.95 | 200 | | 5 | 80 | 209,92 | 20.4 | ξ. | 2.83 | 25% | 252 | ナバ | 23 | 75 | ×7. | 1,95 | 8,5 | | AND THE PROPERTY OF PROPER | 85 | 210,73 | 3 | 寺 | 282 | 7.29 | 252 | 7
7
7 | 5 | 75 | × 7 | 57 | 8,5/ | | 10 | 8 | ながれる | 99" | الخرار | 787 | 2.5% | 252 | 917 | 37 | 15 | -k & | 1.75 | \$
\$\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | | demonstration of the second constitution | 95 | 大元 | 99 ° | £ | 283 | 452 | 532 | 94 | 5 6 | 4 | 12
12
13
13
13
13
13
13
13
13
13
13
13
13
13 | | /
%
/
/ | | 11 | 100 | 2007 C | , | 3 | 787 | ナント | 223 | 25 | <u>ئ</u>
رى | 7 | k
K | 4 | 00 | | Start Time: | - K | nitial Leak Check | °° |) c |)
() | BH | Traverse: Start Time: | | 1 | = | nitial Leak Check: | Check: | cfm @ | <u>்</u> | H. Hg | |--------------|-----|-------------------|--|-----|----------|---------------------------------------|-----------------------|-----|---|-----|--------------------|--------|-------|----------|-------| | Finish Time: | 4 | inal Leak Check: | - Company of the Comp | cfm | <u>1</u> | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Finish Time: | ne: | | iE. | Final Leak Check: | heck: | cfm | cfm @ 🥳 | BH. | Project No.: Operator : | က
ပြ | | * | | ە
> | "H ₂ O Gauge | $\ -$ | 8 9.1 | 81 | | | | | | | | | | | The second secon | | | | | naintissianinessaaninessaaninessaaninessaaninessaaninessaaninessaaninessaaninessaaninessaaninessaaninessaanine | | © "Нg |)50 | | |--------------
--|---|--|------------|--------------------------|---|----------|--|--
--|--|--|--
--|--|---|--
--|--|---|--|--
--|---|--|---------------------|----------------------------|--| | Page 5 | | | | | * † | | venteral | | | | | | | | | | | 4. | | | | | | | | cfm @ | 7 | | | | | * | Meter Temp | met | <u>L</u> | 87 | × | 100
100
100
100
100
100
100
100
100
100 | | | | | | | | | | ٠ /, | Annia vota proprieta de la companya del companya de la companya del companya de la l | | | | 12.20 | | 1 | | | 3 | | | 0. | * | Met | Outlet | <u>.</u> | 17 | 25 | 24 | | 4,5 | | | | oerstelle biologische Bestelle | ANAMAN MANAMAN | sidanos e e e e e e e e e e e e e e e e e e e | novabourgeous doubles in view as in the second state of | | THE PROPERTY OF O | olista de la companya | and the second s | | | | | heck: | Project No.:
Operator : | | | svoc | APC Outlet No. | | Impinger Temp | Inlet/Trap | LL. | 133 | 13 | 32 | | | | | | | A CONTRACTOR OF THE PROPERTY O | | | | | A LANGUAGE AND | Annual Company of the | | | | | Initial Leak Check: | | | | thanicalli | •• | * | Imping | Outlet | <u>.</u> | 95 | 27 | オプ | | | | | | ére aplane parameter de la companya | MACON DE PROPOSITA DE LA CONTRACTOR DE CONTR | eries de la compressión de servicio de la compressión de la compressión de la compressión de la compressión de | Andreas in a property of the contract c | | | idal pinandinalijajereleksionomekinistististististi | odden malmaken Sakabadaji kularan Malayakin ole ojamikan k | myosaya,oosassocabaya,oosaa,oosaa,oosaa,oosaa,oosaa | | Produced of the second |
erassesiamenterass | | | | | Test No.: | Test Location: | | Oven | Temp | !- | 253 | 152 | 197 | | | | | | | | | | | | | A STATE OF THE STA | Commence of the th | | | Security and the security of t | | | ANALOS CONTRACTOR CONT | | | | | Probe | Temp | ŗ. | 256 | 256 | 520 | | | Appropried Control of | | | AND THE PROPERTY OF PROPER | ease ease and a second control of the | oranie de la companya del companya de la companya del companya de la | | | | | | | | | Traverse: | Start Time: | | | | | | * | Stack | Temp | UL
O | 181 | 28 | 187 | | | | | | On the control of | | | | | | | | | | | | SS T | | | | U | tario | | | Desired | cţm | 12 | 12 | 124. | | | THE | | | | | | | | | | | | | | | cfm@ | | | | Covanta DYEC | Courtice, Ontario | * | Pitot | ۵۷ | "H ₂ 0 | 091 | | 09: | | | | | | | | | | The state of s | | | | | | | | | 7,000 | | | Dant: | Plant Location: | * | Dry Gas | Meter | e# | \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | 233 30 | 235,78 | 28, 23 | | Americanistica de como esta esta esta esta esta esta esta esta | | and in the design of the contract contr | manuschinderten institutiveveven Johannis interveverteten interverteten interverteten interverteten interverte | annej (ann acunnannannannannannacharacharacharacharach | | | maria de de la composiçõe | | enda diseada cine analo grado del para permanya permanya mananda proporto de a nananda mende | Commence of the second | mana para de la mana desta de la mana m | | | | Initial Leak Check: | | A CONTRACTOR CONTRACTO | | 2010 | Π | * | The same of sa | Clock | e
E | 105 | 110 | 115 | 120 | notes and and a second se | NAME OF THE PROPERTY PR | | - | | ************************************** | | | - The state of | SOCIAL ENGINEERING CONTRACTOR OF SECONDARY | ************************************** | | | TOP GOLDEN OF THE OWNER OF THE OWNER OF THE OWNER OWNE | | Annual Committee | | 12,30 | 187 | | Date: NOV. 1 | are described to the first season for sea | | ************************************** | Point | ANGER BOATTA ET POPOSERA | | 12 | Additional grant and account of the contract o | NO THE REAL PROPERTY AND THE AN | And the second s | distribution representation of the second se | VALLATORET AND THE PROPERTY OF | - Resident Commence of the Com | | | | | | COMMUNICATION CONTRACTOR CONTRACT | Anni Anni Anni Anni Anni Anni Anni Anni | | | esiki yaku yaku kata kata kata kata kata kata kata k | | Traverse: | Start Time: | 1 1 | | Project No.: S. J. S. | Plant | Covanta DYEC | |--------------------|---------------------------------| | Plant Location | Courtice, Ontario | | Test No.: | Semi-Volatile Organic Compounds | | Test Date | November 11 2020 | | Test Location | APC Outlet No. | | Onorator Signatura | | | Pitot Factor 849 | | |---------------------------|--------| | DGMCF | | | Barometric Pressure 39,55 | J. Hg | | Static Pressure ~ 4,52 | "H20 | | Nozzle Size 、 ふもち | inches | | Stack Diameter 4.5 | feet | | Length | feet | | Width | feet | | Port length: 11 | inches | | Reading Interval | ហ | | |-----------------------|----|--| | Number of Ports | 7 | | | Number of Points/Port | 12 | | Probe Liner (Glass / Metal /Teflon / Other_ Site Diagram Glass / Metal / Other_ Nozzle None /Metal / (eflon) Other_ Grion Pitot Leak Checked? (Yes Notes: °Z | Ga. | | | |-------|--|--| U | Ticul | ō | B H | Probe | |-----|-------| | mg | | | | 1 | | | T. | the s | |---------------|------|-------| | | Q, | 8 | | <u>.</u> ⊆ | J | | | Moisture Gain | | æ | | istu | CWTR | WCBDA | | Oxygen | OT 00 | % | |----------------|-------|---| | Carbon Dioxide | 1800 | % | Average: | H N | |-----| |-----| ひょるなど i, Micromanometer Barometer Calipers 20090 20092 (0) (9) Incline Manometer Comb.Gas.Analyzer 288 COF Trendicator Control Box Probe / Pitot ≤⊋A MII Numbers Measuring Device Impinger Box No.: Meter Box No.: Probe No.: Page | 79% . Dan | 707 | | Covalita Diff | ړ | | | lest No.: | | SVOC | | | Page 2 | o, | |--|---|-----------------|-------------------|-----------------|-------|-------------|-----------------|----------|----------------|----------|--------------|--------------|--------------------| | | MONTH AND | Plant Location: | Courtice, Ontario | ntario | | | Test Location: | | APC Outlet No. | 0. | | | | | | * | * | * | | * | | | * | | * | * | * | * | | | *************************************** | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | ₽ | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | nlet | Pressure | Vacuum | | | Time | ¥ | "H ² O | đ | 10 | ů, | <u>.</u> | LL.
o | L | ! | ů. | η Δ Η
Ο Ζ | "Hg
Gauge | | T | 0 | 79'38 | 7 | d
d | 291 | 255 | 252 | 6.9 | ずる | 7.2 | 7 | 7 | and for | | - in the second second second second | S | サナ | 2 | £. | 7.K | L57 | 245 | 25 | 13 | 43 | 1 | 2.05 | + | | 2 | 10 | 17.30 | % | % | 278 | 1257 | ナカで | 23 | ў-
2- | ? | 80 | 7.65 | <i>6</i> 0 | | | 15 | 4 3 | &9* | 1,76 | 276 | 257 | 249 | 25 | \$- | 73 | 7% | 1000 | 20 | | 33 | 20 | 70°50°5 | 3, | 升 | 9±2 | 852 | 252 | īs | 150 | 3.4 | 478 | 6 | 00 | | ************************************** | 25 | 58,75 | 99, | 34. | 235 | 253 | S42 | Ī, | 15 | 7 | 82. | 2,05 | 20 | | 4 | 8 | 62, 46 | 990 | 74. | 27% | 252 | シナイ | 5. | 22 | 7 | 20% | 2.05 | 80 | | The second of th | ភព | 66,32 | k9 • | * 7. | 275 | 258 | 25 | 51 | S | 12 | 4.3 | 2.05 | 90 | | S | 40 | -k 22 | .6/ | ·公
 | 9±c | 2.58 | 2.50 | 5 | 8 | 7 | 4% | 1,95 | 00
 00
 00 | | | 45 | のどれる | 799 | 1,73 | 775 | 2.56 | 24 7 | S | 7,5 | ¥ | 148 |
5. | 80 | | 9 | 50 | 77,76 | 09° | 14 | 287 | 252 | また | 20 | 关 | 43 | 137 | V. 9 = | 80 | | | S, | 31, 29 | . 5% | <u>ج</u> | 283 | <i>J</i> 52 | 252 | £ | £ | 174 | 27 | 91 | 8 | | 7 | 09 | ** |);
(C | # | 183 | 258 | 258 | 774 | 7.2 | 1 | × × | 5 | O | | · | 9 | 88,39 | , 63 | A, | 282 | 2.32 | 7,68 | 王 | 4 | 12 | 8 | 5 | ∞ | | 8 | 70 | ر
ال | ್ತಿ | 天 | 281 | 258 | 253 | 3 | 83 | 7 | 90
H | 1.6% | 80 | | | 75 | 97,89 | 59. | 7, | 1%1 | 258 | 253 | Ť | 83 | 2 | 33 | 5 | 900 | | 6 | 80 | ري
1 | 94. | , 1% | 280 | 258 | 25 | 5 | J | 7,9 |
 ∞
 × | 205 | 80 | | | 85 | 103,50 | 490 | 143 | 187 | 2.5% | 2018 | 74 | 20 | H | * | 2 | o- | | 10 | 06 | 107, 33 | 59 " | ·子: | 082 | 258 | 252 | くさ | 1 | 7 | \$\infty\$ | 1.50 | 0- | | | 95 | 1 | 7.9° | 7 | 787 | 2.58 | 452 | パプ | TS. | 44 | %
5 | \
\&
- | 2 | | ㄷ | 100 | 14, 82 | ٠53 | £9° | 1887 | んこと | 1.57 | ジナ | S | 4 | 00 | 7 | 80 | | | 0.0 | 0.0 | |----------|--|---| | | F | F | | | | | | | | | | | | | | | | | | | (8) | (G) | | | E | اعا | | | र्च | 4 | ij | | | | Jec. | Š | | | ర్ | 'n | | | 按 | ¥ | | | 19 | .ea | | | e | = | | | m; | Ľ. | | | H | Marie I | | | | | | 1 | | | | | N | | | | | V | .:
6 | | | E | 8 | | 10 | - Land 1 | esso i | | erse | Ë | Ę | | averse | art Tir | nish Ti | | Traverse | Start Tir. | Finish T | | Traverse | ; Start Tir. | Finish Ti | | Traverse | 'Hg Start Tir | Hg Finish Ti | | Traverse | "Hg Start Tir | Fhish | | Traverse | "Hg Start Tir | T S L S L S L S L S L S L S L S L S L S | | Traverse | と "Hg Start Tir | "Hg Finish Ti | | Traverse | り "Hg Start Tir | "Mg Finish Ti | | Traverse | (と "Hg Start Tin | TRS Frish T | | Traverse | ال الله Start Tir. Start Tir. | (@ Finish Ti | | Traverse | fm <i>@ lb</i> "Hg Start Tin | fm@ - "Hg Finish Ti | | | ofm@ 16 "Hg Start Tir | cfm@ - "Hg Finish Ti | | | cfm@ /b "Hg Start Tir | cfm@ "Hg Finish Ti | | Traverse | , cfm@ lb "Hg Start Tir | cfm@ "Hg Finish Ti | | | ್ರಿ cfm@ ಗ್ರೆ "Hg Start Tir | cfm@ "Hg Finish Ti | | | よっ _た cfm <i>@ lb</i> "Hg Start Tir | cfm@Hg Finish Ti | | | くっ _と し cfm <i>@ 「や</i> "Hg Start Tir | cfm@ "Hg Finish Ti | | | ය _{දරව} ් cfm <i>@ lb "Hg</i> Start Tir | cfm@ Hg Finish Ti | | | eck: ್ಯರ್ cfm@ fb "Hg Start Tir | ck: cfm@ "Hg Finish Ti | | | Check: ૣૣૢઌ૽ૢ૾ૺૺ cfm@ (b "Hg Start Tir | heck: cfm@ "Hg Finish Ti | | | ak Check: 100 cfm@ 10 "Hg Start Tir | K Check: cfm@Hg Finish Ti | | | eak Check: مراد حوا | eak Check: cfm@ Hg Finish Ti | | | eak Check: مراد حوا | eak Check: | | | nitial Leak Check: , 이전 Cfm@ 기술 "Hg Start Tin | eak Check: | | | eak Check: مراد حوا | Final Leak Check:cfm@ "Hg Finish Ti | | | eak Check: مراد حوا | eak Check: | | | eak Check: مراد حوا | eak Check: | | | eak Check: مراد حوا | eak Check: | | | eak Check: مراد حوا | eak Check: | | | eak Check: مراد حوا | eak Check: | | | eak Check: مراد حوا | eak Check: | | | eak Check: مراد حوا | eak Check: | | ise: | eak Check: مراد حوا | eak Check: | | | eak Check: مراد حوا | eak Check: | | ise: | eak Check: مراد حوا | eak Check: | The mande Project No.: Operator: | Pitot Stack Probe Oven Impings | Date: Nev | 11 2000 | | Covanta DYEC | EC | | | Test No.: | 2 | SVOC | | | Page 3 | of 5 | |--|--|--
--|--|--|--
--|--|--|--
--|--|--|--| | Clock Weeter Time Time Temp Temp Temp Temp Temp Temp Temp Weeter Temp Weeter Temp Temp Temp Temp Weeter Temp Weeter Temp Temp Temp Weeter Temp Weeter Temp Weeter Temp Weeter Temp Weeter Temp Temp Temp Weeter Te | | | Plant Location: | Courtice, Or | ntario | | | Test Locatio | n: | APC Outlet I | Vo. | ************************************** | was contracted from the properties of the contracted from the state of the contracted from | DANSE DE LA CONTRACTOR DE | | Clock Dry Gass Pitot Stack Probe Oven Implieser Temp Water Temp Water Prope Prop | 4 | * | * | * | | * | | | * | | * | * | * | * | | Clock Mateer Ap Desired Temp Temp Outlet Inlet Pressure Vacuation Temp Temp Outlet Inlet Pressure Vacuation Temp Temp Outlet Inlet Temp Temp Outlet Inlet Temp T | | Christian de la company | Dry Gas | Pitot | | Stack | Probe | Oven | mom | ger Temp | Meter | -Temp | Meter | Pump | | Time It 14,0 cfm T T T T T T T T T | Point | Clock | Meter | ΔP | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | 0 | Pressure | Vacuum | | 105 112, 12. 1.67 2.87 2.57 2.53 46 52 78 71 1.5 8 110 121, 45 1.53 1.68 2.74 2.57 2.53 46 52 78 71 1.6 8 120 124, 14 1.65 1.65 1.65 1.65 1.65 1.65 120 124, 14 1.65 1.65 1.65 1.65 120 124, 14 1.65 1.65 1.65 120 124, 14 1.65 1.65 1.65 120 124, 14 1.65 1.65 1.65 120 124, 14 1.65 1.65 120 124, 14 1.65 1.65 120 124, 14 1.65 1.65 120 124, 14 1.65 1.65 120 124, 14 1.65 1.65 120 124, 14 1.65 1.65 120 124, 14 1.65 1.65 120 124, 14 1.65 1.65 120 1.65 1.65 | | Time | - | "H20 | Ę | Ľ. | L . | Ľ. | 0 | lås
0 | <u>.</u> | Ľ. | H 20
H 20 | "Hg
Gauge | | 115 11/41 152 164 254 253 46 52 78 91 1.6 8 120 124, 14 153 168 274 2.53 46 52 78 91 1.6 8 120 124, 14 153 168 169 169 169 169 169 169 120 124, 14 169 169 169 169 169 169 169 169 169 120 124, 14 169
169 1 | | 105 | - | | £9° | 281 | 1257 | 248 | 160 | 2 | 22 | 0,0 | 250 | 00 | | 115 | 12 | 110 | | 25 | 3 | 2.8% | 257 | 253 | 25 | 25 | 1,82 | <u></u> | 5 | 690 | | 120 128, 16 | | 115 | 24.3 | 150 | 33 | B+2 | 12 | 255 | 95 | 55 | 78 | 9.1 | 1.6 | ଚ | | 1 | manifest in the state of st | 120 | 128, 16 | and a service of the | | | | | | | | | | | | Traverse: | Andrea and commerced control and a | Marie de la companie | Andrew Control of the | Andrew Control of the | | | | | | | = . | | | | | 2. Initial Leak Check: - cfm@ - "Hg Start Time: Final Leak Check: cfm @ | | | And the state of t | | | And in proper desired department of the contract contra | | | timponamentalisti salatinati timati t | The state of s | Temporary Composition and Composition (Composition Composition Com | | | | | Traverse: | | ************************************** | | Ten Organisa in the Section of S | | enconjournistiscome and a second secon | | | | | | | | | | 1 | | Option and the second | THE RESIDENCE OF THE PROPERTY | | | | | | is have a substituted and the substitute of | | NATIONAL PROPERTY AND A STATE OF THE O | The state of s | | | | | | months and property of the state stat | | | | | | | | | iminate proposal management of the control c | | - Annual Residence of the Control | | | | | | | | | | | | Personal Anna Personal Control of | - Value of the Control Contro | Principal and pr | | | | | Traverse: | | | AND THE CONTRACTOR OF CONT | | | | | | NAME OF THE PROPERTY PR | | manaporale paraceles constitues of the constitue | | | | | Initial Leak Check: | | | Average in the face of fac | The second contract of | | National Company of the t | COLUMN TO A STATE OF THE PARTY | | war was a state of the | | majoranistica production (new production of the control con | | | | | Traverse: | | | and representative and the control of o | ON THE CONTRACT OF CONTRAC | | Note document where the contract contra | Management of the Control Con | And the control of th | | | | | | | | Traverse: | | | Vienas de la professiona del la professiona del la professiona de la professiona de la professiona de la professiona del la professiona de la professiona de la professiona del prof | | | ediaminaminajajanjanaa janonjanaan penerata tarputantura | And an analysis of the state | | | | | | | | | Initial Leak Check: | | Angelson operate production of the first | | Annual designation of the second | | Annual designations of the control o | | | | | | 5. | 1. | | | Traverse: | 1. | манилинено водинательности в применения по | And the second s | | | | | | MACHINET TO CONTROL OF MACRONICAL PROPERTY OF THE | ANTA PROPERTY CONTRACTOR CONTRACT | espiration de constitue cons | | | | | Traverse: | | | | | | | And the second contract of contrac | The state of s | | | | | | | | Traverse: | AND THE PROPERTY OF PROPER | A MARTINE STATE OF THE | ere jorgetineter kannen erenekanske kommunen erenekanske kommunen erenekanske kommunen erenekanske kommunen er | And the second s | | | | | | | | | | | | Initial Leak Check: | STRANSCENSOR STRAN | erendo resonta del francoscopo de porto de constantes c | | ADDITION OF THE PROPERTY TH | | | | | | | | | | | | Initial Leak Check: | | - Company Comp | Verifyingen palatikasi massakapitus sa sa kultura kala-a-a-dusus dipracajana kalangan sa simun kalangan kalang | | To the state of th | And the second s | | - | | | | | | | | Traverse: Initial Leak Check: cfm@ "Hg Start Time: final Leak Check: cfm @ | | | | | | | | | | | | | | | | Traverse: Initial Leak Check: cfm@ "Hg Start Time: Initial Leak Check: cfm@ Final Leak Check: cfm@ Final Leak Check: cfm@ Final Leak Check: cfm@ Final Leak Check: cfm@ | | | | | | THE RESIDENCE AND ADDRESS OF THE PARTY TH | | AND THE PROPERTY OF PROPER | | | | | | | | Initial Leak Check: cfm@ — "Hg Start Time: Initial Leak Check: cfm @ | raverse: | .) | | | | | Traverse: | A CONTRACTOR CONTRACTO | - | | A PROPERTY AND PROP | | | | | 60, 19 Project No.: 22050 | tart Time: | | Initial Leak Check: | ~ | cfm@ | | Start Time: | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Initial Leak C | Sheck: | | ctm @ | | | Operator: | | 51 (0) | | 00, | | | | | | | Project No.: | | 22050 | | | | на водиненти может при применять применать применать применать применать применать применать применатор применать применатривать применать применать применать применать применать примена | elannilosionessian messi innovamus sanstalis | O Manada está contrata de contrata en cont | | THE | | MATTER CONTROL OF THE PARTY | | sector of the se | encentrol and control cont | Operator: | NACONALIS AND | | | | Date: West | Con . | ine. | Covanta DYEC | J | | | lest No.: | ~ | SVOC | | | ກ
ກິດ
ລັ | ص
م | |--|--|-----------------|-------------------
--|--|---|---|------------
--|--------|------------|----------------|--------------| | | | Plant Location: | Courtice, Ontario | ntario | godina de la compositación | NAMES AND THE PROPERTY OF | Test Location: | | APC Outlet No | 10. | | | | | | * | Ж | # | DANIE PROPERTY DE LA CONTRACTOR CO | A A A A A A A A A A A A A A A A A A A | | Para de la companya del la companya de | * | Services de la company c | * | * | * | * | | POT THE PROPERTY OF PROPER | DESCRIPTION DE LA CONTRACTOR CONTR | Dry Gas | Pitot | | Stack | Probe | Oven | Buidml | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | d
V | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | Inlet | Pressure | Vacuum | | | Time | * | "H20 | Ę | ш.
° | <u>.</u> | u. | <u>u</u> . | LL o | Ľ. | ii. | H O.H. | "Hg
Gauge | | - | 0 | 95°881 | | 28. | 7.84 | 155 | かっこ | 3 | 5% | 78 | 28 | 252 | | | | ហ | 137.65 | 78% | 98, | 285 | 152 | 256 | 25 | 19 | 22 | \
% | 2.5 | 0 | | 2 | 10 | 9,5% | \$ 0.00 m | \$F, | 286 | 256 | 273 | 20 | S | 84 | ×7 | 2,5% | 0) | | | 72 | で、主 | 7 | \%; | 987 | 257 | 124 | 20 | 5.2 | 82. | X | かって | 9 | | m | 20 | | 08, | \$ | 286 | 2.08 | かる | 2.5 | 28 | 2 | 38 | 2.3 | 0 | | - | 25 | 14, 78 | 100 | 83 | 38.2 | 222 | ナガス | 2.5 | 28 | 78 | 88 | 2.3 | ್ಷ | | 4 | 30 | 153,97 | 2. | 37, | 9,82 | 25% | 2.54 | S | 7 | 82 | 82 | 2.2 | 0 | | | 35 | 188.07 | * 7.5 | Ş | 786 | 25% | 245 | 23 | \$ | 78 | 6-0
80 | 7, 12 | 01 | | n | 40 | 20.00 | 33. | 13 | 786 | 837 | 353 | S | 28 | 22 | ∵
% | 0,7 | 0 | | en de la company | 45 | 65.88 | 12 | æ | £87 | 2.58 | 223 | 53 | 23 | ++ | Z | 2.(| 0 | | 9 | 20 | 2.13 | 7.9 ° | Ą | 28+ | 25.7 | 252 | S | 99 | 44 | 13 | 8.1 | Ū- | | | 55 | # F | 093 | 4: | 787 | 7000 | 2,50 | 25 | 57 | + | \$ | 7.8 | <i>~</i> | | _ | 09 | | 99. |)A; | 7.87 | 400 | 755 | 25 | PS | 4 | 750 | 53.1 | 2.5 | | No. | 65 | 1%0.89 | 99 | 4 | 787 | 253 | 252 | 5 | S | 7.7 | 28 | 1.95 | S'3 | | 8 | 70 | 十9,481 | 399. | \x_ | 2 87 | 257 | 252 | S | 23 | 44 | £8 | 1.55.1 | 9.5 | | | 75 | 188,45 | \s\ 9. | 14. | 287 | とジア | 28 | <u>_</u> | 53 | 7.0 | 88 | 1.95 | 5.9 | | 5 | 80 | 10% 21 | ر
وي
ا | 3 | 982 | 257 | 282 | ふ | 5.5 | 7-6 | Ł8 | 1.95 | 5.5 | | | 85 | 45, 48 | \$ 6.5 | 光 | 1/0/2 | 256 | 253 | - | 53 | 7.6 | ± 8 | 1,9% | 7.5 | | 10 | 06 | 产 | 19. | 7. | 7.82 | 757 | 2.51 | 3 | 52 | 9-2 | 87 | 0 | 9.5 | | and the second s | 92 | 203,45 | 7.0. | ぼ | 982 | 256 | 257 | 1-5 | 55 | 75 | 8
T | <u>-</u> | \ <u>`</u> | | - | 100 | ×= 7+20 | V. | Ą | 286 | グン ぐ | 255 | <u>.</u> | 7 | なん | Z
Z | 4 | 0-
0- | | 1.3 | | - | , : | |--------|------------------------------|--|-----| | | 023 | 00 | | | | - | man . | | | | • | - | | | | | | | | | | | Į | | | | | l | | | | | ١. | | | | | l | | | | | 1 | | | | | l | | | R. | R. | l | | | я
(6) | w | (| | | F | C | l | | | - L | Name . | | | | U | w | | | | | | ١. | | | | | | | | | | 1 | | | | | 6 | | | | | | | | | | | | | | | l | | | | | I | | | N | | | | | | N . | l | | | | 1 | | | | | , | | | | | | | | | v | | | | | 7 | × | 1 | | | ec | Ų | l | | | -5- | 2 | | | | ~ | ប៊ | | | | 7 | | | | | 10 | (III | | | 1 | | ø | ı | | | - | | ĺ | | K | .00 | TO | l | | | Initial | Ë | | | | 2 | 17 | | | 1 | - | - | | | | | § | | | | | | | | 1 | | | | | 1 | 1 | Š. | | | 11 | | | | | 1 | | | | | | N | | l | | | | | | | 1 | | 1 | 133 | | | | | | | | | | | | | | | | | ١. | | | | 0 | 1 | | 1 | e | 2 | | | O) | = | | | | 10 | S HOOF | Space . | 1 | | | | | | | ē | | 2 | | | Wer | E | ish
ish | | | raver | tart | nish | | | Traver | Start 1 | Finish | | | Traver | Start | Finish | | | Traver | Start | Finish | | | Traver | 4g Start 1 | 4g Finish | | | Traver | "Hg Start 1 | Taish
Faish | | | Traver | "Hg Start 1 | "Hg Finish | | | Traver | "Hg Start 1 | 'Hg Finish | | | Traver | T'Hg Start | 'Hg Finish | | | Travel | 7 "Hg Start | Hg Finish | | | Travel | THg Start | Hg Finish | | | Traver | / "Hg Start 7 | Hg Finish | | | Traver | Start 7 | - Wg Finish | | | Traver | / "Hg Start 7 | Mg Finish | | | Traver | THIS Start 1 | He Firsh | | | Travel | @ / "Hg Start | Ø Hish | | | Traver | n@ /> "Hg Start 1 | n@ "Hg Finish | | | Lase | fm@ /> "Hg Start 1 | im@ "Hg Finish | | | Traver | cfm@ / / "Hg Start 1 | cim@ "Hg Finish | | | Traver | cfm@ / S "Hg Start I | cfm@ "Hg Finish | | | Traver | cfm@ / Start | efm@ "Hg Finish | | | lave7 | cfm@ / Start 1 | efm@ "Hg Finish | | | Traver | Cfm@ / "Hg Start I | cfm@ "Hg Finish | | | Traver | C cfm@ /5 "Hg Start 1 | cfm@ "Hg Finish | | | Traver | oci cfm@ /> "Hg Start 1 | cfm@ "Hg Finish | | | Trave | Col cfm@ /5 "Hg Start 1 | cim@ "Hg Finish | | | Traver | Coc ofm@ / "Hg Start 1 | cfm@ "Hg Finish | | | Traver | cfm@ /> "Hg Start I | cfm@ 'Hg Finish | | | Traver | cfm@ /> "Hg Start 1 | ctm@ "Hg Finish | | | Traver | : Col cfm@ /5 "Hg Start I | ctm@ "Hg Finish | | | Traver | 2 100" | ti cfm@ "Hg Finish | | | lane. | 2 100" | ck: cfm@Hg Finish | | | Trave | 2 100" | ecki - rim@ "Hg Finish | | | Trave | Check: cfm@ / \ "Hg Start 1 | heck: - cfm@ - Hg Finish | | | | 2 100" | Check: ctm@ "Hg Finish | | | Trave | 2 100" | ık Checkı - cim@ "Hg Finish | | | | 2 100" | sak Check: - cfm@ "Hg Finish | | | | 2 100" | Leak Check: - Hg Finish | | | | 2 100" | I Leak Check: Hg Finish | | | | 2 100" | isi Leak Check: cfm@ "Hg Finish | | | | 2 100" | Inal Leak Check: ctm@ - 'Hg Finish | | | | 2 100" | Final Leak Check: - ''Hg Finish | | | | 2 100" | Final Leak Check: cfm@ ''Hg Finish | | | | 2 100" | Final Leak Check: cfm@ "Hg Finish | | | | 2 100" | Final Leak Check: cfm@ "Hg Finish | | | | 2 100" | Final Leak Check: cfm@ "Hg Finish | | | | 2 100" | Final Leak Check: cfm@ "Hg Finish | | | | 2 100" | - Final Leak Check: cfm@ - "Hg Finish | | | | 2 100" | Final Leak Check: ctm@ "Hg Finish | | | | 2 100" | Final Leak Check: cfm@ "Hg Finish | | | | 2 100" | Final Leak Check: - cfm@ - "Hg Finish | | | | 2 100" | 11 . Final Leak Check: | | | | 2 100" | ne: Final Leak Check: crm@ - "Hg Finish | | | | 2 100" | lme: . Final Leak Check: | | | | 2 100" | Time: Final Leak Check: ctm@ "Hg Finish | | | | 2 100" | h Time: Final Leak Check! - tim@ - "Hg Finish | | | | 2 100" | sh Time: Final Leak Check: ctm@ Hg Finish | | | | 2 100" | nish Time: Final Leak Check: cfm@ Hg Finish | | | | 2 100" | Finish Time: Final Leak Check: cfm@ "Hg Finish | | | | 2 100" | Finish Time: Final Leak Check: cfm@ "Hg Finish | | Project No.: Operator : | 7916. 20 V |
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chargest
Chare
Chargest
Chargest
Chargest
Chargest
Charge | 2010 Plant: | Covanta DYEC | ္အ | | | lest No.: | 1 | SVOC | | | Page 5 | o
S | |--|---|--
--|--|--|--
--|--|--|--
--|--|--| | | | Plant Location: | Courtice, Ontario | ıtario | | | Test Location: | ÷ | APC Outlet No. | 0. | | | | | | * | * | * | | * | | | * | | * | * | * | * | | | | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter Temp | Temp | Meter | Pump | | Point | Clock | Meter | ۵ | Desired | Temp | Temp | Gwa | Outlet | Inlet/Trap | Outlet | ĕ | Pressure | Vacuum | | | C)
gesi
Em
secon
paco | \ | H ₂ 0 | Ę | 11. | LL
0 | ! | L | <u> </u> | | L | Δ H
"H ₂ O | "Hg
Gauge | | | 105 | 75 014 | , 58 | H. | 23,62 | 232 | 127 | IS | 1554 | WE 75 | 86 | | b | | 12 | 110 | 24, 29 | 75% | 89. | 7,78 | 25.5 | 25 | で | 23 | 74 | 22 | \ <u>\</u> | 88
5.5
7 | | - | 115 | 1 . | . 58 | 7 | 444 | 256 | 12% | 15 | 53 | 2 | 2 | 4 | 0- | | | 120 | 7 | Value de la constant | and the state of t | ACTION ON A COLUMN TO THE PROPERTY OF PROP | | | Semential in contract section sect | | | entrander and the contract contr | | | | Company of the Compan | POR THE PROPERTY OF PROPER | THE WAY OUR WAY THE WAY OF WA | CONTRACTOR AND | ALTO CALL THE STATE OF STAT | Transfer designation in the second se | | | Name of the Control o | | The state of s | мижентельный метериальный мете | | energy construction of the | | *************************************** | - | | | | distribution of the contract o | | | | | Consistences works conjust a sining calculus conjust | Managamin and an analysis of the state th | | | | - | *************************************** | The second secon | | | | | CONTRACTOR | ************************************** | The state of s | | enaphrasida and a company of the com | | Andreas Designation of the Property Pro | | 7 | And the second s | minuted to make the second statement of the second | | | economista de la companya del companya de la companya del companya de la | allegebooks schools open New York and Annual Property of the Control Contr | and the state of t | Name of the Contract Co | | Contraction of the o | ************************************** | | - Control of the Cont | | MANUSCH LEGENSTEIN GEGESTEINE G | | en entrantes en entrantes en en entrantes en en entrantes en entrantes en entrantes en entrantes en en entrante | | | and the second state of the second se | | | e popular commune popular commune se terre se commune se se se commune | Account of the second s | | The second secon | | The state of s | | | | | | | | | | | | | | | | | and children in commentation and an article for | | AND THE PROPERTY OF PROPER | | | | | | NAC PROPERTY AND ADDRESS OF THE PROPER | | | MANAGEM PROPERTY AND | The state of s | | | | *************************************** | To be a second a company of the second th | The second secon | TO STATE OF THE ST | and the state of t | menciose controlinamento de senario constituire de la della | | | | The second secon | | | | | | | And a service of the same of the same of the service of the same o | AN THE DESCRIPTION OF THE PROPERTY PROP | | TO THE PROPERTY OF PROPERT | | | in de la companya | | Acceptance of the control con | The action of th | | | | | Principal de la constitución de la | The second secon | And Control of the Co | | | | A CONTRACTOR OF THE | ne manufacture de de la company de des company de des company de des company de la com | | Anno de la composiçõe d | | 1.1 | | | PRICO HOUSE AND | | | Annual Company of the | | | | | | | | | | | | | | and described the second of th | - Description of the second | | | | Apparation and the second se | | | | manuscon de la constanta | The second in th | une content and co | | -28 | | | NAC (A) CONTRACTOR CON | | | | on the state of th | PARK DANSON DE L'ANGENT | A A A A A A A A A A A A A A A A A A A | Propopal di sala anala fasala di dalla | And a second sec
| Angle Continued and Property Continued States (Continued States S | | | | | | | | CANADA Professional de la companya del companya de la companya del companya de la del la companya de l | ne de la companya del companya de la companya del companya de la del comp | ı | | | | | Material Section of the t | Levice and the second s | | | | | | Traverse: | | | *************************************** | THE CONTRACT OF O | | Traverse: | NACESTAL PROPERTY AND | | | | | | | | Start Time: | | Initial Leak Check: | | ctm@
erme | E E | Start Time: | | | Initial Leak Check: | neck: | | CIM (6) | S S | | | 18.76
op.76 | | 700 | 5 | | | | | | Project No.: | 11 | 22050 | | | *************************************** | Wilders Co. State Stat | | - Control of the Cont | | energiane (statement of the statement | ************************************** | AND THE RESIDENCE OF THE PROPERTY PROPE | PARTICION DE LA CONTRACTION DEL CONTRACTION DE LA L | TO THE PROPERTY OF PROPERT | Operator: | | | | | | | | | | | | | | | | | | | 22050 o S Project No.: | Plant | Covanta DYEC | |--------------------|--| | Plant Location | Courtice, Ontario | | Test No.: | 3 Semi-Volatile Organic Compounds | | Test Date | November 12 2020 | | Test Location | APC Outlet No. | | Onerator Signature | and and a second control of the cont | | Pitot Factor , 8 449 | | |----------------------------|----------| | h 0 ⊘ 1 | | | Barometric Pressure こうり、うつ | Hg
Hg | | Static Pressure | "H20 | | Nozzle Size 、こんジー | inches | | Stack Diameter 4.5 | feet | | | feet | | Width | feet | | Port length: | inches | | rv. | 2 | N | |--|----------------|-----------------------| | | | (=) | | and a second sec | | | | | | | | | | Number of Points/Port | | | | 1/s | | , a | rts | Ę | | le. | Ь | 2 | | E | of | ō | | ng | er | J. | | Reading Interval | umber of Ports | Ē | | 1 2 | 2 | 2 | Probe Liner Glass / Metal /Teflon / Other_ Site Diagram Glass / Metal / Other_ Nozzle None /Metak/Tellon / Other_ Union Š Pitot Leak Checked? Yes Notes: | | - | | |---|---|---| | *************************************** | ء | 1 | | | Gai | | | | ilate G | | | | ======================================= | | | | Particul | ē | Ğ | | Pai | Ë | ā | | , | | | Mil Numbers Measuring Device Impinger Box No.: Meter Box No.: Probe No.: Page Probe / Pitot 57A COE 200 90 COE 20090 COL Incline Manometer Comb.Gas.Analyzer Control Box Trendicator 元三人 Barometer Calipers Micromanometer | Bu | mg | | 8 | 8 | |--------|-------|---------------|----------|-------| | Filter | Probe | Moisture Gain | CWTR 699 | WCBDA | | Combustion Gas Concentration | | |------------------------------|-----| | Oxygen 3 45 | % | | Carbon Dioxide (⇔, ⊖\S | % | | Carbon Monoxide 🔰 😤 | ppm | | | | |--| | NOZZIE ME | Nozzle Measurements | |--
--| | ~ | | | 7 | | | A CONTRACTOR OF THE PROPERTY O | THE THE PROPERTY OF PROPER | | est projection accommensation of countries constructives | Machine propositions are the continue occurs in the continue of o | | A | | | Date: Not 12 | 200 | | Covalia | Ç | | | בייביי | | 255 | | | 7976 7 | n | |--|--------|---------------------|---|--|---|--|----------------|----------|---------------|------------|--------------|---|------------------| | betaviore in colonia in a principal de la colonia co | 1 | Plant Location: | Courtice, Ontario | ntario | eronomous and a management of the second | A CONTRACTOR AND CONT | Test Location: | | APC Outlet No | 10. | | | 5 8 5 5 5 | | | * | * | *************************************** | | * | | | * | | * | * | *** | * | | CONTRACTOR OF THE PROPERTY | | Dry Gas | Pitot | | Stack | Probe | Oven | mping | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Cock | Meter | A P | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | Inlet | Pressure | Vacuum | | - 1 | Time | # | "H2O | E C | L. | u. | LL. | Ľ. | LL o | <u>u.</u> | <u></u> | 1,470
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1, | "Hg
Gauge | | 1 | 0 | 21,42 | 070 | 3 7 | X | 722 | 95.7
 | , 2 | 25 | 3 | 85 | 18/18/ | 7 | | | 5 | 25. TV | 0,70 | 1,4 | 276 | 7.S.7 | ўћ7 | 299 | ンゴ | 6 | 3 | 287 | 4 | | 2 | 10 | 28,80 | 89. | 光 | 277 | ₹5Z | 957 | 53 | 202 | 59 | 100 | 1.95 | 7 | | | 15 | 32,49 | 2. | X. | 279 | とこと | 246 | 5.7 | 202 | 00 | \chi_0 | 2,0 | 75/ | | 33 | 20 | 36,34 | 94, | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 787 | 25.2 | 25% | 7 | 2,5 | 0.9 | 2 | 2,0 | 7,5 | |
 25 | 10.01 | 7, | ţ, | 787 | 25.8 | 332 | 5 | 33 | 9 | 7 | ~
\$22 | Ø, | | 4 | 30 | 43,87 | 89, | <i>३</i> | 78(| 2.5% | 246 | 3 | 27 | 3 | 7.7 | 70 | 8 | | | ж
Ж | 47,06 | 73° | 7. | 787 | 258 | 2,5% | J. | 33 | 3 | 25 | 8 | 90 | | 'n | 40 | 51,36 | 89* | ř | 283 | 852 | 25.7 | 2.5 | 33 | 23 | 7.7 | 3 | Y | | | 45 | 155.0 t | , (5/ | 17.7 | 78d | 2.5% | 243 | 5,0 | 3 | 79 | 34 | ∞;
 - | 20 | | 9 | 20 | たり。
85
6
た | 09* | 54. | 285 | 452 | 248 | 47 | 2 2 | 89 | 4 | ۲. ۶ | % | | 2 | 55 | 62, 21 | 73. | | 285 | 452 | tha | 2
2 | 20 | 63 | 97 | -
20 | 20 | | 7 | 09 | 65,79 | 99 " | 4 | 982 | 257 | 24% | 5 | <u>۲</u> | 63 | 76 | 0- | たい。 | | | 65 | 62,45 | 89. | Ŧ | 282 | 47% | 744 | <u>J</u> | 202 | 63 | 94 | 5.0 | Do | | 83 | 70 | 2,27 | 89. | ま | 285 | 452 | 952 | hh | 9)
T | <i>h</i> 9 | 94 | 0.0 | % | | | 75 | 76.95 | 2 | ,
元 | 982 | 257 | それで | ਤੱ | 25 | 7.3 | 9t | 2.0% | ∞ | | 6 | 08 | 80, 78 | 2. | K. | 182 | £52 | 37tS | 77 | \$
5 | 64 | 9Ł | 2,0 | % | | | 85 | 85'h8 | 99" | 13 | 285 | 1257 | のどの | かわ | %
7 | 4 9 | 94 | <i>5</i> - | & | | 10 | 06 | hで'8% | h? * | 24. | 280 | ナット | ぞう | ナガ | %
T | h9 | 24 | \S\\ \S\\ \: | 80 | | | 95 | 41,87 | 19° | 7. | 285 | 452 | 37.5° | ゴ
ゴ | かして | 7.0 | 44 | 1
8
- | Jo | | 6 | 100 | 7 V . V O | 1.84 | C & | 100 | 400 | 1 1 M | わわ | 0 7 | | State Action | Ò | Q | | | | හ | 0.0 | | |-------|--------------|--|--|--| | | | E . | = | | | | | 1 | | | | | | | | | | | | | 1 | | | | | | | | | | | ලා | @ | | | | | E | Ε | | | | | ซ | ซ | | | | | | | | | | | | | | | | | A | ین | | | | | | ec | 2 | | | | | 5 | he | | | - | | 눃 | ¥ | | | - | | Le | ea | | | - | | Ö | | | | - | | nit | Ë | | | - | | | 쁘 | - | | | | | | | | | 1 | | | | | | | | | 0.000 | 2.2 | åi | иe | Ĕ | | | | Š | - Dane | | | | ा | Zen | - | ļ-m | | | | wer | irt Ti | ishT | | | | Traver | Start Ti | Finish T | | | | Traver | Start Ti | Finish T | | | | Traver | Hg Start Ti | Hg Finish T | | | | Traver | "Hg Start Ti | "Hg Finish T | | | | Traver | "Hg Start Ti | "Hg Finish T | | | | Traver | W "Hg Start Ti | "Hg Finish T | | | | Traver | Start Ti | "Hg Finish T | | | | Traver | Start Ti | Hg Finish T | | | | Traver | @ C "Hg Start Ti | <u> ق</u> "Hg Finish⊺ | | | | Traver | m@ (¢ "Hg Start Ti | m@ "Hg Finish T | | | | Traver | cfm@ 6 "Hg Start Ti | cfm@ "Hg FinishT | | | | Traver | cfm@ // 'Hg Start Ti | cfm@ "Hg FinishT | | | | Traver | ω cfm@ $ arsigma$ "Hg $ $ Start Ti | cfm@ "Hg Finish T | | | | Traver | のム cfm@ 6 "Hg Start Ti | cfm@ "Hg Finish T | | | | Traver | ・ひひン cfm@ や "Hg Start Ti | cfm@ "Hg Finish T | | | | Traver | ・ひひん cfm@ 6 "Hg Start Ti | | | | | Traver | . このし、cfm@ タ"Hg Start Ti | | | | | Traver | ck: ・の2 cfm@ & "Hg Start Ti | | | | | Traver | .heck: ・のン cfm@ & "Hg Start Ti | | | | | Traver | k Check: $\cdot o_{\mathcal{O}}_{\mathcal{L}}$ cfm@ $ ar{k} $ "Hg $ $ Start Ti | | | | | Traver | eak Check: . $c_{\mathcal{O}}$. cfm@ /c "Hg Start Ti | | | | | Traver | il Leak Check: ・のひン cfm@ 夕 "Hg Start Ti | | | | | Traver | itial Leak Check: 、のこ cfm@ 🎉 "Hg Start Ti | | | | | Traver | Initial Leak Check: ・のひ こ cfm@ | | | | | Traver | Initial Leak Check: ・のひン cfm@ い "Hg Start Ti | | | | | Traver | Initial Leak Check: ・のし cfm@ Start Ti | | | | | Traver | $-arrho$ Initial Leak Check: $-arrhoarrho$ C cfm@ $ ar{b} $ "Hg Start Ti | | | | | Traver | Initial Leak Check: $\cdot c_{\mathcal{O}}$ cfm@ $ ar{b} $ "Hg start Ti | | | | | Traver | 07; | | | | | Traver | 07; | | | | | e: 7. Traver | 07; | | | | | ?es | 07; | | | | | averse: | 07; | | | | | ?es | Start Time: $\mathscr{E}^{t}\mathcal{L}_{\mathcal{O}}$ Initial Leak Check: $\cdot \mathscr{OOL}$ cfm@ $ \mathcal{E} $ "Hg Start Ti | Finish Time: ~ Final Leak Check: ~ cfm@ "Hg Finish T | | Project No.: Operator: | נים ביי | 17. 1.072 | | | ŗ | | | est No.: | - | 2000 | | | 7
20
20
20
20
20
20
20
20
20
20
20
20
20 | ٥ | |--|--
--|--|--|--
--|--|--|--
--|--------------------------|--|--| | инижения политический политичес | and the | Plant Location: | Courtice, Ontario | itario | RAM CENANDRAPONALIZATION PROPERTY OF THE PROPE | | Test Location: | AND DESCRIPTION OF THE PARTY | APC Outlet No. | 0, (| | | | | | * | | * | More department of the property propert | stenorem una management and manageme | postografiante de la companio de la | Parismonnismon Anna Anna Anna Anna Anna Anna Anna An | *** | ************************************** | * | | | * | | | | Dry Gas | Pitot | | Stack | Probe | Oven | imping | Impinger Temp | Meter Temp | Temp | Meter | dwnd . | | or
E | Cock | Meter
ft³ | Δ P
"H ₂ O | Desired | e
E * | e
F
T | emp
* | Outlet
°F | Inlet/Trap
°F | ,
,
, | U liles | Pressure
Δ H
"H ₂ O | Vacuum
"Hg
Gauge | | Principal de la company | 105 | 80.08 | 09: | 01: | 279 | 2.56 | めたい | 3 | 8.5 | 2,5 | ト | 80.7 | $\ \infty$ | | 12 | 110 | 0 | 09, | 2. | 37-38 | 256 | 2,455 | 37 | S ₂ | 60. | 1 | 8 | 90 | | The state of s | 115 | 800 | 09 " | 12. | 24.8 | 952 | 2752 | 5 | 200 | 13 | + | \(\int \) | ∞ | | CO-CONTRACTOR CONTRACTOR CONTRACT | 120 | 10g + 7 | | | enanciale de la companya de la comp | Constitution of the same s | elika ejemeka kateman delika kateman delika kateman kateman kateman kateman kateman kateman kateman kateman ka | Notes a la companya de a compa | Translation in the translation is a state of the translation tr | and the state of t | | | eranda escolares anticas de la constanta | | oministrativa de la companya del companya del companya de la compa | | | | | | | | | | | | | | | annitation de la company | | | | | No. of the Control | | PRIORITIMAN SOCIETA STATEMENT STATEM | | | | | | | | and and a second a | | STATE OF THE | | | NA CAMPONI POR TO PORTO POR PORTO PO | American de la companya compan | Scientification of the State | ne de la composition della com | | | | and the state of t | Parameter | | ONVACE AN EST BETTE OF THE TOTAL T | THE SCHOOLSTON THE PROPERTY OF | | Tenne stational de Mary de Colonia Coloni | | | NATIONAL PROPERTY AND | | ADADY HALING REPRODUCTION OF THE PROPERTY T | GENOMACINA PROCESSOR DE CONTRA LA MANTON DE CONTRA LA CO | Andrews and the second | | | nese autorian en | openin strongstylation and a second strongstylation of | | | | | | | | | | | | | | | espates responses proprieta de la company | | | | | Teraporijska de de mare plate mineral i en | | | | | | | | MARINE STORY OF STREET STREET STREET STORY OF STREET ST | | | | | | | | | AND THE PROPERTY OF PROPER | | | | | | | | | | | | | | | Note the second | hand to be a second and | | | | | | | Traverse: | | | | | | Traverse: | HEALING CONTRACTOR CON | - | | | | | | | Start Time: | | Initial Leak Check: | | cfm@ | BH | Start Time: | | | Initial Leak Check: | heck: | | cfm @ | BH. | | | 92.91 | Essa Charles | 1901 | | | | | | Project Projec | Project No.: | | 22050 | | | | Alles alle Alles and the Anneal Annea | TO COMMON TO SERVICE STATE OF THE PROPERTY | NAMES AND PROPERTY OF THE PROP | насиления может протости поставляющей в применя примен | RECEIVANCE DE L'ANGE L' | WARDOWN CONTRACTOR OF THE PROPERTY PROP | Сементинования сементинования сементинования | Service and the contract of th | | - Anna construction of the second sec | department of the second | A SOMEONE STATEMENT OF THE | waterwick and colored to be seen and | | ************************************** | energenes de la company | | DOCUMENTAL CHARACTER STATE OF THE T | erneliuliste socialiste successione and a succession | THE PROPERTY OF O | | | militario de de la
companie co | necondensia de la constanta de | ONCH BOST BARRON FOR CONTRACTOR OF THE STATE | NEWS CONTRACTOR CONTRA | | | |---|--|-----------------|--|---
--|--|----------------|--|--|--
--|---|---| | Date: 🔥 🗘 | 997 | Plant: | Covanta DYEC | _ | | | Test No.: | \sim | SVOC | | | Page 4 | Of S | | | | Plant Location: | Courtice, Ontario | ntario | increassance alabelia increassance in the contraction of contracti | AND THE PROPERTY OF PROPER | Test Location: | n; | APC Outlet No. | 10. | australia de la constante de l | demander of the second | | | , 1 to | * | * | * | | * | | | * | | * | * | * | * | | | and the state of t | Dry Gas | Pitot | | Stack | Probe | Oven | Buidul | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | ΔР | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | met | Pressure | Vacuum | | | Time | . | "H20 | £ | ll. | L | <u>u</u> . | ii | LL. | ŭ. | Li. | Δ.H
"H ₂ O | "Hg
Gauge | | | 0 | 11911 | | .83 | 7587 | 2.53 | 952 | 6 | 2,0 | Ì3 | 99 | カル | ر
ن | | | 'n | 72.5 | 8 | W. | 2.85 | 2.26 | 82,53 | 7 | 33 | 20 | 40 | 225 | 15/3 | | 2 | 10 | 8 hi | 78. | ž | 784 | いいよ | 2.26 | 2%
7 | K | ナ9 | 7.3 | さら | 4.S.V | | | 135 | 方が、123,04 | | 56 | りそこ | 258 | 226 | か | 25 | 00 | 3 | ナペ | 72) | | m | 20 | けった | ,82 | 78. | 5.84 | 25.2 | 250 | 22 | % | <i>\</i> ~ | h.t. | 3 | 6.0
12.0 | | | 25 | 1 | * | * | 787 | 2 5% | カブ
カ | 53 | ∞ | 65/ | 24 | \
\
\
\
\
\
\
\
\
\ | 5 | | 4 | 30 | 55 25
55 25 | 2 | 24 | 787 | 258 | 248 | な | 2,6 | 6.V | 7 | 2,2 | Ů- | | | 35 | 7 550 | 2 | 200 | 787 | 2.53 | 27.0 | 7.5 | 55/ | 8 | 82 | 0 1/2 | 0- | | 'n | 40 | 4 74 | 79. | 4,2 | 280 | よって | 24.8 | ~
* | 25 | 9 | <u>2</u> | 61 | V | | | 45 | 146, 63 |) 6 U | .73 | 180 | 1254 | £47 | gh, | \$ | 99 | 1 79 | 5 | <u>₹</u> | | 9 | 50 | 76 051 | 99 * | 2 | 182 | tsal | 246 | ×'n | 20 | 99 | 7 | 1. Y | ,5%
,5% | | | 55 | 153,85 | 35. | 2 | 782 | 2.5% | 2.44 | ţ, | 48 | 99 | 74 | <i>.</i> | 8.5 | | 7 | 09 | 57-35 | 900 | 7 | 283 | 258 | 24.8 | <i>9</i> h | -
-
- | 99 | 44 | %)
 | 8,5 | | | 65 | h 6091 | 19, | <u>;</u> | 283 | 257 | 2.4 | さわ | たせ | 49 | | ∞.
- | %
% | | တ္ | 70 | 164,56 | | ۲. | 1.83 | 1237 | \$77 | 47 | いなり | その | 7.9 | ر
ا | 9)
 S | | Autorities errorated white leading to the relativistic freeds from freeds from the relativistic | 75 | 5 39 | 9 | Ŧ | 285 | 422 | トガス | 20 | 2 | 49 | 40 | 70 | λ, | | 6 | 80 | | 9 | 7 | 77% | 482 | 249 | 9 h | j. | 63 | 4 | 87 | 8.5 | | | 8
2 | 175, 28 | 790 | 4 | 279 | よい | 249 | 45 | 78 | 67 | 43 | Granica
Granica
Granica | Ĝ- | | 9 | 06 | 178,871 | . Oo. | 7 | tte | 452 | 2 48 | いち | , Z, | 49 | 56 | % | 8.5 | | | 95 | 192, 59 | 03, | Ą | 27.7 | 237 | 942 | 971 | ς.
Τ | 67 | 74 | 8.) | 8,5 | | 무 | 100 | 51 '981 | 097 | 7 | 12 | 256 | かない | 9'n | 3 | † 9 | 5t | 2: | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | | ı | | | |------------------------|-------------------------------|--| | | Ĩ | | | | | and the second | | | | | | | | 1 | | | a. | | | | E E | 8 | | | ਰ | | | | | | | | | | | | 1 | 1 | | | | | | | | GH-WANG ST | | | | | | | S C | | | - | Š | | | | sak | 25 | | |) [[| 3 | | | nitial Leak | | | | 2000
15500 | E | | | | 1 | | | | | | | | Consultation of the last th | | | | 1 | | | | | | | | i | | | | | | | | | | e: | me | Ē | | 100 | 1 4000 | Prof. | | e. | 7 | 4 | | raver | itart T | leich | | Traver | Start | | | Traver | 'Hg Start 1 | | | Traver | "Hg Start 1 | | | Traver | .) "Hg Start`l | | | Traver | (원) "Hg Start 1 | APEL PRI | | Traver | 「トラ "Hg Start T | | | Traver | @ | HING PR. | | Traver | @ | | | Traver | @ | Helter (PAR) | | Traver | @ | HEIDE COMMISSION | | Traver | 00 cfm@ | HIMA DELL | | Traver | 00 cfm@ | HEDRI (FR) | | Traver | 00 cfm@ | HEIR) (FRII | | Traver | 00 cfm@ | MEINIA (MANA) | |
Traver | 00 cfm@ | MINIA CIMA MARKATAN M | | Traver | 00 cfm@ | HIND PAIL | | Traver | 00 cfm@ | unid) [ah | | Traver | 00 cfm@ | HARTE COMPANY HARTON | | Traver | 00 cfm@ | TIME CONTRACTOR OF THE CONTRAC | | Traver | 00 cfm@ | HIME CHARLEST THE THE PROPERTY OF | | Craver | @ | TIME TERM THE TANK TH | | 10172 Traver | 00 cfm@ | UNITED PROPERTY OF THE PROPERT | | C C Traver | Initial Leak Check: #006 cfm@ | HINIA) DAN CINA COMPANIA | | e: し(ソン Traver | Initial Leak Check: #006 cfm@ | India) EM. (Pinal Present Charles) | | erse: (0(ソン Traver | Initial Leak Check: #006 cfm@ | h-Time. | | raverse: | 00 cfm@ | INTERPOLATION OF THE PROPERTY | | Traverse: 100パン Traver | Initial Leak Check: #006 cfm@ | (TINIT) ANII | * when meden temp input causing incorrect sampling hale Project No.: Operator: | # * * * Plant Location: Courtice, Ontario Point Clock Meter ΔP Des Time ft³ "H₂O σf 115 196, 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | general and the second of | * Stack Temp °F 275 | Probe Temp | Test Location: Oven | | APC Outlet No | | * * *
Meter Temp
tlet Inlet | 7.4ge v v v v v v v v v v v v v v v v v v v | o * | |--|---|--|---|---|--
--|--|--|--
--| | # * Pridit Location: Pridit Location: Clock | pau a company | * Stack Temp °F 272 | | Oven | | APC Ouner in | | Temp * | * Water | * | | # * Dry Gas Clock Meter Time ft³ 105 [89,74 % 110 [43, 18 120 200,04 | | * Stack Temp °F 272 | Probe | Oven | *
Imping | er Temp | *
Meter | Temp * | ** | * | | Dry Gas Clock Meter Time ft ft | | Stack Temp °F 272 | Probe
Temp | Oven | Imping | er Temp | Meter | Temp | NAO+OV | Parity and Constitution of the Parity of the Parity of the Constitution Constit | | Clock Meter Time ft³ 105 (89774 | | Temp % 7-42 | Temp | | and the second s | - The second sec | | net | IAICICI | Pump | | 105 (899,74 % 110 (93, 18 % 18 % 120 200,04 % 120 | | 44.5 | to to the control of | Temp
Tr | Outlet | met/Trap | Outret
* | 0 | Pressure
A H | Vacuum
"Hg | | 110 193, 18 115 146, 61 120 200, 04 | | 120 | いかり | 70% | 12 | 2 | | K
SX | 22 | Gauge | | 110 45, 18
115 46, 61 | | 7 | | |) | 01 | 9 * |) | 3 | | | 200,04 | 89. | | + 2 | ナカラ | 2,7 | ∞
T | 0 | 8 | 9 | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | | 0'007 | | スナケ | 256 | 3 | 40 | <u>+</u> | 4 | 80 | <u>و</u>
 | 90
\^\ | PROPRIESTA DE LA CONTRACTOR CONTRA | | | | | | | | | salake edycelectroporters kizzmanistració eschelationes | | A STATE OF THE STA | enantes forde dimensional consomment of the second | The state of s | | | | | | | | подрементать и под приментать по под под под под под под под под под | : | | | | | | - | - | | | | | | | | | | | | | | | | | | 2.1 | | | | | | | | | | | | | | | | оринован технология и подавления подавления подавления подавления подавления подавления подавления подавления п | exet potential plant and the control of | and constitution of the second | | | | | | | ACHA CHA AN | | | | | AND THE PROPERTY OF PROPER | | Traverse: | | Name of the last o | Traverse: | esta increase de la constante d | SA DAGANINA MANAGANINA MANAGANINA SANGANA MANAGANINA MANAGANINA MANAGANINA MANAGANINA MANAGANINA MANAGANINA MA | A CONTRACTOR OF THE | | | | | | Initial Leak Check: | cfm@ | <u>M</u> | Start Time: | | | Initial Leak C | heck: | | cfm @ | BH., | | Ninel Leak Cheski | alm (b) | Ħ | FINISH TIME | | | Final Leas Chacks | | | | H. | | 200 | 2 | | | | | | Project No.: | Q
S | 22050 | | | | | | | | | | Operator: | JAN. | | | | | | | | | | | | ۵. | | | Project No .: | Plant | Covanta DYEC | |------------------------|---------------------------------| | Plant Location | Courtice, Ontario | | Test No.: | Semi-Volatile Organic Compounds | | Test Date No. 11, 2020 | 2010c | | Fest Location | APC Outlet No | | Operator Signature | | | Pitot Factor 851 | | | |-----------------------|------------------|--------| | DGMCF . 9444 | | | | Barometric Pressure | で
の
で
の | gH" | | Static Pressure 29, | 07/8/20 | "H20 | | Nozzle Size / 2 g () | | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | 11 | inches | | THE PROPERTY OF O | | - | |--|----|---| | Reading Interval | ហ | | | Number of Ports | 7 | | | Number of Points/Port | 12 | | Number of Points/Port 12 Probe Liner (135) Metal /Teflon / Other_____ Site Diagram Nozzle (flass) / Metal / Other____ Union None /Metal / Teffon/ Other_ Pitot Leak Checked? (Ves) Notes: Š | · (m) | | |--------|--| | - 000 | | | 'n | | | ന | | | | | | | | | V | | | | | | 2 | | | | | | طبعا | | | ~ | | | ന | | | - | | | - mar | | | | | | | | | 77 | | | - 0 mm | | | ·5 | | | Ţ | | | | | | ര | | | *** | | | ۵. | | | | | | | | | mg | mg | | |-----------|----------|---| | _ | ł | | | | | | | 2 | 3 | | | | | | | | | | | | | | | R 1 | 3 | | | | | | | | t | | 1.1 | 5 | 5 | | | 6 3 | , | | | | | | | | | | 1 | 8 | | | | 1 | | | | | 1 | | 1 2 3 | 2 | | | | | | | | (1) | | | . 3 | | | | | ايجوا | | | ri i | 2 000 | | | | | | | | | E | | | robe | | | encours . | | Ł | | D EXERT . | | • | | Fiter | 2.5 | | | - Seeken | tanker : | | | | <u></u> | 5 | | Ų
II | | | | | | | | | | | 82537B Probe / Pitot COE 20094 Comb. Gas. Analyzer Micromanometer Barometer Calipers Incline Manometer Trendicator Control Box MII Numbers Measuring Device Meter Box No.: 128m Page Probe No.: Impinger Box No.: (♥ | | ٤ | - | |---|---|-----| | ٠ | ô | ä | | - | Ŀ | Š | | | 6 | | | | š | _ | | | Ξ | 2 | | | t | ñ | | • | č | ŝ | | 1 | È | , m | | | • | 5 | | | | | | | electrical parameters control activities described and activities of the control t | |------
--| | 7 | ブ | | 9 | | | | đ | | CWTR | WCBD, | | | | 00 00 ### Combustion Gas Concentration | Oxygen 会プラ | % | |-------------------------|-----| | Carbon Dioxide (つ.) 子舎 | % | | Carbon Monoxide | maa | Nozzle Measurements 1 ,2570 2 ,2575 3 ,2576 4 ,2575 Average: ,5,573 | , all | 00000 | 3 | | | | | | | | | | The second second | | |--|--|--|-------------------
--|--|---|--|---------------|---------------|--------------
--|-------------------|----------------| | | and the second s | Plant Location: | Courtice, Ontario | ntario | - A CONTRACTOR CO | | Test Location: | n: | APC Outlet No | lo. 2 | and the second s | | | | | * | ** Construction of the Co | 34. | AND TRANSPORTED THE CONTRACTOR OF | * | National Property of the Control | Name of the second seco | * | | * | * | * | * | | The state of s | Property and the second | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | Q Q | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | न
इन् | Pressure | Vacuum | | | Lime | en de | H ₂ O | ofm. | <u>u</u> | ŭ. | ů. | Ľ. | LL. | <u>u</u> | ! | PΥ | 9H. | | | | | | | | | | | | | | 0 ⁷ H. | Gauge | | T | 0 | 1251 | X | ٠, .
ه | 2%0 | 222 | 4 | R | 141
100 | 2 | 2 7 | 2.0 | 3.5 | | | 5 | 18.721 | | \
\
\ | 7.3.7 | 252 | 22 | 2 | 3 | 7 | 7 | 0:0 | 3,4 | | 2 | 10 | 126,10 | | 7 | 282 | Z | 25.77 | S | 3 | | 0 | 0,7 | 7.7 | | | 15 | 108,20 | | 7
[, | 241 | 852 | 25.2 | 5
5 | 3 | j
T | C | 0.7 | 33 | | 8 | 20 | 1.33,57 | ,78 | Ē | 7.87 | 256 | な | Ş | 5 | Ī | 9 | 3.8 | 5 | | | 25 | 61.77.87 |)
 | 0
(, | 7.27 | 1,56 | ってっ | 3
3 | <u>†</u> | \ \(\) | Ç | 80 ' | V
% | | 7 | 30 | Tiè | 1 | Ī | h& 2 | 272 | 8 | <u>J</u> | 8° | 2 | Ĩ | (XX | γ ₂ | | | 32 | 14.1.0X | \$ * | 0 | 72.34 | 282 | Ŝ | <u>3</u> | Ç | 2 | Ī | 1.75 | 3,5 | | rv | 40 | 18'41 | 50. | #
9 | 7.84 | 23 | 253 | <u>2</u> | \$ | <u>c</u> | ř | 3 | W
M | | | 45 | 5 | 12. | ж
Э. | 7,87 | 225 | <u>ر</u>
ا | 乏 | 5 | 21 | | 1.60 | 2,5 | | 9 | 20 | 3,5 | | 393, | 224 | 255 | Ĉ | 2 | 3 | <i>~</i> | 2 | 5.7 | 7,5 | | | 55 | 26/1/51 | 9 87 " | 7001 | 734 | ر
الح | くく | Ž | 5 | 3
 | 2 | 1,5 | \
\
\ | | 7 | 09 | 5 1 191 | 69' | 7.9 | 283 | 259 | 253 | <u>ي</u>
2 | 0 | X | ď | 1.60 | 8 | | | 65 | 45:191 | 5 %) | +°0" | 263 | 257 | 2 | .9
.5 | Ş | 12 | 75 | 9 | 3.5 | | 8 | 07 | 16 (-9) | .0.2 | 40, | 78.7 | S
P | 13 J | <u>ي</u>
ک | 25 | 9 | 5 | 97:1 | 25 | | | 75 | 58 11.1 | 2 | , 6, X | 282 | ンペタ | S | 3 | Ç | ş | 2 | 1,60 | 8,8 | | 6 | 80 | | 69 | وا | 1.85 | 7 573 | 25% | 3
T | ß | ř | 2 | 3 | 38 | | | 82 | 78.77 | ۷٧, | 70 | 720 | 236 | 753 | 2 | 200 | 2 | ~ | 1.60 | 38 | | 10 | 06 | 13.58 | K | 20): | 7.80 | 252 | 25.4 | <u>}</u> | ľ, | 2 | 8 | <i>5.</i> ′ | 7 | | Communication of the Communica | 95 | ** | in the | - | 780 | 957
 | 7,66 | <u>ţ</u> | \$ | 7 | 5 | 7.4 | 3.8 | | | 400 | | | | | 2 4000 | 0 | | ACCOUNT. | Service Comm | City
Seed
Comment | • | 6 | | | | 411 | | |--------------------|---|----------------------------|--| | | 6. | _ | | | | 0 | 0 | | | | cfm @ | cfm @ | | | | - | Line I | | | 1 | U | U | ١. | | | | | | | | | 100 | ı | | | | | | | | | | | | | | | | | | 3.33 | | ١ | | | | | | | | Initial Leak Check: | | | | | :: | | ١. | | | ŭ | نذ | | | | O | Q | ١ | | | ~~ | 2 | ı | | | ~ | Ü | ı | | | -X | 4 | | | | ŭ | Ø | | | | | Q. | | | | 63 | _ | | | | := | Œ | l | | | | 2. | | | | OF STATE | Final Leak Check: | ١ | | | 9 8 8 | | | | | | | | | | | | | | | | | ı | | | | | | | M M | | | I | | | | | | | | MA | | | | | | | | | | | | ĺ | | | | | | | 1 | | 1 | ı | | | | ä | ľ | | | 0 | Ē | | | 0 | Ε | - American | į | | 12 | 1000 | | ľ | | 9 | 400 | 2 | ı | | 16 | POS | Ŀ | | | fraverse: | ¥ | | į | | L pass | 101 | 14 | 1 | | | | | | | | | | • | | | 0.0 | 0.0 | | | | Hg | D0 | - | | | SH. | "Hg Finish Time | | | | E E | H | president designation of | | | "Hg Start Time: | gH" | and a second sec | | | E H | "Hg | on the second se | | | | "Hg | and the second s | | | | 200 | and the second s | | | | 8Ha | On the second se | | | | DO II | CONTRACTOR OF THE PROPERTY | | | | a Hg |
Security and a security of the | | | | BH. DI | | | | | m@ "Hg | | | | | cfm@ "Hg | | | | cfm@ c "Hg | cfm@ "Hg | | | | : cfm@ "Hg | | | | | :k: cfm@ "Hg | | | | | eck: cfm@ "Hg | | | | | heck: cfm@ "Hg | | | | | Check: cfm@ "Hg | | | | | k Check: cfm@ "Hg | | | | | ak Check: cfm@ "Hg | | | | | Leak Check: cfm@ "Hg | | | | | Leak Check: cfm@ | | | | | Leak Check: cfm@ | | | | | Leak Check: cfm@ | | | | | Final Leak Check: cfm@ "Hg | | | | | Leak Check: cfm@ 2 8.23 | | Leak Check: cfm@ | | | | | Leak Check: cfm@ | | | ē: 5 % % | | Leak Check: cfm@ | | | ISE: 2. C. J. | | Leak Check: cfm@ | | | erse: 2, 4,2,1 | | Leak Check: cfm@ | | | averse: 2 4.2.1 | | Leak Check: cfm@ | | | raverse: 2 2 2 | | Leak Check: cfm@ | | | Traverse: 2, 4,2,1 | | Leak Check: cfm@ | | | Traverse: 2, 2, 2, | | Leak Check: cfm@ | | Project No.: Operator: 3 00 | Traversec | Date: All All All All All All All All All Al | | | Covanta DYEC | ۲ | | | Test No.: | *COLUMN | SVOC | | | Page 3 | of 55 | |---|--|--|--
--|--|--|--
--|--|---|--|--
---|--------------| | Clock Neter From | WWW. | and the second | Plant Location: | Courtice, O | ntario | | | Test Location | 7.3 | APC Outlet N | Vo. 2 | Made and the Control of | Andreas response and a second | | | Clock Meter Pang | | 쓔 | | ж | CONTRACTOR DESCRIPTION OF THE CONTRA | Westernamental and the state of | TO THE PROPERTY OF PROPERT | жения в применя пр | A A A A A A A A A A A A A A A A A A A | schelichtigs schaubch earschrooppesprokessonmisterkannslikke. | enterationer entrates | And the contract of contra | A. A. | * | | Time Nature A P Desired Temp Tem | - | | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | er Temp | Meter | Temp | Meter | Pump | | Time 作 | Point | Clock | Meter | ۵
م | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | Inlet | Pressure | Vacuum | | 110 196,75 | | E | £ | .H20 | £ | Ļ | ů. | Lim | ¥. | <u>LL</u> | | ii | H 02H | "Hg
Gauge | | 115 92,35 142, 153 286 158 144 52 76 74 96 3. 120 98,49 141 55 180 159 175 141 190 3. 120 98,49 141 155 180 159 175 176 141 190 175 | | 105 | 196,40 | 3. | 15. | 280 | 433 | 3 | 5 | 25 | 2 | 7 | 36.0Kr | 1 | | 115 149 1.42 149 1.42 120 1.59 1.80 1.59 1.47 5.2 7.6 7.6 7.8 7.9 | 12 | 110 | 193,35 | 5 | 18 | 7%0 | %
% | 252 | Ţ | 7 5 | 16 | ř | .90 | | | 149, 160 4 149, 160 4 | | 115 | 66'561 | | S | 130 | 259 | 259 | けって | 7.5 | 2/ | 51 | | 0 | | | | 120 | 3
8
8 | | | | | | | | | | | | | Traverse: | KARINETS JANGERATHINES WAS CONSTRUCTIVE OF THE STATE T | | The state of s | | | | | | | | | | | | | Initial Leak Check: C | Apparation (control of the property of the control | | no de la companya del companya de la companya del companya de la del la companya de | THE THE PARTY CONTRACTOR OF TH | | MONTH AND THE STATE OF STAT | CONTRACTOR OF THE O | | POPPE INTERNATIONAL PRINCIPAL PRINCI | | | And the state of t | | | | Traverse: Trav | ATTACHEMINATION OF THE PROPERTY PROPERT | | | | | | | | | | | | | | | Traverse: Traverse: Initial Leak Check: Cfm@ "Hg Final Leak Check: Cfm@ Cfm@ Final Leak Check: Cfm@ Cfm@ Cfm@ Final Leak Check: Cfm@ | насольность становительность по при | | andered werterstoods to the state of sta | Part of the second seco | | ************************************** | Condition in the Condition of Condit | | Notes the control of | | THE RESIDENCE AND A STATE OF THE PROPERTY T | THE PROPERTY OF O | | - | | | Angregora Establishmente Angregora (Angregora Angregora (Angregora Angregora (Angregora Angregora (Angregora A | ANNE DE L'ANNE D | nesanosiszavossanostasiskakokokokokonananpodrovasakokokokokokokokossakolentaina | UNIONAL PRODUCTION OF CONTRACTOR CONTRACT | | | | | | | | | | | | | mental production of branch production and producti | | | | | | | | | | | | | | | Initial Leak Check: | in the second se | The second section of the second seco | Annies Geroffelden er der State | Andreas de la constante | | ON THE PROPERTY OF PROPERT | | | na contraction and the con | | | | | | | Traverse: Trav | лемономической передоктической применения применения применения применения применения применения применения пр | | | AND THE PROPERTY OF PROPER | | | | | | | | | | | | | WORKS CONTRACTOR CONTR | PROPERTY AND A STATE OF THE PR | | National Action of the Communication Communi | | water-entropy and the control of | | | | | | | | | | | estructurations to describe the described to the second tensor te | | | | | | | | | | | | | | | | Governmentrivistantellizioni, cytemiconi residen | THE THE PROPERTY OF PROPER | | Action of the Control | | | | | i de la companya l | | | | | | | Control Cont | Constitution of the spin state | | Nosiderpassion framework compositions of the first statement | | Continue Con | THE THE PROPERTY OF PROPER | | The second secon | THE STATE OF S | | | | | | | | And the second s | AND THE PROPERTY OF PROPER | | minoral production of the control | | Adjustición maga la concessora de marco de la concessora | | | | | | | | | | | Name of the Control o | | | EXPOSED CONTRIBUTION OF THE PROPERTY PR | | | | | | | | | | | | Traverse: | spirare development | | | | | | | | | | | | | | | | annina erikaninin kepidalikan kanandikan mideleksiya da | | | | | | | | | | | | | | | Traverse: Initial Leak Check: cfm@ "Hg Start Time: Initial Leak Check: cfm @ 16:23 Final Leak Check: Cfm @ Cfm @ | | | | | | | | | | | | | | | | Initial Leak Check: cfm@ Start Time: Initial Leak Check: cfm @ | | | mandessines sisual modificación el concei es energia a anticipa escabalencia a conceina el | 33446 | | | Traverse: | | And the second s | | | | | | | Final Leak Check: ころらし、cfm@ 字 "Hg Finish Time: Final Leak Check: cfm @ | | and Salleman reconsection proposes provident | Initial Leak Check: | ACCESSION AND PROPERTY OF THE | cfm@ | E E | Start Time: | | | Initial Leak C | heck: | | cfm @ | "Hg | | | Finish Time: | ~ < 1 | Final Leak Check: | 166 | cfm@ | | Finish Time: | | | Final Leak Ch | teck: | under constitution constitution of the constit | cfm @ | BH. | | | | | | | | | | | | | | | | | | 9.00 | 2.6 | 2000 | Covanta DYEC | Ü | | | Test No.: | | SVOC | | | Page 4 | o
S |
--|--------|--|--|---------|-------|--|--|--------|----------------|----------|------------|--------------------------|--| | 7076 | 3707/1 | Plant Location: | Courtice, Ontario | ntario | | Miles of significance in the significance of t | Test Location: | | APC Outlet No. | 0, 2 | | | 1 . | | | * | Meconstruction and a second contract of the s | * | | * | | al baneria de la companio della comp | # | | * | * | * | * | | | | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Weter Temp | Meter | Pump | | Point | Clock | Meter | d∇ | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | met | Pressure | Vacuum | | | i
ë | ~ | .H20 | £ | il. | u. | LL. | u. | <u>.</u> | u. | Lilar
O | Δ H
"H ₂ O | "Hg
Gauge | | - | 0 | 100 20 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 129 | 182 | | (9) | 2 | S | | 5 Nones | 67 | 0% | | east Associated and Associated As | Ω | 707.706 | 5 | 6 | V87 | 13 | 280 | 3 | 8 | Land. | K | 6. | 3 | | 2 | 10 | 18.092 | ox. | 2 | ン87 | 252 | 852 | 5 | 25 | | 32 | 61 | 4,0 | | | 15 | 2 6 692 |) & 1 | 7.2 | 282 | 252 | 222 | 6 5 | 2.5 | LL | ト | 1.9 | 0% | | ო | 20 | 49,812 | ς.
Γ. | .77 | 787 | 285 | 152 | Ah | 3 | S, | X | 7.9 | 0,7 | | | 25 | 12/12 | , J | 122 | 482 | 250 | 255 | Ьħ | <u>ر</u> کې | 2 | Y | 7,9 | ٥
ج | | 4 | 30 | 26.95 | .70 | 0 | £37 | 25.9 | P (2) C | b Jn | 3 | 75 | <u>Σ</u> | 1, 8 | 0 % | | | 35 | 224,56 | - S L | ٦
٢. | 282 | 037 | , S & C & C & C & C & C & C & C & C & C & | Ş | 3 | ۷ | ב
ב | <i>S</i> | Q
Ž | | ស | 40 | 25.827 | 2. | | 2,48 | ts: | ري
ح | ~
7 | <u>ا</u> | <i>J</i> | <u> </u> | 1.75 | ٥
٦ | | | 45 | 231.61 | <u>-</u>
رئ | 59 - | 286 | 256 | 2.59 | T | J | 7.5 | ٢ | .73 | J | |
9 | 20 | 235.16 | 891 | 5 | 782 | 256 | 266 | 8h | 7 | .75 | ۶ | 91) | 5.75 | | | w
w | 738.67 | 93 | 991 | 288 | 352 | 259 | Яh | \$ | 35 | 7 | 27 | S. J. | | 7 | 09 | 242.10 | 2 | 29: | 782 | 352 | 259 | 5 | ç | 7.6 | Ž | 93 | Ş;; | | | 65 | 7×2×2 | \$
F | 2.7 | 285 | 256 | 200 | 875 | 85 | Ş | 2 | 97 | 7,5 | | 8 | 70 | 249.05 | 26 | T
3 | 28.2 | たと | 7,7 | J
J | Š | 2 | X | 1.68 | い
ゔ | | | 75 | 1252.51 | <u> </u> | 69, | 787 | t
Z | 560 | 3 | Y. | <u>ر</u> | ۲
۲ | 1.65 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | 6 | 80 | 28,282 | | 29) | 527 | 252 | 260 | 2 | 2
N | 2 | <u>ک</u> | 1.68 | ار
2 | | | 85 | 254,43 | | 6000 | 283 | 2/2 | 7,97 | 5 | 5 | F | Ŋ | 1.65 | 4.5 | | 10 | 06 | 262.89 | ₹.
 | ٠ (٥ ٪ | 288 | 23 | رة
الم | か
ブ | ا
ت | | M | 7:(00 | ls
T | | | 95 | P (, 0 2) S | <u> </u> | ۶
(۲ | £22 | 7 28 | 202 | ろ | い
子 | 1 | 2 | 097 | シェ | | ç- | 100 | 7 | 8 | 2 | 386 | D _C | 2000 | 71 | ž | C | ν
Γ | <
~ | 7 | | | | - | |-----------|--|--| | | H | T. | | | | | | | - | and the second | | | 1 | | | | @ | | | | e uj | Ħ | | | O | | | | | | | | - Contraction | ı | | | | | | | - | | | | contractors | atomer, | | | Ċķ: | | | | ğ | line. | | | ak | | | | nitial Leak Check | 9 | | | nitic | | | | = | 7 | | | | A COLUMN | | | | Name of the last | | | | ORGANISAS | | | | ALC: N | | | | | | | | Section 2 | | | | J | | | ů | 4 | | 61 | Ē | | | erse: | ilim: | H TH | | raverse: | tart Tim | | | Traverse: | Start Tim | | | Traverse: | "Hg Start Tim | | | Traverse: | "Hg Start Tim | | | Traverse: | 🖓 "Hg Start Tim | | | Traverse: | ィヤ "Hg Start Tim | | | Traverse: | p (欠 "Hg Start Time | | | Traverse: | fm <i>@ 文 "Hg</i> Start Time | | | Traverse: | cfm@ 文 "Hg Start Tim | | | Traverse: | ், cfm <i>@ (ஜ்</i> "Hg Start Time | 시간 시에게 그씨 | | Traverse: | へん cfm <i>@ (</i> 分 "Hg Start Time | ALCHOUR FAR. | | Traverse: | . こっこ cfm@ (分 "Hg Start Time | ALE CAPACITY (TABLE) | | Traverse: | Start Time (分 "Hg Start Time | ALL CARDON TO THE STATE OF | | | sck: 、, へん, cfm@ (タ "Hg Start Time | ALT GENERAL THE STATE OF ST | | | Check: こっって cfm@ (ヤ "Hg Start Time | Thresh: | | | eak Check: こんん cfm@ パタ "Hg Start Tim | ak Sheeki atm of mark "Me [Links Tir | | | al Leak Check: , ^ cfm@ (? "Hg Start Tim | Treak Chask: ofm (P. Linlah Tir | | | nitial Leak Check: , , , , cfm@ (タ "Hg Start Tim | ALL GIVIA) FIVI | | | ial Leak Check: 、ハハハ cfm@ パタ "Hg Stan | Tinal Leak Sheek. Stm Stm Chilah Tin | | | ial Leak Check: 、ハハハ cfm@ パタ "Hg Stan | Chrailteak Cheeki | | | ial Leak Check: 、ハハハ cfm@ パタ "Hg Stan | IFIDAL LEAD Cheeki etm | | | ial Leak Check: 、ハハハ cfm@ パタ "Hg Stan | The Phase Chash | | | ial Leak Check: 、ハハハ cfm@ パタ "Hg Stan | nai (Rina) Lank Shaski eth shank in a l | | | ial Leak Check: 、ハハハ cfm@ パタ "Hg Stan | alt de la | | | ial Leak Check: 、ハハハ cfm@ パタ "Hg Stan | nen Timer (Finel Leak Sheeki staris) | 22050 Project No.: 22 Operator: \(\mathre{G} \) \(\alpha_{\mathre{G}} \) | Traverse Test Check | Date: №% | 202 | Plant: | Covanta DYEC | EC | | | Test No.: | | SVOC | | | Page 5 | of 5 | |--|--
--|--|---|---
--|--|--|--
--|--|--|--|--------------| | Clock Neer | Milder Baller and American Administration and American Am | BANKA MARKA | Plant Location: | Courtice, O | ntario | | A SQUARE AND A CONTRACT AND A SQUARE S | Test Locatio | ü | APC Outlet 1 | | NO. AND ADDRESS OF THE PROPERTY PROPERT | on the second se | - | | Clock Dry Gas Pitot Stack Probe Oven Impleter Temp Meter Temp Probe Oven Impleter Temp Outlet Intel Pressure Pr | | * | * | * | | * | | | * | | * | * | * | * | | Clock Meter AP Desired Temp Temp Outlet Inlet Pressure Vacuum | Management of the Company Com | ANT ANTONIO CONTRACTOR C | Dry Gas | Pitot | | Stack | Probe | Oven | mping | er Temp | Meter | .Temp | Meter | Pump | | 105 272.75 374 440 425 426 444 445 777 775 730 441 445 777 775 730 441 445 777 775 730 441 445 777 775 730 441 445 777 775 730 441 445 777 775 730 441 445 777 775 730 441 445 777 775 730 441 445 777 775 730 441 445 777 775 730 441 445 777 775 730 441 445 777 775 730 441 445 777 775 730 441 445 777 775 730 441 445 777
777 7 | Point | Clock | Meter
ft³ | Δ P
"H ₂ O | Desired | Temp
G | d | Temp | Outlet | Inlet/Trap
°F | Outlet
% | | Pressure
Δ H | Macuum
H. | | 110 275.78 54 60 28 259 259 44 45 77 75 120 4 120 281.79 53 .69 2.86 2.59 2.60 44 45 77 75 1.20 4 120 281.79 | | 105 | | | | 100 | | | | | Sussima Some | | 22 | Gauge | | 115 2778 254 126 256 127 175 120 47 175 | NAME OF THE OWNER OW | | | | | mercences (Comp.) | 9 | | | 5 | The state of s | 0 | | 3 | | 115 2718 80 ,53 .69 286 256 44 45 77 75 720 4 120 221,74 120 221 | 12 | 110 | | <u>1</u> | 03 | 385 | 522 | 252 | <u>7</u> | 2 | | V | 1,30 | 5 | | 120 281 79 | ************************************** | 115 | 278.80 | 23 | Š | 286 | 254 | 2007 | 2 | 2 | Clan | | 9 | O | | Traverse: | | 120 | 281,79 | | | | | | | | | | | | | Initial Leak Check: | 1. | | | | | | - | | | | - | | | | | | eläkkieskumoostakkeskojnestakuvatenaimin-verkiesk | Carbony Communication of the Carbon of | annier, kansienn jak ensienkelende kaarden verske alte enskenk kirjense generet kepten kelande. | | | and the design of o | And the second s | Reference de la companya del la companya de comp | | Andreas and the second secon | and designation of the control th | NAMES OF THE PROPERTY P | | | | | | | | | | | | | | | | TANGOGGA HENDERGA GARAGA GA | A THE STREET OF | TO THE THE PROPERTY OF PRO | Read-industrial Conference in the | | - Andread Company of the | | | | | | | | | | | - ANALOG TETRACE STREET ST | *************************************** | THE | | | THE CONTRACT | | | | | Andrew Company of the | | | | | | посмення в применти | The control of co | | | | - Constitution of the Cons | | | | | | | | | | Initial Leak Check: Common Common Common Control Control Common Control Common Control Contr | ANTICON PROPERTY OF STREET, ST | ************************************** | Nickiania karaktura k | | | nesenciarios de constantes | | edical control of the | The state of s | | | | | | | | weny fanaklyske radovicka kilopanje pojekt je pojekteren mikuse kak | - Company of the Comp | | annie descriptions des la company de | | | | | | - 1. | | | | | | | OTERACE PROTECTION OF THE TRANSPORT T | indicate and in the second sec | | | | | | | | | | | | | | | жения примента в применти в применти в периовите в периовите в периовите в периовите в периовите в периовите в | DEDISTRIBUTION OF THE PROPERTY | many de la company compa | | | | | | | | | | | | | | CO-PARTICULAR DESCRIPTION DE L'ARTICLE L' | entimen, and the control of cont | denny den seksentra en | TOO TO THE | | entra de la contra del | | | | | | | | | | Initial Leak Check: Cfm@ "Hg Finish Time: Final Leak Check: Cfm @ Final Leak Check: Cfm @ Finish Time: Finish Time: Final Leak Check: Cfm @ Finish Time: Final Leak Check: Cfm @ Finish Time: Ti | | | | | | | | | | | | | | | | Traverse: Final Leak Check: Cfm@ "Hg Finish Time: Final Leak Check: Cfm @ Finish Time: Final Leak Check: Cfm @ Finish Time: Tim | | | | | | | | | | | | | | | | Traverse: Traverse: Cfm@ Hg Finish Time: Initial Leak Check: Cfm@ Finish Time: Cfm@ 2.2050 Project No.: 2.2050 Operator: No. 19.2050 Operator: No. 20050 | CONTRACTOR DESCRIPTION OF THE PROPERTY | | | | | | | | | | | | | | | Traverse: Traverse: Cfm@ Hg Finish Time: Initial Leak Check: Cfm @ Cfm @ Final Leak Check: Cfm @ | The land of la | A AMORPHANISTIC CONTROL CONTRO | | | | | | | | | | | | | | Initial Leak Check: cfm@ "Hg Start Time: Initial Leak Check: cfm@ cfm@ 2.0 "Hg Finish Time: Final Leak Check: cfm@ 2.0 "Hg Finish Time: Final Leak Check: cfm@ cfm@ 2.0 "Hg Finish Time: Final Leak Check: cfm@ cfm@ 2.0 "Hg Finish Time: Final Leak Check: cfm@ cfm@ 2.0 "Hg Finish Time: Final Leak Check: cfm@ cfm@ 2.0 "Hg Finish Time: Final Leak Check: cfm@ cfm@ 2.0 "Hg Finish Time: Final Leak Check: cfm@ cfm@ 2.0 "Hg Finish Time: Final Leak Check: cfm@ cfm@ 2.0 "Hg Finish Time: Final Leak Check: cfm@ cfm@ 2.0 "Hg Finish Time: Final Leak Check: cfm@ cfm@ 2.0 "Hg Finish Time: Final Leak Check: cfm@ cfm@ cfm@ cfm@ cfm@ cfm@ cfm@ cfm@ | AND | | | | | | | | | | | | | | | i 2,13,2 Final Leak Check: cfm@ 2,0 "Hg Finish Time: Initial Leak Check: cfm @ cfm @ 2,0 "Hg Finish Time: Final Leak Check: cfm @ | Traverse: | A COLONIA DE LA | | | | | Traverse: | | | | | | | | | : 2 ; 3 2 Final Leak Check: ্নেজ (০ cfm@ շ.০ "Hg Finish Time: Final Leak Check: cfm @ Project No.: 22050 | Start Time: | descriptions of the second sec | Initial Leak Check: | | cfm@ | "Hg | Start Time: | | | Initial Leak C | heck: | DATE OF THE PROPERTY PR | cfm @ | 50 H | | | Finish Time: | 2:3 | Final Leak Check: | 1000 | cfm@ | - | Finish Time: | | | Final Leak C | eck: | Acompact Acompact Consideration and Consideratio | cfm @ | 8H., | | No Pie | | | : | | | | | | | | Project No.: | | 22050 | | | | лемыничения откажений принценей выправлений выправлен | General Principal States of the Company Comp | | | Management of the state | Autocopy of the Section Secti | | ACT AND A STATE OF THE | иментический применений применен | Antonio de contra de la companie | Operator: | 12 01 | | | | Plant | Covanta DYEC | |-----------------------|---------------------------------| | Plant Location | Courtice, Ontario | | Test No.: 2 | Semi-Volatile Organic Compounds | | Test Date NOV W, 2020 | 2010 | | Test Location | APC Outlet No. 2 | | Operator Signature | | | Pitot Factor / 85-1 | |
--|---| | DGMCF qqq | - | | Barometric Pressure 의유 . SH | "Hg | | Static Pressure -9,52.0 | "H20 | | Nozzle Size $$ | inches | | Stack Diameter 4.5 | feet | | Length | feet | | Width | feet | | Port length: | inches | | THE RESIDENCE AND ADDRESS OF THE PROPERTY T | Charles of the Party of the Control | | Number of Ports | 2 | |-----------------------|----| | Number of Points/Port | 12 | Probe Liner (Glass)/ Metal /Teflon / Other____ Site Diagram Nozzle Glass/ Metal / Other_ Union None / Metal / Weffon Other_ Pitot Leak Checked? (Ves.) Notes: Š Particulate Gain | 2 | | |------|--| | COMM | | | េក្ខ | | | O | | | | | | Q) | | | 200 | | | - | | | ິທ | | | | | | 0 | | | 5 | | | Sec. | | | | | | | | | 0 | |---| | | ## **Combustion Gas Concentration** Average: 2513 | Measuring Device | MII Numbers | |-------------------|---------------| | | | | Probe / Pitot | 58名3 天 | | Trendicator | | | Control Box | いる可能の | | Incline Manometer | COE 2009M | | Comb.Gas.Analyzer | | | Micromanometer | | | Barometer | | | Calipers | | σ_0 COPE 200 44 Meter Box No.: Team 1 Page Probe No.: Impinger Box No.: 1つ Project No .: | Date: NAV 11 222 | 1 2 P. 2 A. | <u></u> | Covanta DYEC | <u>س</u> | | | Test No.: | 2 | SVOC | | | Page 2 | ot
ot | |--|--
--|-------------------|-------------|-------|--|----------------|--------|--|----------|--|--|--| | 620 | The state of s | Plant Location: | Courtice, Ontario | ntario | | Anna Principal Company of the Compan | Test Location: | n | APC Outlet No | Vo | ratio de la companio | - Capacitanian de la capacitania della capacitan | Sandra and a sand | | | * | Restruction of confine profession of confine profession of the | * | | * | A PARTICIPATION AND THE TH | | ** | MANAGEMENT AND | * | SEE ANTENNATION OF THE SECURITY SECURIT | ************************************** | * | | | | Dry Gas | Pitot | | Stack | Probe | Oven | guidul | Impinger Temp | Meter | Meter Temp | Meter | bumb | | Point | Clock | Meter | ٥ | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | met | Pressure | Vacuum | | | Time | " = | , I | Ę | Ľ. | 브 | L. | u
° | LL
o | L
o | <u>.</u> | 0 ² H | "Hg
Gauge | | T | 0 | 280.43 | &,
_ | | 287 | 592 | スペス | %
Т | 3 | 3 | 86 | <u>ق</u>
 | C)
T | | | ហ | 7 3 3 3 3 | 8 | % | X | 3 | 200 | Ş | 3 | 9 | 70 | 1,9 | 0
7 | | 2 | 10 | <i>t-E'</i> 682 | 8 | μ,
/v | 38. | 3 | 259 | 0 | Š | 9 | ٧ | ٥
۲ | 70 | | | 15 | 29348 | · ~ | 10 th 1 | 286 | 9,80 | 32 | Ş | <u>~</u> | 9 | · S C | Q
Q | 2 | | æ | 20 | 247.22 | 31. | 04, | 2865 | 53 | ß | 25 | 2, | 5 | J | 00 (| J.
O | | | 25 | \s\ \chi \ \chi | 5 5. | 21. | 285 | 252 | 260 | 5 | ر
د | ブ |) L. | 0ο
 | و
ت | | 4 | 30 | 304,59 | F | 9 | 286 | 257 | 932 | 25 |)
} | ~ | 7 | <u>.</u> | J | | THE RESIDENCE AND A STATE OF THE TH | 35 | 308.13 | Ĭ, | 2 | 286 | 256 | 252 | S | 75 | Š | <i>J</i> | | 5 | |
2 | 40 | 60 |)
(1) | 891 | 1.87 | 35% | 259 | 25 | 7 | S | 7 | 91) | J | | and a supplementary of the sup | 45 | 315.16 | 2 | 49: | Z8.7 | 256 | 23 | 75 | J- | 36 | 5 | 9: | 5 | | 9 | 20 | 20.00 | 3 | 59, | 788 | L 52 | 260 | 15 | 3 | -S |)
L | S) | 7 | | ANALYSIS OF THE PROPERTY TH | 55 | 322,10 | \$9 | 59) | 289 | 252 | 197 | 15 | \$ | 7 | 51 | 57 | 7, | | 7 | 09 | 325.56 | 2: | 29. | 58d | 253 | 192 | S3 | ž | C | SL | 91 | Ť | | AND THE PROPERTY OF PROPER | 65 | 325.33 | 01. | %
-
- | 288 | 253 | 3 | S | ž | F | SL. | 3 | 575 | | 8 | 20 | 332.26 | 21. | 59 | 288 | CS2 | - 32 | 25 | Ç | C | ? L | 71 | トナ | | The state of s | 75 | 372.68 | <u></u> | 3 | 287 | 952 | 37 | S | 30
2 | C | SL. | 2 | 4.5 | | 6 | 80 | 338.98 | 020 | 99 | 282 | 957 | 7,60 | 23 | \$, | LL | S'L | 20 | 'n | | | 85 | C5756 | 9 | 89° | L %? | 52 | 797 | ブソ | 88 | 8L | 22 | | ÿ | | 10 | 06 | 346.04 | 12 | 3 | 7.87 | 752 | 28.2 | 5 | Sh | 1 | 75 | 5: | 5 | | | 95 | 349.90 | \$9 t | 993 | 282 | 25.8 | 197 | 2 | F | 81. | 9 | 5 | 4.5 | | - | 100 | * C22 | 1 60 | 16. | 288 | 75% | 761 | \$ | Ĭ | 7% | 96 | J., | S | | | Ę | H | | |--|---|--|--| | | | • | | | | | | | | | | | | | | ഭം | രം | | | | E | E | | | | ซ | ਹ | ÷ | ان | | | | he | Jec | | | | ak | S | | | | ë | ea. | | | | itia | Ja | | | | = | 正 | CO-COMPANIE OF THE PERSON T | | | | | | | e: | | | à | 2 | ≥w l | | | in | 2. | Ē | | | wers | it iii | ish Ti | | | Travers | Start Tin | Finish Ti | | | Travers | lg Start Tin | g Finish Tir | | | Travers | "Hg Start Tin | "Hg Finish Ti | | | Travers | "Hg Start Tin | "Hg Finish Ti | | | Travers | Start Tin | He Finish Ti | | | Travers | Start Tin | Hg Finish Ti | | | Travers | (@ Start Tin | (@ フ "Hg Finish Tir | | | Travers | cfm <i>@</i> 久 "Hg Start Tin | cfm <i>@ フ</i> "Hg Finish Tin | | | Travers | cfm@ 文 "Hg Start Tin | cfm@ 7 "Hg Finish Tie | | | Travers | cfm@ 文 "Hg Start Tin | C cfm@ 7 "Hg Finish Ti | | | Travers | ال cfm@ كم "Hg Start Tin Start Tin | 56七 cfm <i>@</i> /フ "Hg Finish Ti | | | Travers | ال جراس cfm الله الله Start Tin | しの3 cfm@ フ "Hg Finish Tie | | | Travers | : cfm@ 文 "Hg Start Tin | 1.00% cfm@ 7 "Hg Finish Ti | | | Travers | eck: 🆽 cfm@ 💸 "Hg Start Tin | ck: ८.٥٥૨ cfm@ フ "Hg Finish Tii | | | Travers | ر Check: رقم ایم "Hg Start Tin | Check: このな cfm@ フ "Hg Finish Ti | | | Travers | .eak Check: ু 스스 나 Cfm@ 기〉 "Hg Start Tin | sak Check: このび cfm@ フ "Hg Finish Tii | | | Travers | al Leak Check: 🚬 🖒 나 🐧 "Hg Start Tin | il Leak Check: この62 cfm@ ユ "Hg Finish Tii | | | Travers | اسا الله الله الله الله الله Start Tin | Final Leak Check: こののこ cfm@ フ "Hg Finish Ti | | | Tavers | Initial Leak Check: 🚬 🖒 내 Cfm@ 🥱 "Hg Start Tin | Final Leak Check: このパ cfm@ バ "Hg Finish Tii | | | TANCES | ر اnitial Leak Check: من الله الله الله الله الله الله الله الل | 写 Final Leak Check: ん.oo cfm@ 「Hg Finish Tii | | | | 28 Initial Leak Check: 100 山 文 "Hg Start Tin | : 2分 Final Leak Check: しのて cfm@ 7 "Hg Finish Ti | | | Z L L L L L L L L L L L L L L L L L L L | 子:2名 Initial Leak Check: 、chu cfm@ 1匁 "Hg Start Tin | ら、2名 Final Leak Check: このひ cfm@ フ "Hg Finish Ti | | | | e: (ろ; 2g Initial Leak Check: 🖽 cfm@ 🥱 "Hg Start Tin | ne: 1らっつ Final Leak Check: このて cfm@ フ "Hg Finish Ti | | | | Time: パチェン名 Initial Leak Check: 🚬 cfm@ 🥱 "Hg Start Tin | Time: にっつる Final Leak Check: んのて cfm@ 「フ "Hg Finish Ti | | | | art Time: (ろ; 2.名 Initial Leak Check: 、 dの 山 cfm@ タ "Hg Start Tin | ish Time: にっる Final Leak Check: このひ cfm@ 7 "Hg Finish Ti | | | Traverse: 7_ Travers | eck: | Finish Time: らっぷ Final Leak Check: このて cfm@ フ "Hg Finish Ti | | 22050 Project No.: Operator : | Paint Location Control of the Co | The state of s | | | | | | | | | | | | | | |--
--|--|--|--
--|--|--|--
--|--|--------------|-------|--------------|--------------| | Cock Desired Temp Temp Temp Temp Wieter Temp Wieter Wieter Wieter Temp Temp Temp Temp Temp Temp Wieter Temp Wieter Temp Wieter Temp Wieter Temp Te | Date: NSZ | 1 2520 | Plant Location: | Courtice, On | tario | | | Test Locatio | , h.; | APC Outlet N | 1 1 | | | | | Clock Dry Gas Pitot Stack Probe Over Impirer Temp Meter Temp Westure Time Temp | | * | ************************************** | * | | * | Bank Control of the C | | * | anservações de la seconda d | * | X. | ** | * | | Clock Meter Ap Desired Temp Temp Temp Outlet Inlet Pressure Vacue Vacu | menalah darah dalam dan antan dan dan dan dan dan dan dan dan dan d | Na mandra de la companya compa | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | er Temp | Meter | Temp | Meter | Pump | | Time R ² "H ₂ O dm "F F F F F F F F F F F F F F F F F F F | Point | Clock | Meter | ∆ | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | Inlet | Pressure | Vacuum | | 115 357.14 74, 5 157 288 257 262 56 44 78 76 14 44. 116 357.14 74, 5 157 287 287 26 26 55 44 78 776 14 44. 117 36.40.2 15 157 287 287 26 16 55 44 78 76 14 44. 118 36.40.2 15 157 287 287 26 16 17 41. 119 36.40.2 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | | Time | £ | "H20 | Ę | <u>.</u> | u. | - | <u>LL</u> | 바 | u. | ۳ | H 02
H 70 | "Hg
Gauge | | 110 357.14 46, 5 157 265 261 55 44 78 76 4.01 4.0 111 312.15 1.57 2.57 2.56 2.51 55 44 78 76 1.11 4.0 1120 3.64, 972 | | 105 | 3,55.48 | 99 | S | 288 | 23 | 282 | 95 | 5 | SS C | 2 | 7 | 4.5 | | 115 182, O.C. 15 157 287 286 261 55 44 76 1.1 41.0 120 364, 492 | 12 | 110 | 359.1 | 1 | Į, | 28% | 3 28 | 187 | S | 3 - | 78 | 91 | | 4,0 | | 120 3.64, 92 150 3.64, 92 | | 115 | 70.2% | \$ 2 | Ĉ | 182 | 35% | 192 | 3 | 7 | 28 | 9/ | | 0.
5 | | Initial Leak Check: | AN AND THE RESERVE AND THE PROPERTY OF PRO | 120 | 364,92 | The state of s | | | | | | | | | | | | Initial Leak Check: Cfm@ Fig. Fig. Fig. Fig. Cfm@ Fig. Fig. Fig. Cfm@ Fig. Fig. Cfm@ Fig. Fig. Cfm@ Fig. Cfm@ Fig. Cfm. | CLAPOTATION DE LA CONTRACTION | | | | | | | | | | | | | | | Initial Leak Check: Cring Figure 1 Final Leak Check: Cring Cring Final Leak Check: Cring Final Leak Check: Cring Cring Final Leak Check: Cring Final Leak Check: Cring Cring Final Leak Check: Cring Final Leak Check: Cring Cring Final Leak Check: Cring Final Leak Check: Cring Cring Final Leak Check: Fin | de marie de la companya del companya del companya de la d | A THE TRANSPORT OF THE PROPERTY PROPERT | | | | | | | | - 1
- 1
- 1
- 1 | | | | | | Initial Leak Check: | | | | | | | And and the property of the state sta | NATIONAL PROPERTY OF THE PROPE | | | | | | | | Initial Leak Check: | No. of the Contract Con | envocarments and one of the second se | any of the control | An institution and the contract of contrac | The state of s | | ************************************** | Paradonina de la compansión compan | | | | | | | | Initial Leak Check: Cfm@ "Hg Finish Time: Initial Leak Check: Cfm @ Finish Leak Check: Cfm @ | | | | And the state of t | | ACCUPATION AND ACCUPA | reduced in the control of contro | Commission of the o | The second secon | | | | | | | Initial Leak Check: cfm@ "Hg Start Time: Initial Leak Check: cfm @ | | NA-AMANDAMENTAL PROPERTY OF THE TH | and demonstrations of the second seco | And the second s | The state of s | | | | | | | | | | | | | | | | | And the state of t | Anti-desiration of the state | nade de la companya d | - Consideration of the Constant Constan | | | | | | | Initial Leak Check: | | - La Constanta de | | | | | Andrew Brown Property Control of the | | | | | | | | | Initial Leak Check: | | Hamadonia in canada da manada de man | | | | | Name and the second sec | And the state of t | | | | | | | | Traverse: | | | THE RESERVE OF THE PROPERTY | | | | - ET-A-T-A-T-A-T-A-T-A-T-A-T-A-T-A-T-A-T-A | Company of the Address Addres | | | | | | | | Initial Leak Check: Cfm@ "Hg Finish Time: Initial Leak Check: Cfm @ Finish Time: Finish Check: Cfm @ Finish Time: Finish Check: Cfm @ Finish Time: Finish Check: Cfm @ Finish Check: Cfm @ Finish Time: Finish Check: Cfm @ Finish Time: Finish Check: Cfm @ Finish Time: Finish Check: Cfm @ Cf | | Valencia (sicilar ariveta e esta cidade esta cidade esta cidade e esta cidade e esta cidade e esta cidade e e | | | | | | The state of s | | | | | | | | Initial Leak Check: | | | i kan | | The state of s | APPROCESSOR CONTRACTOR | Nacional de Carlos Carl | with any contract of the formal operation oper | | | | | | | | Traverse: Trav | | | Protestation in the Confession of | | The second secon | ментерия по поментерия по ментерия мен | LT JANKS AND | | | | | | | | | Traverse: | | | The second secon | | | | | | - | | | | | | | Initial Leak Check: cfm@ "Hg Finish Time: Initial Leak Check: cfm @ | | | | | | Andreas Action and the Andreas Action and the Andreas Action and Andre | A Language replacation in
the language and a | NAME OF THE PROPERTY PR | | | | | | | | Traverse: Initial Leak Check: cfm@ "Hg Start Time: Initial Leak Check: cfm @ | | A CONTRACTOR OF THE PROPERTY O | The state of s | | | | | | | | | | | | | Traverse: Initial Leak Check: cfm @ Traverse: cfm @ Cf | | | | | | | | | | | | | | | | Initial Leak Check: cfm@ "Hg Start Time: Initial Leak Check: cfm @ Final Leak Check: cfm @ Final Leak Check: cfm @ Final Leak Check: cfm @ 22050 Project No.: 22050 Operator: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | an valorim | | | Traverse: | deservatives established and an | Million and an address of the second population populatio | | 1 | | | | | Final Leak Cheski etm © etm © Etnish Time! Final Leak Cheski etm © 22050 Project No.: 22050 Operator: /名 《乙 | Start Time: | · · | Initial Leak Check: | | cfm@ | | Start Time: | | NATIONAL PROPERTY OF THE PROPE | Initial Leak C | heck: | | cfm @ | 8H | | 3/8/2 | | | PINELLEGIN Check: | | Q ELJO | | Finish Times | | | Final Leak Ch | ieski | | efm @ | H, | | 29/ | | | | | | | | | | | Project No.: | | 22050 | | | | | | | | Name and contract | | NAMES STATEMENT OF | | Notes and the second se | PROGRAMMENT AND THE PROGRA | Operator: | | dance. | | | Date: 11 32 3 | A 400 A 60 81 | Plant: | Covanta DYEC | 'n. | | | Test No.: ~ | | SVOC | | | Page 4 | o,
N | |--|---------------|--|--|---------|---|--|---|--------|--------------------------------|------------|-----------------|-----------------|--------------| | | | Plant Location: | Courtice, Ontario | ntario | The second remarkable contents on the second contents of | | Test Location: | ji. | APC Outlet No. | 10. | | | 1 | | | ¥ | | * | | * | ************************************** | inflamentation in the second consequence of | * | | * | * | * | * | | TREE AND | | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Metel | Weter Temp | Meter | Pump | | Point | Clock | Meter | ΔP | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | Inlet | Pressure | Vacuum | | (| Tme | #3 | "H20 | ctm | L. | <u>L</u> | L | U., | <u>.</u> | <u>.</u> | Un. | " AH
O2H | "Hg
Gauge | | end | 0 | 365.30 | \$83 | 1.75 | 9.87 | 1251 | 92 | 5 | 7 | 5 <u>-</u> | 20 | 1.8 | V | | | រប | 368.821 | 185 | 56. | 286 | 23 | 997 | 98 | <i>z</i> | 5
[| £ | 90 | 5 | | 2 | 10 | 8 K-2 L E | 5° | 6 | 9%2 | 28 | 283 | S. | 3 | 26 | 0 | N | Ŋ | | | 15 | 376.28 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | ٤, | 982 | 557 | 197 | 5 | 3 | 8 | 2 | N | 9 | | m | 20 | 380.03 | 28 | 2 | 987 | 25,6 | 097 | Ş | Ŷ | 20 | C | 2 | S | | | 25 | 383.81 | 38. | \$2. | 7%7 | 756 | 762 | 5 | 5 | 8 | C | 5 | S | | 4 | တ္တ | 387.56 | . 8 | 4 | 288 | 352 | 797 | Ŋ | Ŧ | C | r | 5 | S.S | | | se. | 10 150 E | 30,3 | 2 | × | 357 | 28.1 | 88 | 7 | | 2 | \\ \tilde{\chi} | š | | rv. | 40 | 967666 | 3 | Ç | 288 | 256 | 297 | Ŗ | 5 | 78 | £ | | ~ | | | 45 | 398.55 | | 89. | 223 | 2% | 282 | 09 | 37 | 61 | F | N/O | 4 | | 9 | 22 | 20.202 | 899 | S | 285 | 258 | 297 | 09 | ş | 32 | | 3 | V | | | 52 | ₹ 505
 | .72 | 69: | 22 | 357 | 263 | r | enterprote
O'Alfrena
O'A | 38 | £ | 9.1 | U | | 7 | 09 | 78.80) | ŝ | Q | 788 | S | 202 | ž | 27 | 5_, | £ | C | V | | | 65 | ************************************** | 2. | 0 | 28% | 257 | 783 | Ñ | 9 | ۶ | Ç | | S | | 8 | 70 | 415,04 | 2 | 2 | 122 | 352 | 262 | 25 | S | 78 | F | r. | S | | 4 | 75 | 4109,31 | 56. | 5 | 287 | 952 | 262 | 75 | Ţ- | 18 | | | V | | 6 | 80 | 422.83 | 8, | 66. | 167 | LS2 | 282 | 25 | 9 | 79 | 8 | × :- | SS | | | 85 | C 233 | * | Ć, | 288 | 3/2 | 797 | V. | Ţ | 5- | F | 8:1 | v
v | | 10 | 06 | - P | ſ. | 89; | 2.83 | 352 | 297 | 2.1 | ŕ | 8) | C | 91 | 5.2 | | entratement de la constant con | 95 | 97.6 |
 33 | 282 | 2.56 | 73% | 5 | | 28 | c | ~2 | SS | | 11 | 100 | 431.08 | 35. | 999 | 282 | 255 | 792 | Ī | 5 | 9. | Tony to and the | ,,can | . 4 | | Traverse: | | Traverse: | | |---|----------------|--------------|-------------------------------| | Start Time: 15:3.5 Initial Leak Check: | M. □ @mjo €00* | Start Time: | Initial Leak Check: cfm @ "Hg | | Pinish Times 117.25 Final Leak Chasks | MH. | Hinish Time: | | | | 727 | | | | | | | Project No.: 22050 | Project No.: Operator : 시용 유씨 | * | | Plane I a sade a se. | | | | | | | | | | | | |--|--|--|--
--|--|--|--
--|--|--|--
---|---------------| | | | Figure Colaction: | Courtice, Ontario | ntario | | | Test Location: | ä | APC Outlet No. | 0. | | | | | | * | * | # | | *** | | | * | | * | * | * | * | | | enchandrative patricular particular particul | Dry Gas | Pitot | | Stack | Probe | Oven | mping | Impinger Temp | Meter | Meter Temp | Meter | Pump | | a
E
O
G | Clock
Time | Meter
ft³ | " A ₽ | Desired | remp | rem
P | Temp
°F | Outlet | Inlet/Trap | Outlet
°F | n
F | Pressure | Vacuum
"Hg | | | | | • | | | | | | | | | "H20 | Gauge | | | 105 | FO :043 | 55, | 9 | 288 | 72.6 | 192 | 3 | ₩
0, | \$2 | | | ^ | | 12 | 110 | 80 RA | 40 | Z, | 288 | 958 | 261 | ïs | <u>ှိ</u> | 18 | | arricer
er
Consuma | M | | | 115 | いるがよ | Ŋ | 5 | 387 | 252 | 252 | 25 | 7 | 28 | 6 L | omino
P | Ŋ | | nanideasekaan Opposistekeaskoopoletralaapatokaanananananananananananananananananana | 120 | 22.82 | | | | | | | | - 1 | | | | | | A composition and a supplemental | | in the state of th | | | | | | | | | | | | destarphishering programme and | soften and a second desired to the de | de desperatores de la companya del companya del companya de la del la companya de co | Annual contract of the contrac | | | | | | | | | | | | PORTECT AND PROPERTY OF THE PR | W. Colombia | A CONTROL OF THE TAXABLE TAXABL | | | And the second s | | | Non-Appropriate Association (Association (As | The second state of se | | | | | | ************************************** | | es a despunsion de service de procesa de la companya del la companya de del la companya de compa | The second secon | | wasternoon period or encountry and the period of perio | | alebookee/enderecommissionalisesides | The manuscript of the Control | Proposition of the Control Co | A CONTRACTOR CONTRACTO | | | | | Valentinina da de la casa c | Vanishing of the latest | Na die de de de des des des des des des des d | | | ALL DOSEITA CONTRACTOR | The state of s | THE PROPERTY OF O | enegrine professor en han en | | | | | | | And the state of t | | Carage parameter of presentations are a second contract of the carage | and the second s | | nonember und verschieden der | The state of s | The state of s | VOLUMENT DESCRIPTION OF THE PROPERTY PR | | | | | | | | | i del de la constitució | | | en anno es en antecimiente de la companya del la companya de co | | WARRANTE GOTT FOR GOTT WAS THE WAS THE TRANSPORT OF THE WAS TH | Makestanian and Artist to opposite the control of t | | | | | | | | | | | | | | nadoscolinalista dendes meteories de servicios de socialista de servicio se | - Property Carlot Carlo | | According to the second | | | | | The state of s | and unmontable forms of the first fir | | DAY AND | | WATER CONTRACTOR CONTR | | The state of s | | | | | | | | | and the first contract of | in media mentra de la martina | descriptions and the second se | | | | | | | | | | | | AND THE PROPERTY OF PROPER | Actions are a series and seri | CHETTET I E A MERCONES ANCHES | Nagarappanian nasa-panarappana | | A CONTRACT TO SELECT THE PROPERTY OF PROPE | | | 1 | | | | | | | | and in the second secon | | | | | | - And Andrews | PROMISE AND | Supplied to the th | | | | | | AND THE PROPERTY OF PROPER | | | | | | - And Andreas - | and a supplication of the | | | | | | | | | | · Garanteija projektovanisti suuministeetaja ovaatesta seestele ja vastele ja muuta ja kikaita ja vastele ja v | | | | | | | | | | | | | | | A series de la companya de la compa | | | | | CONTRACTOR | THE COMPANY OF CO | | | | NATE OF THE PARTY | | | | CO. | A CONTRACTOR CONTRACTO | autoria constituita e e e e e e e e e e e e e e e e e e e | THE PROPERTY AND ADDRESS OF PROPER | | | | | | | | | | | The same of sa | | | | | | | | | | | | | | | Traverse: | на основнительности по при | | Footen | | | Traverse: | | | | | | | | | Start Time: | with the state of | Initial Leak Check: | - Commence of the | cfm@ | 80 H | Start Time: | | | Initial Leak Check: | heck: | DOWNSOLUCION CONTRACTOR CONTRACTO | cfm @ | 20
H | | Finish Time: | | Final Leak Check: | | cfm@ | | Finish Time: | | | Final Leak Check: | eck: | | cfm @ | "Hg | | | | | | | | | | | | Project No.: | | 22050 | | | маничности | NAMES OF THE PROPERTY P | | | | enders reducion de la company de la comp | GINACCONTINUE CONTRACTOR DE CO | especial content of the second th |
in-Polanieja-stational-variona | | Operator: | 20/ | S | | | Commenter of the antique of the state | of comments of the same | onskiel bligeisekky frisk dejenstral trikkjist sjenstrepersioniel Arteiskiel pariiskiek ket pelateresen. | | - | Action and services of the ser | THE PROPERTY OF O | injerujinjohovovojejo kalekalakajo je reservinistrajo. | and the second s | Medalmine confessor francisco programmento de la constante | Military residents and the second sec | | ************************************** | | | Plant | Covanta DYEC | |--------------------|--| | Plant Location | Courtice, Ontario | | Test No.: | Semi-Volatile Organic Compounds | | Test Date | Now 12/20 20 | | Test Location | APC Outlet No | | Onerator Signature | The second secon | | Pitot Factor | .88. | | |---------------------|-----------|--------| | DGMCF | 500. | | | Barometric Pressure | Ire So Co | "Hg | | Static Pressure | 19.6% | "H20 | | Nozzle Size | . 2573 | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | | inches | | THE PROPERTY OF O | - | | - | - | 1 | |--|---|----------|---|---|---| | Reading Interval | | R) | | | | | Number of Ports | | N | | | | | Number of Points/Port | | E | 6 | | | Probe Liner (Glass)/ Metal /Teflon / Other_ Site Diagram Glass / Metal / Other_ Nozzle None /Metal /(Teflon / Other_ Union | Gain | | |------------|--| ate | Particulat | | | | | | | | | | | | | mg | |--|----| | | | | | | SBBSHA Probe / Pitot COG 5004 COC 20094 Control Box Trendicator Comb.Gas.Analyzer Incline Manometer Micromanometer Barometer Calipers MII Numbers Measuring Device 2000 90 Meter Box No.: (earn Probe No.: Page Impinger Box No.: 10 Project No.: | | c | • | | |-----|---|---|--| | | 2 | | | | | m | ¥ | | | | • | 4 | | | ١, | 7 | ž | | | | ~ | • | | | | a | ì | | | | č | _ | | | | = | ĕ | | | -11 | - | 2 | | | | ÷ | 2 | | | | ¥ | 3 | | | ಿ | 7 | ~ | | | ٠ | É | ð | | | | C | • | | | 0.0 | 00 | |--------------|------| | | 1 | | | | | - 1 | - 1 | | 1 | - 1 | | - 1 | - 1 | | - 1 | - 1 | | 1 | - 1 | | - | | | - 1 | | | - 1 | 1 | | -4 | | | | | | | | | A Com | | | | den | | $ \sqrt{1} $ | 41 | | 1 | | | VA | | | | | | 1 | | | | | | | | | | | | | | | - 1 | | | | 21 | | Œ | Ö | | | pp [| | 5 | 2 | | υl | 5 | | | | | | | ## Combustion Gas Concentration | Oxygen B. CD | % | |-------------------------|-----| | Carbon Dioxide // < | % | | Carbon Monoxide / → . ○ | mdd | | | Nozzle Measurements |
--|---------------------| | The state of s | 015% | | 8 | ,2515 | | ന | , 2510 | | ব | 23.6 | | Average: | 2513 | Pitot Leak Checked? Kes S Notes: | Dato | A 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Dlant. | Courants DVEC | LC | | | Toct No. | | SVOC | | | Dage 2 | Č, | |--|---|---|------------------|----------|---------------|-------|----------------|-------------------------|----------------|----------|--|--------------------------|--------------| | 1 | 71600 | Disat ocstion. | Courtice Ontario | aforio - | | | Toct location. | - | APC Outlet No. | 7 2 | Composition of the contract | | . 1 | | | | Flant Location: | Continue, O | Italio | | | ובאר בסכמנוס | | ייי כמונכי | 40. W | - Company of the Comp | | | | | * | * | * | | * | | | * | | * | * | * | * | | CALLE DE SERVICION DE PENTANCION DE LA CALLE CAL | | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | r Temp | Meter | bump | | Point | Clock | Meter | 4 | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | i
i | Pressure | Vacuum | | | Time | * | "H20 | £ | <u>u</u>
° | 브 | <u>u</u> . | <u>L</u> . | LL
o | L | <u>u_</u> | Δ H
"H ₂ O | "Hg
Gauge | | | 0 | 78.25 | S.C. | 39. | 282 | 32 | 997 | B | S | õ | 29 | | 3.5 | | are designation of the second | 2 | 2,73 | | 89, | 233 | 35 | 2,5 | 0 | بر
ج | 59 | 59 | | 35 | | 7 | 10 | 21.8 | 89 | 2 | C87 | 757 | 258 | 85 | 7 | <u> </u> | 09 | × . | 7 | | | 15 | \$3.62 | \$ | 2 | 182 | 255 | 552 | ž | Î | ত | 09 | 1.8 |) | | е | 20 | 3.3 | S1 | 39, | 282 | 222 | 253 | <u>ح</u> | 7 | 79 | 09 | 2) | 7 | | onenga sanana paganga manaka untagan. | 25 | 09 199 | S 2 | 39. | \$2 | 285 | \$
\(\) | T
T | 44 | 19 | 07 | 1.7 | 77 | | 4 | 30 | 3 | 27 | 9: | 782 | 33 | 282 | Ŷ | 7 | 3 | 19 | | ک | | enne pakatan kanan k | 35 | J. | C | Ģ | 282 | 3 | 092 | 9 | テ | 79 |) 9 | | > | | 5 | 40 | 3.3 | D | 3, | 282 | 2.56 | స్ట | 3 | ر
ال | ٤) | 3 | [,7 | 7 - | | And the second s | 45 | 7, 28 | 33 | 5 | 589 | 352 | P.559 | $\widehat{\mathcal{F}}$ | 2 | 63 | <u>-</u> 9 | ب
خ | . | | 9 | 50 | 83.5% | 3 | 7,93 | 1×82 | 256 | 260 | ۲) | T | 3 | 19 | 3 | 5 | | No. of the control | 55 | C1.38 | 3 | 7,9; | 288 | 552 | 192 | () | 9 | J- | 5 | 3 | 7 | | 7 | 09 | 25.5% | 30 | 29. | 288 | 255 | 260 | 5 | T | 5 | 120 | ž | 5- | | | 65 | 300000000000000000000000000000000000000 | 5 | ъ9, | 288 | 255 | 992 | ŝ | 7 | 3 | 7,9 | Ţ | 5 | | 8 | 20 | 30.00 | 2 | 39: | 288 | 952 | 1 92 | Î | 75 | 73 | ટ્ર | | J | | | 75 | 85. Eds | 693 | 333 | 882 | 256 | 197 | ĥ | 7 | J. | 29 | c | 7 | | 6 | 80 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 391 | \$9, | 7.87 | 2.5.5 | 092 | (4) | ブ
ブ | 9 | ನಿ | γ0
 | 3 | | - | 85 | F (30) | \$95 | 3 | 784 | 255 | 260 | 7 | 7 | જ | G | % | y | | 10 | 06 | 30.20 | 29, | 33, | 285 | 33 | 3 | 7 | 3 ° | 99 | 53 | <u>ې</u> | 3 | | | 95 | Z
E | Ž | 39° | 283 | 233 | 092 | 7 | 43 | S | % | ~ Q | 3 | | - | 100 | 7,2 | S | 85. | 982 | 25.2 | 992 | Ŷ | 9 | 3 | 8 | ನ | J | | T | igd | | |
---|--|---|----------| | - Commence of the | Ŧ | Colonian | | | *************************************** | Department of the Partment | Secretaristics. | | | | Name of the last o | and challenger on the | | | | @
L | | | | | cfm @ | | | | | | None and a second | | | | - | Signature of the second | | | | Sideration | Secretary Section | | | | - | SOMEONING STATE | | | | Initial Leak Check: | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | akc | ž | | | | ialLe | 6 | | | | lnit | H | | | | | SERVICE SERVICE | | | | | | | | | | | | | | | - Contract of the | | | | | | | | | :.
6: | 101 | | | | | | | | erse: | L Tim | n Tin | | | Traverse: | Start Time: | Finish Tin | | | Traverse: | Hg Start Tim | He Finish Th | | | Traverse: | "Hg Stal | AL USIVA WH. | | | Traverse: | Stal | WHE FINISH TIM | <u> </u> | | Traverse: | "Hg Stal | THE FINENTY | | | Traverse: | "Hg Stal | THE FINISH THE | | | Traverse: | "Hg Stal | THE FINISH TIME | | | Traverse: | "Hg Stal | atme "Hg Finish Tin | | | Traverse: | "Hg Stal | etne etne | 900 | | Traverse: | "Hg Stal | i etme time | 909 | | Traverse: | "Hg Stal | heeki cim@ 'Hg Finish Tin | 400 | | Traverse: | "Hg Stal | ak Gheeki cimo 'Hg Finish Tin | 900 | | Traverse: | "Hg Stal | tal Leak Check: Cim@ "Hg Finish Tim | 900 | | Traverse: | "Hg Stal | Final Leak Check: cfm@ 'Hg Finish Tin | 900 | | Traverse: | "Hg Stal | 1) Pinal Leak Ghock; cfm@ | 900 | | Traverse: | "Hg Stal | TO: 12 Pinal Leak Check; ofm@ "Hg Finish Tim | 300 | | Traverse: | "Hg Stal | ier () i Final Leak Check; crm@ "Hg Finish Tim | 909 | | irse: | "Hg Stal | nimer (): 12 Final Leak Check; cfm@ Finish Tim | 900 | | Traverse: | "Hg Stal | Finish time: [기] [Final Leak Check; cfm@ - "Hg [Finish Tim | 300 | 22050 Project No.: Operator : | Plant Location: Counties, Ontario Test Location: Time Test Location: | | No. of | Plant: | Covanta DYEC | ۵ | | | Test No.: | ~ | SVOC | | | Page 3 | o,
v |
--|--|--|--
--|----------|--|--------------|--|--|----------------
---|--|----------|--| | Clock Weeter Properation Weeter Properation Weeter Properation Weeter Properation Weeter Properation Weeter Properation Properat | NEWSTREAM PROGRAMMENT OF THE PRO | Markonistations common transfer and property constraints | Plant Location: | Courtice, O | ntario | | | Test Locatio | | APC Outlet N | | PRESENTATION CONTRACTOR CONTRACTO | | SECTION OF THE PROPERTY OF THE PERSON | | Clock Wheter Part | | * | * | * | | * | | | * | | * | * | * | * | | Time | NATIONAL PROPERTY OF THE PROPE | Newsconduction of the second control | Dry Gas | Pitot | | Stack | Probe | Oven | Buidml | er Temp | Mete | r Temp | Meter | Pump | | 105 1974 y 154 155 150 144 175 | | <u> </u> | Meter | - C | Desired | gma
or ° | emp | d . | outlet | met/Trap | outlet | <u> </u> | Pressure | Vacuum | | 135 191.48 | | | | П2О | Ē | - | L | • | L | | . | | 1,4 H | ng
Gauge | | 110 12. 40 158 158 285 285 240 44 40 66 63 1,2 4 12 12 | | 105 | 8 H / 6 H | 5 | 3S1 | 782 | 255 | 2
2
2
3 | 7 | 9 | 99 | 59 | Ŋ | J | | 115 125.3 | 12 | 110 | 2
3 | \$5. | ş | 285 | 255 | 92 | 7 | 2.
0. | 99 | 59 | <u>ス</u> | 3 | | 126 12 5, 25 | | 115 | 125.31 | 2,5 | ,
SS, | ××
×× | S | 260 | 3 | 9 | 99 | 3, | 2,1 | J | | Initial Leak Check: | | 120 | 128,25 | | | | | | | | | | | | | Initial Lesk Check: | | | | | | | | | | | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | Initial Leak Check: | | | | | | | | | | | 1 1 | | | | | Traverse: Final Leak Check: C | | | | | | | | | | | | | | | | Traverse: Trav | ennomerparktisederprenetoworkers | | | | | | | | | | | | | | | Initial Leak Check: | omenyklanekoleksekseksko-alemineskspanjosekks | | | | | And the second s | | | | | | | | | | | NOTION PROPERTY AND AN | kiliotakin-kirjasiwald-kolok-kiliotakin Eliah-ad en k | nemin personal resultativa de la companya del companya de la del companya de la del comp | and personal variation of employment enterior control of the property of the personal p | | mackening and a second | | | | | | | | | | Final Leak Check: Cfm@ "Hg Finish Time: Final Leak Check: Cfm@ Cfm@ Finish Time: Final Leak Check: Cfm@ | KS merandens and restablished restab | And the second s | | inaski-kenassa kilonaanaan maanaan kanasaanaan | | AND
THE PROPERTY OF PROPER | | | indicated the state of stat | | sand in the proposition of the state | | | | | Initial Leak Check: | | | | | | | | | | | | | | | | Traverse: | Management of the second secon | | | | | | | | | | | | | | | Traverse: | TO CONTRACTOR CONTRACT | ACCUPATION OF THE PROPERTY PRO | | ingia-production deputies and the production of | | | | | | | | | | | | Initial Leak Check: Cfm@ "Hg Finish Time: Final Leak Check: Cfm @ Final Leak Check: Cfm @ Finish Time: Final Leak Check: Cfm @ Final Leak Check: Cfm @ Finish Time: T | THE REPORT OF THE PROPERTY | | | NAMES OF THE PROPERTY P | | | | | | | | | | | | Traverse: | | | | | | | | | | | | | | | | Final Leak Check: | | | | | | | | | | | | | | | | Final Leak Check: cfm@ "Hg Finish Time: Final Leak Check: cfm @ Final Leak Check: cfm @ Finish Time: cfm @ Finish Time: Final Leak Check: cfm @ Finish Time: Final Leak Check: cfm @ Finish Time: Final Leak Check: cfm @ Finish Time: Tim | | | | | | | | | | | | | | | | Initial Leak Check: | | | | | | | | | | | | | | | | Initial Leak Check: cfm@ "Hg Start Time: Initial Leak Check: cfm @ Time: | | | | | | | : | | | | | | | | | Traverse: Initial Leak Check: cfm@ "Hg Start Time: Initial Leak Check: cfm @ Finish Time: Final Finish Time: Final Leak Check: cfm @ Finish Time: Finish Time: Final Leak Check: cfm @ Finish Time: | | | | | | | | | | | | | | Andriad establishment de la francisco fr | | Initial Leak Check: cfm@ "Hg Start Time: Initial Leak Check: cfm @ Final Lea | raverse: | interesperimental interesperim | | | | | Traverse: | ingelmäne ja konstruiten ministruiten minist | ARTORIO DE LA CONTROL DE | | | | | | | Final Leak Check: cfm@ "Hg Finish Time: Final Leak Check: cfm @ | tart Time: | | Initial Leak Check: | | cfm@ | E
E | Start Time: | | | Initial Leak C | heck: | | cfm @ | Ξ | | | inish Time: | | Final Leak Check: | | cfm@ | BH. | Finish Time: | | | Final Leak Ch | eck: | | cfm @ | Ē | | | | | | | | | | | | | | | C | | | | Approximation of the Approxima | 2 | 1 | () | | | 10.00 | C | 00100 | | | • | | |--|--|--|-------------------|---------|-------|-------|----------------|---------------|---------------------------|------------|------------|------------------|--------------| | vare: | Nev. 16 | 7
E0 | Covanta DYEC | ر | | | lest No.: | ^) | ر
مردر | | | Page 4 | or s | | | | Plant Location: | Courtice, Ontario | ntario | | | Test Location: | ï | APC Outlet No. | 4o. 2 | | | | | | * | ** | * | | * | | | * | | * | * | * | * | | responsational construction and the second an | Constant National Property and Constant State of | Dry Gas | Pitot | | Stack | Probe | Oven | Buidwi | Impinger Temp | Mete | Meter Temp | Meter | Pump | | Point | Clock | Meter | d∇ | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | met | Pressure | Vacuum | | | Time | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ,H2O | £ | Li. | LL c | <u>u</u> , | LL
o | LL
o | L | u. | H ₂ O | "Hg
Gauge | | | 0 | 128.62 | 693 | 33. | 238 | 952 | 261 | 8 | 0 | C 9 | 59 | 9:1 | 5 | | TOTAL CONTRACTOR CONTR | so | 131:93 | \$ | 99' | 187 | 355 | 260 | 7 | 3 | 99 | 3 | 2: | J | | 2 | 10 | 135.26 | 1691 | 991 | 387 | 256 | 193 | £ | 7 | 99 | 59 | %: | グゲ | | | 15 | 138.57 | 69, | 99 - | 782 | 33 | 3 | 3 | Ŧ | 99 | 59 | 9.1 | 54 | | m | 20 | 000 | 59, | 7.9° | 787 | 2.56 | 133 | 3 | ÷ | 99 | 39 | \? | 57, | | 4 | 25 | S | 33: | 3 | L87 | 53 | 3 | Þ | 2 | 5 | ্য | 2 | Z
N | | 8 | 30 | 148,22 | 2 | 29. | 52 | 22 | 3 | £ | ŝ | 99 | 23 | 2 | ري
ت | | | 35 | 3 (S) | 791 | 29. | 787 | 23.7 | 192 | ¥ | Ť | 99 | 3 | <u>ب</u> | 5,5 | | | 40 | デ
3. | | 29: | 787 | 357 | 092 | ¥ | 2 | S | 3 | 3 | lg
j | | | 45 | £ 1 € 1 | | 23 | 7.87 | 152 | 3 | F | 5 | 5 | 59 | ヹ | Z,S | | 9 | 50 | 01.19 | Ŝ | is. | C8.2 | 53 | 097 | 95 | 7 | S | S 9 | 2 | 7 | | AND THE PROPERTY OF PROPER | SS | 90 F.91 | 200 | 99: | 982 | 252 | 092 | C | 9 | D | \$9 | ~: | Ş | | 7 | 09 | () () () () () () () () () () () () () (| , so | 3, | 382 | 2),6 | 2 60 | 5 | 9 | 5 | ŝ | 2 | 7
J | | Accessing the proposition of | 65 | 35.53 | Š | 5, | 787 | L 52 | 092 | \$ | 7 | S | 3 | Š | SH | | 8 | 70 | 2012 | · \$ | \$ | 187 | 22 | 32 | コ | . | S | 3 | 2 | 7 | | | 75 | 2035 | 3 | ر
ا | L\$2 | 2.53 | 3 | <u>ک</u>
ت | 37 | 89 | 99 | 23 | Š | | 6 | 80 | \$0.FC | 3: | es, | 982 | 252 | 737 | × | g.v.A.
Vetegask
Gaj | 5 | 99 | \$: \$ | Σ 5 | | nedstyddawed Gwalled Landschaft (Santania) | 85 | 80~281 | 2 | 993 | 287 | 52 | 3 | چ
چ | 3 | હ | 99 | ~ | Ş | | 10 | 06 | 60.33 | \$ | ş | 286 | 8 | 097 | Ī | ž | 5 | 99 | ~ | 5.4 | | | 95 | 188:12 | . 55 | 99 : | 285 | 2.57 | 192 | 20 | 5 | 6 9 | 99 | | 1.7 | | <u>~</u> | 100 | 2:5 | 503 | 8
? | 187 | స | る | 98 | 6h | 250 | <i>(</i> 9 | <u>۲</u> ۶ | Ť | | Document | "Mg | DIO
T | gmanach e de company d |
--|---|-----------------------------------|--| | | e ctm | ofm @ | | | | ¥ | ** | | | Andrews of the Control Contro | Initial Leak Chec | Final Leak Check | | | | | | | | verse: | rt Time: | sh Time: | | | Tra | Sta | Fin | | | | Sta Sta | | • | | | .000 cfm <i>@ N</i> Hg Sta | cfm@ "Hg Fin | (00) | | | nitial Leak Check: , 00℃ cfm@ げ "Hg Sta | Inal Leak Check: cfm@ "Hg Fin | (00) | | | Leak Check: 、00プ | n Final Leak Check: Cfm@ "Hg Fin | 12:30 | 000 Project No.: Operator : | | | | | | | | The second secon | | | | | | | |--|--|---
--|--------|--|--------------|--|--
---|--|--|--
--| | | ************************************** | Plant Location: | Courtice, Ontario | Itario | - A Company of the Co | | Test Location: | n: | APC Outlet No. | No. | MATERIAL PROPERTY AND | and the second s | | | | * | * | * | | * | | | * | | * | * | * | * | | ć | | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Meter Temp | Meter | bnmb | | | S E | meter
ft³ | "H20 | cfm | E 1. | œ #- | e .
E . | 1 * | | T T | ë u | Pressure
Δ H
"H ₂ O | Vacuum
"Hg
Gauge | | | 105 | 2.5 | \$\$ | 15. | 285 | 2,53 | 192 | S | 05 | 23 | 63 | 2 | 3 | | 12 | 3.10 | Ē | Į. | 25, | 282 | 53 | 192 | S | 77 | 3 | 59 | income. | 3 | | en salahan kiringan kangan dan kiringan dan kangan dan dan dan dan dan dan dan dan dan d | 115 | 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | 5 | 225 | 283 | C 5 2 | 132 | | 38 | 3 | 5 | GAZAN. | 575 | | | 120 | 202.69 | | | | | | | | | THE STATE OF S | | Name of the last o | - | | | | | A CANADA DE LA DEL CANADA DE LA DEL CANADA DE LA DELA CANADA DEL CANADA DEL CANADA DE LA CANADA DEL C | PARAMETER STATE OF THE | | | | THE THE PARTY OF T | | | | | And the second s | and the second s | | | | aniscomment the north degree arms consent and the state of o | reversity statements or committee committ | | Terreto (intercentia de destructura | | And a state of the | | | (we wrote the first think to the confidence of t | | | HARVEST AND THE PROPERTY OF TH | | | | | AAA GAACAA CAAAA AAAAA AAAAA AAAAA AAAAA AAAAA AAAAA | | | | AND THE PROPERTY OF PROPER | | | Orași de la constanta co | | | | | | | and a series of the | ALLOCATION CONTRACTOR | főrénisításáná emintelánness évalasásánakannanakonlokásásásásásásásásásásásásásásásásásásás | reasonina mel si intervisioni disprantimenta del constitución constitu | | | | emanya intrinse mandan dyapian i da interior indonenia proposal interior. | in in the state of | Anticonstitution and the state of | | Nacional de la companya del la companya de compa | A A A A A A A A A A A A A A A A A A A | | | | | | | | *** | , 1 | | | | | | | | | - 2 | - | | | | | | enteration-involution involution involution involution involution in the involution involution in the | | | | enspecialists permunicina anticologica antic | NAME OF THE PERSON P | Traverse: | каналаналарияльного палагентай передамента | | | | | Traverse: | EZICIAN-CHINO ERRICHIMINOCANA ERROCIONI PARAMENTA | ndion kidaneuwendos szegesztekos szenekeskeskes | | | | | | | Start Time: | | Initial Leak Check: | | cfm@ | H | Start Time: | | | Initial Leak Check: | heck: | | cfm @ | "Hg | | Finish Time: | | Final Leak Check: | | cfm@ | "Hg | Finish Time: | | | Final Leak Check: | neck: | Team control and the a | cfm @ | "Hg | | | | | | | | | | | | Droiort No. | | 22050 | | | | | | | | | | | | | | | 2000 | | ### **APPENDIX 7** Acid Gas Field Data Sheets (12 pages) Project No.: Page Probe No.: 100m Meter Box No.: Impinger Box No.: | Plant Location Courtice, Ontario Test No.: M26A Test Date Vovember 9 2020 Test Location APC Outlet No. | Plant | Covanta DYEC | |---|----------------|-------------------| | 1 M26A
November
ion APC Outlet No. 1 | Plant Location | Courtice, Ontario | | November
APC Outlet No. 1 | Test No.: | M26A | | | Test Date | | | | Test Location | APC Outlet No. | | Pitot Factor | , 848 | | |---------------------|--------|-------------| | DGMCF | 1,00,1 | | | Barometric Pressure | TO B | я
Н
В | | Static Pressure | 8.43 | "H20 | | Nozzle Size | 159% | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | | inches | | | | | | - | - | | - | - | - | | |-----------------------|------|---|--|---|-----|---|---------|---|---|-----| | Reading Interval | | | | | | N | | | | | | Number of Ports | | | | | | æ | simple. | | | | | Number of Points/Port | s/P(| Ę | | | No. | 2 | -ande | | | - 1 | Probe Liner Glass / Metal /Teflon / Other___ Nozzle Glass/ Metal / Other_ Union None / Metal KTeflon / Other_ Pitot Leak Checked? Yes No Notes: | | C | | | |-----|-----|----|--| , | . 7 | - | - | | | | 7 | | | | | ۸., | ٠. | | | | - | _ | | | | n | ٧. | | | | * 1 | 9 | | | | | | | | Filter mg
Probe mg | | t- 0 | | |-----------------------|-----|-------|-------| |)(6 | 1 | 00 | 00 | |)(6 | 1 | 5 | 5= | | Filter
Probe | 1 | ALC: | #00S | | Filter
Probe | 1 | | | | Filter
Probe | - 1 | | | | Filter
Probe | 1 | - 1 | | | Filter
Probe | 1 | | | | Filter
Probe | .1 | | | | Filter
Probe | 1 | - 1 | | | Filter
Probe | - 1 | | | | Filter
Probe | 1 | | | | Filter
Probe | -1 | | | | Filter
Probe | 1 | | 1 | | Filter
Probe | 1 | - 1 | | | Filter
Probe | -1 | | | | Filter
Probe | - [| | | | Filter
Probe | 1 | - 1 | | | Filter
Probe | 1 | | | | Filter
Probe | 1 | 1 | | | Filter
Probe | 1 | | 1 | | Filter
Probe | - 1 | | 1 | | Filter
Probe | 1 | | - 1 | | Filter
Probe | ı | 1.3 | | | Filter
Probe | - | - 11 | | | Filter
Probe | 1 | | | | Filter
Probe | 1 | | 1 | | Filter | 1 | 1 | | | Filter
Probe | 1 | 3.1 | | | Filter | - [| | | | Filter | 1 | 4.10 | 1 1 | | Filter | 1 | 1.11 | | | Filter | - [| | l w l | | Pro | - [| 61 | اما | | | 1 | - | 0 | | | 1 | | = | | L | 1 | L. | | | | L | ***** | | | | ٤ | - | | |----|----|----------|--| | | ā | a | | | | f | ā | | | 1 | , | ž | | | | Č | ð. | | | | 5 | b | | | | ¥ | ν | | | | 7 | - | | | | 2 | 3 | | | ٠, | ٠ | ð | | | | t | n | | | | 2 | 2 | | | | ε | 5 | | | -1 | τ, | 7 | | | Ġ | ď | _ | | | | | | | | | | | | | ľ | 0.0 | 00 | |---|--------|------------| | ŧ | OU ! | - cw į | | į | 1 | - 1 | | ŧ | ž | į | | ŧ | | - 8 | | ŧ | 1 | - 1 | | ì | - 1 | - 1 | | i | 8 | - 1 | | į | ¥ | - 1 | | i | g. | - 1 | | ì | 1 | 1 | | ì | 1 | | | ŧ | 1 | 1 | | Ì | 1 | 1 | | i | | | | į | 1 | [| | ŧ | | | | ì | - 1 | | | ŝ | | - 1 | | į | / A I | | | ŧ | 1 77 1 | - 0.1 | | š | ~ ~ 1 | - 31 | | Ž | | | | ì | | - 1 | | Î | îΛ | ****** | | Ĭ | 1/3 | - 71 | | ŧ | 8.0 | 400000 | | ŧ | 121000 | | | ì | 1 | | | ١ | | 1 | | 1 | | - 1 | | ł | | | | I | | : 1 | | ţ | | | | ł | | - 1 | | 1 | | | | I | | - 1 | | i | | | | į | | < | | ŧ | 00 | 0 | | 1 | 4 | - Land | | ŧ | - | 00 [| | İ | > | OI | | ŧ | - | 5 1 | | ŧ | () | S 1 | | į | | - | | ſ | 110 | 5 15 7 7 7 | ## Combustion Gas Concentration | % | Carbon Dioxide | |---|----------------| | | - | Site Diagram | Probe / Pitot Spy Botoll Trendicator CoE 20090 Control Box CoE 20090 Incline Manometer CoE 20090 Comb.Gas.Analyzer Micromanometer Barometer Barometer Barometer Bo3906 | Measuring Device | MII Numbers | |---|-------------------------------------|-------------| | | | | | | Probe / Pitot $arsigma ho arphi_q$ | Rottoll | | | Trendicator | 05002 300 | | | Control Box | COE 20090 | | | Incline Manometer | COE 200 40 | | anometer
ter | Comb.Gas.Analyzer | | | .er | Micromanometer | | | | Barometer | | | | Calipers | 303906 | | Nozzle Measurements | 635 | 635 | 650 | 282 | 159 | |---------------------|-----|-------|--------|-----|-------------| | Nozzle Me | 7 | 2 , , | ر
د | 4 | Average: 72 | | 200 | 3 | 200 | Covanta DYEC | ۳ | | | Test No.: | Newson |
M26A | | | Page 2 | ~
⊙
• | |--|--|---|--
--|--|--|---|----------------|----------------|---
---|-------------------------|---| | 200a | 1 | | Courtice, Ontario | ntario | | - | Test Location: | | APC Outlet No. | 10. | Ann and the state of | | | | | | National Communication of the | * | | * | e de la companya del companya de la companya del companya de la co | - Communication of the system | * | | *************************************** | AL
Alexandrian designation of the second of | * | * | | | # | ************************************** | en e | | *************************************** | s exemples per a manufacture de la companya c | | | | | | | *************************************** | | | MZ6A | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Meter Temp | Meter | d
m
m
d | | Point | Clock | Meter | Q D | Desired | Temp | Temp | Temo | Outlet | Inlet/Trap | Outlet | nlet | Pressure | Vacuum | | | Time | *************************************** | "H20 | a | illa
o | Ľ. | Li. | L | L. Co | LL. | ļĿ. | ΔH
"H ₂ 0 | "Hg
Gauge | | – | 0 | 09 78 | 79. | 13 | 7.88 | 253.7 | 252 | 99 | 238 |

 S | 80 | 97 | 9 | | 12/ | N | 4 . | 237 | 72 | 282 | 2.54 | 250 | 200 | 48 | 63 | 7 | 2,0 | \$?# | | 3 | 10 | 200 | 99: | 7 | 282 | 259 | 2.51 | 2,0 | 237 | 60 | 75 | 2.0 | , Ç | | 4 | 15 | 2.
0. | 99. | ¥ | 283 | 12.5% | 5,7,7 | 50 | 231 | 9 | 74 | 1.2 | > | | 18 | 20 | 88.25 | ×3 | 22 | 283 | 2,000 | 252 | 0,5 | 250 | 2 | 2 | 2.5 | 75.5 | | -9- | 25 | 20,20 | 139 | 29 | 284 | 258 | ナス | - CS | 2,40 | 7 | 85 | 1.7 | 5,5 | | K | 30 | 5/20 | | \$ | 7.84 | 258 | 3 | <u>۔</u>
را | 250 | 7 | 8 | 112 | 5.5 | | 8 | 35 | - 24
- 57
- 77 | 89. | 4. | 285 | 25.8 | 2,42 | 7.5 | 237 | 7. | + 2 | 2.1 | 5.5 | | 8 | 40 | 5.2 | 2 | Ã. | 2.85 | 258 | 250 | 7.5 | 2.) | 7.2 | 83 | 2,2 | 5,51 | | 10 | 45 | 14
27
27
27 | 04. | 8 | 587 | 2.58 | 152 | 75 | 242 | 7 | 80 | 7.7 | 2 | | A | 20 | 12.22 | 39 | 4 | 78.0 | 252 | 25[| 53 | ふんと | 74 | 9,0 | 2:1 | ζ.
\ | | 7.5 | 25 | 15.75 | 29 | 4 | 987 | 158 | 652 | 53 | せね | 74 | 7,6 |):2 | 5.0 | | | 09 | \$ 5 5 | CALLES AND | | | | | | | | | | | | With profit for the state of th | CONTRACTOR | | | | | | | | | | | | | | Action of Agriculture | | ANA | | CONTRACTOR DESCRIPTION OF THE PROPERTY | ATT CONTRACTOR AND CO | | | | | | | | | | | | | The second secon | | A THE THE PROPERTY OF PROP | | | | | | | | | | | | | north programme and the control of t | The second secon | enders (de constante de constan | | | | | | | | | | | | | | | manusanan da de la composito d | AND CONTRACTOR OF THE PROPERTY | | | | | | | | | Constitution Commission Commissio | - A MILLOWED THE REST OF THE PROPERTY P | | | | | | | | | | | | - 1 | | | | | | | | | s ș | | | | | | | | HANDON PROPERTY OF THE PROPERT | | | | | menter de la company | | | | | | | | | | | - 1 | - 1 | |--------|-----------------------|--------------------| | | "Hg | "Hg | | |) | 2 | | | cfm@ / | ا@
ا | | | | 뜽 | | | 22 | @wyo 7 <i>00</i> * | | | Initial Leak Check: (| | | | k Chec | Final Leak Check: | | | ial Leal | al Leak | | | Init | Fin | | | _ | 31 | | | 0 | ; (O) | | verse: | Start Time: 4(3) | Finish Time: (0\3) | | Traj | Star | Fini | | | 1 1 | | |---------------------|-------------------|----| | | 1 | | | | Topicon. | ŀ | | 4 | mand . | | | - | | | | | 4.14 | | | | | | | | | | | fm@ | ø | 1 | | E | Ε | | | to | 4 | ı | | | Τ. | | | | | | | | | | | | | ì | | 8 | @myo 70 | | | 0 | Õ | | | 6 | de | | | | | l | | 1,10 | | | | : | | | | ÷ | | ı | | Ç | × | 1 | | 2 | ĭŏ | Ì | | O | 2 | ١. | | ¥ | U | | | Q | × | • | | <u></u> | ě | | | Initial Leak Check: | Final Leak Check: | l | | s men | ro | ı | | - | 22 | l | | | ᄔ | | | | | | | | Mil | | | | | | | Olimpaget | aum. | - | | 000 | 3 | | | 1 4 | | 9 | | (Aprend) | 0 | | | V | | | | | نة | 1 | | 5 | ١Ē | 1 | | rt Time: | Finish Time: (0) | 1 | | - | 12 | | | right. | 2 | | | Star | Ē | l | | 12 | 1:- | l | Project No.: Operator: Project No.: Probe No.: Impinger Box No.: Meter Box No.: | t ce | Covanta DYEC | |--------------------|-------------------| | Plant Location | Courtice, Ontario | | Test No.: | M26A | | Test Date | Movember 9 2020 | | Test Location | APC Outlet No. | | Operator Signature | 8 | | Pitot Factor | *
3 | | |---------------------|---|--| | DGMCF | 300:1 | Tapa de la composition della c | | Barometric Pressure | 00 T. T. | 29Hz | | Static Pressure | 6.8 | "H20 | | Nozzle Size | 1592 | inches | | Stack Diameter | 4.5 | feet | | Length | THE | feet | | Nigth
Nigth | | feet | | Port length: | | inches | | | | The second of the second of | |-----------------------|----|-----------------------------| | Reading Interval | ps | - | | Number of Ports | M | canada. | | Number of Points/Port | 孜 | *Obligity | Probe Liner (Glass / Metal /Teflon / Other_ Glass / Metal / Other_ Nozzle None /Metal /Teflon / Other_ Union Pitot Leak Checked? (Yes) Notes: | - | | |---------|--| | _ | | | - | | | | | | - 175 | | | | | | 100 | | | ~ | | | Gai | | | | | | ्राः | | | - wap | | | alject. | | | 400 | | | ŧυ | | | 3 | | | - | | | | | | | | | rticul | | | | | | السد | | | ~ | | | 200 | | | 499 | | | ğ | | | 400 | | | ludes | | | _ | | | | | | Filter m
Probe m | | 00 | 00 | - | |---------------------|---|-----|----------|---------------------| | = = | - | mg | mg | - | | = = | - | | | - | | = = | - | | | ******* | | = = | - | | | NAME AND ADDRESS OF | | = = | - | | | - | | = = | - | | | onisessi. | | = = | 1 | | | Description | | = = | · in | | | appropriate and | | = = | 1 | | | | | = = | - | | | - | | = = | 1 | | | - | | = = | - | | | - | | = = | Transcorter | | | - | | = = | - | | | - | | = = | - | | | design | | = = | *************************************** | | | - | | = = | *************************************** | | | - | | = = | 1 | 1 m | 9e |
anishmo. | | | - | = | 0 | Name of Street | | | L | | <u>a</u> | | ### Moisture Gain | /
/
2 | 0 7 | |-------------|------| | <u>~</u> | CBDA | ## Combustion Gas Concentration | 1 () () | % | |----------------------|---| | Carbon Dioxide いつこうし | % | Site Diagram | Measuring Device | MII Numbers | |--------------------|-------------| | | | | Probe / Pitot ≤ P4 | Botton | | Trendicator | cot 20090 | | Control Box | 05 200 E | | Incline Manometer | COE 2009,0 | | Comb.Gas.Analyzer | | | Micromanometer | | | Barometer | | | Calipers | 30830 | | Section by debt depth designation of the last designat | | |--|---------------------| | | Nozzle Measurements | | H | 15035 | | 8 | ,2635 | | m | ,2650 | | 4 | 2685 | | Average: | 12851 | | Date: | , | | シュース ロニ ロスラン | , | | | | - | | | | 0 | | |--|--|---|--|---------
--|--|--|--|----------------
--|------------|--|--------------| | 202 | | Plant Location: | Courtice, Ontario | itario | | | Test Location: | | APC Outlet No. | lo | | | | | | * | ж жана жана жана жана жана жана жана жа | * | | * | | | * | | * | * | * | * | | Strimstray between 100 to | M26A | Dry Gas | Pitot | | Stack | Probe | Oven | gnidml | Impinger Temp | Meter | Meter Temp | Meter | dund | | Point | Clock | Meter | ΔР | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | nlet | Pressure | Vacuum | | | Ĕ | m | "H20 | Ę | <u>u</u> | <u>.</u> | Ļ | <u>11</u> | Ľ. | LL
a | Lin. | ₩
0,4
1,0
1,0
1,0
1,0
1,0
1,0
1,0
1,0
1,0
1,0 | "Hg
Gauge | | H | 0 | 24 25 | | Y | 2.83 | 256 | 252 | 73 | 125 | 72 | 24 | 7.6% | 5.5 | | K | n | 23, 63 | | 143 | 28子 | 260 | 255 | 00 | 212 | 77 | 7.7 | 0′2 | 5.5 | | × | 10 | 1 | 13° | Z, | 2 88 | 2000 | 248 | 58 | 714 | 72 | 8,3 | 2.0 | 6 | | * | 15 | 1 | 894 | 2 | 282 | 433 | 25% | 9 | 517 | 73 | % | 7.7 | 5.5 | | jst | 20 | 5 | 3 | 24: | 2.88 | 252 | 248 | 54 | 218 | 73 | % | 77 | 5 | | ष् | 25 | 25/85 | 89, | Ġ. | 288 | 457 | 7557 | 25 | 224 | 14 | ી, | 2,0 | 5.5 | | K | 30 | 14-12- | 89. | 4 | 882 | 256 | 250 | 28 | 322 | 1,2 | <u></u> | 2.05 | 5,5 | | 20 | 35 | 19,92 | | P | 282 | 4:52 | 250 | 25 | 225 | 75 | 42 | (5 | (%) | | 8 | 40 | | (6) | 3, | 282 | 2007 | 23 | 2,0 | 522 | 94 | 45 | 1.5% | 7.5 | | 35 | 45 | 5073 | 165 | 14 | 222 | 256 | 57.7 | 2,0 | H22 | % | 8 | .6% | 5,5 | | Z | 20 | 67.86 | (3) | 7 | 288 | ったナ | 252 | 5.6 | -tro | 7.7 | 43 | 57 | S) | | 1/2 | 52 | 1 7 | 29 | H. | 287 | 256 | 452 | 2.6 | 977 | - 44 | 43 | ٣ | いら | | - Particular de la composition della | 09 | 1327 | | | | | | | | | | | | | ANALYSIS OF THE PROPERTY TH | | | | | - Maria de Paris, por la compositio de della compositio dell | | | | | | | | | | TELECTRICATION TO THE CONTRACTOR CONTRACT | THE RESIDENCE AND THE PROPERTY OF | | | | a a social de la companya del companya de la companya del companya de la del la companya de company | | Accessed to the control of contr | | | | | | | | Виненнямининанийный | Personal designation of the second se | | | | AND CALL OF THE PROPERTY TH | | The state of s | | | | | | | | na de la companya del companya de la companya de la companya del companya de la c | man personal services de la constante co | | | | ANA | | | | | | | | | | MARKAN STANDARDANIA PRINCIPALITA MARKAN PRINCIPALITA DA LA COLONIA DE | - Company of the comp | | | | AND AND THE PROPERTY OF PR | | | Auditoria de Compositorio C | | New Action Control of the | | | | | Representation of the Control | | | | | | | THE PARTY CHARLES AND | The state of s | | | | | | | NO. ST. CO. CO. CO. CO. CO. CO. CO. CO. CO. CO | - NATIONAL PROPERTY OF THE PRO | | The second secon | | And Spring party speeds and section of the | | ACTION AND | | | | | | | | | | | A STANSON OF THE PROPERTY T | | erosus establicas establicas de la constanta d | - Constitution of the Cons | | | | | | | | | NA DATE OF THE PARTY PAR | | . 1 | |--|---------|---------| | | 2 | - | | | cfm@ | n@ | | | _ cfr | 2 cfr | | | 00 | 000 | | | eck: | ck: | | | eak Ch | eak Che | | | Initial | Final L | | | 2 | 5 | | ********** | |) ; | | iverse: | nt Time | ish Tim | | = | = | | |---------------------|---------|---| | | | | | 1 | | | | - | | | | . 01 | 1000000 | | | | -0.5 | | | sympto. | PERSON. | | | - 1 | | | | | | | | | | | | (B) | 18: I | | | ě | ě | | | ا ڪ | 2 | | | U | U | | | cfm@ | | | | | | | | | | | | - | | | | 0 | 1 | | | ~ | 100 | | | 500 | | | | Ag. | 43 | | | | | | | | | | | | | | | | | | | 2 | | | | Ų | 8 | | | 9 | lă l | | | entre
E 1 | lě | | | _ | IU I | | | MC | V | ı | | a | l co | | | | eak C | | | RECORDER . | - | | | <u>m</u> | 100 | | | 4 | E | | | C | ii. | | | Initial Leak Check: | <u></u> | 1 | | | 1 | | | | | | | | | | | 7,000 | 15 | ŀ | | 3 | ğ | | | | ¥ ~ | | | - | | | | | 1 | ı | | 2000 gran | | | | | ini | | | O | ľ | 1 | | ime | 12 | | | | - | | | - | - | | | 2 | 100 | | | - | E court | ł | | (0) | | | Project No.: Operator : Project No.: | Plant | Covanta DYEC | |--------------------|-------------------| | Plant Location | Courtice, Ontario | | Test No.: | 3 M26A | | Test Date | November 9 2020 | | Test Location | APC Outlet No. | | Operator Signature | | | The state of s | The state of s | |
--|--|--------| | Pitot Factor | <i>አ</i> ንአ" | | | DGIMCF | 7007 | | | Barometric Pressure | 9.50 | "Hg | | Static Pressure | -8.93 | "H20 | | Nozzle Size | , 265 | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | T | inches | | 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | |---| |---| | noch- | -constitute | Account of the second s | |-------|-----------------------|--| | - Mar | 22 | de Agramatica de Caractería | | | Number of Points/Port | andamentajonjonjonjonjonjondamentajonjondamentajondamentajondamentajonjondajondajondajondajonda | Probe Liner Glass / Metal / Teflon / Other Site Diagram Glass / Metal / Other_ Nozzle None / Metal / Teflon / Other_ Union Š Pitot Leak Checked? Yes Notes: | 5 | |-------| | čn | | 100 | | | | O) | | السؤه | | æ | | - | | ್ | | | | T | | (13 | MII Numbers Measuring Device Impinger Box No.: Meter Box No.: Probe No.: Page Probe / Pitot Sp4 Control Box Trendicator | renerodoinamile/subicemethibid | mg | Contract of the second | E | | |--|--------
--|-------|--| | | | manager of the party of the second second second | | | | - | | | | MACANA CONTRACTOR OF THE PERSONS AND ADDRESS | | SECTION AND PROPERTY OF THE PERSONS ASSESSED. | | energy production of the contraction contrac | | COLUMN A STATE OF THE PARTY | | - Constitution of the Cons | | ************************************** | | AND DESCRIPTION OF THE PROPERTY OF THE PARTY | | Lionage some concentration of the | Filter | *************************************** | Probe | description of several property of | | L | Luko | 1 | | J | | | C | | |---|--------|----------| | | r popu | a | | | n | 3 | | į | Ü | ļ | | | ā |) | | | = | Ē | | | 7 | ò | | | U | 3 | | | Č | ; | | | ĕ | | | | 2 | | | | | | | | овисновански принцений принцений в при | |------|--| | (S) | J.00 | | CWTR | WCBDA | 00 00 Comb. Gas. Analyzer Incline Manometer Micromanometer Barometer ## Combustion Gas Concentration | | Oxygen | % | |--|---------------------|-----| | | Carbon Dioxide \\\ | % | | ــــــــــــــــــــــــــــــــــــــ | Carbon Monoxide 🕒 S | mdd | | Ipels | Nozzle Measurements | |-------|---------------------| | Call | | Average: | Date: 100 | 0700 | | Covanta DYEC | ږ | | | lest No.: | 7 | MZOZIN | | | rage 4 | 7 5 | |--|--
--|--|--|--
--|--|--|--|------------|----------------|---------------|--------------| | . | overlater or | Plant Location: | Courtice, Ontario | itario | | | Test Location: | 1 | APC Outlet No. | 0. | | | | | | ¥ | ** | *************************************** | | A A A A A A A A A A A A A A A A A A A | and the second s | and consistence of construction of the constru | * | description and the second | * | * | * | * | | | M26A | Dry Gas | Pitot | The second secon | Stack | Probe | Oven | Imping | Impinger Temp | Meter Temp | Temp | Meter | bumb | | Point | <u>Ş</u> | Meter | A A | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | net | Pressure | Vacuum | | - CHARACE | 3 | m | O ₂ H" | m to | <u>!</u> _ | u., | <u>L</u> | <u>u</u> | LL. | ii. | L. | ₽ Q.
1, O. | "Hg
Gauge | | | 0 | 75.65 | 282 | 1,75 | 283 | 2.55 | 877 | | 2 | 2 | 73 | 7 | 2. | | K | S | | | 4 | 288 | 292 | 25% | 7.9 | 22.5 | 32 | 79 | 1/2 | 4.5 | | 186 | 10 | 83.37 | 89 " | 24. | 288 | 2,53 | 25% | 7 | おる | 12 | ħ8 | 2,05 | 4.5 | | A | 15 | 87.27 | 89. | 25 | 182 | 257 | 256 | 0,5 | 977 | 7 | % | 50.2 | ره ک | | 76 | 20 | | 3 | 4 | 682 | 45 | h.S.a | 5.5 | カスス | 4 | 82, | 2.05 | 4.0 | | 79 | 25 | 5.5.3 | 89. | 4 | 288 | \$ | 757 | 250 | 226 | 7% |) % | 2.05 | 4.5/ | | N | 30 | 98.77 | 7 | 2 | 284 | 25% | 252 | 2,0 | 223 | 2 | о
5 | 1,2 | 4.5 | | 8 | 35 | 103.65 | 77. | 15 | 2.2% | いた | 282 | 1.6 | 225 | 4 | 6 · | 2.15 | ? | | 18 | 40 | 150,30 | | E | 2000 | 25.5 | 255 | 72 | 225 | 7 | 7 | 3.15 | /5 | | 78 | 45 | 53 0= | 2 | 23 | SZ
S | 437 | 250 | h .S | 225 | 78 | 7 | ر
ر | 5 | | 17 | 20 | 12.52 | 29" | 4 | 288 | 43 | 256 | 56 | 922 | 82 | 15 | 2,08 | 5 | | 12 | 55 | 2 H 2 H 3 | 29. | 4 | 288 | 4:2 | 37.5 | 45 | 223 | 28 | 92 | | | | | 909 | 232 | | | | | | | | | | | |
 | *************************************** | Andreas and the second | | | | | | | | | | | | | | NATIONAL PROPERTY OF THE PROPE | Martin and Carlotte | The first of the state s | | KADONOMIANON ATTENNETIAN ORANIA PROPRIORI PROP | | | | NA CO | | | | | | Lipport Control of Con | | | | | | | | Double die sichere es september auch seine des proprietes de | Company of the control contro | | | | | | - Contraction of the | NAME OF THE PROPERTY PR | | | | A commence of the second contract seco | | mening databatha bibandi propaga para para para para para para para | Ancologoure de la company l | | | | | | | orpoleteness (appropriate transport of the province pro | and the second s | | | | A AND THE STREET | | | | | | | | | | esse presidente de la compresión c | | and a second | | | Local Control Control of Annual Control of C | | | | | | | | | | ANGELE SECTION AND ANGELS ANG | manacoccide de la propriation de la propriation de la proprieta del la proprieta de la proprieta de la proprieta de la proprie | Andrea de la composition della | anni accentina acquiramente proprieta de la compansión | | And the latest designation of the second | | | | | | | | | | | - | NATIONAL PROPERTY AND ASSOCIATE AND ASSOCIATE AND ASSOCIATE AND ASSOCIATE ASSOCIATE AND ASSOCIATE ASSOCIAT | | Constant of the th | | | The second secon | | | | | | | | ſ | | | | |---|--------------|-------------|--| | organismoonagesystementalbussalingeroomsies | Ĭ | Ĩ | | | | - | 2 | | | - | | 1 | | | - | S | N | ľ | | - | | | | | | | | | | | | | | | 1 | (m@ | 0 | | | - | 2 | fr. | | | | U | v | | | | | | | | | S | 2 | | | | 10 | ŏ | | | | Ogif
V | | | | | | | | | | | | | | | :: | | | | | Ç | × | | | | k Check | ě | | | | ¥ | Ū | | | | ea | Z | | | | Initial Leal | 9 | | | | G | 8 | | | | C | Ę | | | | | 100 | | | | | | | | | 6 | | | | | O | ि | | | | ~ | 5 | ١. | | | rtundo | - Donas | | | | :: | ö | | | ن | me | E | | | 2 | | - | | | y
≥ | tart T | S | The same of sa | | _ | Sta | E | | | - | - | September 1 | 1 | 22050 Project No.: Operator: Project No.: Probe No.: Page Impinger Box No.: Meter Box No.: | Plant | Covanta DYEC | |--------------------|-------------------| | Plant Location | Courtice, Ontario | | Test No.: | / M26A | | Test Date | November 10 2020 | | Test Location | APC Outlet No | | Onerator Signature | Ira | | Pitot Factor | 848 | | |---------------------|------------|--------| | DGMCF | 7,00 | | | Barometric Pressure | F. S | ₽H" | | Static Pressure | るら | "H20 | | Nozzle Size | 12651 | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | 4-4 | inches | | | - 1 | |-----------------------|-----| | Reading Interval | | | Number of Ports | | | Number of Points/Port | | | | THE COLUMN THE PROPERTY OF THE PERSONS ASSESSMENT ASSES | |------------|--| | 7 | 2 | | | 4 | | | Ŧ | | orts | oints/Po | | umber of P | umber of Points/Port | | | umber of Ports | Probe Liner Glass / Metal /Teflon / Other_ None /Metal / Teflon / Other_ Glass / Metal / Other_ Nozzle Pitot Leak Checked? (Nes Notes: Union | | 7 | |------------------------|-----| | | 1 | | | 1 | | | 1 | | | | | | 1 | | | 3 | | | 8 | | | 1 | | | 3 | | | 1 | | | 1 | | | ŧ | | | 3 | | | 1 | | | 1 | | | - | | | ×. | | | ř | | | -1 | | | 1 | | | ā | | | 1 | | | 1 | | | 1 | | . 0000 | 3 | | | 1 | | 70 | ŧ | | ന | 1 | | /19 | ŧ | | | 1 | | | 1 | | . 171 | ı | | | 1 | | NAME OF TAXABLE PARTY. | ŧ | | ~ | 1 | | | 1 | | - | 1 | | - | ŧ | | C) | -1 | | | 1 : | | - | 1 | | - 5 | | | 400 | 1 | | · ro | 1: | | ~ | 1 3 | | | | | mg | mg | | |--------|-------|-----------------| | 5 | = | | | | | | | | | Taxable Control | 5 | Probe | | | Filter | 0 | | | II | ۵. | 2 | | | V. 94 | 9
I | |---------------|-------|--------| | e Gain | | | | Moisture Gain | CWTR | WCBDA | | Combustion Gas Concentration | | |------------------------------|-----| | Oxygen 7,OC | % | | Carbon Dioxide (1, 0) | % | | Carbon Monoxide | maa | Site Diagram | Probe / Pitot SPY 3 off off Trendicator CoE 20090 Control Box CoE 20090 Incline Manometer COE 20090 Comb.Gas.Analyzer Micromanometer Equ. Canade Barometer Equ. Canade Calipers R 03906 | Measuring Device | MII Numbers | |---|-------------------|---------------| | Bab
COE
COE
COE
ENU.
B. O. | | | | COE
COE
COE
ENV. | Probe / Pitot 写好 | Ratall | | COLE
COLE
Equ.
R. O. | Trendicator | COE 20090 | | COLE
ENU.
R. O. | Control Box | COLE 20090 | | Elle.
R. O. | Incline Manometer | COL 20090 | | 12.4U.
R. O. | Comb.Gas.Analyzer | | | 1540.
R. O. | Micromanometer | | | | Barometer | Tilli Carlado | | | Calipers | 5,05906 | | Name of the second seco | Nozzle Measurements | |
--|---------------------|--| | - | 3692 | | | ~ | ,2635 | | | ന | 12650 | | | ষ | 2689 | | | Average: | 12.2 | | | | 1800 | 700 | Covanta DYEC | E
E | | | lest No.: | Moss | MZ6A | | | Page 2 | of 2 | |--|--|--
--|--|--|--
--|---------------|---|--------|------------|----------|---| | . C.A. | | Plant Location: | Courtice, Ontario | ntario | estimatus management de la companya | PROPOSITA DE PERSONANTE DE PROPOSITA DE LA CONTRACTOR | Test Location: | 11: | APC Outlet No. | lo. 2 | | | | | | ¥ | | * | *Action of the Control Contro | * | essentia de la compositio | allarenen brustanen errenen er | ## | skipi januari kandani | * | * | * | * | | ensistemente superpresentation de la companya del companya de la companya de la companya del companya de la del la companya de co | M26A | Dry Gas | Pitot | | Stack | Probe | Oven | guidml | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | ΔР | Desired | Temp | Temp | Temp | Outlet | Inlet/7-rap | Outlet | net | Pressure | Vacuum | | | 2 | # | "H ₂ O | cfm | ! | <u></u> | <u>u</u> | L. | L | ii. | ELL
O | ₹°2 | "Hg
Gauge | | e | 0 | | 143 | 沫 | 7.69 | 253 | 9/12 | 49 | 2.7.7 | 2 | 53 | 0.0 | 10.2 | | Z | 2 | 25.24 | 13 | * | 285 | 2.58 | 250 | 5 | 707 | 00 | 7 | 000 | ()
() | | 100 | 10 | 14:25 | 12 | 7 | £87 | 25A | 250 |)_5_(| 208 | 69 | 75 | _
~} | 4.57 | | 4 | 15 | 82,09 | <u>۾</u> | ¢, | 287 | 352 |)57 | 2.4 | 212 | 5 | 12 | , .
, | 4.5 | | 25 | 20 | 186,99 | 7 | 22 | 787
787 | 252 | 250 | いた | 215 | 7,0 | 28 | 2,2 | -2 | | 8 | 25 |

 | 999 | 3 | +87 | 256 | 250 | 9 | 20 | 1 2 | ⊘ | 2.0 | 75,4 | | 1 | 30 | 19H 78 | 99 " | YA, | 982 | 952 | 230 | 9 | 202 | 7 | 158 | 7.0 | 4.5/ | | 8 | 35 | | 89 | 2, | 187 | 256 | 27.5 | 09 | 2.16 | 77 | 98 | 12.05/ | 4.5% | | 8 | 40 | 20%,30 | 2 | ر ر
دي | <i>t87</i> | 256 | 37, | S | 472 | 73 | £8 | 2:02 | 2 | | 92, | 45 | 45.908 | 07.0 | 24. | 287 | 257 | 248 | 9.5 | 248 | 7.5 | \%
% | 12.57 | L , | | 4 | 20 | 710,77 | 2 | 22 | 288 | 257 | いた | S | 213 | ナ | 28 | 2.15 | -5 | | 12 | 55 | 25.22 | 2 | 2 | 2887 | 256 | 250 | S | 2.6 | H | ()
30 | 215 | 10 | | NA CANADA NA PROPRENTA PROPR | 09 | 218, 25 | with the same | | | | | | | en e | TOPO COMPANY AND A CONTRACTOR OF THE | | | | | : . | | | | | | | *************************************** | | SCONGS SCONGS STATEMENT ST | | | | | | | | | | | | | | | ************************************** | The second secon | | PALLEMENT OF THE PROPERTY OF THE PARTY TH | | entimateratural de la composition della composit | | | | | * 1 | | | | | | | | | | openine and a superior superio | | | | | | | | | | | | The second section of the second seco | CERTIFICATION CONTRACTOR CONTRACT | | TOTAL CONTROL | | | | | | | | | | AND THE TRANSPORT OF TH | | manderstands and property of the contract t | - CONTRACTOR CONTRACTO | | ogalijasionis saadastisionija projektoja produktosaadastisaadas | | | | - 1 | : | | | | | NATA STOOM OF THE STANDARD STA | | | | | | on the state of th | SAND REAL PROPERTY OF THE PROP | | | | | | | Single Point Project No.: Operator : | <u>+</u> | Covanta DYEC | |--------------------|-------------------| | Plant Location | Courtice, Ontario | | Test No.: | 2 M26A | | Test Date | November 10 2020 | | Test Location | APC Outlet No | | Operator Signature | nre //// | | | CO (10 7) | - CO-T-CO-T-CO-T-CO-T-CO-T-CO-T-CO-T-CO- | |---------------------|------------|--| | Pitot Factor | <u>X</u> | | | DGMCF | 1.004 | | | Barometric Pressure | まる | 2
2
2
2
2
2 | | Static Pressure | 49.6- | "H20 | | Nozzle Size | 1590' | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | T | inches | |
Reading Interval |) S | |-----------------------|-----| |
Number of Ports | 1 | | Number of Points/Port | 17 | Probe Liner (Glass / Metal /Teflon / Other_ Glass / Metal / Other_ Nozzle None /Metal (Teflon / Other_ Union Pitot Leak Checked? Yes Notes | - 1 | | |---------|-------| | - 1 | | | - 1 | | | - 1 | | | - 1 | | | - 1 | | | - 1 | | | - 1 | | | 1 | | | - 1 | | | - 1 | | | - 1 | | | | | | - 1 | | | | | | - 1 | | | - 13 | | | - 1 | | | - 1 | | | | | | | | | - 1 | | | - 1 | | | - 1 | | | - 1 | | | 1 | | | | | | | | | 8 | | | | | | Gai | | | en l | | | 100 | | | U2 1 | | | ~ | | | a l | | | | | | - | | | ro i | | | EMORRE | | | - 3 1 | | | 73 | | | - | -2- | | about 1 | 61 | | | | | - | - | | ल | a men | | ~ 1 | 2.0 | **MII** Numbers **Measuring Device** Series J (eam Impinger Box No.: Meter Box No.: Probe No.: Page Project No.: cot 20010 80401 Probe / Pitot ≤₽4 > Incline Manometer Comb. Gas. Analyzer Control Box Trendicator | Filter | mg | |---------------|-----| | Probe | mg | | Moisture Gain | | | CWTR LTB . L | 500 | | WCBDA | ₽D | | Combustion Gas Concentration | | |------------------------------|-----| | Oxygen 8, 28 | % | | Carbon Dioxide //. \O | % | | Carbon Monoxide | mdd | Cenada. Env. Barometer Calipers Micromanometer 803906 Site Diagram | Date: 505 | 0,0% | | | 3 | | | | | | | | , | | |--
--|--|--|--
--|--|--|--|----------------|------------|------------|----------|------------| | The state of s | | Plant Location: | Courtice, Ontario | itario | anny function property and property and produced by the property of proper | | Test Location: | | APC Outlet No. | 0. | | | | | | * | | W. | THE RESIDENCE OF THE PROPERTY | * | | | * | | * | * | * | * | | | M26A | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter Temp | Temp | Meter | bumb | | Point | Clock | Meter | ΔР | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | niet | Pressure | Vacuum | | | Ţ, | ET. | "H20 | Ę | ů. | <u>u</u> | Ċ. | <u>.</u> | initia
C | 0 | u. | a i | He C | | | | | | | | | | | | | | 7. | Cauge | | 7 | 0 | 7.18.65 | 0 | ر.
مح | 786 | 254 | 254 | ૿ૻ | 220 | 7, | 4 | \$. K | 5 | | H | ហ | 752,62 | , 69 | 94. | 987 | 2.59 | 253 | 52 | 227 | 43 | <u>6</u> - | 20,0 | ずら | | pp | 10 | 376, 48 | £. | ¥, | 787 | 7.88 | 152 | 0,5 | 17.7 | 73 | % % | 2.1 | 7 | | A | 15 | 230,38 | 0£° | X. | 787 | 72/2 | 252 | 25 | 277 | オナ | (5 | 2.15 | 5 | | X | 20 | 234, 32 | \$9. | È. | 987 | 2.5% | Z. | So | 223 | 7. | - | 7.7 | 5 | | 8 | 25 | 238 19 | 3 | + | 982 | 25.5 | 8h7 | 5 | 22/ | X | 25 | 7.1 | 120 | | X | 30 | 90 25% | 300 | , X | 286 | 252 | 24,8 | 3 | カス | 94 | 2,7 | 2.0, | \^ | | 80 | 35 | 24600 | 83. | À | 187 | 282 | 250 | 75 | 152 | 古 | 43 | 2.05 | 2 | | g | 40 | 7. Z. Z. | 89: | L , | 297 | 256 | 250 | 25 | 227 | * | 43 | 2.05 | 5 | | 20 | 45 | 153.5% | 7. | ۲÷ | 787 | 2.56 | 250 | 2.3 | 22. | 48 | 46 | Zi [2] | V | | Ħ | ß | さなった | - | 7 | 882 | 25% | 2.50 | h.S | +77 | X | वस | 2.15 | V 3 | | A. J. J. J. | S | 26776 | 2 | 32 | スタス | 352 | 232 | 5.5 | 223 | 7.8 | 4,4 | 172 | \ | | Charles Transchart Charles Control Con | 09 | 365,68 |
 | in processor unique in the contraction of the processor of the contraction contrac | ineantaeanananananananananananananananana | | | | | | | | | | | | | | Secure of the second se | IIIA KADARIKKAN PROGRAMINA DI KANTAN PROGRAMAN PARKAN PARK | A LEGIS PROPRIES SELECTION DE L'ANNO | | | | | | | | | | | 1 | | Vienki minimospopomi interiori producti de distributiva dis | | No. de la minima de la destra | | | de majorio de descriptor de confestivos de majorios de majorios de confestivos de majorios | ma pavei camata produkente planinto mente de verente mante en el como de la c | Colonologia de la colonida del colonida de la colonida del colonida de la del la colonida de del la colonida de la colonida de la colonida del la colonida de la colonida del | And all the second seco | | | | | | | | Annual professional and the second se | des de la company compan | ATTENDA OF THE PROPERTY | | Service de la composition della dell | | | | **: | | | | | | ************************************** | | na do | TOTAL DESCRIPTION OF THE PROPERTY PROPE | | | | | | | | e ji | | | | | | ACCOMPANIENT AND ACCOMPANIENT AND ACCOMPANIENT ACCOMPANIE | ACCOUNTS AND ACCOU | | COCKAN TO THE TRANSPORTED | | | | | | | | | | жисобскую и и потражения потраже | | money profess practice grant profess and p | Andrew Commence of the Commenc | The second secon | - AND | | | | | | | | | | | Ε
Η
Θ | "Hg | |----------------|---------------|-----------| | | | | | | ታ | j | | | (B) | ලා | | | ു cfm@ | ctm(| | | 70 | 23 | | | 0 | (e) | | | • | 20 | | - | ck: | <u>بر</u> | | - | ak Check: | Che | | dio transcente | nitial Leak (| Leak | | | Initia | Final | | | | | | 2 | 9 | 2 | | | ō | <u>0</u> | | se: | ime: | Time | | raver | art I | nish | | E | N | <u> </u> | Single Point Project No.: Operator : | Plant | Covanta DYEC | |--------------------|-------------------| | Plant Location | Courtice, Ontario | | Test No.: | 3 M26A | | Test Date | November 10 2020 | | Test Location | APC Outlet No. 2- | | Operator Signature | 6 | | Commonwealth and a constitute of the state o | , ×48 | | |--|-------|--------| | DGMCF | 1.004 | | | Barometric Pressure | 7.8 | aH" | | Static Pressure | ろびっ | "H2O | | Nozzle Size | 1592 | inches | | Stack Diameter | 4.5 | feet | | Length | | feet | | Width | | feet | | Port length: | TT | inches | | Reading Interval | ph | 15 | |-----------------------|----|----| | Number of Ports | þ | | | Number of Points/Port | 77 | | | Number of Ports | |-----------------| | *. | Probe Liner Glass / Metal /Teflon / Other_ Glass / Metal / Other_ Nozzle None / Metal / Teflon / Other_ Union Pitot Leak Checked? Yes Notes: | | UNITED STATES OF STREET, STATES OF S | | |-------------|--|------| | | roalien werd week of the acceptation of the sign | | | te Gain | CONTRACTOR DESCRIPTION OF THE PERSONS ASSESSED. | | | Particulate | CANADACTION OF THE PROPERTY OF THE PERSON NAMED NAME | 2140 | Mil Numbers **Measuring Device** Impinger Box No.: Meter Box No.: Probe No.: Page Probe / Pitot 5/04 Control Box **Frendicator** Soles Project No.: | p- | | ç | ~ | |-------------------|-----------|---|------------------| | - | E
S | E S | and a second | | l | 5 | = | I | | a de la constante | | | 1 | | arin a | | | ı | | STORES OF | | | ı | | ***** | | | l | | - | | avenue. | | | National | | | | | ********** | | | CAMPA COM | | SOMBO | | | 0 | | distant | | and | ocours. | | - | | | Outdoor | | | | | | | No. | | | l | | | | | - | | ı | | | 1 | | Ì | | | l | | 1 | | | I | | l | | | - | | - | | | Special Property | | - | 4 | þ | ĺ | | - | Fiter | Probe | - | | 1 | <u>LL</u> | ۵ | 1 | | 200 | | | | | |).
(0) | 0 | |---------------|-----------|------| | ain | | | | loisture Gair | WTR | CBDA | Comb. Gas. Analyzer Incline Manometer Micromanometer Barometer Calipers | WCBDA // S | 50 | |------------------------------|-----| | Combustion Gas Concentration | | | Oxygen 8 66 | % | | Carbon Dioxide (の, る) | % | | Carbon Monoxide (8, 3 | mdd | | Nozzle Measurements | | | A minute and the contract and a cont | лодно-менамический применента применента применента применента применента применента применента применента при | | |---------------------|-----------------|---
--|--|----------| | Ž | - -1 | 7 | m | 4 | Average: | Site Diagram | Date: A Price | 30 3012 | | COVANTA UYEC | <u>ا</u> | | | Test No.: | | M26A | | | Page 2 | of 2 | |--|--|--|---
--|--|--|--
---|--|--|--
---|--------------| | 1 | 1 | | Courtice, Ontario | ntario | | | Test Location: | | APC Outlet No | No. 2 | - The second sec | - | | | | * | * | * | - | * | to a Lance to the contract of | and the second s | ************************************** | THE PARTY OF P | \$5000000000000000000000000000000000000 | ** | annichmenterskinisteringsphalenerserenerserenerser | * | | | M26A | Dry Gas | Pitot | | Stack | Probe | Oven | Imping | Impinger Temp | Meter | Meter Temp | Meter | Pump | | Point | Clock | Meter | <u>0</u> | Desired | Temp | Temp | Temp | Outlet | Inlet/Trap | Outlet | ne
e | Pressure | Vacuum | | | ime
i | * | "H ₂ O | £ | | ir. | u. | u. | <u>LL</u> | | Ľ. | O'H. | "Hg
Gauge | | Transcent volument of the second seco | 0 | 66,05 | 7. | Ą. | 286 | 2,57 | 2.53 | 94 | 2,(8 | 754 | 35 | 2,15 | | | H | S | 70,37 | 9. | 4 | 18子 | 22 | 255 | 3 | 2 | | 54 | 5-5 | 4.5 | | jó | 10 | 37 | 83. | 7 | 787 | 257 | 52 | \$ | (6.3 | 7 | 3.E | 2,05 | ر
ا
ا | | A | 15 | 1.7.
2.2. | \%
9 | 4 | 287 | 256 | 25 | 50 | シェ | 48 | 1 % | 2,05 | 4.51 | |)8d | 70 | 4 3 5 5 | 89, | 4. | 184 | 75% | 2.5 | 5 | 215 | 76 | 84 | 7.05 | 7 | | 9 | 25 | 25, 72 | 29. | 2. | 2.86 | 2.5% | 25.2 | K | 25/ | # | S | 7 | 7. | | X | 30 | 84.57 | 89 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 285 | 2.76 | 757 | ず | 216 | 44 | <u> </u> | 3,60,6 | 75% | | 00 | 35 | 43,40 | 89. | A | 2%2 | 25.2 | 22 | 20 | ナス | 4 | <u>0</u> | 2.05 |)\
Z | | 8 | 40 | 4,35 | <u>۾</u> | 8. | 285 | 2.5% | 787 | 58 | 216 | 8± | 7,5 | 12.1 | 5 | | 40 | 4 | 101,30 | ೧೦
೨
• | 4 | 2.85 | 256 | 253 |) 9 | となっ | 84 | 5 | 205 | 2 | | F | 20 | 105,20 | 893 | 4 | 285 | 256 | 5.53 | و | ナ17 | <i>%</i> ± | 2 | 2.05 | , ∾ | | 32 | ស | 04,00 | 9. | đ, | (87 | 256 | 2.53 | 19 | 912 | <i>b</i> 2 | 6.5 | 2.05 | S | | простиненти | 09 | 11.25 | | | | | | | | | | | | | estabalan-intercommonation-intercommonat | AND ANNERSON TRANSPORTING TO THE PART OF T | | | | | | | | ere en e | | | | | | CO A PORT ANN A PRÍOCE PROPERTY DE LA L | WHEN THE PROPERTY OF PROPE | | NATURA NA | | | | | | | | | DATE OF THE PARTY | | | un vientum de proprieta prop | - Autocologica Colorador C | The second secon | ATT | The state of s | Downwest characteristic description in the control of | | | | | | | wan | | | The second secon | Action to the control of | ************************************** | | | edysource: Company and | and overcomment to the contract of contrac | | | | | | 301244 www.030 | | | | The control and an | | | | | | The second secon | especial management for non-new designation of the second | | THE ADMINISTRATION OF THE PROPERTY PROP | | | | | National Property and Parket State of the Park | ET-ACC-TONISM AND | | | | THE STATE OF S | | | | | | | | | | The expension of the state t | THE PROPERTY OF O | Americanism de la martin della martin della martin de la martin de la martin de la martin della | | | | | | | | | | | | | THE STATE OF S | CHICAGO AND | | | | Market Control of the | | | | | | | | | | | ВН. | H'R | |---------|-------------------|--------------| | | 30 | W. | | | fm@ | cfm@ | | |) T (| 72 | | |)o * | さ | | | Sheck: | k Check: | | | nitial Leak Check | inal Leak C | | | 1 | Fina | | J | 1.00 | 80;2) | |
 | ime: | Time: | | Travers | Start Ti | Finish Time: | Project No.: Operator : ### **APPENDIX 8** VOST Field Data Sheets (6 pages) ### Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Volatile Organics Sampling Train Sample Volume Corrections | Test No. | DGMCF | Initial DGM
Reading
(L) | Final DGM
Reading
(L) | Actual Vol.
Sampled
(L) | Barometric
Pressure
(in Hg) | Average DGM
Pressure
del H (in H2O) | Average DGM
Temperature
(°C) | Corrected Volume (L)* | Corrected
Volume
(Rm3)* | |----------|-------|-------------------------------|-----------------------------|-------------------------------|-----------------------------------|---|------------------------------------|-----------------------|-------------------------------| | Ţ | 1.020 | 37.45 | 61.20 | 23.75 | 29.50 | 1.20 | 26.8 | 23.81 | 0.0238 | | 5 | 1.020 | 61.65 | 88.10 | 26.45 | 29.49 | 1.20 | 27.9 | 26.41 | 0.0264 | | C | 1.020 | 88.25 | 114.20 | 25.95 | 29.50 | 1.20 | 29.3 | 25.80 | 0.0258 | | 7 | 1.020 | 15.90 | 42.50 | 26.60 | 29.52 | 1.20 | 28.0 | 26.58 | 0.0266 | * Dry at 25°C and 1 atmosphere ### **Vost Data Sheet** | Plant: Covanta DYI | EC | | | |-----------------------------|----------------|----------------------|-----------------------------| | Plant Location: Courtice, O | 4 | Test Condition: | Control Box €2 | | Test location: APC Outlet I | vo\ | DGMCF: 1.02 | Operator: J G | | Date: WOVEMBRA | 11.2020 | Barometric Pressure: | "Hg Project No: 22050 | | ~ 0.5 LPM for 40 minutes | NDL - No Decte | ctable Leak | Field Blank Pair ID: SA, SB | PBAR 39.5 | Test 1 Start T | ime: OSH6 | 0819 | Initial Leak Check | NDL @ | 22_ "Hg | Sample ID: 🛭 🖟 | 4,18 | |----------------|------------|-------------|--------------------|-----------------
--|------------------|---------------| | Test 1 End Tir | me: | 2859 | Final Leak Check | Nol @ | Z_۱ "Hg | Lab ID: 노2중\ | 4397-5 | | Clock | Dry Gas | | Tempo | eratures | - Contraction of the | Meter | Pump | | Time | Meter
L | Probe
°C | Stack
°C | Condensor
°C | Meter Avg
°C | Pressure
"H₂O | Vacuum
"Hg | | 0 | 14837.76 | 140 | 139 | 16 | 22 | 1.7 | 1.0 | | 5 | 7-84035 | 140 | 140 | 6 | 25 | 1:7 | (0. | | 10 | 14843.98 | 141 | 140 | 10 | 25 | 1.2 | (.0 | | 15 | 7846 44 | lu | 140 | 6 | 25 | | lo . | | 20 | T-850,46 | 141 | 14 | lo | zg | (.72 | 1.0 | | 25 | 7852.65 | 141 | (38 | L | 28 | ,-2 | (,6 | | 30 | 7854185 | 141 | ા હુક | | 29 | 1.2 | (.0 | | 35 | 7857.60 | 141 | (2°s | | 29 | 17 | 3.0 | | 40 | 7861.Zo | lui | (3% | | 29 | 1.7_ | 3,0 | PERC SAMP | Test 2 Start Tir | me: | 29 OH | Initial Leak Check | MDL @ | 71 "Hg | Sample ID: | 24 2S | |------------------|------------|-------------|--------------------|---------------------------------------|-----------------|------------------|---------------| | Test 2 End Tim | ie: C | ? ? ~ ~ | Final Leak Check | · · · · · · · · · · · · · · · · · · · | "Hg | Lab ID: 425 | 4397.60 | | Clock | Dry Gas | | Tempe | ratures | tyra. e. Nil | Meter | Pump | | Time | Meter
L | Probe
°C | Stack
°C | Condensor
°C | Meter Avg
°C | Pressure
"H₂O | Vacuum
"Hg | | | 61.65 | lu o | 140 | 15 | 222 | /、2 | 1-0 | | 5 | 65,15 | 14 | 140 | (5 | 27 | 7.7 | 20 | | 10 | 68.50 | 140 | 161 | (| 28 | 1.2_ | 20 | | 15 | 31.60 | (40 | lu) | (o | 29 | l. Z | 2-0 | | 20 | 741.25 | (H | 140 | | 28 | 1,2_ | 7.0 | | 25 | 78.5 | i W | l La Caraciana | 6 | 29 | /. 2 | 20 | | 30 | 80.10 | 141 | 146 | 10 | 28 | /_ 2 | 2.0 | | 35 | 88.4 | 141 | 140 | 12 | 2-8 | 4. 2 | 20 | | 40 | 8 É. i | 141 | 140 | 10 | 19 | /.12 | 2.0 | ### **Vost Data Sheet** | Plant: Covanta DYEC | | | | | |------------------------------|-----------------|----------------------|---------------------|---------------------| | Plant Location: Courtice, ON | | Test Condition: | | Control Box 1000 47 | | Test location: APC Outlet No | · | DGMCF: 1.020 | | Operator: 3 Con | | Date: Nov 11, 2, 2 | | Barometric Pressure: | "Hg | Project No: 22050 | | ~ 0.5 LPM for 40 minutes | NDL - No Dectec | table Leak | Field Blank Pair II | D: | PEAR 29 5 | Test 3 Start Time: 0948 | | | Initial Leak Check (15 (@ 15 "Hg Sample ID: 3A | | | | A 38 | |-------------------------|------------|-------------|--|-----------------|-----------------|------------------|---------------| | Test 3 End Tim | ie: 1028 | 3 | Final Leak Check | A15: @ | 2∥ "Hg | Lab ID: (25) | | | Clock | Dry Gas | | Tempe | ratures | | Meter | Pump | | Time | Meter
L | Probe
°C | Stack
°C | Condensor
°C | Meter Avg
°C | Pressure
"H₂O | Vacuum
"Hg | | 0 | 86.25 | (4) | 140 | (4 | 28 | 1.7 | 10 | | 5 | 91.50 | 141 | 140 | (5 | 28 | 1:2-1 | 1.0 | | 10 | 44 80 | i Gi | 140 | 3 | 29 | 1. 2- | (.2 | | 15 | 48,2 | 141 | (41 | 10 m | 29 | 1.2. | 1.0 | | 20 | 101.56 | વિષ | A JYON | 10 m | 30 | (-2 | 1-0 | | 25 | 104 50 | iul | THE THE | | 30 | 72 | 1.0 | | 30 | 68,10 | 141 | 141 | 10 | 10 | 1.2 | (,0 | | 35 | 111.30 | 141 | NA ALL | | 3, | 15 | 100 | | 40 | 114:20 | 141 | (વા | 16 | 30 | 1,2 | 1.0 | PEAS 29.55 | Test 4 Start T | Time: (& | 130 | Initial Leak Check | KIDL @ | 2_("Hg | Sample ID: | 14,4B | |----------------|---------------|-------------|---|---|-----------------|------------------|---------------| | Test 4 End Ti | me: / (| ليا | Final Leak Check | ND @ | 2 j "Hg | Lab ID: LZS | 14377-6 | | Clock | Dry Gas | | Tempe | eratures | | Meter | Pump | | Time | Meter
L | Probe
°C | Stack
°C | Condensor
°C | Meter Avg
°C | Pressure
"H₂O | Vacuum
"Hg | | 0 | 16.5 | 101 | 140 | Maria 14 / 14 / 14 / 14 / 14 / 14 / 14 / 14 | 78 | , 2, | 20 | | 5 | 19.3 | lu (| 140 | 3.4. | १८ | 1.2 | 2.0 | | 10 | 23.j | L-U | 140 | 10 | <i>7</i> 0 | 1.2 | 2.0 | | 15 | 26.6 | l V | 141 | 10 | 20 | 1.2 | 2.0 | | 20 | 30.1 | 146 | 140 | | 78 | | 2.0 | | 25 | 37.4 | 141 | 140 | 10 | 28 | i. 2 | 2 0 | | 30 | JG G | 1-1 | 4 | 6 | 28 | 1.2 | 2.0 | | 35 | <i>.2</i> 9_4 | 14/ | 4 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / | lo | 28 | 1.2 | 4.0 | | 40 | 42.5 | 141 | 141 | 10 | 29 | | | ### Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Volatile Organics Sampling Train Sample Volume Corrections | Test No. | DGMCF | Initial DGM
Reading
(L) | Final DGM
Reading
(L) | Actual Vol.
Sampled
(L) | Barometric
Pressure
(in Hg) | Average DGM
Pressure
del H (in H2O) | Average DGM
Temperature
(°C) | Corrected
Volume
(L)* | Corrected
Volume
(Rm3)* | |----------|-------|-------------------------------|-----------------------------|-------------------------------|-----------------------------------|---|------------------------------------|-----------------------------|-------------------------------| | 1 | 1.010 | 54.35 | 75.40 | 21.05 | 29.50 | 1.09 | 22.7 | 21.18 | 0.0212 | | 2 | 1.010 | 75.70 | 96.30 | 20.60 | 29.49 | 1.10 | 24.3 | 20.61 | 0.0206 | | *** | 1.010 | 99.50 | 120.50 | 21.00 | 29.50 | 1.10 | 25.1 | 20.96 | 0.0210 | | 4 | 1.010 | 21.50 | 41.50 | 20.00 | 29.52 | 1.09 | 24.6 | 20.01 | 0.0200 | * Dry at 25°C and 1 atmosphere ### ORTECH Consulting Inc. Vost Data Sheet | Plant: Covanta DYE | C C | | |------------------------------|------------------------------|-----------------------------| | Plant Location: Courtice, ON | Test Condition: | Control Box ID: Vost 5 | | Test location: APC Outlet N | lo DGMCF: /. 010 | Operator: DUL | | Date: November | 11 2020 Barometric Pressure: | "Hg Project No: 22050 | | ~ 0.5 LPM for 40 minutes | NDL - No Dectectable Leak | Field Blank Pair ID: 114, B | PBAR 29.50 | Test 3 Start Ti | me: 95 | 50 | Initial Leak Check | NPL @ | /4 "Hg | Sample ID: 9 | 48 | |-----------------|------------|--------------|--------------------|-----------------|-----------------|-------------------------------|---------------| | Test 3 End Tin | ne: /03 | 0 | Final Leak Check | NDL@ | /5 "Hg | Lab ID: 125/ | 1397-6 | | Clock | Dry Gas | ana Militara | Temper | atures | | Meter | Pump | | Time | Meter
L | Probe
°C | Stack
°C | Condensor
°C | Meter Avg
°C | Pressure
"H ₂ O | Vacuum
"Hg | | | 99,50 | 133 | 1793 | 12 | 25 | | 3 | | 5 | 102.3 | 133 | 143 | 12 | 25 | | 3 | | 10 | 105.3 | 133 | 199 | FU | 25 | 7, (| <u> 3 </u> | | 15 | 107.9 | 133_ | 143 | 0 | 2626 | Assert/Effense | <u> 5.5.</u> | | 20 | 11/0.3 | 132 | 143 | Q | 25 | 1 2 / | 3.2 | | 25 | 1113.01 | 133 | 143 | <u> </u> | 25 | 126 | <u> </u> | | 30 | liis.5 | 133 | 142 | Section 1 | 25 | | <u> 5.5</u> | | 35 | 1117.9 | 123 | 142 | 5 | 25 | | 3.5 | | 40 | 1120.51 | 133 | 142 | 5 | 25 | 4.(| 3-5 | 69 SP 253 | Test 4 Start Ti | me: / <u>ረ</u> | 736 | Initial Leak Check | <i>NOL @</i> | / 💪 "Hg | Sample ID: <u>と</u> Zst | <u> 514397-6</u> | |-----------------|----------------|-------------|--------------------|-----------------|-----------------|-------------------------|------------------| | Test 4 End Tin | ne: / / / | 10 | Final Leak Check | NOL @ | / | Lab ID: 10# | <u> </u> | | Clock | Dry Gas | | Tempe | atures | | Meter | Pump | | Time | Meter
L | Probe
°C | Stack
°C | Condensor
°C | Meter Avg
°C | Pressure
"H₂O | Vacuum
"Hg | | O | 1715 | 133 | 1741-24 | 14 | 25 | | 2 | | 5 | 74.1 | 133 | 142 | 5 | 25 | 16 | 5 | | 10 | 26.9 | 133 | 142 | Ø | 25 | | 3 | | 15 | 129.2 | / 33 | 142 | 5 | 75 | 200 100 | -3 | | 20 | 31.7 | 133 | 147 | = | 75 | | 3 | | 25 | 34.2 | 133 | 147 | 3 | ZU | 1.6 | 3,5 | | 30 | 36,11 | 133 | 43 | 5 | 24 | 4.1 | 3.5 | | 35 | 138.9 | 133 | 142 | 3 | 24 | 1. 1 | 85 | | 40 | 41.5 | 132 | 146 | 5 | 24 | | 5 | ### ORTECH Consulting Inc. ### **Vost
Data Sheet** | Plant: Covanta DYEC | | | |---------------------------------|-----------------------------|----------------------------| | Plant Location: Courtice, ON | Test Condition: | Control Box 18 VGTS | | Test location: APC Outlet No. 2 | _ DGMCF: 1.010 | Operator: | | Date: NOVEMBER 1 | 1 2020 Barometric Pressure: | "Hg Project No: 22050 | | | - No Dectectable Leak | Field Blank Pair ID: / A B | PBAR 29.50 | Test 1 Start Ti | me: 82 | Ú. | Initial Leak Check | NOL @ | | Sample ID: | 7A,B | |-----------------|------------|-------------|--------------------|-----------------|-----------------|------------------|---------------| | Test 1 End Tin | ne: 00 | 2 | Final Leak Check | NDL @ | 14 "Hg | Lab ID: ムる | 4397-6 | | Clock | Dry Gas | | Temp | eratures | | Meter | Pump | | Time | Meter
L | Probe
°C | Stack
°C | Condensor
°C | Meter Avg
°C | Pressure
"H₂O | Vacuum
"Hg | | 0 | 9435 | 123 | 141 | 20 | 20 | 1.2 | 5 | | 5 | 57.0 | 133 | 191 | 3 | 22 | 1.2 | 5 | | 10 | 60.8 | 133 | 141 | 3 | 22 | 1.04.7 | 45 | | 15 | 63.0 | 1:33 | 141 | \mathcal{U} | -23 | 1.0 | 4.5 | | 20 | 65.0 | 133 | 141 | 4 | 23 | 1.0 | 4.5 | | 25 | 67.5 | 133 | 141 | 4 | 2-3 | 1.1 | 5 | | 30 | 70.0 | 137_ | 141 | 4 | 23 | 1.1 | | | 35 | 72.4 | 132 | 141 | 4 | 24 | 1. (| 15 | | 40 | 754 | 132 | 141 | 4 | 24 | 1.1 | 5 | "Hg Sample ID: Initial Leak Check Test 2 Start Time: "Hg Lab ID: 125143726 Final Leak Check Test 2 End Time: Meter Pump Temperatures Clock Dry Gas Condensor Meter Avg Pressure Vacuum Stack Time Meter Probe °C "H₂O "Hg °C °C °C 133 1. (0 5 2.1 24 10 15 20 25 133 30 35 ### **APPENDIX 9** Aldehydes Field Data Sheets (8 pages) ### Covanta - Durham York Energy Centre Boiler No. 1 BH Outlet Aldehydes Sample Volume Corrections | Test
No. | DGMCF | Initial DGM
Reading
(L) | Final DGM
Reading
(L) | Actual Vol.
Sampled
(L) | Barometric
Pressure
(in Hg) | Average DGM
Pressure
del H (in H ₂ O) | Average DGM
Temperature
(°C) | Corrected
Volume
(L)* | Corrected
Volume
(Rm³)* | |-------------|-------|-------------------------------|-----------------------------|-------------------------------|-----------------------------------|--|------------------------------------|-----------------------------|-------------------------------| | | 1.020 | 44.30 | 87.20 | 42.90 | 29.52 | 1.20 | 28.5 | 42.79 | 0.0428 | | 7 | 1.020 | 8.10 | 53.40 | 45.30 | 29.51 | 1.20 | 29.1 | 45.09 | 0.0451 | | ~ | 1.020 | 34.50 | 72.60 | 38.10 | 29.51 | 1.20 | 29.2 | 37.91 | 0.0379 | * Dry at 25°C and 1 atmosphere. ### NCASI Method ISS/FP-A105.01 ORTECH Consulting Inc. | Plant: | Covanta DYEC | |-----------------|--| | Plant Location: | Courtice, Ontario | | Test No.: | | | Test location: | APC Outlet No. | | Date: | November 11, 625 | | Project No.: | 22050 miles de la companya del companya de la companya del companya de la company | | Measuring Device | MI Number | |------------------|--------------| | Control Module | 1614 2 A1017 | | Barometer | Env Canada | | Ş | - | o T | = | į | |---|--|-----|----|---| | į | - | O. | Ω | i | | į | - | Ŧ | | į | | ı | - | - | | į | | Ī | | | | Ĭ | | ì | | | | Ĭ | | ŧ | | | | ğ | | Ĭ | | | | i | | i | | | | ŝ | | ŧ | | | | Ĭ | | ł | | | | Į | | Ĭ | | | | ł | | ş | 0 | | Ž, | ķ | | ł | ž. | ß | ř | ì | | ŧ | ۹, | 1.5 | V | B | | ł | \$ | 1 | | ŧ | | į | The same | ۶. | 3 | é | | ź | * | | 1 | ž | | Í | | ٠. | | Š | | ŝ | | 5 | , | į | | ŝ | ř. | ç | | š | | i | | ŝ | | į | | į | 7 | ** | 'n | ì | | ı | į : | 1 | ŧ | ţ | | ł | ٩. | À | P | ž | | ł | | | | ŝ | | ŝ | | | | Ĭ | | į | | | | i | | ş | | | | ŝ | | į | | | | į | | Ì | | | | ŧ | | ì | | | | ì | | ř | | | | ŝ | | Ì | | | | I | | ŧ | | | • | ŝ | | ŝ | 3 | C. | 2 | ŧ | | Ĭ | 3 | ī, | , | ŧ | | ì | - 3 | - | 1 | ŧ | | Í | | ú | ٠. | ĺ | | i | 4 | ú | : | i | | Ī | 4 | ñ | í | ŧ | | ŧ | 34 | ř | • | Ĭ | | ı | | ~ | • | ŧ | | Ĭ | b | ů | 3 | ì | | ł | - 1 | | 3 | ŧ | | ł | ٠ | - | | Ì | | Ĭ | | ь. | | Ĭ | | ı | - 5 | - | • | ŧ | | i | - 2 | Ų, | 3 | Ĭ | | ĺ | - 9 | C | ; | Ì | | į | 3 | ٨. | | ŧ | | i | 一日 小田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田 | C |) | į | | Ĭ | | Š. | | ĺ | | í | - | r | 3 | I | | ŧ | ė | Ý | i | ŧ | | ĺ | _6 | | • | į | | 1 | _ | _ | 7 | • | | | | | | | | Clock | Dry Gas | Probe | Stack | Oven | Impinger | Meter | Meter | Pump | |--|------------------|-------------|--------|----------|--|---------|--------------|------------| | e E | Meter | Temp | Temp | Temp | Outlet | Temp | Pressure | Vacuum | | O. O | | | | | and the second s | Average | T | | | | | ပ္ | သွ | ွင့ | ၁့ | ွ | "H20 | Gauge | | 0 | \$
5 | Ş | ž | 25 | 22 | 28 | 27 | Û | | 5 | 18.81 | 5
(2) | 37. | <u>a</u> | 7.7 | 3 | \
\
\ | (%)
(%) | | 10 | ないの | Ş | Ĵ | M | C | 1 | | | | 15 | 02:33 | 3 | , 97) | 22, | ž | V | 8 | رې
0 | | 20 | 00.70 | 3 | 937 | 38 | 7 | ٥
٧ | \$ | (
0 | | 25 | 62,20 | 27 | 3 | 20 | N | Ŋ | 01 | V, | | 30 | 9 P & B | 3 | 3 | 2 | N | N. | | S) | | 35 | P S S | 2 | j | UN. | Ŋ | 5 | N | \?
Q | | 40 | 0
0
2
2 | 1
1
1 | 3 | (2) | L | S | ? | 9.0 | | 45 | 05:42 | 3 | ب
ع | S | \ <u>\</u> | 8 | 23) | 25.00 | | 20 | Ro.60 | M
Z | 27) | 85
C) | Ľ | Ŝ | (2.1) | (A) | | 53 | 378 | 7
3 | 2.7/ | .00 | <u>(</u> 2 | 9 | ۸, | V
O | | 09 | Q. (6) | (Z | 7 | 5 | 3) | 0 | 7.7 | 6
9 | | | | | | | | | | | | Start Time: | | | | | | DGMCF: | | 0.26 | Comments: Initial Leak Check: Final Leak Check: Finish Time: : sample @ ~0.5 lpm for 60 minutes. Average DGM Temp: Average DGM A H: Lpm @ Lpm @ Sample Volume: | Plant: | Covanta DYEC | |-----------------|-------------------| | Plant Location: | Courtice, Ontario | | Test No.: | | | Test location: | APC Outlet No. | | Date: | Morenben 11, 2,2, | |
Project No.: | 22050 | | uring Device | MINUMPER | |--------------|--------------| | trol Module | Krt2 Aio 17. | | Barometer | Env Canada | Barometric Pressure: コ۹ S۱ | 5 | 25000 | 2007 | V. G.C.K | 5 | TO SECOND | Meter | Meter | d mn | |------|--------------------|-------------|----------|------|-----------|--|----------|--| | Time | Meter | Temp | Temp | Temp | Outlet | Temp | Pressure | Vacuum | | | TO THE CONTRACT OF | | | | | Average | A | <u></u> | | | | ပ | ပ္ | ပွ | ပ | ၁ | "H20 | Gauge | | 0 | | 521 | 27.1 | t2) | V | N. | 2.1 | Ų | | 'n | | £4,7 | (C.2. | 321 | 72 | 57 | ?; | 0 | | 10 | 30 | | 727 | 372 | 22 | S | 7:1 | 0 | | 15 | | CER (Name) | | | | оставностичний в примененти п | | | | 20 | 4.22 | 142 | 7 | 92) | 2 | 2.5 | N | \
0 | | 25 | 27:0 | ر
2 | 3 | 12.5 | 02 | \$ | 2 | 9.84 | | 30 | 3 | (43 | 7 | 127 | 57 | to 2 | 7 | Q
70 | | 35 | 36:46 | 142 | 01-, / | 7.77 | 3 | T N | | 0 | | 40 | | 142 | (33) | 125, | S, | 5 | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | 45 | 3 |)O | 138 | 125 | 31 | S | 7. | 0
'0' | | 20 | | r z | (3 × | 120 | 9 | Z | 2 7 | 60 | | 55 | しなが、では、 | 274 | 400 | 92) | 22 | Ę | 77 | Ì | | 09 | 32.20 | 7.64.2 | t 27 | 12.2 | / 2/ | Q 2 | | Advisor of the state sta | | | | | | | | | | | | CONTRACTOR DESCRIPTION OF THE PROPERTY | Start Time: | Finish Time: | Initial Leak Check: | Final Leak Check: | | |--|-------------|--------------|---------------------|-------------------|--| | Continue of the th | 21000) | | k: | | and the same have an amend a fact of the same and sam | | | どび | 2 h c | V | V | AND DESCRIPTION OF THE PARTY | | | 2 | | 9 | 0 | - | | | | | | | The state of s | | The second secon | | | ğ | Lpr | The state of s | | | | | _bm @ | -bm @ | And the Control of th | | | | | IJ | " < >)/ | THE REAL PROPERTY AND PERSONS
ASSESSED. | | | | | 50 | lg
B | - | DGMCF: / Δ GZO Sample Volume: Average DGM Temp: Average DGM Δ H: : sample @ ~0.5 lpm for 60 minutes. Comments: | Plant: | Covanta DYEC | |-----------------|-------------------| | Plant Location: | Courtice, Ontario | | Test No.: | | | Test location: | APC Outlet No. | | Date: | MAYAMGER II OSY | | Project No.: | 22050 | | Measuring Device | MI Number | |------------------|---------------| | Control Module | 4101 7 2 x 50 | | Barometer | Env Canada | Barometric Pressure: スヘン | Clock | Dry Gas | Probe | Stack | Oven | Impinger | Meter | Meter | Pump | |---|--|---------|-------|------|----------|---------|----------|------------| | Time | Meter | emo | Temp | Temp | Outlet | Temp | Pressure | Vacuum | | | and the second | | | | | Average | H | 50 X | | *************************************** | | ၁့ | ပ | ပ္စ | ပ | Ç | "H20 | Gauge | | 0 | 18:25 | S 3 3 | 12.0 | 12.7 | 22 | く | | 0 | | រភ | (): (V): (V): (V): (V): (V): (V): (V): (| 143 | 138 | ? | 22 | 52 | 2 | 0 | | 10 | 2,7 | S, | 90 | 921 | 7.7 | 9 | 2 | V. O | | 15 | ーないなと | (2) | 13E | 77/ | 7 | \$ | 2 | 0
 V | | 20 | 30,32 | 1677 | - T. | ţ, | Œ | N. | 2 | 0 | | 25 | , S | (4.2 | X | 7.37 | ¥ | 7 | ? | Ŋ | | 30 | 07:10 | G. | 27.7 | Q | V | | 7 | 0.0 | | 35 | £.88 | 3 | 3 | ズ | 22 | * | | 0 | | 40 | \$7.00
- | ブズ | ヺ | 727 | 7 | Ċ | ~ ~ | Ç
0 | | 45 | 8 6 9 | うろ | 3 | 28 | 2.3 | 26 | 7.7 | Ç | | 50 | 00.00 | しない | 975 | 272) | ~ | Ź | 7, | \
(0 | | 55 | (K) V (S) | , h.h.) | 52) | 128 | S | ~ | 7: | , (,
() | | 09 | 72.60 | 3 | 587 | × | 20 | 24 | | Š | | | | | | | | | |) | | | 78.36 | .: > | シ/ @ md1 | |-------------|-------------|-------------------|------------------| | itart Time: | inish Time: | nitial Leak Check | inal Leak Check: | Sample Volume: Average DGM Temp: Average DGM A H: DGMCF: प्रतिक कि कि कि कि Stor to 20 Mril of Comments: : sample @ ~0.5 lpm for 60 minutes. ### Covanta - Durham York Energy Centre Boiler No. 2 BH Outlet Aldehydes Sample Volume Corrections | Test | DGMCF | Initial DGM | Final DGM | Actual Vol. | Barometric | Average DGM | Average DGM | Corrected | Corrected | |----------|-------|-------------|-----------|-------------|------------|-----------------------------|-------------|-----------|-----------| | <u>S</u> | | Reading | Reading | Sampled | Pressure | Pressure | Temperature | Volume | Volume | | | | (1) | (1) | <u>(</u>) | (in Hg) | del H (in H ₂ O) | (5,) | *(1) | (Rm³)* | | | 1.010 | 41.90 | 74.80 | 32.90 | 29.52 | 1.10 | 24.4 | 32.94 | 0.0329 | | 2 | 1.010 | 75.20 | 105.85 | 30.65 | 29.51 | 1.10 | 25.1 | 30.61 | 0.0306 | | m | 1.010 | 6.50 | 37.10 | 30.60 | 29.51 | 1.10 | 26.0 | 30.46 | 0.0305 | | | | | | | | | | | | * Dry at 25°C and 1 atmosphere. | Plant: | Covanta DYEC | |-----------------|-------------------| | Plant Location: | Courtice, Ontario | | Test No.: | | | Test location: | APC Outlet No. Z | | Date: | November 11 2020 | | Project No.: | 22050 | | suring Device | Number | |---------------|------------| | ntrol Module | B1002 307 | | Barometer | Env Canada | | į | E
Po | | |---|----------------------|--| | Į | undare. | | | į | mary. | | | Į | 61 | | | ì | | | | ì | | | | Ž | | | | ì | | | | į | | | | Ş | | | | Š | | | | å | | | | î | | | | ŝ | | | | į | | | | i | 100 | | | į | 4 / | | | ŧ | . 12 | | | į | . 7 | | | ŧ | 3/3 | | | ĺ | 40 | | | Š | | | | ŧ | - * | | | Í | 18 | | | ĺ | 8 | | | Į | 1 / | | | ŧ | Vive. | | | į | 1 3 | | | l | 5 11 | | | į | - | | | į | | | | ì | | | | ŀ | | | | ı | 3.34 | | | Ī | 1.13 | | | į | - 1 | | | ŧ | | | | Ī | ധ | | | ı | Same | | | į | 100 | | | į | 400 | | | Í | v) | | | ĺ | ٠, | | | ĺ | യ | | | ľ | <u> </u> | | | í | 0 | | | ŧ | ecityb | | | į | | | | ı | 0 mile | | | ĺ | S-0 | | | É | 44 | | | ĺ | cu | | | ĺ | ~ | | | ı | - | | | ľ | 200 | | | ı | 0 | | | ĺ | - L | | | į | 75 | | | ì | in | | | į | | | | ٩ | Barometric Pressure: | | | | | | | | | | | | | | | Weter Temp Temp Temp Premp Pr | Meter Temp Temp Outlet Temp Pressure 1 | Clock | Dry Gas | Probe | Stack | Oven | Impinger | Meter | Meter | Pump | |--|---|-------|--|----------|------------------|----------|-----------------------
--|--|---------| | 41.9 133 143 130 20 22 1.1 41.9 133 143 133 20 22 1.1 46.0 134 143 133 20 22 1.1 46.0 134 143 133 20 22 1.1 55.4 134 149 149 17 24 1.1 55.3 134 149 149 17 24 1.1 55.3 133 149 149 17 24 1.1 55.3 133 149 149 170 170 170 170 170 170 170 170 170 170 | 41-9 13-3 142 15-0 20 2-3 1,1 1,40 140 140 140 140 140 140 140 140 140 1 | Time | Meter | de
de | e
E
E | Temp | Outlet | Temp | Pressure | Vacuum | | 41.9 23 44 43 20 24 1.1 46.0 133 144 145 136 146 | 41.3 143 143 130 20 22 1.1 44.0 131 143 133 144 145 13 20 23 1.1 55.4 131 143 149 14 24 1.1 55.3 133 144 140 140 14 25 1.1 66.9 133 144 140 140 16 25 1.1 66.9 133 144 145 140 140 15 25 1.1 66.9 133 144 145 140 140 15 25 1.1 66.9 133 144 145 140 140 15 25 1.1 66.9 133 144 145 140 140 15 25 1.1 66.9 133 144 145 140 140 140 15 25 1.1 66.9 133 144 145 145 140 140 140 140 140 140 140 140 140 140 | | | | | | | Average | I | to
I | | 44.9 133 144 150 20 23
44.0 131 143 133 20 23
46.0 132 143 134 14
55.3 133 144 146 17
55.1 146 145 146 17
55.1 15.2 14 | 41.9 13.3 144 150 20 23
46.0 131 143 130 140 13
52.4 133 144 140 17
55.3 133 144 140 17
55.3 133 144 140 17
55.3 143 144 140 17
55.3 133 144 140 17
55.3 133 144 140 17
55.3 133 144 140 17
55.3 134 140 16 25 | | | ွိ | ပွ | သွ | သ | ွ | H,0 | Gauge | | 44.0 131 143 131 20 23 46.7 134 145 134 13 20 23 46.9 131 143 144 149 17 24 55.3 133 144 149 17 25 66.9 133 144 149 170 16 25 66.9 133 144 149 140 170 16 25 72.5 134 144 145 66.9 134 144 145 66.9 134 144 145 66.9 134 144 145 66.9 134 144 145 66.9 134 144 145 66.9 134 144 145 66.9 154 155 66.9 154 155 66.9 155 | 44.0 131 143 131 20 23
46.7 134 143 136 19 24
52.4 136 149 141 17 24
55.3 131 149 140 16 25
60.9 133 144 140 16 25
65.9 133 144 140 16 25
134.8 134 144 145 16 25
174.8 134 144 145 16 25
174.8 134 144 145 16 25 | 0 | ال
ا
ا | 733 | 155 N | 200 | 5 | 7 | | | | 46.7 132 143 143 143 149 149 149 149 149 149 149 149 149 149 | 46.7 134 143 139 19 24
52.4 131 143 140 17 24
55.3 131 143 140 17 24
55.3 144 140 17 24
65.3 133 144 140 17 25
65.3 133 144 140 17 25
65.3 133 144 140 16 25
74.8 134 144 140 16 25
74.8 134 144 140 16 25
11.0 144 140 16 25 | Ŋ | のえた | W. | \
\
\
\ | | R | N | | | | 25.4 142 140 19 24 25.4 15.5 2.4 140 19 24 140 19 25.4 15.5 144 140 140 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15. | 49.6 132 142 149 19 24
55.4 131 144 149 19 24
55.3 144 149 16 25
60.9 133 144 149 16 25
133 144 149 16 25
134 143 143 145
135 145 145 16 25
14.8 134 145 16 25
14.8 134 145 16 25
17.5 15
17.5 | 10 | 76.1 | 40 | 15
10 | 183 | O
S | 22 | *************************************** | | | 55.4 (3) 144 14 14 24 15 25.3 146 149 149 149 149 149 149 149 149 149 149 | 52.4 (5) (43 144 17 24 17 24 18 25.3 144 146 146 17 25
11 25 | 15 | - 2°.0 | 72 | 183 | 951 | <u> </u> | 7 | *************************************** | | | 55.3 131 143 146 17 24 1.6 60.9 133 144 140 17 25 1. 2 | 55.3 131 143 146 17 24 1.
56.9 133 144 140 17 25 1.
66.9 133 144 140 16 25 1.
69.9 134 143 145 16 25 1.
74.8 134 143 145 16 25 1. | 20 | さらの | 3 | 12 | 15% | | 7 | | ~ | | 58.7 133 144 140 16 25 1, 25, 16 25, 17 14, 8 173 143 143 145 16 25 1, 25, 17 14, 8 1734 145 145 145 145 145 145 145 145 145 14 | 58.7 133 144 140 16 25 1, 25, 14, 26, 140 140 140 16 25, 1, 25, 1, 25, 1, 1, 25, | 25 | | <u></u> | 3 | 951 | | スプ | | | | 66.9 133 144 140 17 25 1.
66.9 133 144 140 16 25 1.
72.5 143 143 145 15 1.
74.8 134 143 143 16 2.5 1. | 66.9 133 144 140 16 25 1.
62.7 133 144 140 16 25 1.
69.9 153 143 145 16 2.5 1.
74.8 134 143 143 16 2.5 1.
74.8 134 144 145 16 2.5 1. | 30 | | . 23 | 23 | 17.1 | 2 | -\ | - | | | 23.7 133 144 146 16 25 1.
66.5 133 143 140 16 25 1.
79.5 19.7 143 155 1.
74.8 1754 145 145 15 1. | 62.3 133 144 140 16 25 1.
66.3 133 143 140 16 25 1.
74.8 134 144 145 16 25 1.
74.8 134 144 145 16 25 1. | 32 | (T) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C | 133 | え | 87 | C | Ś | - Andrews | | | 12.5 13.3 My 143 16 2.5 1.
12.5 13.4 143 16 2.5 1.
12.5 13.4 143 143 16 2.5 1.
12.5 14.8 143 143 143 143 143 143 143 143 143 143 | 66.5 133 My 192 16 25 1;
72.5 173 193 16 25 1;
74.8 134 199 19 25 1;
74.8 134 199 193 15 25 1;
74.8 134 199 193 15 25 1; | 40 | 1,73 | 287 | 25 | 06/ | \$ | 52 | | | | 12.3 14.3 143 16 2.5 1.
74.8 134 144 145 16 2.5 1.
74.8 134 144 145 16 2.5 1. | 123 143 KY 16 25 1. 74.8 134 144 145 16 25 1. 74.8 134 144 145 16 25 1. | 45 | いらら | 18X | 25 | 25/ | | 73 | | | | 74.8 134 143 143 16 25 1, 25 14 153 16 25 16 25 | 74.8 134 143 143 16 25 1, 15 16 25 1, 15 16 25 1, 15 16 25 1, 15 16 25 1, 15 16 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16 | 20 | 0.
V | 138 | 1433 | X | 10 | ハ | -(" | | | 74.8 134 14 14 14 14 15 1 1 1 1 1 1 1 1 1 1 1 1 | 74.8 134 144 143 16 75 4. | 52 |
1.
V. | 202 | 33 | 22 | , | 000 | | 0 | | 1 | THE DEMOES DEMOES | 09 | 12 S | での | | 1425 | 9 | <u> </u> | | | | | DGMCF: | | | なな | ナイオノ | 1493 | general (a) processes | and the second s | and the second s | , | | | | Timo. | | | | | | DEMCE: | 0101 | | | | | | X | |----------|--------------|--------------------|------------------| | | 124 | k: | | | J. 1116. | Finish Time: | Initial Leak Check | Final Leak Check | /O " Hg Lpm @ Lpm @ | DGMCF:
Sample Volume:
Average DGM Ter | ë | | 3 | |---|------------------------------------|--|--| | verage DGM A H | | escured/file | ************** | | | SMCF: Imple Volume: /erage DGM Ter | DGMCF: Sample Volume: Average DGM Temp: Average DGM A H: | SMCF: 1,010 Imple Volume: 3,2,6 Ierage DGM Temp: 2,4, Ierage DGM A H: 1, | | | sample @ ~0.5 lpm for 60 minutes. | | |--|-----------------------------------|--| sample | | | | | | | | | | Comments: | 0.50 | CALMER DVEC | |-----------------|-------------------| | F 1015 & . | | | Plant Location: | Courtice, Ontario | | Test No.: | | | Test location: | APC Outlet No. | | Date: | Klov 11/20 | | Project No.: | 22050 | | Measuring Device | MINUMber | |------------------|------------| | Control Module | COE 200(9 | | Barometer | Env Canada | | Contract of the th | 50
H | |--|----------------------| | *************************************** | でいての | | | Barometric Pressure: | | Clock | Dry Gas | Probe | Stack | Oven | Impinger | Meter | Meter | Pump | |--|--------------|-------|-------|-------------------|--|--|----------|--------| | Time | Meter | Temp | Temp | Temp | Outlet | Temp | Pressure | Vacuum | | | - CONTRACTOR | | | wichenster (chick | | Average | A | ř | | | 4 | رد | ၁့ | ၁ | ွင | ٥, | "H20 | Gauge | | 0 | 72.52 | アだ | 3 | 151 | 01 | 52 | _ | | | | | 3 | 7.6% | 3. | 178 | | | | | 10 | (N) | 7 | 16/37 | 177 | | | | | | 12 | 20.00 | 12/2 | 12/21 | 52 | | N | | | | 20 | N N N | 2 | | £ | western | Notation Company | | | | 25 | が
 | 500 | 12/21 | 105 | | 2 | | | | 30 | 500 | 20.00 | 3 | 1/21 | | V | | | | 35 | でなっ | 200 | 7. | 37. | | S | | | | 40 | 000 C | 12 | 2 | 192 | | N | - | | | 45 | | 133 | 7.7 | 9 | | S | | | | 20 | 0.09/ | 200 | 1 | 2 | | K | | | | 55 | 12/801 | N | 7. | | 7 | | Com | | | 09 | 100 SNO | 100 | | 3 | V | | | | | | | | | | | | | | | i i podroja kara i podroja kara je kar | | | | | marada teleformetektiyandesi merkesa sirakenda kerkesa da keleformia kerkesa keleformia keleformia keleformia
Keleformia keleformia keleformia keleformia keleformia keleformia keleformia keleformia keleformia keleformia | | | | | Start Timo. | | | | | | יויייייייייייייייייייייייייייייייייייי | C | < | | Finish Time: 1550 Initial Leak Check: 2.01 Lpm @ 71 Final Leak Check: 2.0 Lpm @ 70 | Start Time: $/2 \lesssim \mathcal{I}$ | |--|---------------------------------------| | : 1350
Check: 2.00 (
heck: 2.00 (| start ime: | " Hg " Hg | Sample Volume: | | P | 10 | 业 | | |-------------------|-------|---|------------------|---|--| | Average DGM Temp: | remp: | 1 | M | b | | | Average DGM A H: | ï | | Stance
Stance | | | | 1 | | |--------|---| | | | | | | | ments: | ı | | e | | | Ę١ | | | E Com | | | ŭ | j | Operator: ₹>> \ : sample @ ~0.5 lpm for 60 minutes. | Plant: | Covanta DYEC | | |-----------------|-------------------|--| | Plant Location: | Courtice, Ontario | | | Test No.: | | | | Test location: | APC Outlet No. 2 | | | Date: | NUGABER 11, 2020 | | | Project No.: | 22050 | | | Measuring Device | MI Number | |------------------|--------------| | Control Module | 151000 300 J | | Barometer | Env Canada | Barometric Pressure: ○<...S\ "Hg | Clock | Dry Gas | Probe | Stack | Oven | Impinger | Meter | Meter | dwnd | |-------------
--|--|------------|---|---|---------------|--|--| | Ä | Meter | Temp | Temp | Temp | Outlet | Temp | Pressure | Vacuum | | | | • | • | • | *************************************** | Average | H | Ē | | | | ပ္ | သို | ွ | ů | ູ່ບ | "H20 | Gauge | | 0 | V | 2 | 75/ | 747 | Control Con | 20 | | | | 5 | 10,0 | 122 | 77. | 9 | 0 | 00 | **Opening | *************************************** | | 1.0 | | 100 | 05/ | 75 | 0 | 00 | | | | 15 | | 100 | 3 0 | 7 | 0 | 20 | | \$10,70000° | | 20 | 2 | 7 | (N) | 3 | P | 90 | 10 | a ⁿ eo _{le} atron | | 25 | No. | 5 | 282 | 043 | 3 | 92 | | | | 30 | | 10 | 77.
20. | 130
130 | 2 | 970 | deres | | | 35 | を持た | 77. | 12.5 | 13 | ĵ
Ĉ | 72 | | | | 40 | | 13 | 12 | 1 | | 82 | Marcon Ma | | | 45 | マルバル | K. | 135 | Ž | | 670 | 101 | *************************************** | | 50 | 0.50 | 1 | 75/3 | 72.72 | 26 | 70 | | | | 55 | | 100
100 | 271 | 275 | - Concept | 25 | personal and the second | | | 9 | - No. 1 | 12 | 8 | 72 | 7 | 2 |) (| | | | | AND THE REAL PROPERTY OF THE P | | | | | | | | | And the second s | | | | | DSMCE | 101 | | | Start lime: | | | | AMARANA AND AND AND AND AND AND AND AND AND | | Cample Volume | 702 | distriction or the contract of | | itart Time: | inish Time: 14 57 | Initial Leak Check: | Final Leak Check: | | |---|-------------------|---------------------|-------------------|--| | | | <i>O/</i> @ mdn ∂∂? | ク (Lpm @ 人) | | | *************************************** | | E
S | H | | | INIGIA | ample Volume:
Werage DGM Temp:
Werage DGM Δ H: | 30.6
26.9 | | |---------
---|--------------|--| | - Const | THE TAXABLE AND A PROPERTY OF THE | | | | | | | | : sample @ ~0.5 lpm for 60 minutes. Comments: ### **APPENDIX 10** ORTECH Sample Log/Chain of Custody Forms (9 pages) ### ORTECH Consulting Inc. - Sample Log Particulate and Metals Samples Covanta Client: Covanta Project Number: 22050 Received By: C Belore How Received: Train Recovery Job Assigned To: ALS QUOTE/PO: 22050-J2729 | ORTECH Sample I
20-22050-PM- | D Sample
Date | Location | Test
No. | Sample
Description | Sample
Media | Sample
Analysis | |---------------------------------|------------------|---------------|-------------|-----------------------|-----------------|----------------------| | 1 | Nav 9, 20 | #1 APC Outlet | 1 | Probe Rinse Acetone | Acetone | Particulate & Metals | | 2 | •) | | | Probe Rinse Nitric | 0.1N Nitric | Metals | | 3 | | | | Filter | Particulate | Particulate & Metals | | 4 | | | | Impinger 1-5 Solution | Nitric/Peroxide | Metals | | 5 | | | | Impinger 6-7 Solution | Acid. KMnO4 | Mercury | | 6 | | | | Impinger 6-7 Rinse | 8N HCI | Mercury | | 7 | NOV9,20 | #1 APC Outlet | 2 | Probe Rinse Acetone | Acetone | Particulate & Metals | | 8 | , , | | | Probe Rinse Nitric | 0.1N Nitric | Metals | | 9 | | | | Filter | Particulate | Particulate & Metals | | 10 | | | | Impinger 1-5 Solution | Nitric/Peroxide | Metals | | 11 | | | , | Impinger 6-7 Solution | Acid. KMnO4 | Mercury | | 12 | | | | Impinger 6-7 Rinse | 8N HCI | Mercury | | 13 | NOV10,20 | #1 APC Outlet | 3 | Probe Rinse Acetone | Acetone | Particulate & Metals | | 14 | , , === | | | Probe Rinse Nitric | 0.1N Nitric | Metals | | 15 | | | | Filter | Particulate | Particulate & Metals | | 16 | | | | Impinger 1-5 Solution | Nitric/Peroxide | Metals | | 17 | | | | Impinger 6-7 Solution | Acid. KMnO4 | Mercury | | 18 | | | | Impinger 6-7 Rinse | 8N HCI | Mercury | | 19 | NOV9, 20 | Blank 1 | Blank 1 | Probe Rinse Acetone | Acetone | Particulate & Metals | | 20 | / | | | Probe Rinse Nitric | 0.1N Nitric | Metals | | 21 | | | | Filter | Particulate | Particulate & Metals | | 22 | | | | Impinger 1-5 Solution | Nitric/Peroxide | Metals | | 23 | | | | Impinger 6-7 Solution | Acid, KMnO4 | Mercury | | 24 | | | | Impinger 6-7 Rinse | 8N HCI | Mercury | Revered 12-NOU-20 830Am 6.4°C by Bren ### ORTECH Consulting Inc. - Sample Log Particulate and Metals Samples Covanta Client: Covanta Project Number: 22050 Received By: C Belore How Received: Train Recovery Job Assigned To: ALS QUOTE/PO: 22050-J2729 | ORTECH Sample II
20-22050-PM- | Sample
Date | Location | Test
No. | Sample
Description | Sample
Media | Sample
Analysis | |----------------------------------|-------------------|--|-------------------|-----------------------|-----------------|----------------------| | 25 | NOVIO, LO | #2 APC Outlet | 1 | Probe Rinse Acetone | Acetone | Particulate & Metals | | 26 | , / | | | Probe Rinse Nitric | 0.1N Nitric | Metals | | 27 | | | | Filter | Particulate | Particulate & Metals | | 28 | | | | Impinger 1-5 Solution | Nitric/Peroxide | Metals | | 29 | | | | Impinger 6-7 Solution | Acid. KMnO4 | Mercury | | 30 | | | | Impinger 6-7 Rinse | 8N HCI | Mercury | | 31 | NOV10, 20 | #2 APC Outlet | 2 | Probe Rinse Acetone | Acetone | Particulate & Metals | | 32 | / | nz m c ounce | 2 | Probe Rinse Nitric | 0.1N Nitric | Metals | | 33 | | | | Filter | Particulate | Particulate & Metals | | 34 | | | | Impinger 1-5 Solution | Nitric/Peroxide | Metals | | 35 | | | | Impinger 6-7 Solution | Acid. KMnO4 | Mercury | | 36 | | | | Impinger 6-7 Rinse | 8N HCl | Mercury | | 37 | NOVIO, W | #2 ABC Outlot | 3 | Probe Rinse Acetone | Acetone | Particulate & Metals | | 38 | | #2 AFC Outlet | 3 | Probe Rinse Nitric | 0.1N Nitric | Metals | | 39 | | | | Filter | Particulate | Particulate & Metals | | 40 | | | | Impinger 1-5 Solution | Nitric/Peroxide | Metals | | 41 | | | | Impinger 6-7 Solution | Acid. KMnO4 | Mercury | | 42 | | | | Impinger 6-7 Rinse | 8N HCl | Mercury | | 43 | NOV107 20 | > Blank 2 | Blank 2 | Probe Rinse Acetone | Acetone | Particulate & Metals | | 44 | , - , - , - , - , | > Didilk Z | DIGITIK Z | Probe Rinse Nitric | 0.1N Nitric | Metals | | 45 | | | | Filter | Particulate | Particulate & Metals | | 4 6 | | | | Impinger 1-5 Solution | Nitric/Peroxide | Metals | | 47 | | | | Impinger 6-7 Solution | Acid. KMnO4 | Mercury | | 48 | | | | Impinger 6-7 Rinse | 8N HCl | Mercury | | Relinquished By: | Chu | Roll | 26 | | Date: Nov | 12, 3080 | | Relinquished To: | Marine and Park | The second secon | The constitute of | | Date: | | Recierd 12-NOV-20 830AM 6.490 by Bland Client: Covanta Job/Report Number: 22050 Received By: C Belore How Received: Train Recovery Job Assigned To: ALS Quote/PO: 22050-J2729 | ORTECH Sample ID | | Test | | Sample | Sample | Sample | |------------------|---|-------|----------------|-----------------------------|------------------|--------------------------| | 20-22050-M201A- | Date | No. | Location | Description | Media | Analysis | | 36 | NOV9,20 | 3 | # 2 APC Outlet | Nozzle & PM10 cyclone rinse | Acetone | Particulate | | 37 | , | | | PM 2.5 cyclone Rinse | Acetone | Particulate | | 38 | | | | PM 2.5 exit & connectors | Acetone | Particulate | | 39 | | | | Back up filter | Filter | Particulate | | 40 | | | | Impinger Soln & rinse | Water | Particulate | | 41 | | | | Secondary Filter | Filter | Particulate* | | 42 | | | | Impinger Rinse | Acetone & Hexane | Particulate | | 43 | NO10,20 | Blank | # 1 APC Outlet | Nozzle & PM10 cyclone rinse | Acetone | Particulate | | 44 | , | | | PM 2.5 cyclone Rinse | Acetone | Particulate | | 45 | | | | PM 2.5 exit & connectors | Acetone | Particulate | | 46 | | | | Back up filter | filter | Particulate | | 47 | | | | Impinger Soln & rinse |
Water | Particulate | | 48 | | | | Secondary Filter | Filter | Particulate ^a | | 49 | | | | Impinger Rinse | Acetone & Hexane | Particulate | | 50 | NOV 10, 20 | Blank | # 2 APC Outlet | Nozzle & PM10 cyclone rinse | Acetone | Particulate | | 51 | , , , , , | | | PM 2.5 cyclone Rinse | Acetone | Particulate | | 52 | | | | PM 2.5 exit & connectors | Acetone | Particulate | | 53 | | | | Back up filter | Filter | Particulate | | 54 | | | | Impinger Soln & rinse | Water | Particulate | | 55 | | | | Secondary Filter | Filter | Particulate ^a | | 56 | | | | Impinger Rinse | Acetone & Hexane | Particulate | Relinquished By: Client: Covanta Job/Report Number: 22050 Received By: C Belore How Received: Train Recovery Job Assigned To: ALS Quote/ PO: 22050-J2729 | ORTECH Sample ID | | Test | | Sample | Sample | Sample | |------------------|-----------|----------------------|---|-----------------------------|------------------|--------------| | 20-22050-M201A- | Date | No. | Location | Description | Media | Analysis | | 1 | 10110 20 | 1 | # 1 APC Outlet | Nozzle & PM10 cyclone rinse | Acetone | Particulate | | 2 | Na10,20 | | | PM 2.5 cyclone Rinse | Acetone | Particulate | | 3 | | | | PM 2.5 exit & connectors | Acetone | Particulate | | 4 | | | | Back up filter | filter | Particulate | | 5 | | | | Impinger Soln & rinse | Water | Particulate | | 6 | | | | Secondary Filter | Filter | Particulate* | | 7 | | | | Impinger Rinse | Acetone & Hexane | Particulate | | 8 | ~ 1 8 · | 2 | # 1 APC Outlet | Nozzle & PM10 cyclone rinse | Acetone | Particulate | | 9 | NOV10,20 | 6m | 11 2 1 11 0 0 2 11 0 1 | PM 2.5 cyclone Rinse | Acetone | Particulate | | 9
10 | , | | | PM 2.5 exit & connectors | Acetone | Particulate | | 10
11 | | | | Back up filter | filter | Particulate | | 12 | | | | Impinger Soln & rinse | Water | Particulate | | 13 | | | | Secondary Filter | Filter | Particulate' | | 13
14 | | | | Impinger Rinse | Acetone & Hexane | Particulate | | 15 | 0/0/10 2 | 7 3 | # 1 APC Outlet | Nozzle & PM10 cyclone rinse | Acetone | Particulate | | 16 | NOV10,20 | , - | | PM 2.5 cyclone Rinse | Acetone | Particulate | | 17 | | | | PM 2.5 exit & connectors | Acetone | Particulate | | 18 | | | | Back up filter | filter | Particulate | | 19 | | | | Impinger Soln & rinse | Water | Particulate | | 20 | | | | Secondary Filter | Filter | Particulate | | 21 | | | | Impinger Rinse | Acetone & Hexane | Particulate | | 22 | 101/ 2 4 | 1 | # 2 APC Outlet | Nozzle & PM10 cyclone rinse | Acetone | Particulate | | 23 | NOV 9, 20 | 7 | | PM 2.5 cyclone Rinse | Acetone | Particulate | | 24 | | | | PM 2.5 exit & connectors | Acetone | Particulate | | 25 | | | | Back up filter | filter | Particulate | | 26 | | | | Impinger Soln & rinse | Water | Particulate | | 26
27 | | | | Secondary Filter | Filter | Particulate | | 28 | | | | Impinger Rinse | Acetone & Hexane | Particulat | | 29 | N(0:9 - | 2 | # 2 APC Outlet | Nozzle & PM10 cyclone rinse | Acetone | Particulat | | 30 | NOU9, 2 | フ | | PM 2.5 cyclone Rinse | Acetone | Particulat | | 31 | , | | | PM 2.5 exit & connectors | Acetone | Particulat | | 32 | | | | Back up filter | Filter | Particulat | | 33 | | e.mo.e.moe.mounepare | et an antique antique de la company de la desta de la company de la company de la company de la company de la c | Impinger Soln & rinse | Water | Particulat | | 34 | | | | Secondary Filter | Filter | Particulate | | 35 | | | | Impinger Rinse | Acetone & Hexane | Particulat | Revend by Brut 12-NOV-20 830 AM 6.40C ### ORTECH Consulting Inc. - Sample Log Acid Gases Covanta Client: Covanta Job/Report Number: 22050 Received By: C Belore How Received: Train Recovery Job Assigned To: ALS Quote / PO #: 22050 - J2729 | Final Sample Volume(ml) Analysis | HCI, HF & Ammonia | 7 C HCI, nr & Allinoma
F / (HCI, HF & Ammonia | | | HCl, HF & Ammonia | 7 o HCI, HF & Ammonia | goo HCI, HF & Ammonia | |------------------------------------|---|--|------------------------|--------------------------|--------------------------|---|--------------------------| | Initial
Volume(ml) | 200 | 200 | 200 | | 200 | 200 | 200 | | Media | 0.1N H ₂ SO ₄ + DH ₂ O | $0.1N H_2SO_4 + DH_2O_4 DH_2O_5 +$ | $0.1N H_2SO_4 + DH_2O$ | $0.1N H_2 SO_4 + DH_2 O$ | $0.1N H_2 SO_4 + DH_2 O$ | $0.1N \text{ H}_2\text{SO}_4 + \text{DH}_2\text{O}$ | $0.1N H_2 SO_4 + DH_2 O$ | | Sample
Description | Impinger Soln & rinse | Impinger SoIn & rinse | | Location | APC Outlet #1 | APC Outlet #1 | APC Outlet # 1 | APC Outlet # 2 | APC Outlet # 2 | APC#1 | APC#2 | | Sample
Date | Navg, 20 | <u>→</u> | 07.01/0/1 | | | | | | ORTECH Sample ID
20-22050-M26A- | 1 | 2 | w 4 | . rv | 9 | Blank 1 | Blank 2 | Analyze for HCI, HF and Ammonia Relinquished By: Date: 10 10009 Relinquished To: Revendby Brunt 12-1001-20 & 30AM 6,40C ### ORTECH Consulting Inc. - Sample Log Semi-Volatile Organics Samples Covanta Client: Covanta Job/Report Number: 22050 Received By: C Belore How Received: Train Recovery Job Assigned To: ALS PO: 22050 - J2729 | RTECH Sample ID
20-22050-SVOC- | Date | Sample | | Sample | Sample | |--|--|---------------------|----------------
--|----------| | ************************************** | | Description | Location | Media | Analysis | | 4 | 11-Nov-20 | Test 1 | # 1 APC Outlet | Hexane/Acetone | svoc | | h | | Probe Rinse | | 1 4 4 1 1 1 | | | 4 | | Test 1 | | Particulate | SVOC | | | | Filter | | | Autori | | ٥ | | Test 1 | | N.A. | SVOC | | | | XAD-II Trap | | | | | P . | | Test 1 | | Ethylene Glycol | svoc | | | | impinger Solution | | | | | Þ | | Test 1 | | Hexane/Acetone | svoc | | | SELECTION OF THE THEORY THE THEORY OF THE THEORY OF THE THE THEORY OF THE THEORY OF THE THEORY OF THE T | Impinger Rinse | | | | | 6 | 11-Nov-20 | Test 2 | # 1 APC Outlet | Hexane/Acetone | SVOC | | | | Probe Rinse | | | | | 7 | | Test 2 | | Particulate | svoc | | | | Fifter | | | | | \$ | | Test 2 | | N.A. | svoc | | | | XAD-II Trap | | | | | 9 | | Test 2 | | Ethylene Glycol | svoc | | | | : Impinger Solution | | | 5,00 | | 1b | | Test 2 | | Hexane/Acetone | svoc | | | | Impinger Rinse | | The state of s | 3000 | | 1.). | 12-Nov-20 | Test 3 | # 1 APC Outlet | Hexane/Acetone | SVOC | | | | Probe Rinse | | 77.00.00 | 3,00 | | 1 2 | | Test 3 | | Particulate | svoc | | | | Filter | | | 3,00 | | 13 | | Test 3 | | N.A. | svoc | | | | XAD-II Trap | | , , , , , | 3000 | | 14 | | Test 3 | | Ethylene Glycol | svoc | | | | Impinger Solution | | egrificing stycol | 3000 | | 1\$ | | Test 3 | | Hexane/Acetone | svoc | | | | impinger Rinse | | Trekatie/Acetotie | 3400 | | 16 | 12-Nov-20 | Blank 1 | Blank | Hexane/Acetone | SVOC | | | | Probe Rinse | Own | richarie/ Mcccore | 3000 | | 17 | | Blank 1 | | Particulate | svoc | | | | Filter | | raiticulate | SVOC | | 18 | | Biank 1 | | N.A. | svoc | | | | XAD-II Trap | | 14.14. | 3400 | | 19 | | Blank 1 | | Ethylene Glycol | SVOC | | | | Impinger Solution | | railingue autroi | SVOC | | 20 | | Blank 1 | | 110-000 | 51/55 | | 4 | | Impinger Rinse | | Hekane/Acetone | svoc | Relinquished To: ARROW Burton Relinquished By: D. D. (1) 7:10 Date: Date: NW 13/20 ### GRTECH Consulting Inc. - Sample Log Semi-Volatile Organics Samples Covanta Client: Covanta Job/Report Number: 22050 Received By: C Belore How Received: Train Recovery Job Assigned To: ALS PO: 22050 - J2729 | ORTECH Sample ID | | Sample | à | Sample | Sample | | |--|--|-----------------------|----------------|---|----------|----------------| | 20-22050-SVOC- | Date | Description | Location | Media | Analysis | arymonomous | | 23 | 11-Nov-20 | Test 1 | # 2 APC Outlet | Herane/Acetone | svoc | | | | | Probe Rinse | | | 21/02 | | | 2‡ | | Test 1 | | Particulate | SVOC | | | S. Control of the Con | | Filter | | | | | | 2\$ | | Test 1 | | N.A. | svoc | | | | | XAD-II Trap | | | | | | 2¢ | | Test 1 | | Ethylene Glycol | SVOC | | | 1 | | Impinger Solution | | | | | | 2\$ | | Test 1 | | Hexane/Acetone | SVOC | | | | *** ********************************** | Impinger Rinse | | *************************************** | | | | 2\$ | 11-Nov-20 | Test 2 | # 2 APC Outlet | Hexane/Acetone | SVOC | | | | | Probe Rinse | | | | | | 27 | | Test 2 | | Particulate | SVOC | | | 1 | | Filter | | | | | | 28 | | Test 2 | | N.A. | SVOC | | | | | XAD-II Trap | | | | | | 28 | | Test 2 | | Ethylene Glycol | svoc | | | | | Impinger Solution | | | | | | 30 | | Test 2 | | Hexane/Acetone | svoc | | | | | Impinger Rinse | | | | | | 31 | 12-Nov-20 | Test 3 | # 2 APC Outlet | Hexane/Acetone | SVOC | - | | \$
1 | | Probe Rinse | | | | | | 32 | | Test 3 | | Particulate | SVOC | | | | | Filter | | | | | | 33 | | Test 3 | | N.A. | svoc | | | | | XAD-II Trap | | | | | | 34 | | Test 3 | | Ethylene Glycol | svoc | | | Ţ | | Impinger Solution | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | 3\$ | | Test 3 | | Hexane/Acetone | svoc | | | Ĭ | | Impinger Rinse | | | | | | 38 | 12-Nov-20 | Blank 2 | Blank | Hexane/Acetone | svoc | MAZONI | | Ĭ | 24 1401 40 | Probe Rinse | SIG.III | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.00 | | | 37 | | Blank 2 | | Particulate | svoc | | | J | | Filter | | 7 23 31 20 20 20 | 5700 | | | 38 | | Blank 2 | | N.A. | svoc | | | 39 | | XAD-II Trap | | 14.74. | 2400 | | | 39 | | AAD-n Frap
Blank 2 | | Ethylene Glycol | svoc | | | 39 | | | | curyiene diyodi | 3400 | | | | | Impinger Solution | | 11-1-1-10 and a | SVOC | | | 40 | | Blank 2 | | Hexane/Acetone | SVOC | | | ************************************** | ************************************** | Impinger Rinse | | | | линич т | Relinquished To: AARON BURTON Relinquished By: Date: 3 NOV-2020 Date: NW 13/20 ### ORTECH Consulting Inc. - Sample Log VOCs Client: Covanta Project Number: 22050 Received By: C Belore Job Assigned To: ALS Quote / PO: 22050-J2729 | Test
Location | Test
Number | ORTECH
Sample ID
20-22050-VOST- | Sample
Date | Sample
Description | Sample
Analysis | |------------------|---|---|----------------|---|--------------------------------------| | #1 APC Outlet | 1
2
3
4
Field Blank
Combined Condes | 1A,B
2A,B
3A,B
4A,B
5A,B | NoV 11/20 | Tenax and Tenax/Charcoal Archived @ ORTECH | VOCs
VOCs
VOCs
VOCs | | # 2 APC Outlet | 1
2
3
4
Field Blank
Trip Blank
ombined Condes | 7 A B
8 A B
9 A B
10 A B
11 A B
12 A B | Now 1/20 | Tenax and Tenax/Charcoal - Archived @ ORTECH | VOCs
VOCs
VOCs
VOCs
VOCs | Custody Relinguished by: Date: NUV 13/20 1' TO: AARA BUTTON DATE: 13-NOV-202 9:10 1,50 75. ORIECH Cousulting Inc. Recovery & Sample Log NCASI Method ISSIFF A 1115.111 Client: Covanate DYEC Johnkeport Number: 22059 Received By: Chris Betore How Received:
Train Recovery Job Assigned To: A1.S Quote / PO #: 22050 - 31729 | Sand Substitute of Commission | PERCONALES TOR COMPANY OF THE PERCONAL PROPERTY PROPERT | A STATE OF THE PERSON NAMED NAME | | | | | | | | |--|--|--|--
--|--|--|--|---------------|--| | Fev. | 100 S | ORTECH | S. S | First
Seas. | Leigiy Weight | faitisi Weight | Final Weight | Weight of | Weight of | | Namber | 3.0cstion | Sample | Samiled | of Bila | MA Sample | Sample Bottle | 55 BEE. | Sample Bottle | Sample Rottle | | ************************************** | | | ORAN HALLY | Sample Bottle | 2336 | +8334 | Sample Battle | BHA & B20 | BHA & HIO & Heasne | | | | 20-22050- | | | (b) | 16 | 9.0 | (3) | (3) | | | APC Outlet #1 | ALD-1 | Les II les | ALD-1 | 4 2 | 0.85 | の対 | 160
0 | 18+S | | 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - | APC Outlet #1 | ALD-2 | المحادث | ALD-2 | 0.01 | 533. | 1.99/ | œ
Ž | 138 | | (NP) | APC Outlet #1 | ALD-3 | tan's
town | ALD-3 | i B. G | Š. | SE S | 120.1 | 40 | | Blank i | APC Outlet #1 | Blank I | orten stane | ALD-4 | 0.00 | a. a. | で流 | 755 | 68.0
0.0 | | | APC Outlet #2 | ALD-5 | 5 | ALD-5 | 186 | S.S. | | 23.5 | 0.58 | | 7. | APC Outlet #2 | ALD-6 | * | ALD-6 | 110.2 | 8 | 10.70 | 0.22 | \Q.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | er orden mellet kennen ken | APC Outlet #2 | ALD-7 | | ALD.7 | 1.60 | N. V. | 10,2 | 0.27 | 520 | | Blank 2 | APC Outlet #2 | Blank 2 |)) | 4.6.8 | b:60/ | V. Co | N/N | 176.1 | 1875 | | | The state of s | | | www. | 1000 | | | - | | | | Field BHA&Spike | | E | กล | (7) | gu | | na | £11 | | THE PROPERTY OF O | BHA Blank | | na | 118 | 133 | Ra | 25.2 | 200 | 11.2 | | | i and and | *************************************** | | ********* | 140.2 | | ************************************** | | | | - C- | والإس والمستراج والمستروع والمراور والإراوا والمراوين والمستروع والمستروع والمستروع والمستروع | Age in the second secon | Service of the servic | E CONTRACTOR CONTRACTO | The state of s | The same of sa | | | THE RESEARCH
CONTRACTOR OF THE PROPERTY | Analyze cach sample for Acetaldehyde, Formaliehyde, Acrolein. Relinguished by: 000 13Nov-2020 Bate: 155 (10,0) 121 > MARa Burra Relinguished to: Date: ### **APPENDIX 11** Particulate and Metals Train Recovery Data Sheets (8 pages) Client: Covanta DYEC | | Impinger 7 | | Impinger #7 Silica Ge Initial Wt: 903-7 Final Wt: 922-6 7 Gain: /8-9 | |--|--|-------------------------|---| | | Impinger 5 & 6 | CONTAINER TS5-A & TS5-B | CONTAINER TSS-A Empty Wt: With Imp. 5&6 Soln: 632-0 After 100g H,0 Rinse: 350-4 Total TSS-A: MARK FLUID LEVEL CONTAINER TSS-B Empty Wt: With 150 mL Di H ₂ O: 430-0 After HCi Rinse: 452-3 After Dish Total TSS-B Empty Wt: With 150 ml Di H ₂ O: 430-0 After HCi Rinse: 452-3 After Dish TSS-B O ml Glass Bottle TS3-Petri Dish TS4-L Amber Glass Bottle TS5-B - 500 ml Amber Glass Bottle | | | Impinger 5 & 6 | | Empty Wt: 655.4 Initial Wt: 765.5 Gain: 2.9 Colour: Langle # 6 KMnO ₄ /H ₂ SO ₄ Empty Wt: 654.2 Initial Wt: 756.8 Gain: 654.2 Colour: Langle # 6 Colour: 756.8 | | | Impingers 1, 2, 3, and 4 | CONTAINER TS4 | Impinger #1 Empty Empty Wt: 665.5 Golour: 240.7 Colour: 240.7 Colour: 240.7 Impinger #2 HNO ₃ /H ₂ O ₂ Empty Wt: 672.7 Initial Wt: 787.4 Gain: 40.5 Colour: Total TS4: 750.5 Total TS4: 750.5 | | | Filter | CONTAINER 153 | Filter ID: | | Project No.: 22050 Date: Morr Test No.: Morr Test Location: Morr | Nozzle, Probe Liner
Cyclone Bypass & F.H.
Filter Housing | CONTAINER TS1 | Empty Wt: After Act. Rinse: Total TS1: SEAL AND LABEL TS1 CONTAINER TS2 CONTAINER TS2 CONTAINER TS2 After 0.1N HNO ₃ Rinse: FINAL TS2: SEAL AND LABEL TS2 After 0.1N HNO ₃ Rinse: SEAL AND LABEL TS2 Total TS2: SEAL AND LABEL TS2 SEAL AND LABEL TS2 SEAL AND LABEL TS2 SEAL AND LABEL TS2 TS3 (Filter) TS3 (Filter) TS4 (Impinger 5,6 Sol'n-HNO ₃) TS5-8 (Impinger 5,6 Sol'n-HNO ₃) TS5-8 (Impinger 5,6 Sol'n-HNO ₃) TS5-8 (Impinger 5,6 Rinse-HCl) TTain Loaded By: Train Loaded By: | | | Impinger 7 | | Impinger #7 Silica Gel
Initial Wt: タンゲ・ゲ
Final Wt: タタム・ク
7 Gain: アススコ | | Impinger Box ID: | | | |---|--|-------------------------|---|--|---|--|--| | | Impinger 5 & 6 | CONTAINER TSS-A & TSS-B | CONTAINER TSS-A Empty W:: 706.5 With Imp. 5&6 Soln: 67.7 0 After KMnO, Rinse: 749.7 After 100g H ₂ O Rinse: 8 49.0 Total TSS-A: 472.5 | MARK FLUID LEVEL SEAL & LABEL TSS-A CONTAINER TSS-B Empty Wt: | With 150 mL DI H ₂ O: ひろの S
After HCI Rinse: ヤドゲイ
After DI H ₂ O Rinse: S 8 ト・S
Total TSS-B: 3のイ・ス
MARK FLUID LEVEL | TS1,TS2-500 ml Glass Bottle TS3-Petri Dish TS4-4 L Amber Glass Bottle TS5-A - 1000 ml Amber Glass Bottle | CWTR = 1 to 6: 473.1 | | | Impinger 5 & 6 | | Impinger #5 KMnO _d /H ₂ SO ₄ Empty Wt: 679. / Initial Wt: 798.4 Final Wt: 796.7 5 Gain: 2.9 | Impinger # 6 KMnO ₄ /H ₂ SO ₄ Empty Wt: 65/2 4 Initial Wt: 763 - 8 Final Wt: 767 - 2 6 Gain: \$ - 4 | Colour: Ryfl & | | | | | Impingers 1, 2, 3, and 4 | CONTAINER TS4 | Impinger #1 Empty Empty Wt: 659.3 Final Wt: 723.0 1 Gain: 263.7 Colour: | Impinger #2 HNO ₃ /H ₂ O ₂ Empty Wt: 6 H B Initial Wt: 750-1 Final Wt: 898-2 2 Gain: 748.1 | Empty Wt: 64-8 Initial Wt: 767.8 Final Wt: 767.8 Gain: 8/7.6 Gaior: 44.8 | Impinger #4 Empty Empty Wt: 626-7 Final Wt: 629-6 Gain: 7-2 Colour: Lear | Rinse:
Rinse:
RKK FLUI | | | Filter | CONTAINER TS3 | Filter ID: &Z 805 4 Colour: (メルイイを) | | | 20-22050-PM | | | Client: Covanta DYEC Project No.: 22050 Date: N. N. T.C. Test No.: A. Test Location: U.N. | Nozzle, Probe Liner
Cyclone Bypass & F.H.
Filter Housing | CONTAINER TS1 | Container TS1 Weights Empty Wt: ハスピス After Act. Rinse: はいし、ハスピーン Total TS1: (ドト・リ | SEAL AND LABEL TS1 CONTAINER TS2 Container TS2 Weights Empty Wt: | After 0.1N HNO ₃ Rinse: ゼケーレース
Total TS2: | SAMPLE IDENTIFICATION TS1 (Probe Rinse-Acetone) TS2 (Probe Rinse-0.1N HNO ₃) TS3 (Filter) TS4 (Impinger 1-4 Sol'n-HNO ₃) | TSS-B (Impinger 5,6 Rinse-HCl) Train Loaded By: | | Client: Covanta DYEC Project No.: 22050 Date: VOV 0,1,0 Test No.: 3 Test Location: UNV 1 | | | | | | |---|---|--|---
--|---| | Nozzle, Probe Liner
Cyclone Bypass & F.H.
Filter Housing | Filter | Impingers 1, 2, 3, and 4 | Impinger 5 & 6 | Impinger 5 & 6 | Impinger 7 | | CONTAINER TS1 | CONTAINER TS3 | CONTAINER TS4 | | CONTAINER TSS-A & TSS-B | | | Container TS1 Weights Empty Wt: After Act. Rinse: 787.0 After Act. Rinse: 787.0 After Act. Rinse: 787.0 MARK FLUID LEVEL CONTAINER TS2 CONTAINER TS2 Total TS2: 747.8 Total TS2: 747.8 SEAL AND LABEL TS1 SEAL AND LABEL TS2 Total TS2: 747.8 TS2 (Probe Rinse-Acetone) TS2 (Probe Rinse-Acetone) TS3 (Filter) TS3 (Filter) TS3 (Filter) | Seal and label container TS3 Seal and label container TS3 3 20-22050-PM- | Impinger #1 Empty Empty Wt: 6/4/4 Gain: 2.73. (Colour: 2.73. Colour: 2.73. Empty Wt: 5/4/3 Empty Wt: 5/4/3 Empty Wt: 5/4/3 Empty Wt: 5/6/3 Empty Wt: 6/6/3 | Impinger #5 KMnO ₄ /H ₂ SO ₄ Empty Wt: 6773 Initial Wt: 7767 Gain: 2.7 Colour: P.7 Initial Wt: 662.7 Final Wt: 773.2 Final Wt: 773.2 Colour: | Empty Wt: 406.0 With Imp. 5&6 Soln: \$31.9 After KMnO, Rinse: 744.6 After LUDG H,O Rinse: 744.6 Total TS5-A: 4640.6 SEAL & LABEL TS5-A CONTAINER TS5-B Empty Wt: 2 80.0 With 150 mL DI H,O: 432.0 After HG Rinse: 748.3 After DI H,O Rinse: 655.8 Total TS5-B: 406.0 SEAL & LABEL TS5-B Total TS5-B: 732.0 SEAL & LABEL TS5-B Total TS5-B: 732.0 Total TS5-B: 732.0 NARK FLUID LEVEL SEAL & LABEL TS5-B TS4-4 L Amber Glass Bottle TS3-Petri Dish TS4-4 L Amber Glass Bottle | Impinger #7 Silica Gel Initial Wt: 1020 ° 6 6 7 6 7 6 7 Gain: 2.4, 6 6 7 Gain: 2.4, 6 6 7 Gain: 7.4, | | TSS-B (impinger 5,6 Sol'n-KIVInO ₄) TSS-B (impinger 5,6 Rinse-HCl) Train Loaded By: | 7 /2 | Empty Wt: $40\zeta_{10}$ W/Imp. 1.4 Soln: $40\zeta_{10}$ After HNO ₃ Rinse: $12SS_{10}$ Total TS4: 883.7 MARK FLUID LEVEL | | TSS-B - 500 ml Amber Glass Bottle SS_{C} / | | | Nozzle, Probe Liner | Filter | Impingers 1, 2, 3, and 4 | Impinger 5 & 6 | Impinger 5 & 6 | Impinger 7 | |---|------------------------------|---|--|---|------------------------| | Cyclone Bypass & P.H.
Filter Housing | | | | | | | CONTAINER TS1 | CONTAINER TS3 | CONTAINER TSA | | CONTAINER TS5-A & TS5-B | | | Container TS1 Weights | Filter ID: 82.9065 | Impinger #1 Empty | Impinger #5 KMnO ₄ /H ₂ SO ₄ | CONTAINER TS5-A | Impinger,#7 Silica Gel | | | Colour: WHITE | Empty Wt: | Empty Wt: | 3 | Initial Wt: | | Total TS1. | | Final Wt: | Initial Wt: | 45 | Final Wt: | | | | Colour | Final WV.:
5 Gain: | After 100g H.O Rinse: 34/ 2 | / [gain: | | MARK FLUID LEVEL | Seal and label container TS3 | | Colour: | 142 | | | | | Impinger #2 HNO ₃ /H ₂ O ₂ | | And the second s | | | SEAL AND LABEL TS1 | | Empty Wt: | | MARK FLUID LEVEL | | | | | Initial Wt: | Impinger # 6 KMnO ₄ /H ₂ SO ₄ | | | | CONTAINER TS2 | | Final Wt: | Empty Wt: | SEAL & LABEL TS5-A | | | | | 2 Gain: | Initial Wt: | | | | ntainer TS2 | | Colour: | Final Wt: | CONTAINER TSS-B | | | Empty Wt: 28/, 2 | | | 6 Gain: | Empty Wt: 28/30 | | | After 0.1N HNO ₃ Rinse: 53 0.7 | | Impinger #3 HNO ₃ /H ₂ O ₂ | Colour: | With 150 mL DI H ₂ O: 4/3 /-0 | | | Total TS2: 249. の | | Empty Wt: | | 20 | | | | | Initial Wt: | | After DI H ₂ O Rinse: 570.5 | Impinger Box ID: | | MARK FLUID LEVEL | | | | Total TS5-B: 299.5 | | | CEAL AND LABEL TC3 | | 3 Gain: | | - 10 % -
10 % - 1 | | | SEAL AND LABEL 152 | | Colour: | | MARK FLUID LEVEL | | | | | Impinget/#4 Empty | | SEAL & LABEL TSS-B | | | | | Empty Wt: | | | | | SAMPLE IDENTIFICATION | 350-PM- | | | | | | TS1 (Probe Rinse-Acetone) | | 4 Gain: | | TS1, TS2-500 ml Glass Bottle | | | TS2 (Probe Rinse-0.1N HNO ₃) | | Colour: | | TS3- Petri Dish | | | TS3 (Filter) | 77 | | | TS4- 4 L Amber Glass Bottle | | | TS4 (Impinger 1-4 Sol'n-HNO ₃) | 2 2 | CONTAINER TS4 WEIGHTS | | TS5-A - 1000 ml Amber Glass Bottle | | | TS5-A (Impinger 5,6 Sol'n-KMnO ₄) | | Empty Wt: ゲープ・ウ | | TS5-B - 500 ml Amber Glass Bottle | | | TS5-B (Impinger 5,6 Rinse-HCI) | > | w/ Imp. 1-4 Soin: 6/く.ペ | | | | | | | After HNO, Rinse: 7/9 · 9 | | | | | | | Total TS4: 경기 3 - 위 | | CWTR = 1 to 6: | | | Train Condition | | | | | | | Train Recovered By: | | SEAL AND LABEL TSA | | WCBDA= /: | | | | | | | | | | | | | | | | | | Impinger 7 | | Impinger #7 Silica Ge Initial Wt: 9/0.7 Final Wt: 935-/ | Impinger Box ID: | | | |---|--|-------------------------|--|--|--|---------------------| | | Impinger 5 & 6 | CONTAINER TS5-A & TS5-B | CONTAINER TSS-A Empty Wt: $\psi O_{\mathcal{E}}$ / With Imp. 5&6 Soln: $\delta \mathcal{Y}_{\mathcal{G}}$ / After KMnO ₄ Rinse: 7536 After100g H ₂ O Rinse: 8556 Total TSS-A: 4477 | SEAL & LABEL TSS-A CONTAINER TSS-B Empty Wt: 28/.7. With 150 mL Di H ₂ O: 473/.7. After HCl Rinse: 459.3 After Di H ₂ O Rinse: 677.4 Total TSS-B: 346.7. | TS1,TS2-500 ml Glass Bottle TS3- Petri Dish TS4-4 L Amber Glass Bottle TS5-A-1000 ml Amber Glass Bottle TS5-B-500 ml Amber Glass Bottle TS5-B-500 ml Amber Glass Bottle TS5-B-500 ml Amber Glass Bottle | | | | Impinger 5 & 6 | | Impinger #5 KMnO ₄ /H ₂ SO ₄ Empty Wt: £73./ Initial Wt: 782.7 Final Wt: 736.0 5 Galn: 7.7 | Impinger # 6 KMnO ₄ /H ₂ SO ₄ Empty Wt: 862-4 Initial Wt: 728-6 Final Wt: 78-6 Gain: L-6 Colour: Royall | | | | | Impingers 1, 2, 3, and 4 | CONTAINER TS4 | Impinger #1 Empty Empty Wt: 665-/ Final Wt: 7/6-3 Gain: 7-5/-1.1 | Impinger #2 HNO3/H3O2 Empty Wt: 5 4 7 4 | Impinger #4 Empty Empty Wt: \$95.5 Final Wt: \$05.0 Gain: \$19.5 Colour: \$10.0 CONTAINER TS4 WEIGHTS Empty Wt: \$10.0 After HNO ₃ Rinse: \$12.65.8 Total TS4: \$10.0 MARK FLUID LEVEL | SEAL AND LABEL TS4 | | | Filter | CONTAINER TS3 | Filter ID: 名乙 805)
Colour: レイオ イイを
Seal and label container TS3 | | 20-22050-PM- | | | Client: Covanta DYEC Project No.: 22050 Date: No.: 1 Test No.: 1 Test Location: UN T. Z | Nozzle, Probe Liner
Cyclone Bypass & F.H.
Filter Housing | CONTAINER TS1 | Container TS1 Weights Empty Wt: ろってしか After Act. Rinse: ヤスらこの Total TS1: スカールの MARK FLUID LEVEL | SEAL AND LABEL TS1 CONTAINER TS2 Container TS2 Weights Empty Wt: フェル・アファ・ア After 0.1N HNO ₃ Rinse: ゲゲディ Total TS2: ハレーシ MARK FLUID LEVEL SEAL AND LABEL TS2 | SAMPLE IDENTIFICATION TS1 (Probe Rinse-Acetone) TS2 (Probe Rinse-0.1N HNO ₃) TS3 (Filter) TS4 (Impinger 1.4 Sol'n-HNO ₃) TS5-A (Impinger 5,6 Sol'n-HNO ₄) TS5-B (Impinger 5,6 Rinse-HCl) | Train Recovered By: | | | Impinger 7 | | Impinger #7 Silica Ge Initial Wr: \$95.3 Final Wr: \$25.5 | Impinger Box (D: | | |---|--|-------------------------|---|---|--| | | Impinger 5 & 6 | CONTAINER TS5-A & TS5-B | CONTAINER TSS-A Empty Wt: With Imp. 5&6 Soln: 63 0.7 After KMINO ₄ Rinse: 73 9 0.7 After100g H ₂ O Rinse: 8 9 0.0 Total TSS-A: | SEAL & LABEL TSS-A CONTAINER TSS-B Empty Wt: スパパラ With 150 mL Dl H,O: 4 3 4・/ After HCl Rinse: イケリ・スロコ TSS-B: スパララ | TS1,TS2-500 ml Glass Bottle TS3- Petri Dish TS4-4 L Amber Glass Bottle TS5-A-1000 ml Amber Glass Bottle TS5-B-500 ml Amber Glass Bottle TS5-B-500 ml Amber Glass Bottle TS5-B-500 ml Amber Glass Bottle | | | Impinger 5 & 6 | | Impinger #5 KWnO4/H ₂ SO ₄ Empty Wr: 679.7. Initial Wr: 789.8 Final Wr: 794.3 5 Gain: 6.5 | Impinger # 6 KMnO ₄ /H ₂ SO ₄ Empty Wt: 656.4 Initial Wt: 763.4 Final Wt: 763.4 Colour: 2.3 | | | | Impingers 1, 2, 3, and 4 | CONTAINER TS4 | Impinger #1 Empty Empty Wt: 65%-3 Final Wt: 974-4 Gain: 265.1 Colour: 0.20 | Impinger #2 HNO ₃ /H ₂ O ₃ Empty Wt: 6 40.3 Initial Wt: 750.5 Initial Wt: 710.5 Colour: A. | Impinger #4 Empty Empty Wt: 626.7 Final Wt: 630.6 Gain: 4.4 Colour: 2007 A CONTAINER TS4 WEIGHTS Empty Wt: 406.8 W/ Imp. 1-4 Soln: 1079.7 Total TS4: 802.9 MARK FLUID LEVEL SEAL AND LABEL TS4 | | | Filter | CONTAINER TS3 | Filter ID: Q.Z., 30,63 Colour: W.J. (176 Seal and label container TS3 | | 20-22050-PM-
3 7 7
3 7 7
3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | Client: Covanta DYEC Project No.: 22050 Date: Nのし つんし Test No.: イルロイン | Nozzle, Probe Liner
Cyclone Bypass & F.H.
Filter Housing | CONTAINER TS1 | Container TS1 Weights Empty Wt: スタウン〇 After Act. Rinse: うらうし | SEAL AND LABEL TS1 CONTAINER TS2 Container TS2 Weights Empty Wt: After 0.1N HNO ₃ Rinse: 3 4 4. 1 Total TS2: MARK FLUID LEVEL SEAL AND LABEL TS2 | SAMPLE IDENTIFICATION TS1 (Probe Rinse-Acetone) TS2 (Probe Rinse-0.1N HNO ₃) TS3 (Filter) TS4 (Impinger 1.4 Sol'n-HNO ₃) TS5-A (Impinger 5,6 Sol'n-KMnO ₄) TS5-B (Impinger 5,6 Rinse-HCl) Train Loaded By: Train Recovered By: | | 4 Soin: / 7 / 2 / 2
3 Rinse: // 8 / 3 | |--| | Total TS4: 78/4 60-7 | | | and impinger 7 | | Impinger #7 Silica Ge
Initial Wt:
7 Gain: | | | Impinger Box ID: | | | | |---|--|-------------------------|--|---|--|--|--
--|--| | | Impinger 5 & 6 | CONTAINER TSS-A & TSS-B | 5-A
06.6
44-46
734.4 | After 100g H ₂ O Rinse: 寄りんらつ
Total TSS-A: サーク。
MARK FLUID LEVEL | SEAL & LABEL TSS-A | CONTAINER TSS-B Empty Wt: $C \mathcal{E} / \mathcal{C} $ With 150 mL DI H ₂ O: $4 \mathcal{I} / \mathcal{C} $ After HCI Rinse: $4 \mathcal{E} \mathcal{C} / \mathcal{C} $ After DI H ₂ O Rinse: $5 \mathcal{I} / \mathcal{C} / \mathcal{C} $ | Total TS5-B: 192,2
MARK FLUID LEVEL
SEAL & LABEL TS5-B | TS1,TS2-500 ml Glass Bottle TS3- Petri Dish TS4-4 L Amber Glass Bottle TS5-A - 1000 ml Amber Glass Bottle TS5-B - 500 ml Amber Glass Bottle | CWTR = 1 to 6:
WCBDA= 7: | | | Impinger 5 & 6 | | Impinger #S, KMnO ₄ /H ₂ SO ₄ Empty Wt: Initial Wt: | 5 Gain:
Colour: | Impinger # 6 KMnO ₄ /H ₂ SO ₄ Empty Wt: Initial Wt: | Final Wt:
6 Gain:
Colour: | | | | | | Impingers 1, 2, 3, and 4 | CONTAINER TS4 | Impinger #1 Empty Empty Wt: Final Wt: | Colour:
Impinger #2 HNO ₃ /H ₂ O ₂
Empty Wt: | Initial Wt:
Final Wt: | Colour: Impinger #3 HNO ₃ /H ₂ O ₂ Empty Wt: Initial Wt: | | Final W Gain: Colour Colour CC Empty W/Imp | Total TS4: 考/2、こ
MARK FLUID LEVEL
SEAL AND LABEL TS4 | | 14
14
14 | Filter | CONTAINER TS3 | Filter ID: 87.9066
Colour: W出了で | Seal and label container TS3 | | | | 20-22050-PM-
47
47
47
47
47
47
47
47
47
47 | | | Client: Covanta DYEC Project No.: 22050 Date: NON 100 100 Test No.: | Nozzle, Probe Liner
Cyclone Bypass & F.H.
Filter Housing | CONTAINER TS1 | Container TS1 Weights Empty Wt: 2000 After Act. Rinse: 5000 Total TS1: 23000 | MARK FLUID LEVEL SEAL AND LABEL TS1 | CONTAINER TS2 | Container TS2 Weights Empty Wt: プレックトゥル After 0.1N HNO ₃ Rinse: ~ できる。サ | MARK FLUID LEVEL
SEAL AND LABEL TS2 | SAMPLE IDENTIFICATION TS1 (Probe Rinse-Acetone) TS2 (Probe Rinse-0.1N HNO ₃) TS3 (Filter) TS4 (Impinger 1.4 Sol'n-HNO ₃) TS5-8 (Impinger 5,6 Sol'n-KMnO ₄) | Train Loaded By:
Train Recovered By: | ### **APPENDIX 12** Inorganics Analytical Reports (28 pages) 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 | | | ri | - | ř | | | ÷ | | | F | A | m | 9 | 1000 | 8.0 | 0 | 986 | C | |-----------|-----|-----|------|-----|-----|---|-----|-----------|-----|---|---|------|---|------|-----|---|-----|-----| | TO SECONO | W-0 | 8 8 | 58 F | 5 6 | A10 | - | 200 | 30 | - P | 8 | 8 | 18 6 | - | 8 | y | 3 | 5 | 0,1 | ALS Project Contact: Lynne Wrona ALS Project ID: ORT100 ALS WO#: L2528486 Date of Report 26-Nov-20 Date of Sample Receipt 12-Nov-20 Client Name: Client Address: ORTECH Environmental 804 Southdown Road Mississauga, ON L5J 2Y4 Canada Client Contact: Chris Belore Client Project ID: 22050 Covanta ### COMMENTS: Sample Particulate Analysis via Gravimetric USEPA Method 5 (TPH 26-NOV-2020) ### REPORT FLAGS: J - The value is uncertain and below what can be reliably identified as positive with a ≥99% confidence limit (i.e. below the laboratory determined MDL). LCB = Laboratory Control Blank CVS = Continuing Verification Standard Sample (limits: ±2 in the last decimal) LOR = Limit of Reporting Certified by: L. Mora Lynne Wrona Account Manager Results in this certificate relate only to the samples as submitted to the laboratory. This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd. ### **ALS Environmental** Sample Analysis Summary Report | | NAME OF THE OWNER OF THE OWNER OF THE OWNER, WHEN THE OWNER, WHEN THE OWNER, WHEN THE OWNER, WHEN THE OWNER, | | | *************************************** | |--|--|---|--|---| | And the second control of the property of the second the | 아는 하다 이 영화 사람들은 전환 모든 나라게 사람들 사람들은 하다. | | 20-22050-PM-(19 | 20-22050-PM-(2 | | | | THRU 18) TEST#3 | THRU 24) BLANK | THRU 30) TEST# | | APC OUTLET #1 | APC OUTLET #1 | APC OUTLET #1 | | APC OUTLET# | | L2528486-1 | L2528486-2 | L2528486-3 | 1 2528486-4 | L2528486- | | Stack | Stack | | 나는 아이들은 얼마를 다양을 먹었습니? | Stac | | Sample | Sample | | | Sampl | | 9-Nov-20 | · 高· 克· · 克· · · · · · · · · · · · · · · | | | 10-Nov-2 | | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-2 | | 2 | | | | | | | mg | mg | ma | mg | | 9 | 0.3 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | | | 그 사이가 있는 것이 되어 있는 그런데 되었습니다. | | | | 0.3 | | 4 14.4 | 17.7 | 1.6 | 0.6 | 14.1 | | | | | | | | 9
2 83.2 | 110 | 112 | 9
275 | g
101 | | | THRU 6) TEST#1 APC OUTLET #1 L2528486-1 Stack Sample 9-Nov-20 12-Nov-20 R g mg 8 0.1 J 4 14.4 g g g | THRU 6) TEST#1 APC OUTLET #1 L2528486-1 Stack Sample 9-Nov-20 12-Nov-20 12-Nov-20 R g mg mg mg 8 0.1 J 0.3 J 4 14.4 17.7 g g g g g | THRU 6) TEST#1 APC OUTLET #1 L2528486-1 L2528486-2 L2528486-3 Stack Stack Sample 9-Nov-20 9-Nov-20 10-Nov-20 12-Nov-20 12-Nov-20 R g mg mg mg mg mg 8 0.1 J 0.3 J 0.2 J 14.4 14.4 17.7 1.6 | THRU 6) TEST#1 | ### **ALS Environmental** Sample Analysis Summary Report | | 20-22050-PM-(31
THRU 36) TEST#2 | 20-22050-PM-(37
THRU 42) TEST#3 | 20-22050-PM-(43 | | |-------------------------------|------------------------------------|------------------------------------|--|-------------| | Sample Name | APC OUTLET #2 | | 2 | MB | | ALS Sample ID | L2528486-6 | L2528486-7 | L2528486-8 | L2528486-MB | | Matrix | Stack | Stack | Stack | n/a | | Analysis type | Sample | Sample | Sample | Sample | | Sampling Date/Time | 10-Nov-20 | 10-Nov-20 | 10-Nov-20 | n/a | | Date of Receipt | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | n/a | | PM via Gravimetric Analysis L | OR | | | | | Method 5 | mg mg | mg | mg | mg | | Filter Particulate Matter | 0.8 | | :::::::::::::::::::::::::::::::::::::: | | | Acetone Particulate Matter | 0.4 2.6 | 10.5 | <0.1 | <0.1 | | | g g | g | g | g | | Acetone Mass 0 | .02 118 | 110 | 227 | 30.2 | 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 ### **Certificate of Analysis** ALS Project Contact: Lynne Wrona ALS Project ID: ORT100 ALS WO#: L2528499 Date of Report 30-Nov-20 Date of Sample Receipt 12-Nov-20 Client Name: Client Address: Ortech Environmental 804 Southdown Road Mississauga, ON L5J 2Y4 Canada **Client Contact:** Chris Belore Client Project ID: 22050 Covanta ### COMMENTS: Sample Particulate Analysis via Gravimetric USEPA Method 201A (TPH 30-NOV-2020) Sample Particulate Analysis via Gravimetric USEPA Method 202 (TPH 30-NOV-2020) ### REPORT FLAGS: J - The value is uncertain and below what can be reliably identified as positive with a ≥99% confidence limit (i.e. below the laboratory determined MDL). LCB = Laboratory Control Blank CVS = Continuing Verification Standard Sample (limits: ±2 in the last decimal) LOR = Limit of Reporting Certified by: L. Mrora Lynne Wrona Account Manager Results in this certificate relate only to the samples as submitted to the laboratory. This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd. ### ALS Environmental Sample Analysis Summary Report | ample Name | | 20-22050-M201A-1
TEST#1 APC
OUTLET #1 | 20-22050-M201A-2
TEST#1 APC
OUTLET #1 | 20-22050-M201A-3
TEST#1
APC
OUTLET #1 | 20-22050-M201A-4
TEST#1 APC
OUTLET #1 | 20-22050-M201A
(5-7) TEST#1 APC
OUTLET #1 | |--|------|---|---|---|---|---| | LS Sample ID
atrix
nalysis type
ampling Date/Time
ate of Receipt | | L2528499-1
Stack
Sample
10-Nov-20 | L2528499-2
Stack
Sample
10-Nov-20 | L2528499-3
Stack
Sample
10-Nov-20 | L2528499-4
Stack
Sample
10-Nov-20 | L2528499-5
Stack
Sample
10-Nov-20 | | 10 51 (CCG) | | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | | PNI via Gravimetric Analysis | LOR | | | | | | | Method 201A | mg | mg | mg | mg | mg | mg | | Filter Particulate Matter | 0.8 | sanarah kanganagin yan | Agranya gwalegia ye egal | | <0.1 | namakakan kan ini kahat | | Acetone Particulate Matter | 0.4 | 0.5 | 1.3 | 0.4 | | | | | g | g | g | g | g | g | | Acetone Mass | 0.02 | 33.5 | 28.6 | 6.0 | | | | PM via Gravimetric Analysis | LOR | | | | | | | Method 202 | mg | mg | mg | mg | mg | mg | | Extractable Condensable Particulates | 0.4 | | <u>.</u> | | | 1.8 | | Non-Extractable Condensable Particulates | 0.4 | | • | | | 3.5 | | | g | g | g | g | g | g | | Water Mass | 0.02 | | | | | 273 | ### **ALS Environmental** Sample Analysis Summary Report | Sample Name | | 20-22050-M201A-8
TEST#2 APC
OUTLET #1 | 20-22050-M201A-9
TEST#2 APC
OUTLET#1 | 20-22050-M201A-
10 TEST#2 APC
OUTLET #1 | 20-22050-M201A-
11 TEST#2 APC
OUTLET #1 | 20-22050-M201A
(12-14) TEST#2
APC OUTLET #1 | | |--|------|---|--|---|---|---|--| | ALS Sample ID | | L2528499-6 | L2528499-7 | L2528499-8 | L2528499-9 | L2528499-10 | | | Matrix | | Stack | Stack | Stack | Stack | Stac | | | Analysis type | | Sample | Sample | Sample | Sample | Sample | | | Sampling Date/Time | | 10-Nov-20 | 10-Nov-20 | 10-Nov-20 | 10-Nov-20 | 10-Nov-20 | | | Date of Receipt | | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | | | PM via Gravimetric Analysis | LOR | | | | | | | | Method 201A | mg | mg | mg | mg | mg | mg | | | Filter Particulate Matter | 0.8 | | Parajagigajana | | | ging a makansang na ja | | | Acetone Particulate Matter | 0.4 | 0.2 J | 0.3 J | 0.1 J | | | | | | g | g | g | g | g | g | | | Acetone Mass | 0.02 | 33.5 | 22.5 | 14.8 | | policina programa.
Na regional de la filosofia | | | PM via Gravimetric Analysis | LOR | | | | | | | | Method 202 | mg | mg | mg | mg | mg | mg | | | Extractable Condensable Particulates | 0.4 | | | | | 3.2 | | | Non-Extractable Condensable Particulates | 0.4 | | | | | 4.0 | | | | g | g | g | g | g | g | | | Water Mass | 0.02 | | | | | 222 | | | | MINISTER PROPERTY. | The state of s | | | | | | | |--|--------------------|--|---|---|---|--|--|--| | Sample Name | | 20-22050-M201A-
15 TEST#3 APC
OUTLET #1 | 20-22050-M201A-
16 TEST#3 APC
OUTLET #1 | 20-22050-M201A-
17 TEST#3 APC
OUTLET #1 | 20-22050-M201A-
18 TEST#3 APC
OUTLET #1 | 20-22050-M201A
(19-21) TEST#
APC OUTLET# | | | | ALS Sample ID | | L2528499-11 | L2528499-12 | L2528499-13 | L2528499-14 | L2528499-1 | | | | Matrix | | Stack | Stack | Stack | Stack | Stac | | | | Analysis type | | Sample | Sample | Sample | Sample | Sampl | | | | Sampling Date/Time | | 10-Nov-20 | 10-Nov-20 | 10-Nov-20 | 10-Nov-20 | 10-Nov-2 | | | | Date of Receipt | | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | | | | PM via Gravimetric Analysis | LOR | | | | | | | | | Method 201A | mg | mg | mg | mg | mg | mg | | | | Filter Particulate Matter | 0.8 | and our morning shows. | | ceany contemple to the | <0.1 | | | | | Acetone Particulate Matter | 0.4 | 0.5 | 0.2 J | 0.2 J | | | | | | | g | g | g | g | g | g | | | | Acetone Mass | 0.02 | 34.5 | 27.1 | 11.9 | | | | | | PM via Gravimetric Analysis | LOR | | | | | | | | | Method 202 | mg | mg | mg | mg | mg | mg | | | | Extractable Condensable Particulates | 0.4 | | | | | 1.9 | | | | Non-Extractable Condensable Particulates | 0.4 | | | | | 3.6 | | | | | g | g | g | g | g | g | | | | Water Mass | 0.02 | | | | | 201 | | | | ample Name | | 20-22050-M201A-
22 TEST#1 APC
OUTLET #2 | 20-22050-M201A-
23 TEST#1 APC
OUTLET #2 | 20-22050-M201A-
24 TEST#1 APC
OUTLET #2 | 20-22050-M201A-
25 TEST#1 APC
OUTLET #2 | 20-22050-M201A
(26-28) TEST#
APC OUTLET#2 | |--|------|---|---|--|---|---| | LS Sample ID | | L2528499-16 | L2528499-17 | L2528499-18 | L2528499-19 | L2528499-20 | | fatrix | | Stack | Stack | Stack | Stack | Stack | | nalysis type | | Sample | Sample | Sample | Sample | Sample | | ampling Date/Time | | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | | ate of Receipt | | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | | PM via Gravimetric Analysis | LOR | | | | | | | Method 201A | mg | mg | mg | mg | mg | mg | | Filter Particulate Matter | 0.8 | papatan analysis a saatiya | | NASTRUKTĀRĀSĀS KĀSĀSĀSĀSĀSĀSĀSĀSĀSĀSĀSĀSĀSĀSĀSĀSĀS | | | | Acetone Particulate Matter | 0.4 | <0.1 | 0.1 J | 0.2 J | | | | | g | g | g | g | a | a | | Acetone Mass | 0.02 | 29.7 | 30.3 | 10.5 | | g | | PM via Gravimetric Analysis | LOR | | | | | | | Method 202 | mg | mg | mg | mg | mg | mg | | Extractable Condensable Particulates | 0.4 | | | | | 2.5 | | Non-Extractable Condensable Particulates | 0.4 | | | | | 4.5 | | | 9 | g | g | g | g | g | | Water Mass | 0.02 | | | | | 219 | | Sample Name | | 20-22050-M201A-
29 TEST#2 APC
OUTLET #2 | 20-22050-M201A-
30 TEST#2 APC
OUTLET #2 | 20-22050-M201A-
31 TEST#2 APC
OUTLET #2 | 20-22050-M201A-
32 TEST#2 APC
OUTLET #2 | 20-22050-M201A
(33-35) TEST#2
APC OUTLET#2 | |--|------|---|---|---|---|--| | ALS Sample ID
Matrix
Analysis type
Sampling Date/Time | | L2528499-21
Stack
Sample
9-Nov-20 | L2528499-22
Stack
Sample
9-Nov-20 | L2528499-23
Stack
Sample
9-Nov-20 | L2528499-24
Stack
Sample
9-Nov-20 | L2528499-25
Stack
Sample
9-Nov-20 | | Date of Receipt | | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | | PM via Gravimetric Analysis | LOR | | | | | | | Method 201A | mg | mg | mg | mg | mg | mg | | Filter Particulate Matter | 0.8 | | enery singlejeje system | | <0.1 | ।
स्थानकार स्वत्वस्थान | | Acetone Particulate Matter | 0.4 | 0.8 | 0.2 J | 0.4 | | | | | g | g | g | g | g | g | | Acetone Mass | 0.02 | 47.5 | 21.3 | 11.1 | | | | PM via Gravimetric Analysis | LOR | | | | | | | Method 202 | mg | mg | , mg | mg | mg | mg | | Extractable
Condensable Particulates | 0.4 | ing sa manggalang sa kalang sa
Kalang sa kalang | | | <u></u> | 3.2 | | Non-Extractable Condensable Particulates | 0.4 | | | | | 4.3 | | | g | g | g | g | g | g | | Water Mass | 0.02 | | | | | 249 | | ple Name | 20-22050-M201A-
36 TEST#3 APC
OUTLET #2 | 20-22050-M201A-
37 TEST#3 APC
OUTLET #2 | 20-22050-M201A-
38 TEST#3 APC
OUTLET #2 | 20-22050-M201A-
39 TEST#3 APC
OUTLET #2 | 20-22050-M201A
(40-42) TEST#3
APC OUTLET #2 | |---|--|--|---|---|--| | Sample ID | L2528499-26 | L2528499-27 | L2528499-28 | L2528499-29 | L2528499-30 | | × : : : : : : : : : : : : : : : : : : : | Sta c k | Stack | Stack | Stack | Stack | | ⁄sis.type | Sample | Sample | Sample | Sample | Sample | | oling Date/Time | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | | of Receipt | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | | PM via Gravimetric Analysis LC | OR . | | | | | | Method 201A r | ng mg | mg | mg | mg | mg | | Filter Particulate Matter | 1- je prazpjeko je je nastivi 8.0 | and a farmana spiritera c | ara serrabbingspool | 0.4 (A) | orthophysical and the control of | | Acetone Particulate Matter (| 0.4 0.5 | 0.2 J | 0.9 | | | | | g g | g | g | g | | | Acetone Mass 0. | 02 41.3 | 39.8 | 17.6 | | | | PM via Gravimetric Analysis LC | OR STATE OF THE ST | | | | | | Method 202 | ng mg | mg | mg | mg | mg | | Extractable Condensable Particulates (|).4 | | | | 2.1 | | on-Extractable Condensable Particulates (|).4 | | | | 3.7 | | | g g | ani di Maria Mari
Maria di Maria Ma | g | g | g | | 그 그는 아마 프로틴 사람들 그만 나는 아이들은 사람들을 모르는 모르는 것 |).4
.g | | | 9 | g | | ample Name | | 20-22050-M201A-
43 BLANK APC
OUTLET #1 | 20-22050-M201A-
44 BLANK APC
OUTLET #1 | 20-22050-M201A-
45 BLANK APC
OUTLET #1 | 20-22050-M201A-
46 BLANK APC
OUTLET #1 | 20-22050-M201A
(47-49) BLANI
APC OUTLET# | |--|------|--|--|--|--|--| | LS Sample ID | | L2528499-31 | L2528499-32 | L2528499-33 | L2528499-34 | L2528499-3 | | atrix | | Stack | Stack | Stack | Stack | Stack | | nalysis type | | Sample | Sample | Sample | Sample | Sample | | ampling Date/Time | | 10-Nov-20 | 10-Nov-20 | 10-Nov-20 | 10-Nov-20 | 10-Nov-20 | | ate of Receipt | | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | | PM via Gravimetric Analysis | LOR | | | | | | | Method 201A | mg | mg | mg | mg | mg | mg | | Filter Particulate Matter | 8.0 | and proposition of | | andronjujujujuju | <0.1 | anjangan hijinji k anisi | | Acetone Particulate Matter | 0.4 | 0.2 J | 0.1 J | <0.1 | | | | | g | g | g e | g | a a | g | | Acetone Mass | 0.02 | 20.7 | 22.6 | 21.9 | | | | PM via Gravimetric Analysis | LOR | | | | | | | Method 202 | mg | mg | mg | mg | mg | mg | | Extractable Condensable Particulates | 0.4 | | | | | 0.5 | | Non-Extractable Condensable Particulates | 0.4 | | | | | 1.4 | | | 9 | g | g | g | g | g | | Water Mass | 0.02 | - | | | | 173 | | OUTLET #2 OUTLE | APC 52 BLANK APC
T #2 OUTLET #2 | 53 BLANK APC
OUTLET #2 | 20-22050-M201A
(54-56) BLANK
APC OUTLET #2 | |--|------------------------------------
--|--| | L2528499-36 L252849 | 보석하는 내가 나라 하루를 중한 2명하다라고, | L2528499-39 | L2528499-40 | | 그는 그는 사람들이 가장 살아 있는 것이 하면 하는 것은 사람들이 되는 것이 되는 것이 되는 것이 되었다면 하는 것이 되었다. | Stack Stack | Stack | Stack | | | mple Sample | Sample | Sample | | 10-Nov-20 10-No
12-Nov-20 12-No | | 10-Nov-20
12-Nov-20 | 10-Nov-20
12-Nov-20 | | ia Gravimetric Analysis LOR | | SELECTION CONTROL CONT | | | Method 201A mg mg mg | mg | mg | mg | | Filter Particulate Matter 0.8 | | 0.2 J | | | cetone Particulate Matter 0.4 0.5 0.6 | 0.1 J | | | | and the state of t | g | g | g | | Acetone Mass 0.02 56.4 48.1 | 52.2 | | 가 있다고 11 전투 함인
1 : | | ia Gravimetric Analysis LOR | | | | | Method 202 mg mg mg | mg | mg | mg | | Condensable Particulates 0.4 | | | 0.6 | | Condensable Particulates 0.4 | | | 1.9 | | | g | g | g | | Condensable Particulates 0.4 - | g | g g | 9 | | ample Name | | MB | MB | | |--|------|--------------|--------------|--| | LS Sample ID | | L2528499-MB | L2528499-MB2 | | | latrix | | n/a | n/a | | | nalysis type | | Sample | Sample | | | ampling Date/Time | | n/a | n/a | | | Pate of Receipt | | n/a | n/a | | | PM via Gravimetric Analysis | LOR | | | | | Method 201A | mg | mg | mg | | | Filter Particulate Matter | 0.8 | 0,4 J | | | | Acetone Particulate Matter | 0.4 | 0.2 J | <0.1 | | | | g | g | g | | | Acetone Mass | 0.02 | 34.0 | 30.2 | | | PM via Gravimetric Analysis | LOR | | | | | Method 202 | mg | mg | mg | | | Extractable Condensable Particulates | 0.4 | 0.1 J | | | | Non-Extractable Condensable Particulates | 0.4 | 1.7 | | | | | g | g | g | | | Water Mass | 0.02 | 199 | | | 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 ### **Certificate of Analysis** ALS Project Contact: Lynne Wrona ALS Project ID: ORT100 ALS WO#: L2528478 Date of Report 23-Nov-20 Date of Sample Receipt 12-Nov-20 Client Name: Ortech Environmental Client Address: 804 Southdown Road Mississauga, ON L5J 2Y4 Canada Client Contact: Chris Belore Client Project ID: 22050 Covanta ### COMMENTS: F as HF Anion Analyzed via Ion Chromatography USEPA Method 26A (GN 19-Nov-20) Cl as HCl Anion Analyzed via Ion Chromatography USEPA Method 26A (GN 19-Nov-20) Ammonia, Total (as NH₃) via Ion Chromatography USEPA Method CTM-027 (GN 16-Nov-20) ### **ANALYST COMMENTS:** Low levels of chloride and fluoride observed in the method blank (MB) slightly above their LORs. Sample data is well beyond this potential background. No impact to data quality is suspected. PE 20-Nov-2020 LOR = Limit of Reporting MB = Laboratory Control Blank (limits: <LOR) LCS = Laboratory Control Sample (limits: 90-110%) MS = Matrix Spike Sample (limits: 90-110%, NH₃: 85-115%) RPD = Relative Percent Difference (limits: <20% for sample duplicate, <10% for duplicate injection) Certified by: L. Mrosso Lynne Wrona Account Manager Results in this certificate relate only to the samples as submitted to the laboratory. This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd. | Sample Name | 20-22050-M26A-1
APC OUTLET #1 | 20-22050-M26A-2
APC OUTLET #1 | 20-22050-M26A-3
APC OUTLET#1 | 20-22050-M26A-4
APC OUTLET #2 | 20-22050-M26A-5
APC OUTLET #2 | |---|--|--|--|---|---| | ALS Sample ID
Matrix
Analysis type
Sampling Date/Time
Date of Receipt | L2528478-1
Stack
Sample
9-Nov-20
12-Nov-20 | L2528478-2
Stack
Sample
9-Nov-20
12-Nov-20 | L2528478-3
Stack
Sample
9-Nov-20
12-Nov-20 | L2528478-4
Stack
Sample
10-Nov-20
12-Nov-20 | L2528478-5
Stack
Sample
10-Nov-20
12-Nov-20 | | Ion Chromatography Analysis | | | | | | | USEPA Method 26A | mg | mg | mg | mg | mg | | Total F as HF (ave) | <0.160 | <0.161 | <0.176 | <0.168 | <0.174 | | Analysis 1 | <0.160 | <0.161 | <0.176 | <0.168 | <0.174 | | Analysis 2 | <0.160 | <0.161 | <0.176 | <0.168 | <0.174 | | Total Cl' as HCl (ave) | 6.56 AND A | 6.76 | 6,11 | 5.37 | 5.11 | | Analysis 1 | 6.68 | 6.73 | 6.16 | 5.26 | 5.16 | | Analysis 2 | 6.45 | 6.78 | 6.06 | 5.47 | 5.06 | | USEPA Method CTM-027 Ammonia | mg | mg | mg | mg | mg | | Total Ammonia as NH ₃ | 0.911 | 1.06 | 0.986 | 1.22 | 1.09 | | | | 20-22050-M26A- | 20-22050-M26A- | | |--|----------------------------------|------------------------------|------------------------------|--| | Sample Name | 20-22050-M26A-6
APC OUTLET #2 | BLANK 1 APC
OUTLET #1 | BLANK 2 APC
OUTLET #2 | | | ALS Sample ID | L2528478-6 | L2528478-7 | L2528478-8 | | | Matrix
Analysis type
Sampling Date/Time
Date of Receipt | Stack
Sample
10-Nov-20 | Stack
Sample
10-Nov-20 | Stack
Sample
10-Nov-20 | | | | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | | | Ion Chromatography Analysis
USEPA Method 26A | mg | mg | mg | | | Total F´as HF (ave) | <0.173 | <0.107 | <0.109 | | | Analysis 1 | <0.173 | <0.107 | <0.109 | | | Analysis 2 | <0.173 | <0.107 | <0.109 | | | Total Cl as HCl (ave) | 4.98 | <0.157 | 0.312 | | | Analysis 1 | 4,98 | <0.157 | 0.307 | | | Analysis 2 | 4.98 | <0.157 | 0.316 | | | USEPA Method CTM-027 Ammonia | mg | mg | mg | | | Total Ammonia as NH₃ | 1.01 | <0.288 | <0.293 | | Sample QC Summary Report | Sample Name | MB | LCS | LCS | | |---------------------------------------|--------------|-------------|-------------|--| | LS Sample ID | MB | LCS | LCS | | | Natrix | Stack | Stack | Stack | | | nalysis type | Method Blank | Blank Spike | Blank Spike | | | Sampling Date/Time
Date of Receipt | n/a
n/a | n/a
n/a | n/a
n/a | | | | | | | | | Ion Chromatography Analysis | | | | | | USEPA Method 26A | mg | mg | % Rec | | | Total F as HF (ave) | 0.00512 | 0.0585 | 101% | | | Analysis 1 | 0.00510 | 0.0587 | | | | Analysis 2 | 0.00514 | 0.0583 | | | | Total Cl as HCl (ave) | 0.00299 | 0.0778 | 97% | | | Analysis 1 | 0.00298 | 0.0781 | | | | Analysis 2 | 0.00300 | 0.0775 | | | | USEPA Method CTM-027 Ammonia | mg | mg | % Rec | | | Ammonia, Total (as NH ₃) | <0.00472 | 0.0486 | 103% | | Sample QC Summary Report | Sample Name | 20-22050-M26A-1
APC OUTLET #1 | 20-22050-M26A-1
APC OUTLET #1 | 20-22050-M26A-1
APC OUTLET #1 | 20-22050-M26A-1
APC OUTLET #1 | | |---|--|--|--|--|--| | ALS Sample ID
Matrix
Analysis type
Sampling Date/Time
Date of Receipt | L2528478-1
Stack
Sample
9-Nov-20
12-Nov-20 | L2528478-1DUP
Stack
Duplicate
9-Nov-20
12-Nov-20 | L2528478-1MS
Stack
Matrix Spike
9-Nov-20
12-Nov-20 | L2528478-1MS
Stack
Matrix Spike
9-Nov-20
12-Nov-20 | | | Ion Chromatography Analysis | | | | | | | USEPA Method 26A | mg | mg | mg | % Rec | | | Total F as HF (ave) | <0.160 | <0.160 | 5.00 | 95% | | | Analysis 1 | <0.160 | <0.160 | 5.01 | | | | Analysis 2 | <0.160 | <0.160 | 5,00 | | | | Total Cl as HCl (ave) | 6.56 | 6.57 | 14.4 | 105% | | | Analysis 1 | 6.68 | 6.60 | 14.4 | | | | Analysis 2 | 6.45 | 6.54 | 14.4 | | | | USEPA Method CTM-027 Ammonia | mg | mg | mg | % Rec | | | Ammonia, Total (as NH ₃) | 0.911 | 0.887 | 5.32 | 101% | | 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 ### **Certificate of
Analysis** ALS Project Contact: Lynne Wrona > ALS Project ID: **ORT100** > > L2528486 ALS WO#: Date of Report 3-Dec-20 Date of Sample Receipt 12-Nov-20 Client Name: **ORTECH Environmental** Client Address: 804 Southdown Road Mississauga, ON L5J 2Y4 Canada Client Contact: Chris Belore Client Project ID: 22050 Covanta ### COMMENTS: Metals analysed via ICP-MS Method USEPA 6020B (SA 26-Nov-20 and 30-Nov-20) Sample Preparation via USEPA Method 29 (26-Nov-20) ### **ANALYST COMMENTS:** Cu, Mo, Ni observed in the 1A method blank (MB) at levels significantly above their LORs. Data for these analytes may be biased high as a result of these background contributions. Ag recovery in the FH LCSD is outside ALS DQOs (found: 59%, limits: 85-115%). LCS, MS, and MSD recoveries are all within ranges. This is likely due to silver binding other elements in solution. The presence of the filter matrix has been observed to effectively counteract this process. Impact to data quality is expected to be negligible. PE 2-Dec-2020 LCB = Laboratory Control Blank LCS = Laboratory Control Sample LCSD = Laboratory Control Sample Duplicate LOR = Limit of Reporting Certified by: L. Mrora Lynne Wrona Account Manager | | | ALO El
Sample Anal | NVİ <mark>ronm</mark> (
Vsis Summaı | | | | | |--|----------|--|---|--|--|--|--| | Sample Name | | 20-22050-
PM-(1 THRU
6) TEST#1
APC OUTLET
#1 | 20-22050-
PM-(7 THRU
12) TEST#2
APC OUTLET
#1 | 20-22050-
PM-(13
THRU 18)
TEST#3 APC
OUTLET #1 | 20-22050-
PM-(19
THRU 24)
BLANK 1 | 20-22050-
PM-(25
THRU 30)
TEST#1 APC
OUTLET #2 | 20-22050
PM-(3:
THRU 36
TEST#2 APO
OUTLET #2 | | ALS Sample ID
Matrix
Analysis Type
Sampling Date
Date of Receipt | | L2528486-1
Stack
Sample
9-Nov-20
12-Nov-20 | L2528486-2
Stack
Sample
9-Nov-20
12-Nov-20 | L2528486-3
Stack
Sample
10-Nov-20
12-Nov-20 | L2528486-4
Stack
Sample
9-Nov-20 | L2528486-5
Stack
Sample
10-Nov-20 | L2528486-6
Stacl
Sample
10-Nov-20 | | Multi-Metals via ICP-MS | LOR | 12-NUV-20 | 12-1100-20 | 12-1104-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | | muit-licrais ara 1CL-M2 | ug | | | | | | | | | uy | ug | ug | ug | ug | ug | ប្រ | | Front Half HF Fraction 1A | | | | | | | | | Antimony
Arsenic | 0.2
1 | 0.397
< | 0.205 | | | | 0.22 | | Barium | 5 | 5.48 | 5.07 | 8.07 | 7.18 | < | 7.5 | | Beryllium | 0.2 | < | < | < | < | < | | | Cadmium | 0.1 | 0.253 | 0.174 | 0.232 | < | 0.143 | 0.15 | | Chromium | 1.1 | 5.34 | 3.85 | 2.76 | 2.44 | 3.06 | 3.1 | | Cobalt | 0.2 | < | < | 0.345 | < | < | | | Copper | 1 | 6.98 | 6.68 | 6.16 | 6.07 | 6.27 | 6.4 | | Lead | 0.5 | 1.23 | 0.958 | 1.01 | < | 1.02 | 1.0 | | Molybdenum | 0.2 | 24.2 | 23.6 | 24.0 | 23.3 | 24,0 | 23. | | Nickel | 0.2 | 4.83 | 3.40 | 3.84 | 2.30 | 2.80 | 3.0 | | Selenium | 2 | < | < | < | < | < | | | Silver | 0.2 | < | < | < | < | < | | | Thallium | 0.2 | 0.971 | 0.404 | < | < | < | 0.26 | | Vanadium | 1 | < | < | < | < | < | | | Zinc | 6 | 25.2 | 16.8 | 17.0 | < | 13.6 | 17. | | Back Half (HNO3 / H2O2) Fraction 2 | A | | | | | | | | Antimony | 0.1 | No. | < | < | × | < | | | Arsenic | 0.2 | Ž. | ~ | <u> </u> | Į. | <u> </u> | | | Barium | 0.5 | 1.22 | 1.01 | 1.00 | 0.776 | 1.15 | 1.1 | | Beryllium | 0.1 | | | | | < | | | Cadmium | 0.05 | 0.150 | 0.157 | 0.0603 | < | 0.144 | | | Chromium | 0.15 | 0.735 | 0.581 | 0.493 | 0.355 | 0.892 | 0.67 | | Cobalt | 0.1 | < | , , , , , , , , , , , , , , , , , , , | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ~ ~ | < | ÿ.ÿ/, | | Copper | 0.3 | 15.7 | 16.4 | 19.7 | 9.78 | 20.1 | 16. | | Lead | 0.05 | 0.844 | 0.550 | 0.460 | 0.421 | 0.779 | 0.41 | | Molybdenum | 0.1 | < | < | < | < | < | | | Nickel | 0.1 | 0.849 | 0.695 | 1.01 | 0.280 | 0.660 | 0.66 | | Selenium | 1 | 5.75 | 8.13 | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | × × | 3.0 | | Silver | 0.1 | < | < | < | < | < | | | Thallium | 0.05 | < | < | < | < | < | | | Vanadium | 0.1 | < | < | < | < | < | | | Zinc | 3 | 10.4 | 6.05 | 5.66 | < | 6.16 | 6.4 | | | | ALS Er | nvironm | ental | | |--|---------|--|--|---------------------------------------|--| | | | Sample Anal | | | | | Sample Name | | 20-22050-
PM-(37
THRU 42)
TEST#3 APC
OUTLET #2 | 20-22050-
PM-(43
THRU 48)
BLANK 2 | MB | | | ALS Sample ID | | L2528486-7 | L2528486-8 | L2528486-MB | | | Matrix | | Stack | Stack | n/a | | | Analysis Type | | Sample | Sample | Sample | | | Sampling Date | | 10-Nov-20 | 10-Nov-20 | n/a | | | Date of Receipt | | 12-Nov-20 | 12-Nov-20 | n/a | | | Multi-Metals via ICP-MS | LOR | | | | MINISTER STREET, STREE | | | ug | ug | ug | ug | | | Front Half HF Fraction 1A | | | | | | | Antimony | 0.2 | < | | | | | entras is reconstantes in a reconstantial particular Arsenic : | 0.2
 | er val y vlade alejalese v | > .
≥entenganina | ×
dedokanimeka | | | Barium | 5 | 8.27 | 5.19 | · · · · · · · · · · · · · · · · · · · | | | Beryllium | 0.2 | 5.27
< | 5.15 | < | | | Cadmium | 0.1 | 0.266 | ~ | ~ | | | Chromium | 1 | 2.71 | 2.41 | 2.04 | | | Cobalt | 0.2 | 2,71 | 2.41 | 2.04 | | | Copper | 1 | 7.12 | 9.00 | 5.79 | | | Lead | 0.5 | 1.01 | 0.503 | 5.79 | | | Molybdenum | 0.2 | 23.2 | 22.3 | 23.2 | | | Nickel | 0.2 | 4.34 | 2.09 | 2.23 | | | Selenium | -2 | T.J. | 2.03 | 2.23 | | | Silver | 0.2 | < | < | < | | | Thallium | 0.2 | 0.697 | <u> </u> | < | | | Vanadium | 1 | | | | | | Zinc | 6 | 4
15.7 | < | <
< | | | 물론 스타르트 그림 그를 즐겁다 | Ĭ | | | | | | Back Half (HNO3 / H2O2) Fraction 2 | Α | | | | | | | | | | | | | Antimony | 0.1 | < | <u> </u> | | | | Arsenic | 0.2 | | < | | | | Barium | 0.5 | 1.47 | 0.834 | | | | Beryllium | 0.1 | 0.0006 | < | | | | Cadmium | 0.05 | 0.0836 | < | | | | Cobalt | 0.15 | 0.600 | 0.341 | | | | Cobalt | 0.1 | 0.295 | < 0.22 | | | | Copper | 0.3 | 15.8
0.613 | 8.33 | | | | Molyhdonym | 0.05 | | 0.523 | | | | Molybdenum
Niekol | 0.1 | 0.500 | < | | | | Nickel
Coloniae | 0.1 | 0.588 | 0.279 | | | | Selenium | 1 | < | × | | | | Silver | 0.1 | | < | | | | Thallium | 0.05 | < | < | | | | Vanadium | 0.1 | 0.273 | < | | | | Zinc | 3 | 9.56 | < | a ta da sa sa 😁 | | | | | ALS En | vironme | ental | | | | |------------------------------------|------------|------------------|------------|------------|--------------|----------|---------------| | | | | Summary R | | | | | | Sample Name | | RB | LCS | LCS | LCSD | LCSD | | | ALS Sample ID | | RB | LCS | LCS | | | | | Matrix | | Stack | Stack | Stack | LCSD | LCSD | | | Analysis Type | | Blank | LCS | LCS | Stack
LCS | Stack | | | Sampling Date | | | | | | LCS | | | Date of Receipt | | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a | | | | | ny a | iva. | II/ d | ΙVα | n/a | ************* | | Multi-Metals via ICP-MS | LOR | | | | | | | | | ug | ug | ug | % Rec | ug | % Rec | | | Front Half HF Fraction 1A | | | | | | | | | Antimony | 0.2 | | 11.9 | 99 | 11.5 | 96 | | | Arsenic | 1 | < | 59.8 | 100 | 58.3 | 97 | | | Barium | 5 | < | 58.3 | 97 | 57.7 | 96 | | | Beryllium: | 0.2 | stania ant Sudan | · - | | 58.4 | 97 | | | Cadmium | 0.1 | < | 29.9 | 100 | 28.8 | 96 | | | Chromium | 1 | < | 58.8 | 98 | 57.8 | 96 | | | Cobalt | 0.2 | < | 59.1 | 99 | 57.8 | 96 | | | Copper | 1 | < | 60.2 | 100 | 59.0 | 98 | | | Lead | 0.5 | < | 61.1 | 102 | 59.2 | 99 | | | Molybdenum | 0.2 | < | 29.2 | 97 | 27.8 | 93 | | | Nickel | 0.2 |
< | 59.4 | 99 | 58.1 | 97 | | | Selenium | 2 | < | 60.1 | 100 | 58.9 | 98 | | | Silver | 0.2 | < | 30.1 | 100 | 17.6 | 59 | | | Thallium | 0.2 | < | 61.2 | 102 | 59.3 | 99 | | | Vanadium | 1 | < | 58.6 | 98 | 57.9 | 96 | | | Zinc | 6 | < | 119 | 99 | 115 | 95 | | | Back Half (HNO3 / H2O2) Fraction 2 | 2 A | | | | | | | | Antimony | 0.1 | < | 5.92 | 99 | 5.83 | 97 | | | Arsenic | 0.2 | | 29.6 | 99 | 30.0 | 100 | | | Barium | 0.5 | | 30.3 | 101 | 30.0
29.2 | 97 | | | Beryllium | 0.1 | | 29.1 | 97 | 29.2
29.4 | 97
98 | | | Cadmium | 0.05 | | 15.5 | 104 | 29.4
15.7 | 105 | | | Chromium | 0.15 | < | 29.7 | 99 | 30.2 | 101 | | | Cobalt | 0.1 | < | 29.9 | 100 | 30.3 | 101 | | | Copper | 0.3 | < | 30.1 | 100 | 30.4 | 101 | | | Lead | 0.05 | < | 30.1 | 100 | 30.5 | 101 | | | Molybdenum | 0.1 | < | 14.6 | 97 | 14.6 | 97 | | | Nickel | 0.1 | < | 29.9 | 99 | 30.4 | 101 | | | Selenium | 1 | < | 28.7 | 96 | 29.5 | 98 | | | Silver | 0.1 | < | 14.4 | 96 | 14.4 | 96 | | | Thallium | 0.05 | < | 29.7 | 99 | 30.3 | 101 | | | Vanadium | 0.1 | < | 29.9 | 100 | 29.9 | 100 | | | Zinc | 3 | < | 59.1 | 98 | 59.4 | 98 | | | | | ALS E | Environn | nental | | | | |------------------------------------|------------|---------------------------------------|---------------------------------------|--|--|--------------------------|-----------------------------------| | | | | QC Summary | | | | | | Sample Name | | 20-22050- | 20-22050- | 20-22050-
PM-(1 THRU
6) TEST#1
APC OUTLET
#1 | 20-22050-
PM-(1 THRU
6) TEST#1
APC OUTLET
#1 | 6) TEST#1 | 20-22
PM-(1
6) TE
APC OL | | ALS Sample ID | | L2528486-1 | L2528486-1 | MS | MS | MSD | | | Matrix | | Stack | Stack | Stack | Stack | Stack | | | Analysis Type | | Sample | Duplicate | Matrix Spike | Matrix Spike | Matrix Spike Dup | Matrix Sp | | Sampling Date | | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | 9-1 | | Date of Receipt | | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-N | | Multi-Metals via ICP-MS | LOR | | | 1011110 50113-111110 (101111-111-111-111-111-11-11-11-11-11-11 | | | | | | ug | ug | ug | ដូច | % Rec | ug | Q | | Front Half HF Fraction 1A | | | | | | | og komi ^r | | Antimony | 0.2 | 0.397 | 0.368 | 23.7 | 97 | 24.2 | | | | 1 | na romanikaris€. | | 112 | 93. | 24.2
114. juni ja 14. | | | Barium | 5 | 5.48 | 5.42 | 116 | 92 | 121 | | | Beryllium | 0.2 | < | | 116 | 97 | 119 | | | Cadmium | 0.1 | 0.253 | 0.249 | 59.1 | 98 | 58.5 | | | Chromium | 1 | 5.34 | 5.27 | 115 | 91 | 116 | | | Cobalt | 0.2 | | < | 111 | 93 | 112 | | | Copper | 1 | 6.98 | 6.93 | 120 | 94 | 120 | | | Lead | 0.5 | 1.23 | 1.27 | 118 | 97 | 120 | | | Molybdenum | 0.2 | 24.2 | 24.3 | 81.1 | 95 | 82.4 | | | Nickel | 0.2 | 4.83 | 4.99 | 116 | 92 | 117 | | | Selenium | 2 | < | < | 115 | 96 | 116 | | | Silver | 0.2 | < | < | 57.1 | 95 | 58.2 | | | Thallium | 0.2 | 0.971 | 0.996 | 121 | 100 | 121 | | | Vanadium | 1 | i i i i i i i i i i i i i i i i i i i | i i i i i i i i i i i i i i i i i i i | 110 | 92 | 111 | | | Zinc | 6 | 25.2 | 25.3 | 254 | 95 | 254 | | | Back Half (HNO3 / H2O2) Fraction : | 2A | | | | | | | | | 0.1 | | | | | | | | Antimony | 0.1 | | | 11.6 | 96 | 11.5 | | | Arsenic | 0.2 | , , , , , , , , , , , , , , , , , , , | , | 56.9 | 95 | 57.2 | | | Barium | 0.5
0.1 | 1,22 | 1.23 | 51.2 | 83 | 51.5 | | | Beryllium | | 0.150 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 57.2 | 95 | 57.4 | | | Cadmium | 0.05 | 0.150 | 0.141 | 30.5 | 101 | 31.4 | | | Chromium | 0.15 | 0.735 | 0.752 | 59.0 | 97 | 58.8 | | | Cobalt | 0.1 | 15.7 | <u> </u> | 58.5 | 97 | 59.4 | | | Copper | 0.3 | 15.7 | 15.4 | 74.1 | 97 | 74.9 | | | Lead
Molybdenum | | 0.844 | 0.838 | 57.5 | 94 | 57.8 | | | | 0.1 | 0.840 | < | 28.6 | 95 | 28.6 | | | Nickel
Salanium | 0.1 | 0.849 | 0.830 | 59,5 | 98 | 60.1 | | | Selenium | 0.1 | 5.75 | 5,51 | 60.3 | 91 | 62.4 | | | Silver | 0.1 | <u> </u> | < | 27.9 | 93 | 28.0 | | | Thallium | 0.05 | <u> </u> | <u> </u> | 58.3 | 97 | 58.2 | | | Vanadium | 0.1 | | . | 58.4 | 97 | 58.3 | | | Zinc | 3 | 10,4 | 10.1 | 126 | 96 | 127 | | 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 ### **Certificate of Analysis** ALS Project Contact: Lynne Wrona ALS Project ID: ORT100 ALS WO#: L2528486 Date of Sample Receipt 12-Nov-20 Date of Report 30-Nov-20 Client Name: **ORTECH Environmental** Client Address: 804 Southdown Road Mississauga, ON L5J 2Y4 Canada Client Contact: Client Project ID: Chris Belore 22050 Covanta ### COMMENTS: Sample Preparation via USEPA Method 29 (AB 23,24,27-NOV-2020) Mercury Analysis via CVAA using Method USEPA 7470A (AB 24,27-NOV-2020) LOR = Limit of Reporting LCB = Laboratory Control Blank (limits: <LOR) LCS = Laboratory Control Sample (limits: hivol, solids: 85-115%, stack: 90-110%) MS = Matrix Spike Sample (limits: 75-125%) RPD = Relative Percent Difference (limits: <20%) CCV/CVS = Calibration Verification Standard (limits: 85-115%) Certified by: L. Strona Lynne Wrona Account Manager Results in this certificate relate only to the samples as submitted to the laboratory. This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd. | | | | -22050-PM-(7 THRU | 20-22050-PM-(13 | | 20-22050-PM-(2 | |------------------------|-------|------------|-------------------|-----------------|---|----------------| | | (8 | TEST#1 APC | 12) TEST#2 APC | THRU 18) TEST#3 | 20-22050-PM-(19 | THRU 30) TEST# | | Sample Name | | OUTLET#1 | OUTLET#1 | APC OUTLET #1 | THRU 24) BLANK 1 | APC OUTLET# | | ALS Sample ID | | L2528486-1 | L2528486-2 | L2528486-3 | L2528486-4 | L2528486- | | Matrix | | Stack | Stack | Stack | Stack | Stac | | Analysis type | | Sample | Sample | Sample | Sample | Sample | | Sampling Date/Time | | 9-Nov-20 | 9-Nov-20 | 10-Nov-20 | 9-Nov-20 | 10-Nov-20 | | Date of Receipt | | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-2 | | Mercury via CVAA | LOR | | | | CONTROL OF STANCE AND | | | Method 29 | | | | | | | | meuloa 25 | ug | ug | ug | ug | ug | ug | | | | | | | | | | Analytical Fraction 1B | 0.015 | <0.015 | <0.015 | <0.015 | <0.015 | <0.015 | | Analytical Fraction 2B | 0.050 | 1.91 | 1,15 | 0.644 | <0.148 | < 0.425 | | Analytical Fraction 3B | 0.025 | <0.0225 | <0.0225 | < 0.0225 | <0.0225 | <0.0225 | | Analytical Fraction 3C | 0.25 | 0.468 | 0.399 | <0.225 | <0.15 | 0.304 | | Sample Name | 20-22050-PM-(31
THRU 36) TEST#2
APC OUTLET #2 | THRU 42) TEST#3 | 20-22050-PM-(43
THRU 48) BLANK 2 | | |------------------------|---|-----------------|-------------------------------------|--| | ALS Sample ID | L2528486-6 | L2528486-7 | L2528486-8 | | | Matrix | Stack | Stack | Stack | | | Analysis type | Sample | Sample | Sample | | | Sampling Date/Time | 10-Nov-20 | 10-Nov-20 | 10-Nov-20 | | | Date of Receipt | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | | | Mercury via CVAA | LOR | | | | | Method 29 | ug | ug | ug | | | Analytical Fraction 1B | 0.015 <0.015 | <0.015 | <0.015 | | | Analytical Fraction 2B | 0.050 <0.395 | <0.385 | < 0.15 | | | Analytical Fraction 3B | 0.025 < 0.0225 | <0.0225 | <0.0225 | | | Analytical Fraction 3C | 0.25 <0.15 | <0.2 | <0.15 | | Sample QC Summary Report | Sample Name | | LCB | LCS | LCS | LCSD | LCSI | |------------------------|-------|--------------|--
--|--|----------------| | ALS Sample ID | | LCB | LCS | LCS | LCSD | LCSE | | Analysis type | | Method Blank | Blank Spike | Blank Spike | Blank Spike Dup | Blank Spike Du | | Sampling Date/Time | | N/A | N/A | N/A | N/A | N// | | Date of Receipt | | N/A | N/A | N/A | N/A | N// | | Mercury via CVAA | LOR | | THE STATE OF S | NOT THE DOCUMENT OF THE PARTY O | Tarania (Mariana i Santa Mariana i Maria | | | Method 29 | na | ug | ug | % Rec | ug | % Rec | | Analytical Fraction 1B | 0.015 | <0.015 | 0.282 | 94% | 0.280 | 94% | | Analytical Fraction 2B | 0.050 | <0.05 | 0.933 | 93% | 0.954 | 95% | | Analytical Fraction 3B | 0.025 | <0.025 | 0.474 | 95% | 0,481 | 96% | | Analytical Fraction 3C | 0.25 | <0.25 | 4.65 | 93% | 4.57 | 91% | Sample QC Summary Report | | | | yp.o | | | | |-------------------------------|----------------------------------|----------------------------------|----------------------------------|--|----------------------------------|---------------------------------| | | 20-22050-PM-(1
THRU 6) TEST#1 | 20-22050-PM-(1
THRU 6) TEST#1 | 20-22050-PM-(1
THRU 6) TEST#1 | 20-22050-PM-(1
THRU 6) TEST#1 | 20-22050-PM-(1
THRU 6) TEST#1 | 20-22050-PM-(*
THRU 6) TEST# | | Sample Name | APC OUTLET #1 | APC OUTLET #1 | APC OUTLET #1 | APC OUTLET #1 | APC OUTLET #1 | APC OUTLET# | | ALS Sample ID | L2528486-1 | L2528486-1DUP | L2528486-1MS | L2528486-1MS | L2528486-1MSD | L2528486-1MSE | | Matrix | Stack | Stack | Stack | Stack | Stack | Stac | | Analysis type | Sample | Duplicate | Matrix Spike | Matrix Spike | Matrix Spike Dup | Matrix Spike Du | | Sampling Date/Time | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | 9-Nov-20 | | Date of Receipt | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-20 | 12-Nov-2 | | Mercury via CVAA LO | DR . | | | felficiple solve of the later character and a second and a second and a second and a second and a second and a | | | | Method 29 | ıg ug | ug | ug | % Rec | ug | % Rec | | - Analytical Fraction 1B 0.01 | 5 <0.015 | <0.015 | 0.300 | 99% | 0.288 | 95% | | Analytical Fraction 2B 0.05 | 0 1.91 | 1.89 | 8.71 | 95% | 8.64 | 94% | | Analytical Fraction 3B 0.02 | 5 <0.0225 | <0.0225 | 0.398 | 88% | 0.401 | 89% | | Analytical Fraction 3C 0.25 | 0.468 | 0.489 | 3.21 | 91% | 3.33 | 95% | ### **APPENDIX 13** Particle Size Distribution Train Recovery Data Sheets (8 pages) ORTECH Esseinmented **ORTECH Consulting Inc.** PM₁₀, PM_{2.5} & Condensate Recovery Data Sheet Client: Covanta DYEC Project No.: 22050 100 C Date: filter to front half 2nd filter with CWTR=1+2+3: WCBDA=4: stem impinger (14 lpm for 1 hr) imp 1 transfered to Impaction Seal and label container TS6 Perform nitrogen purge of Seal and Label Container CONTAINER TS5 & TS6 Mark Fluid Level and glassware from filter Purge On: 10-10 to 2nd u-tube with Secondary Filter CONTAINER TSS CONTAINER TS6 di H2O into TS3 12/2 purge is not required. Rinse all * if there is no gain Purge Off: Impinger #1 Knock Out V Impinger #4 Silica Gel a ale Impinger #2 Empty Impingers 1, 2, 3, 4 Ken 3.768 Secondary Filter Impinger #3 H₂O 1.000 658 9800 Empty Wt: Empty Wt: Empty Wt: Initial Wt: nitial Wt: Final Wt: Final Wt: Final Wt: Final Wt: % Spent: Colour: Colour: Colour: Gain: Gain: 4 Gain: 3 Gain: Seal and label container TS4 CONTAINER TS4 Back-Up Filter Filter ID: 62.90 / Colour: 121H Seal and label container TS3 Exit Stem, and Connecting Mark Fluid Level and Tubing to Filter, CONTAINER TS3 and Filter Top Seal and label container TS2 cup, and outside of exit stem to PM 2.5 cyclone. PM 2.5 tubing from, PM 10 head Cyclone walls, collection PM 10 Turnaround cup, exit stem, connecting Mark Fluid Level and 20-22050-M201A-CONTAINER TS2 Ž Seal and label container TS1 Nozzle, PM 10 Cyclone walls, SAMPLE IDENTIFICATION TS7 (Acetone / Hexane rinse) Mark Fluid Level and outside of exit stem TSS (Imp 2 H₂0 and rinse) TS4 (Back Up Filter, <2.5) CONTAINER TS1 collection cup, TS6 (Secondary Filter) Train Recovered By: Train Loaded By: TS3 (Part. < 2.5) TS2 (Part. > 2.5) TS1 (Part. > 10) Acetone & Hexane into TS7 Acetone/Hexane Rinse Rinse all glassware from CONTAINER TS7 アイイでと Test Location: Test No.: Seal and Label Container Mark Fluid Level and # PM₁₀, PM_{2.5} & Condensate Recovery Data Sheet 50071011 Date: Client: Covanta DYEC Project No.: 22050 Test Location: Test No.: filter to front half 2nd filter with Acetone & Hexane into TS7 Rinse all glassware from Seal and Label Container Acetone/Hexane Rinse 0 Mark Fluid Level and CONTAINER TS7 CWTR=1+2+3: WCBDA=4: stem impinger (14 lpm for 1 hr) imp 1 transfered to Impaction Seal and label container TS6 Perform nitrogen purge of Seal and Label Container CONTAINER TS5 & TS6 0 Mark Fluid Level and glassware from filter to 2nd u-tube with CONTAINER TSS CONTAINER TS6 Secondary Filter di H2O into TS3 3 purge is not required. Rinse all * if there is no gain Purge On: Purge Off: Impinger #1 Knock Out 00%.0 1000 Impinger #4 Silica Gel 378 Impinger #2 Empty 12/21 Impingers 1, 2, 3, 4 (X) 100 Secondary Filter Impinger #3 H₂O Empty Wt: Empty Wt: Empty Wt: Initial Wt: Initial Wt: % Spent: Final Wt: Final Wt: Final Wt: Final Wt: Colour: Colour: Colour: 4 Gain: Gain: 1 Gain: 3 Gain: Seal and label container TS4 **CONTAINER TS4** Back-Up Filter Filter ID: \mathbb{QER} Colour: CAL Seal and label container TS3 Exit Stem, and Connecting Mark Fluid Level and Tubing to Filter, **CONTAINER TS3** and Filter Top Seal and label container TS2 cup, and outside of exit stem to PM 2.5 cyclone. PM 2.5 tubing from, PM 10 head Cyclone walls, collection PM 10 Turnaround cup, exit stem, connecting Mark Fluid Level and 20-22050-M201A-CONTAINER TS2 0 N Nozzle, PM 10 Cyclone walls, Seal and label container TS1 SAMPLE IDENTIFICATION TS7 (Acetone / Hexane rinse) Mark Fluid Level and outside of exit stem TS5 (Imp 2 H₂0 and rinse) TS4 (Back Up Filter, <2.5) CONTAINER TS1 collection cup, TS6 (Secondary Filter) Train Recovered By: Train Loaded By: TS2 (Part. > 2.5) TS3 (Part. < 2.5) TS1 (Part. > 10) Or CRITICIT Egyptement PM₁₀, PM_{2.5} & Condensate Recovery Data Sheet Client: Covanta DYEC Project No.: 22050 Date: Test Location: Test No.: filter to front half 2nd filter with Acetone & Hexane Into TS7 Rinse all glassware from 0 Seal and Label Container Acetone/Hexane Rinse Mark Fluid Level and CONTAINER TS7 CWTR=1+2+3: WCBDA=4: stem impinger (14 lpm for 1 hr) imp 1 transfered to Impaction Seal and label container TS6 Perform nitrogen purge of Seal and Label Container CONTAINER TS5 & TS6 のくい Mark Fluid Level and 5.00 glassware from filter to 2nd u-tube with CONTAINER TS5 Secondary Filter CONTAINER TS6 di H2O into TS3 purge is not required. Rinse all * if there is no gain Purge On: Purge Off: Impinger #1 Knock Out Impinger #4 Silica Gel Impinger #2 Empty S Impingers 1, 2, 3, 4 N A Secondary Filter Impinger #3 H₂O 288. 880 Empty Wt: 675. Initial Wt: Empty Wt: Empty Wt: Initial Wt: Final Wt: Final Wt: Final Wt: Final Wt: % Spent: Colour: Colour: Colour: 4 Gain: Gain: Gain: 3 Gain: Seal and label container TS4 CONTAINER TS4 Back-Up Filter Filter ID: (8,7, 50 Colour: 1/2 🏹 Seal and label container TS3 Exit Stem, and Connecting Mark Fluid Level and Tubing to Filter, CONTAINER TS3 and Filter Top cup, and outside of exit stem Seal and label container TS2 to PM 2.5 cyclone. PM 2.5 tubing from, PM 10 head Cyclone walls, collection PM 10 Turnaround cup, exit stem, connecting Mark Fluid Level and 20-22050-M201A-CONTAINER TS2 0 2 13 N Seal and label container TS1 Nozzle, PM 10 Cyclone walls, SAMPLE IDENTIFICATION TS7 (Acetone / Hexane rinse) Mark Fluid Level and outside of exit stem TS4 (Back Up Filter, <2.5) collection cup, TS5 (Imp 2 H₂0 and rinse) CONTAINER TS1 TS6 (Secondary Filter) Train Recovered By:
Train Loaded By: TS2 (Part. > 2.5) TS3 (Part. < 2.5) TS1 (Part. > 10) - CWTR=1+2+3: WCBDA=4: ## ORTECH Consulting Inc. # PM₁₀, PM_{2.5} & Condensate Recovery Data Sheet | Test location: | CONTAINER TS5 & TS6 | Perform nitrogen purge of | imp 1 transfered to Impaction stem impinger (14 lpm for 1 hr) | * if there is no gain | purge is not required. | Ourman One | Purge Off: | | Rinse all | glassware from filter | to 2nd u-tube with | di H2O into TS3 | | CONTAINER TS5 | Mark Fluid Level and | Seal and Label Container | | | CONTAINER TS6 | Secondary Filter | | Seal and label container TS6 | | | | |---|------------------------------|--|---|-----------------------|------------------------|---------------------------|----------------------|------------------------------|-----------|-----------------------|--------------------|------------------|-----------------------|------------------------------|----------------------|--------------------------|----------------------------|--|------------------------|--|------------------------|------------------------------|------------------|---------------------|---| | | Impingers 1, 2, 3, 4 | Impinger #1 Knock Out | Empty Wt: | 1 Gain: | Colour: | Liveril Classification | Empty Wt: | Final Wt: | 2 Gain: | Colour: | | Secondary Filter | | Impinger #3 H ₂ O | Empty Wt: | Initial Wt: | Final Wt: | 3 Gain: | Colour: | Executive control cont | Impinger #4 Silica Gel | Initial Wt: | Final Wt: | 4 Gain: | % Spent: | | | Back-Up Filter | | | CONTAINER TS4 | | Filter ID: Q. C. O. O. C. | Colour: 0/1/2 | Seal and label container TS4 | Exit Stem, and Connecting | and Filter Top | | CONTAINER TS3 | | | Mark Fluid Level and | Seal and label container TS3 | | | | | | | | | | | | | | | | | | | PM 10 Turnaround cup, exit stem, connecting | tubing from, PM 10 head | Cyclone walls, collection | cup, and outside of exit stem | CONTAINER TS2 | | | Mark Fluid Level and | Seal and label container TS2 | | | | | 20-22050-M201A- | | 40 | シナ | 95 | | 200 | 62 | | | | | | | Client: Covanta DYEC Project No.: 22050 Date: (M) (0,) | Nozzle, PM 10 Cyclone walls, | conection cup,
outside of exit stem | | CONTAINER TS1 | | | Mark Fluid Level and | Seal and label container TS1 | | | | 10 | SAMPLE IDENTIFICATION | TS1 (Part. > 10) | TS2 (Part. > 2.5) | TS3 (Part. < 2.5) | TS4 (Back Up Filter, <2.5) | TS5 (Imp 2 H ₂ 0 and rinse) | TS6 (Secondary Filter) | TS7 (Acetone / Hexane rinse) | | | Train Loaded By: | Train Recovered By: | Стирования по при | Seal and Label Container Mark Fluid Level and Acetone/Hexane Rinse filter to front half 2nd filter with Acetone & Hexane into TS7 Rinse all glassware from CONTAINER TS7 # PM₁₀, PM_{2.5} & Condensate Recovery Data Sheet | | CONTAINER TS7 | | Rinse all glassware from | filter to front half 2nd filter with | Acetone & Hexane Into 157 | | | Acetone/Hexane Rinse | | | Mark Fluid Level and | Seal and Label Container | | | | | | | | | | | | |)
9
T | CWTR=1+2+3: (+77) | MICEDIA-4. | | |--|------------------------------|---------------------------|---------------------------|--|---|-----------------------|------------------------|----------------------|----------------|----------------------|------------------------------|--------------------------|-----------------------|--------------------|------------------|----------------------|-----------------------------|----------------------|--------------------------|----------------------------|--|------------------------|------------------------------|---|------------------------------|-------------------|---------------------|----------| | Test No.: Test Location: (4.12.) | CONTAINER TS5 & TS6 | | Perform nitrogen purge of | imp 1 transfered to Impaction | stem impinger (14 ipm for 1 nr) | * if there is no gain | purge is not required. | | | SERPHURE Off: 1700 | | Rinse all | glassware from filter | to 2nd u-tube with | di H2O into T53 | | CONTAINER TSS | Mark Fluid Level and | Seal and Label Container | | | CONTAINER TS6 | Secondary Filter | | Seal and label container TS6 | | | | | | Impingers 1, 2, 3, 4 | | Impinger #1 Knock Out | S. | VE: Ø ∖ | | Colour: | | Empt | Empty Wt: 517-565 | 6,0 | 2 Gain: 1 🕒 🔑 | Colour: | | Secondary Filter | | Impinger#3 H ₂ O | Empty Wt: (575.3 | Initial Wt: 1775.0 | Wt: | 3 Gain: — 0.5 | Colour: | | Impinger#4 Silica Gel | Initial Wt: 852.4 | Final Wt: 863-1 | 4 Gain: 10.7 | % Spent: | | | Back-Up Filter | | | | F Copie Co. La per la Copie Co. La per la Copie | CONTAINER 134 | 5,0 | Filter ID: Q Z 20/0 | Colour: WM/TTE | | Seal and label container TS4 | Exit Stem, and Connecting | Tubing to Filter, | and Filter Top | | | CONTAINER TS3 | | | | Mark Fluid Level and | Seal and label container TS3 | | | | | | | | | | | | | | | | | | | PM 10 Turnaround cup, exit stem, connecting | tubing from, PM 10 head | to PM 2.5 cyclone. PM 2.5 | Cyclone walls, collection | cup, and outside of exit stem | | CONTAINER TS2 | | | | Mark Fluid Level and | Seal and label container TS2 | | | | | 20-22050-M201A- | 70 | 22 | 47 | 25 | 9 N | 77 | 9% | adductive and an accompany of the offer figible conserve of specimens, specimens, specimens and | | ~ | 1/20 | ٠ | | Client: Covanta DVEC Project No.: 22050 Date: 1000 | Nozzle, PM 10 Cyclone walls, | collection cup, | outside of exit stem | раном надам (как) селото на пред пред
пред пред пред пред пред пред | | CONTAINER TS1 | | | | Mark Fluid Level and | Seal and label container TS1 | | | | | SAMPLEIDENTIFICATION | TS1 (Part. > 10) | TS2 (Part. > 2.5) | TS3 (Part. < 2.5) | TS4 (Back Up Filter, <2.5) | TS5 (Imp 2 H ₂ 0 and rinse) | TS6 (Secondary Filter) | TS7 (Acetone / Hexane rinse) | | • | Train Loaded By: | Train Recovered By: | | # PM₁₀, PM_{2.5} & Condensate Recovery Data Sheet Client: Covanta DYEC Test No.: filter to front half 2nd filter with Acetone & Hexane into TS7 Rinse all glassware from Acetone/Hexane Rinse Seal and Label Container Mark Fluid Level and 00° CONTAINER TS7 CWTR=1+2+3: WCBDA=4: stem impinger (14 lpm for 1 hr) imp 1 transfered to Impaction Seal and label container TS6 Perform nitrogen purge of Seal and Label Container CONTAINER TS5 & TS6 Mark Fluid Level and glassware from filter to 2nd u-tube with 00.1 Secondary Filter CONTAINER TS5 CR:91 CONTAINER TS6 di H2O into TS3 purge is not required. Rinse all * if there is no gain Test Location: Purge Off: Purge On: Impinger #1 Knock Out 1887 10 Impinger #4 Silica Gel Impinger #2 Empty 5129 する 2002 LRan Impingers 1, 2, 3, 4 0:31 Cear 1585 Secondary Filter Impinger #3 H₂O たるか Sea A Empty Wt: CAL. Empty Wt: Empty Wt: Initial Wt: Final Wt: Initial Wt: Final Wt: Final Wt: Final Wt: % Spent: Colour: Colour: 1 Gain: Colour: 4 Gain: Gain: Gain: Seal and label container TS4 Filter 10: 02 12 80 / S CONTAINER TS4 Back-Up Filter Colour: LINGIT Seal and label container TS3 Exit Stem, and Connecting Mark Fluid Level and Tubing to Filter, **CONTAINER TS3** and Filter Top Seal and label container TS2 cup, and outside of exit stem to PM 2.5 cyclone. PM 2.5 tubing from, PM 10 head Cyclone walls, collection PM 10 Turnaround cup, exit stem, connecting Mark Fluid Level and 20-22050-M201A-CONTAINER TS2 6 62 9 Nozzle, PM 10 Cyclone walls, Seal and label container TS1 SAMPLE IDENTIFICATION TS7 (Acetone / Hexane rinse) Mark Fluid Level and outside of exit stem TS5 (Imp 2 H₂0 and rinse) TS4 (Back Up Filter, <2.5) collection cup, CONTAINER TS1 TS6 (Secondary Filter) 300 Project No.: 22050 Train Recovered By: Train Loaded By: TS3 (Part. < 2.5) TS2 (Part. > 2.5) TS1 (Part. > 10) Date: # PM₁₀, PM_{2.5} & Condensate Recovery Data Sheet Client: Covanta DYEC Test No.: filter to front half 2nd filter with Acetone & Hexane into TS7 Rinse all glassware from Acetone/Hexane Rinse Seal and Label Container Mark Fluid Level and CONTAINER TS7 CWTR=1+2+3: WCBDA=4: stem impinger (14 lpm for 1 hr) imp 1 transfered to Impaction Seal and label container TS6 Perform nitrogen purge of Seal and Label Container CONTAINER TSS & TS6 Mark Fluid Level and glassware from filter to 2nd u-tube with CONTAINER TS6 Secondary Filter CONTAINER TS5 di H2O into TS3 purge is not required. Rinse all * if there is no gain Test Location: Purge Off: Purge On: Impinger #1 Knock Out Impinger #4 Silica Gel Impinger #2 Empty (200) Impingers 1, 2, 3, 4 00 LRAN Secondary Filter Impinger #3 H₂O 00° -00 Empty Wt: Empty Wt: Initial Wt: Initial Wt: Empty Wt: Final Wt: Final Wt: % Spent: Final Wt: Final Wt: Colour: Colour: Colour: 4 Gain: 2 Gain: 3 Gain: 1 Gain: Seal and label container TS4 CONTAINER TS4 Filter ID: 12.2.80(Back-Up Filter Colour: [시년 Seal and label container TS3 Exit Stem, and Connecting Mark Fluid Level and Tubing to Filter, CONTAINER TS3 and Filter Top Seal and label container TS2 cup, and outside of exit stem to PM 2.5 cyclone. PM 2.5 tubing from, PM 10 head Cyclone walls, collection PM 10 Turnaround cup, Mark Fluid Level and exit stem, connecting 20-22050-M201A-CONTAINER TS2 00 m Seal and label container TS1 Nozzle, PM 10 Cyclone walls, SAMPLE IDENTIFICATION TS7 (Acetone / Hexane rinse) Mark Fluid Level and outside of exit stem TS4 (Back Up Filter, <2.5) TS5 (Imp 2 H₂0 and rinse) collection cup, CONTAINER TS1 TS6 (Secondary Filter) Project No.: 22050 Date: NNS Train Recovered By: Train Loaded By: TS2 (Part. > 2.5) TS3 (Part. < 2.5) TS1 (Part. > 10) ____ filter to front half 2nd filter with Acetone & Hexane into TS7 Rinse all glassware from CONTAINER TS7 PM₁₀, PM_{2.5} & Condensate Recovery Data Sheet ORTECH Consulting Inc. stem impinger (14 lpm for 1 hr) imp 1 transfered to Impaction Seal and label container TS6 Perform nitrogen purge of CONTAINER TS5 & TS6 Seal and Label Container glassware from filter Mark Fluid Level and to 2nd u-tube with CONTAINER TS5 CONTAINER TS6 Secondary Filter di H2O into TS3 purge is not required. * if there is no gain Test Location: Purge On: Purge Off: Test No.: Impinger #1 Knock Out Impingen#4 Silica Gel Impinger #2 Empty Impingers 1, 2, 3, 4 Impinger #3 H₂O Secondary Filter Empty Wt: Empty Wt: Empty Wt: Initial Wt: Initial Wt: Final Wt: Final Wt: Final Wt: Final Wt: % Spent: Colour: Colour: Gain: Colour: 3 Gain: Gain: Gain: Seal and label container TS4 CONTAINER TS4 Back-Up Filter Filter ID: 02.72.80 Colour: Seal and label container TS3 Exit Stem, and Connecting Mark Fluid Level and Tubing to Filter, CONTAINER TS3 and Filter Top Seal and label container TS2 cup, and outside of exit stem to PM 2.5 cyclone. PM 2.5 tubing from, PM 10 head Cyclone walls, collection PM 10 Turnaround cup, exit stem, connecting Mark Fluid Level and 20-22050-M201A-CONTAINER TS2 ト Nozzle, PM 10 Cyclone walls, Seal and label container TS1 SAMPLE IDENTIFICATION TS7 (Acetone / Hexane rinse) Mark Fluid Level and outside of exit stem TS4 (Back Up Filter, <2.5) TS5 (Imp 2 H₂0 and rinse) collection cup, CONTAINER TS1 Client: Covanta DYEC TS6 (Secondary Filter) Project No.: 22050 Train Recovered By: Train Loaded By: TS3 (Part. < 2.5) TS2 (Part. > 2.5) TS1 (Part. > 10) Date: Seal and Label Container Rinse all Mark Fluid Level and Acetone/Hexane Rinse CWTR=1+2+3: WCBDA=4: ### **APPENDIX 14** SVOC Train Recovery Data Sheets (8 pages) | | Impinger 4
Silica Gel | CONTAINER
TSG (Impinger) | Initial Wt: 906./
Final Wt: 729./
Gain: 23.00
% Spent: | | | | |--|---|-------------------------------|--|---|--|---| | Test No.: / Test Date: // NOV // 20 | Sample ID S Back-Half Rinses Trap Bottom U-Tube, Imp. Inlet Stem, U-Tubes | and impingers CONTAINER TS5 | Empty Wt: 404.5 After Acetone/ F77.6 5 Total TS5: 173.1 | | Impinger Box ID: | TS1, TS4, TS5 - 1L Amber Glass Bottle
TS2 - Glass Petri Dish
TS3 - Glass Trap | | | Sample ID 4 | CONTAINER
TS4 | Imply Wt: 665-7
Final Wt: 7070-3
Galin: 7845-7
Colour: clean | Empty Wt: 5 4 8. 0 | Impinger #3 Empty Empty Wt: 672-6 Final Wt: 8/3-4 6 Gain: 205.8 Colour: 200 | Container TS4 Weights Empty Wt: | | | Sample ID) | CONTAINER
TS3 | Initial Wt: 359-0
Final Wt: 366-3
Gain: 7-5
Colour: WHITE | WRAP IN FOIL LABEL AS CONTAINER TS3 | | | | | Sample ID 2 | CONTAINER
TS2 | Colour: W. H. J. J. E. FOLD IN FOIL SEAL AND LABEL CONTAINER 152 | | rtification ALS | 1986/7
105537
105537 | | Client: Covanta DYEC Project No.: 22050 Sample Batch No.: 20-22050-SVOC- | Sample ID Nozzle, Probe Liner, Cyclone Bypass, F.H. & B.H. Filter Housing, Frit & Connecting | Container CONTAINER TS1 | Empty Wt: 405, © After Acetone/ Hexane Rinse: 702. 3 Total TS1: 297.3 | MARK FLUID LEVEL SEAL AND LABEL CONTAINER TS1 | Train & Proofing Identification Glassware Train Proofing Provided By: Glassware Train ID: Tran ID: | HPLC Batch No.: Ethylene Gylcol Batch No.: Hexane Batch No.: Acetone Batch No.: Arctone Batch No.: Train Loaded By: | | Client: Covanta DYEC Project No.: 22050 | | | | Test No.: 2 | | |---
--|-----------------|---------------------------------------|---|---| | Sample Batch No.: 20-22050-SVOC- | | | | Test Location: いんパー | | | Sample ID | Sample ID | Sample ID 7 | Sample ID | Sample ID 1,0 | | | | | 1 | | | Внештинованно от применения в при | | Nozzle, Probe Liner, Cyclone
Bypass, F.H. & B.H. Filter | Hiter State of the Control Co | XAD-II Trap | Impingers 1, 2 & 3 | Back-Half Rinses
Trap Bottom U-Tube, | Impinger 4
Silica Gel | | Housing, Frit & Connecting
Glassware to Top of Condenser | | | | Imp. Inlet Stem, U-Tubes
and Impingers | | | CONTAINER | CONTAINER | CONTAINER | CONTAINER | CONTAINER | CONTAINER | | TS1 | TS2 | ESL ST | 154 | 125 | TS6 (Impinger) | | | The state of s | f | 1.00 | | 20 65 mm | | Empty Wt: | Colour: VY / C | Final Wr: 597.7 | Impinger#1 Empty Empty Wt: /C 0. C | Empty wt: 703, 5, | Final Wr: 8880 | | nse: 756 | FOLD IN FOIL | | Final Wt: 968 | 2-019 | 5 Gain: 20.7 | | Total TS1: | | Colour: WM TC | | Total TSS: 266 | % Spent: | | | SEAL AND LABEL CONTAINER TS2 | SEALTRAP | Colour: | | | | В патемате и положения выполнения и положения выполнения по пред пред десемента выполнения по под под под под | | | Impinger #2 Ethylene Glycol | | | | MARK FLUID LEVEL | | WRAP IN FOIL | Empty Wt: 552 - 8 | | | | SEAL AND LABEL | | IABELAS | 20 | | | | CONTAINER TS1 | | CONTAINER TS3 | 3 Gain: 2863 | | | | | | | Colour: Chose | | | | | | | Impinger #3 Empty
Empty Wit: くっつ は | Impinger Box ID: | | | Train & Proofing Identification | ntification | | Final Wt: | 0.12 | | | Glassware Train Proofing Provided By: | ALS | | 4 Gain: 101.0 | | | | Glassware Train ID: | | | Colour: | | | | Trap ID: | - Charles | | | | | | HPLC Batch No.: | ALS | | Container TS4 Weights | | | | Ethylene Gylcol Batch No.: | | | Empty Wt: | | | | Hexane Batch No.: | | | With imp Soin: | | | | | | | Total TS4: 7/4. 2 | | | | | /- | | | Tet Tet TS = 11 Ambor Glace Bottle | | | Train Loaded By: | | | CWTR=1+2+3+4: 699 9 | TS2 - Glass Petri Dish | | | Train Recovered By: | 2 E | | | TS3 - Glass Trap | | | | | | WCBDA=5: | | | | Client: Covanta DYEC Project No.: 22050 Sample Batch No.: 20-22050-SVOC- | | | | Test No.: 3 Test Date: Mall A © Test Location: UN 17 | | |---|--|---|--|--|--| | Sample ID (1 | Sample ID | Sample ID 7 | Sample ID | Sample ID (5) | | | Nozzle, Probe Liner, Cyclone
Bypass, F.H. & B.H. Filter
Housing, Frit & Connecting
Glassware to Top of Condenser | Filter | XAD-II Trap | Impingers 1, 2 & 3 | Back-Half Rinses
Trap Bottom U-Tube,
Imp. Inlet Stem, U-Tubes
and Impingers | Impinger 4
Silica Gel | | CONTAINER
TS1 | CONTAINER
TS2 | CONTAINER
TS3 | CONTAINER
TS4 | CONTAINER
TS5 | CONTAINER
TS6 (Impinger) | | Empty Wt: 403.0 After Acetone/ 707.9 Hexane Rinse: 304.9 | Colour: Wyytes FOLD IN FOIL SEAL AND LABEL CONTAINER 152 | Initial Wt: 472.9
Final Wt: 420.9
Gain: 770
Colour: WH 776 | Empty Wt: 585.7. Final Wt: 760.4 Colour: 275.7. Colour: 275.7. | Empty Wt: \$706.5 After Acetone/ 579.1 Hexane Rinse: 579.1 Total TSS: [92.6 | Initial Wt: 937. O
Final Wt: 957. ©
Gain: 2.0. O
% Spent: | | MARK FLUID LEVEL SEAL AND LABEL CONTAINER TS1 | | WRAP IN FOIL LABEL AS CONTAINER TS3 | Empty Wt: 649.2 Initial Wt: 760.4 Final Wt: 760.4 Colour: 200.6 | | | | Train & Proofing Identification Glassware Train Proofing Provided By: Glassware Train ID: Tran ID: | rtification ALS | | Impinger #3 Empty Empty Wt: 596.9 Final Wt: 706.7 Gain: 109.8 | Impinger Box ID: | | | HPLC Batch No.:
Ethylene Gylcol Batch No.:
Hexane Batch No.:
Acetone Batch No.: | ÁIS | | Container TS4 Weights Empty Wt: 406.0 With Imp Soln: (184.0 After ~100g H ₂ O Rinse: 1372.5 | | | | Train Loaded By: Train Recovered By: | | | CWTR = 1+2+3+4: | TS1, TS4, TS5 - 1L Amber Glass Bottle TS2 - Glass Petri Dish TS3 - Glass Trap | | | 8 | | Impinger 4
Silica Gel | CONTAINER
TS6 (Impinger) | Initial Wt: 9/4-/
Final Wt: 9/8-/
Gain: | | | | | |--|---------------|---|-----------------------------|--|---|---|--|---| | Test No.: BLANK 1 Test Date: NOUNT | Sample ID 2.0 | Back-Half Rinses
Trap Bottom U-Tube,
Imp. Inlet Stem, U-Tubes
and Impingers | CONTAINER
TS5 | Empty Wt: '+O'4', O' After Acetone/ Hexane Rinse: 6/6.5 Total TSS: 2(2.5 | | Impinger Box ID: | | TS1, TS4, TS5 - 11 Amber Glass Bottle TS2 - Glass Petri Dish TS3 - Glass Trap | | | Sample ID | Impingers 1, 2 & 3 | CONTAINER
TS4 | Impinger #1 Empty Empty Wt: \$55.3 Final Wt: \$55.3 Colour: | Empty Wt: 564.5 Initial Wt: 667.9 Final Wt: 667.4 Gain: | Impinger #3 Empty Empty Wt: 470.3 Final Wt: 477.3 6 Gain: | Container TS4 Weights Empty Wt: 433.5 With Imp Soln: 500.0 After 100g H ₂ O Rinse: 650.5 Total TS4: 247.0 | CWTR = 1 + 2 + 3 + 4: | | | Sample ID | XAD-II Trap | CONTAINER
TS3 | Initial Wt: 777 & Final Wt: 378-7 I Gain: ANG Colour: WN (TC) | WRAP IN FOIL LABEL AS CONTAINER TS3 | | | | | | Sample ID 1 | Filter | CONTAINER
TS2 | Colour: WWWTTC FOLD IN FOIL SEAL AND LABEL CONTAINER 152 | | antification ALS | ALS | 4 | | Client: Covanta DYEC Project No.: 22050 Sample Batch No.: 20-22050-SVOC- | Sample ID ' 6 | Nozzle, Probe Liner, Cyclone
Bypass, F.H. & B.H. Filter
Housing, Frit & Connecting
Glassware to Top of Condenser | CONTAINER
TS1 | Empty Wt: 403.0 After Acetone/ Hexane Rinse: 572.5 Total TS1: 169.5 | MARK FLUID LEVEL SEAL AND LABEL CONTAINER TS.1 | Train & Proofing Identification Glassware Train Proofing Provided By: Glassware Train ID: | Trap ID: HPLC Batch No.: Ethylene Gylcol Batch No.: Hexane Batch No.: Acetone Batch No.: | Train Loaded By: Train Recovered By: | | 20 | Impinger 4 Silica Gel | CONTAINER
TS6 (Impinger) | Initial Wt: 856.6
Final Wt: 870.0
Gain: 73.4
% Spent: | | | | Bottle | |--|--|--|--|---
--|---|---| | Test No.: 1 Test Date: NOU!! 7 Test Location: UN! | Sample ID 2 5 Back-Half Rinses Trap Bottom U-Tube, | Imp. Inlet Stem, U-Tubes
and Impingers
CONTAINER
155 | Empty Wt: 404.5 After Acetone/647.8 Hexane Rinse: 647.8 Total TSS: 243.3 | | Impinger Box ID: | | TS1, TS4, TS5 - 1L Amber Glass Bottle TS2 - Glass Petri Dish TS3 - Glass Trap | | | Sample ID 2.4
Impingers 1, 2 & 3 | CONTAINER
TS4 | Impinger #1 Empty Empty Wt: 529. 8 Final Wt: 578. 0 2 Gain: 348.2 Colour: 68.2 | Impinger #2 Ethylene Glycol Empty Wt: \$53.7 Initial Wt: \$55.5 Final Wt: \$77.5 3 Gain: 2.24.0 Colour: Clean | Impinger #3 Empty Empty Empty Wt: 608.0 Empty Wt: 842.8 Email Wt: 842.8 Empty Em | Container TS4 Weights Empty Wt: 405-0 With Imp Soln: 405-0 After 100g H ₂ O Rinse: 12 45-7 Total TS4: 8 40-7 | CWTR = 1 + 2 + 3 + 4: 6/7.7 [WCBDAsS: 72. | | | Sample ID (2) XAD-II Trap | CONTAINER
TS3 | Initial Wt: 389.8
Final Wt: 400.5
Gain: 10.7
Colour: WH 17.6 | WRAP IN FOIL LABEL AS CONTAINER TS3 | | | | | | Sample ID 7.2. Filter | CONTAINER
TS2 | Colour: WHTE FOLD IN FOIL SEAL AND LABEL CONTAINER TS2 | | tification ALS | ÁIS | | | Client: Covanta DYEC Project No.: 22050 Sample Batch No.: 20-22050-SVOC- | Sample ID 7. \ Nozzle, Probe Liner, Cyclone Bypass, F.H. & B.H. Filter | Housing, Frit & Connecting Glassware to Top of Condenser CONTAINER TS1 | Empty Wt: 403.0 After Acetone/ Hexane Rinse: 686.7 Total TS1: 283.7 | MARK FLUID LEVEL SEAL AND LABEL CONTAINER 75.1 | Train & Proofing Identification
Glassware Train Proofing Provided By: | Irap ID: HPLC Batch No.: Ethylene Gylcol Batch No.: Hexane Batch No.: Acetone Batch No.: | Train Loaded By: | | | Impinger 4
Silica Gel | CONTAINER
TS6 (Impinger) | Final Wt: 97 & Spent: % Spent: | | | |--|---|-----------------------------|--|--|--| | Test No.: 2 Test Date: Nov 11,520 Test Location: WATZ | Sample ID 3 co
Back-Half Rinses
Trap Bottom U-Tube,
Imp. Inlet Stem, U-Tubes
and Impingers | CONTAINER
TS5 | Empty Wt: 493.5
After Acetone/ 57/-8
Hexane Rinse: 57/-8
Total TSS: 248.3 | Impinger Box ID: | 7 TS1, TS4, TS5 - 1L Amber Glass Bottle
TS2 - Glass Petri Dish
TS3 - Glass Trap | | | Sample ID Ref | CONTAINER
TS4 | Impinger #1 Empty Empty Wt: 6 C 4 ~ . Final Wt: 9 4 9 . 5 Gain: 295.5 Colour: 295.5 Impinger #2 Ethylene Glycol Empty Wt: 556.6 Initial Wt: 570.0 Final Wt: 40.7 Gain: 25.07 | Imply Wt: 605.7
Final Wt: 727.0
Gain: 127.3
Colour: 127.3 | Empty Wt: 404 C | | | Sample ID 2.8 | CONTAINER
TS3 | Initial Wt: 758.7 Final Wt: 756.0 Gain: 566.0 Colour: W H T E SEAL TRAP WRAP IN FOIL LABEL AS CONTAINER TS3 | | | | | Sample ID % | CONTAINER
152 | Colour: WHITE FOLD IN FOIL SEAL AND LABEL CONTAINER TS2 | entification ALS | 198612 | | Client: Covanta DYEC Project No.: 22050 Sample Batch No.: 20-22050-5VOC- | Sample ID Nozzle, Probe Liner, Cyclone Bypass, F.H. & B.H. Filter Housing, Frit & Connecting Glassware to Top of Condenser | CONTAINER
TS1 | Empty Wt: 40500 After Acetone/ Hexane Rinse: 7.7.5 Total TS1: 3/8.5 MARK FLUID LEVEL SEAL AND LABEL CONTAINER TS1 | Train & Proofing Identification Glassware Train ID: Trap ID: | HPLL Batch No.: Ethylene Gylcol Batch No.: Hexane Batch No.: Acetone Batch No.: Train Loaded By: | | | | Impinger 4 Silica Gel CONTAINER TS6 (Impinger) | Final Wr. 952.8 Final Wr. 966.9 Gain: 66.9 % Spent: | | |--|--------------------|---|--|---| | Test No.: 3 Test Date: Na.172, 28 Test Location: UNIT 2. A | Sample ID 3 5 | Back-Half Rinses Trap Bottom U-Tube, Imp. Inlet Stem, U-Tubes and Impingers CONTAINER TSS | Empty Wt: 406.0 After Acetone/ Hexane Rinse: 586.1 Total TSS: 690.1 | /FS1, TS4, TS5 - 1L Amber Glass Bottle
TS2 - Glass Petri Dish
TS3 - Glass Trap | | | Sample ID *** | Impingers 1, 2 & 3 CONTAINER 154 | Impinger #1 Empty Empty Wt: 676-5 Final Wt: 977-6 Colour: 022-1 Empty Wt: 650-5 Initial Wt: 72-1 Final Wt: 72-1 Final Wt: 72-1 Final Wt: 72-1 Final Wt: 72-1 Golour: 25-2 | Container Wt: 10 Soln: 100g H2O R 54: 11+2+3+ | | | Sample ID 7/7 | CONTAINER TS3 | Initial Wt: 345-4 Final Wt: 351-2 Gain: 5-8 Colour: 1-1 SEAL TRAP WRAP IN FOIL LABEL AS CONTAINER TS3 | | | | Sample ID 7, 2 | Filter CONTAINER TS2 | Colour: W. H. TTE FOLD IN FOIL SEAL AND LABEL CONTAINER TS2 ALS ALS | AIS | | Client: Covanta DYEC Project No.: 22050 Sample Batch No.: 20-22050-SVOC- | Sample ID 2 (| Nozzle, Probe Liner, Cyclone
Bypass, F.H. & B.H. Filter
Housing, Frit & Connecting
Glassware to Top of Condenser
CONTAINER
TS1 | After Acetone/ After Acetone/ Hexane Rinse: 6/2.5 Total TS1: 407.5 SEAL AND LABEL CONTAINER TS1 CONTAINER TS1 Glassware Train & Proofing Identification Glassware Train ID: | Trap ID: HPLC Batch No.: Ethylene Gylcol Batch No.: Hexane Batch No.: Acetone Batch No.: Train Loaded By: | | 700 | | Impinger 4
Silica Gel | CONTAINER
TS6 (Impinger) | Initial Wt. 940.0
Final Wt. 940-0
Gain:
% Spent: | | | | | |--|----------------|---|-----------------------------|--|---|--|---|---| | Test No.: HAR Z.) Test Date: NGC Z.) Test Location: | Sample ID | Back-Half Rinses
Trap Bottom U-Tube,
Imp. Inlet Stem, U-Tubes
and Impingers | CONTAINER
TS5 | Empty Wt: 406.0
After Acetone/Hexane Rinse: 622.0
Total TSS: 2/6.0 | | Impinger Box ID: | | TS1, TS4, TS5 - 1L Amber Glass Bottle
TS2 - Glass Petri Dish
TS3 - Glass Trap | | | Sample ID 79 | Impingers 1, 2 & 3 | CONTAINER
TS4 | Impinger #1 Empty Empty Wt: 654-3 Final Wt: 654-3 Colour: | Empty Wt: 5 C C Initial Wt: 6 B S Final Wt: 7 C B S S Gain: Colour: Colour: Colour: Colour: Colour: Colour: Colour: Colour: C B S S S S S S S S S S S S S S S S S S | Empty Wt: 65.5
Final Wt: 65.5
Final Wt: 65.5
Gain: 600ur: | Container TS4 Weights Empty Wt: +04-0 With Imp Soln: 5/5.3 After ~100g H ₂ O Rinse: 682.5 Total TS4: 2 7 8 5 | CWTR = 1 + 2 + 3 + 4:
WCBDA=5: | | | Sample ID 7.8 | XAD-II Trap | CONTAINER
TS3 | Initial Wt: 792.7
Final Wt: 392.7
Gain: Colour: CAM (T.E. | WRAP IN FOIL LABEL AS
CONTAINER TS3 | | | | | | Sample ID | Filter | CONTAINER
TS2 | Colour: LWHITE FOLD IN FOIL SEAL AND LABEL CONTAINER 152 | | ntification ALS | AIS | | | Client: Covanta DYEC Project No.: 22050 Sample Batch No.: 20-22050-SVOC- | Sample ID 3 (5 | Nozzle, Probe Liner, Cyclone
Bypass, F.H. & B.H. Filter
Housing, Frit & Connecting
Glassware to Top of Condenser | CONTAINER
TS1 | Empty Wt: 407.0 After Acetone/ 625.7 Total TS1: 2.18.7 | MARK FLUID LEVEL SEAL AND LABEL CONTAINER TS1 | Train & Proofing Identification Glassware Train Proofing Provided By: Glassware Train ID: Trap ID: | HPLC Batch No.: Ethylene Gylcol Batch No.: Hexane Batch No.: Acetone Batch No.: | Train Loaded By: Train Recovered By: | # **APPENDIX 15** SVOC Analytical Report (70 pages) 1435 Norjohn Court, Unit 1, Burlington, ON, Canada L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 # **Certificate of Analysis** ALS Project Contact: Lynne Wrona ALS Project ID: **ORT100** ALS WO#: L2529311 Date of Report 15-Dec-20 Date of Sample Receipt 13-Nov-20 Client Name: **ORTECH Environmental** Client Address: 804 Southdown Road Mississauga, ON L5J 2Y4 Canada Client Contact: Chris Belore Client Project ID: 22050 Covanta COMMENTS: PCDD/F by EPA M23 123678-HxCDF showed the presence of a peak in the corresponding diphenylether channel on the field samples. Historical evidence has shown that this diphenylether is a false positive and the HxCDF value is considered real and unbiased. Mass resolution deteriorated during the 12 hour run sequence with the resolution being slightly below 10,000 for selected functions at the end of the run sequence. There is no evidence for enhanced interferences or noise to negatively impact data quality has been observed. Certified by: Ron McLeod, PhD. Director, Air Toxics & Special Chemistries, Life Sciences Results in this certificate relate only to the samples as submitted to the laboratory. This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd. | ALS Life Sciences Sample Analysis summary Report | | | | | | | | | |--|--------------|---------------|--------------|--------------|-------------|--------------|--|--| | | | | | | | | | | | ALS Sample ID | L2529311-1 | L2529311-2 | L2529311-3 | L2529311-4 | L2529311-5 | L2529311-6 | | | | Sample Size | | 1 | 1 | 1.1 | 1. | | | | | Sample size units | sample | sample | sample | sample | sample | sample | | | | Percent Moisture | n/a | n/a | n/a | n/a | n/a | n/a | | | | Sample Matrix | Stack | Stack | Stack | Stack | Stack | Stack | | | | Sampling Date | 11-Nov-20 | 11-Nov-20 | 12-Nov-20 | 12-Nov-20 | 11-Nov-20 | 11-Nov-20 | | | | Extraction Date | 25-Nov-20 | 25-Nov-20 | 25-Nov-20 | 25-Nov-20 | 25-Nov-20 | 25-Nov-20 | | | | Farget Analytes | pg | pg | pg | pg | pg | pg | | | | 2,3,7,8-TCDD | <4.2 | <2 <i>.</i> 5 | <4.2 | <4.3 | ≼4.1 | <5.9 | | | | 1,2,3,7,8-PeCDD | <34 | 33.8 | 32.1 | <4.4 | <6.7 | <5.9
<7.0 | | | | 1,2,3,4,7,8-HxCDD | 117 | 107 | 81.9 | <4.0 | 18.2 | <7.0
<23 | | | | 1,2,3,6,7,8-HxCDD | 331 | 321 | 252 | <3.5 | 46.5 | <51 | | | | 1,2,3,7,8,9-HxCDD | 146 | 152 | 106 | <3.8 | 19.3 | <21 | | | | 1,2,3,4,6,7,8-HpCDD | 2100 | 1840 | 1590 | 47.9 | 284 | 333 | | | | OCDD | 1370 | 1260 | 1040 | 177 | 311 | 712 | | | | | | | | | | | | | | 2,3,7,8-TCDF
1,2,3,7,8-PeCDF | 7.87
22.8 | 18.7 | <5.6 | <3.3 | < 5.8 | <13 | | | | 1,2,3,7,8-PECDF
2,3,4,7,8-PECDF | 78.6 | 31.2 | 22.6 | <2.6 | 6.69 | <8.6 | | | | 1,2,3,4,7,8-HxCDF | 102 | 79.6 | 54.9 | <2.4 | <17 | 24.8 | | | | 1,2,3,6,7,8-HxCDF | 102 | 105
119 | 74.0
91.3 | <2.2 | < 20 | 25.2 | | | | 2,3,4,6,7,8-HxCDF | 230 | 202 | 165 | <2.1 | 26.6 | <20 | | | | 1,2,3,7,8,9-HxCDF | <61 | 63.1 | 47.6 | <2.3
<2.7 | 44.6 | 44.6 | | | | 1,2,3,4,6,7,8-HpCDF | 682 | 633 | 47.6
513 | <2.7
<9.8 | 11.2
116 | <12
155 | | | | 1,2,3,4,7,8,9-HpCDF | 117 | <99 | 313
<77 | <7.4 | <18 | 155
<17 | | | | OCDF | 363 | 330 | 313 | <19 | <43 | <17
<88 | | | | ield Spike Standards | % Rec | % Rec | % Rec | % Rec | % Rec | % Rec | | | | 37Cl4-2,3,7,8-TCDD | 89 | 85 | 92 | 92 | 90 | 81 | | | | 13C12-1,2,3,4,7,8-HxCDD | 105 | 102 | 107 | 105 | 104 | 96 | | | | 13C12-2,3,4,7,8-PeCDF | 123 | 109 | 115 | 114 | 114 | 95 | | | | 13C12-1,2,3,4,7,8-HxCDF | 104 | 103 | 105 | 106 | 104 | 95 | | | | 13C12-1,2,3,4,7,8,9-HpCDF | 95 | 90 | 93 | 90 | 94 | 75 | | | | xtraction Standards | | | | | | | | | | 13C12-2,3,7,8-TCDD | 34 | 45 | 35 | 20 | | | | | | 13C12-1,2,3,7,8-PeCDD | 39 | 45
46 | 35
35 | 29
27 | 32
32 | 28 | | | | 13C12-1,2,3,6,7,8-HxCDD | 44 | 46
56 | 35
40 | 27
32 | 32
39 | 29 | | | | 13C12-1,2,3,4,6,7,8-HpCDD | 41 | 42 | 40
34 | 32
25 | 39 | 34 | | | | 13C12-0CDD | 34 | 33 | 34
29 | 25
19 | 34
29 | 26
18 | | | | 13C12-2,3,7,8-TCDF | 36 | 45 | 34 | 27 | 32 | 18
27 | | | | 13C12-1,2,3,7,8-PeCDF | 32 | 40 | 30 | 23 | | 27
24 | | | | 13C12-1,2,3,6,7,8-HxCDF | 39 | 48 | 36 | 29
29 | 33 | 32 | | | | 13C12-1,2,3,4,6,7,8-HpCDF | 37 | 41 | 33 | 24 | 32 | 27 | | | | omologue Group Totals | pg | pg | pg | pg | pg | pg | | | | Total-TCDD | 436 | 324 | | | | | | | | Total-PeCDD | 1700 | 324
1700 | 158 | <4.3 | 113 | 128 | | | | Total-HxCDD | 4780 | 1700
4400 | 1340
3500 | <4.4
~1.0 | 311 | 418 | | | | Total-HpCDD | 4350 | 4050 | 3590
3310 | <4.0
47.9 | 779
626 | 1030 | | | | Total-TCDF | 299 | 289 | 132 | 47.9
<3.3 | 626
24.8 | 820 | | | | Total-PeCDF | 810 | 797 | 132
578 | <3.3
<2.6 | 24.8
202 | 62.5 | | | | Total-HxCDF | 1220 | 1200 | 928 | ~2.6
3.54 | 202 | 85.9
232 | | | | Total-HpCDF | 981 | 973 | 926
794 | 3.54
<7.4 | 236
154 | 232
230 | | | | Toxic Equivalency - (WHO 2005) | | | | | | | | | | ower Bound PCDD/F TEQ (WHO 2005) | 159 | 193 | 152 | 0.532 | 20.9 | 19.5 | | | | 4id Point PCDD/F TEQ (WHO 2005) | 201 | 195 | 156 | 6.62 | 37.3 | 41.5 | | | | Upper Bound PCDD/F TEQ (WHO 2005) | 203 | 196 | 158 | 12.6 | 39.6 | 46.9 | | | | | | ALS Life So | iences | | |--
--|---|--|--| | | TO THE RESIDENCE OF THE PROPERTY PROPER | mple Analysis sur | | WOODS AND THE PROPERTY OF | | Sample Name | 20-22050-SVOC-
(31 THRU 35)
TEST#3 APC | 20-22050-SVOC-
(36 THRU 40)
BLANK#2 | | | | ALS Sample ID | OUTLET #2
L2529311-7 | L2529311-8 | | | | Sample Size | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Management of the second th | | Sample size units | sample | sample | | | | Percent Moisture | n/a | n/a | | | | Sample Matrix | Stack | Stack | | | | Sampling Date | 12-Nov-20 | 12-Nov-20 | | | | xtraction Date | 25-Nov-20 | 25-Nov-20 | | | | arget Analytes | CONTRACTOR OF THE PROPERTY | | WARRANT CONTROL OF THE TH | *************************************** | | 생활하면 하시면 시시 등 생각하다 하시 때문이 | pg | pg | | | | 2,3,7,8-TCDD | <4.3 | <3.0 | | | | 1,2,3,7,8-PeCDD | 6.19 | <2.3 | | | | 1,2,3,4,7,8-HxCDD | <17 | <3.2 | | | | 1,2,3,6,7,8-HxCDD | 42. <u>2</u> | <2.8 | | | | 1,2,3,7,8,9-HxCDD | <20 | | | | | 1,2,3,4,6,7,8-HpCDD | 263 | <16 | | | | OCDD | 326 | <82 | | | | 2,3,7,8-TCDF | <4.0 | <1.8 | | | | 1,2,3,7,8-PeCDF | 9.13 | <1.7 | | | | 2,3,4,7,8-PeCDF | <14 | <1.6 | | | | 1,2,3,4,7,8-HxCDF | <19 | <1.8 | | | | 1,2,3,6,7,8-HxCDF | <18 | <1.8 | | | | 2,3,4,6,7,8-HxCDF | 37.0 | <1.9 | | | | 1,2,3,7,8,9-HxCDF | <23 | <2.2 | | | | 1,2,3,4,6,7,8-HpCDF | 104 | <3.1 | | | | 1,2,3,4,7,8,9-HpCDF | 15.0 | <2.5 | | | | Property of the control contr | <49 | 17.9 | | | | ield Spike Standards | % Rec | % Rec | | | | 37Cl4-2,3,7,8-TCDD | 86 | 90 | | | | 13C12-1,2,3,4,7,8-HxCDD | 100 | 102 | | | | 13C12-2,3,4,7,8-PeCDF | 105 | 108 | | | | 13C12-1,2,3,4,7,8-HxCDF | 98 | 101 | | | | 13C12-1,2,3,4,7,8,9-HpCDF | 85 | 91 | | | | ctraction Standards | | | | | | 13C12-2,3,7,8-TCDD | 34 | 35 | | | | 13C12-1,2,3,7,8-PeCDD | 32 | 32 | | | | 13C12-1,2,3,6,7,8-HxCDD | 39 | 38 | | | | 13C12-1,2,3,4,6,7,8-HpCDD | 31 | 34 | | | | 13C12-OCDD | 24 | 28 | jagat gajtaj listigaj kataj ja kata arciali. | | | 13C12-2,3,7,8-TCDF | 33 | 34 | | | | 13C12-1,2,3,7,8-PeCDF | 28 | 29 | | | | 13C12-1,2,3,6,7,8-HxCDF | 37 | 35 | | | | 13C12-1,2,3,4,6,7,8-HpCDF | 32 | 33 | | | | iomologue Group Totals | pg | pg | | | | Total-TCDD | 75.8 | <3.0 | | | | Total-PeCDD | 267 | 2.89 | | | | Total-HxCDD | 655 | <3.2 | ,"我们就是一个人,我们还有什么,我们就是一个人,""这个人,""我们就是一个人。""我们就是一个人。""我们就是一个人,我们就是一个人,我们就是一个人,我们就 | | | Total-HpCDD | 576 | <5.1 | | | | Total-TCDF | 36.9 | <1.8 | | | | Total-PeCDF | 128 | <1.7 | | | | Total-HxCDF | 172 | <2.2 | | | | Total-HpCDF | 180 | <2.5 | | | | oxic Equivalency - (WHO 2005) | | | | | | ower Bound PCDD/F TEQ (WHO 2005) | 18.3 | 0.00537 | | | | id Point PCDD/F TEQ (WHO 2005) | 31.6 | 4.08 | | | | pper Bound PCDD/F TEQ (WHO 2005) | 36.9 | 7.94 | | | | ALS Life Sciences | | | | | | | | | |--
--|--|--|--|--|--|--|--| | | | ontrol Summary Report | | | | | | | | Sample Name | Method Media | Laboratory Control | | | | | | | | | Blank | Sample | | | | | | | | | | | | | | | | | | ALS Sample ID | WG3444637-1 | WG3444637-2 | | | | | | | | Sample Size | | | | | | | | | | Sample size units Percent Moisture | sample | n/a | | | | | | | | Sample Matrix | n/a , | n/a | | | | | | | | | QC | , 18 : 18 : 18 : 18 : 18 : 2C : 18 : 18 : 18 : 18 : 18 : 18 : 18 : 1 | | | | | | | | Sampling Date Extraction Date | п/а
25-Nov-20 | n/a
25-Nov-20 | | | | | | | | | | 2.3-NOV-20 | ************************************** | | | | | | | Target Analytes | pg | % Rec | | | | | | | | 2,3,7,8-TCDD | <3.1 | 82 | | | | | | | | 1,2,3,7,8-PeCDD | <3.1 | 98 | 하는 아무슨 아들이 가지 않는 것도 하고 하는 것이다. | | | | | | | 1,2,3,4,7,8-HxCDD | <3.4 | 93 | | | | | | | | 1,2,3,6,7,8-HxCDD | <3.3 | 91 | | | | | | | | 1,2,3,7,8,9-HxCDD | karak ana karaksasa sa karapatan | | | | | | | | | 1,2,3,4,6,7,8-HpCDD | <15 | 92 | | | | | | | | OCDD | 133 | 92 | | | | | | | | 2,3,7,8-TCDF | <1.9 | | | | | | | | | 1,2,3,7,8-PeCDF | <2.0 | 보다는 물 기를 들는 시간을 받는 것을 받는 것이 되었다.
기가를 보고 있는 것이 되었다. 그 사람들은 10명을 보는 것이 되었다. | | | | | | | | 2,3,4,7,8-PeCDF | <1.9 | 88 | | | | | | | | 1,2,3,4,7,8-HxCDF | <2.7 | 84 | | | | | | | | 1,2,3,6,7,8-HxCDF | <2.6 | 89 | | | | | | | | 2,3,4,6,7,8-HxCDF | <2.9 | 91 | | | | | | | | 1,2,3,7,8,9-HxCDF | <3.3 | | | | | | | | | 1,2,3,4,6,7,8-HpCDF | <7.4 | 87 | | | | | | | | 1,2,3,4,7,8,9-HpCDF | <9.5 | 85 | 网络大大大大大大大大大大大大大大大大 | | | | | | | OCDF | 31.5 | 79 | | | | | | | | Field Spike Standards | % Rec | % Rec | | | | | | | | 37Cl4-2,3,7,8-TCDD | NS | N S | | | | | | | | 13C12-1,2,3,4,7,8-HxCDD | NS | NS NS | | | | | | | | 13C12-2,3,4,7,8-PeCDF | NS | NS NS | | | | | | | | 13C12-1,2,3,4,7,8-HxCDF | NS | NS
NS | | | | | | | | 13C12-1,2,3,4,7,8,9-HpCDF | NS | NS NS | | | | | | | | Extraction Standards | | | | | | | | | | | | 기름으로 오늘 보고 하고 됐다. 하고 하다 | | | | | | | | 13C12-2,3,7,8-TCDD | 36 | 39 | | | | | | | | 13C12-1,2,3,7,8-PeCDD | 36 | | | | | | | | | 13C12-1,2,3,6,7,8-HxCDD | 기가 가는 말로 39 교사는 결과 | | | | | | | | | 13C12-1,2,3,4,6,7,8-HpCDD | | 37 | | | | | | | | 13C12-OCDD | 22 | | | | | | | | | 13C12-2,3,7,8-TCDF | 35 | 37 | | | | | | | | 13C12-1,2,3,7,8-PeCDF | 31 | | | | | | | | | 13C12-1,2,3,6,7,8-HxCDF
13C12-1,2,3,4,6,7,8-HpCDF | 35
32 | 36 | | | | | | | | Homologue Group Totals | pg | | | | | | | | | | | | | | | | | | | Total-TCDD
Total-PeCDD | <3.1 × 2.1 × | | | | | | | | | Total-HxCDD | <3.1
<3.4 | | | | | | | | | Total-HpCDD | <3.4
<3.2 | | | | | | | | | Total-TCDF | <1.9 | | | | | | | | | Total-PeCDF | <2.0 | | | | | | | | | Total-HxCDF | <3.3 | | | | | | | | | Total-HpCDF | <9.5 | | | | | | | | | Toxic Equivalency - (WHO 2005) | | | | | | | | | | Lower Bound PCDD/F TEQ (WHO 2005) | 0.0494 | | | | | | | | | Mid Point PCDD/F TEQ (WHO 2005) | | | | | | | | | | MIG POINT PLUD/F (EG/WHG) 2005) | 5.03 | | | | | | | | | | | onetimo de la colonia | - | ************ | | LUL | ife Sciences | | | | |---|----------------------------|----------------------------------|--------------------------|--|------------|-------------|---|--|------------------------------|----------------------------------| | Sample Analysis Report Sample Name 20-22050-SVOC-(1 THRU 5) TEST#1 APC OUTLET #1 Sampling Date 11-Nov-20 ALS Sample ID L2529311-1 Extraction Date 25-Nov-20 Approved: | | | | | | | | Approved · | | | | Analysis Method
Analysis Type
Sample Matrix | EPA M23
Sample
Stack | | | | | | Sample Size
Percent Moisture
Split Ratio | 1
n/a
6 | sample | N Ashtarie-signature 15-Dec-2020 | | Run Information | | Run 1 | | | | | | | | 33.566.2020 | | Filename | | 7-201214 | A06 | | | | | | | | | Run Date | | 14-Dec-20 | 17:07 | | | | | | | | | Final Volume | | | uL | | | | | | | 흥미하는 하는 사람들 보다는 하나 하는 | | Dilution Factor | | 1 | | | | | | | | | | Analysis Units
Instrument - Column | | pg
HDMS-7 | DBEMSUS | 0287846H | | | | | | | | | 23434343434 | | | 020704011 | | | | | | | | Target Analytes | TEF
(WHO 2005) | Ret.
Time | Conc. | EDL Store | EMPC | | | | | | | | | | pg | pg Flags | pg | LQL | | | | | | 2,3,7,8-TCDD
1,2,3,7,8-PeCDD | | NotFnd
31.78 | <4.2 | 4.2 U | | 30 | | | | | | 1,2,3,4,7,8-HxCDD | 0.1 | 33.94 | <34
117 | 2.9 M,J,R
7.2 J | | 150
150 | | | | | | 1,2,3,6,7,8-HxCDD | 0.1 | 34.00 | 331 | 6.4 | | 150 | | | | | | 1,2,3,7,8,9-HxCDD | 0.1 | 34.12 | 146 | 7.0 | | 150 | | | | | | 1,2,3,4,6,7,8-HpCDD | 0.01 | 35.59 | 2100 | 8.4 | | 150 | | | | | | OCDD | 0.0003 | 37.05 | 1370 | 9.6 | | 300 | | | | | | 2,3,7,8-TCDF | 0.1 | 26.16 | 7.87 | 3.5 | | 30 | | | | | | 1,2,3,7,8-PeCDF | 0.03 | 30.75 | 22.8 | 6.9 J | | 150 | | | | | | 2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF | 0.3
0.1 | 31.55
33.43 | 78.6 | 6.4 J | | 150 | | | | | | 1,2,3,6,7,8-HxCDF | 0.1 | 33.50 | 102
116 | 7.1 J | | 150
150 | | | | | | 2,3,4,6,7,8-HxCDF | 0.1 | 33.84 | 230 | 7.4 | | 150 | | | | | | 1,2,3,7,8,9-HxCDF | 0.1 | 34.28 | <61 | 8.5 J,R | 61 | 150 | | | | | | 1,2,3,4,6,7,8-HpCDF | 0.01 | 35.04 | 682 | 5.3 | | 150 | | | | | | 1,2,3,4,7,8,9-HpCDF
OCDF | 0.01
0.0003 | 35.83
37.13 | 117
363 | 6.8 J | | 150 | | | | | | | 0.0003 | 37.13 | 363 | 6.0 | | 300 | | | | | | Field Spike Standards | pg | | % Rec | | | | | | | | |
37Cl4-2,3,7,8-TCDD
13C12-1,2,3,4,7,8-HxCDD
13C12-2,3,4,7,8-PeCDF
13C12-1,2,3,4,7,8-HxCDF
13C12-1,2,3,4,7,8,9-HpCDF
Extraction Standards | 0
0
0
0
0 | 보고 말을 다 보고 있다면 그리네요 | | 13C12-2,3,7,8-TCDD
13C12-1,2,3,7,8-PeCDD | 19920
19920 | 27.05
31.77 | | 40-130
40-130 | | | | | | | | 13C12-1,2,3,6,7,8-HxCDD | 19920 | 33.99 | | 40-130 | | | | | | | | 13C12-1,2,3,4,6,7,8-HpCDD | 19920 | 35.59 | | 25-130 | | | | | | | | 13C12-OCDD
13C12-2,3,7,8-TCDF | 39840
19920 | 37.04 | | 25-130
40-130 | | | | | | | | 13C12-1,2,3,7,8-PeCDF | 19920 | 26.14
30.74 | | 40-130
40-130 | | | | | | | | 13C12-1,2,3,6,7,8-HxCDF | 19920 | 33.49 | | 40-130 | | | | | | | | 13C12-1,2,3,4,6,7,8-HpCDF | 19920 | 35.03 | 37 | 25-130 | | | | | | | | | | | Conc. | EDL | | | | | | | | Homologue Group Totals | | # peaks | Pg | Pg | | | | | | | | Total-TCDD | | 7 | 436 | 4.2 | | 30 | | | | | | Total-PeCDD | | 7 | 1700 | 2.9 | | 150 | | | | | | Total-HxCDD | | 8 | 4780 | 7.2 | | 150 | | | | 명한 화물시설 경험 등을 수를 모기되었다. | | Total-HpCDO
Total-TCDF | | 2
13 | 4350 | 8.4 | | 150 | | | | | | Total-PeCDF | | 13
11 | 299
810 | 3.5
6.9 | | 30
150 | | | | | | Total-HxCDF | | 10 | 1220 | 8.5 | | 150 | | | | | | Total-HpCDF | | 3 | 981 | 6.8 | | 150 | | | | | | Toxic Equivalency - (WHO | | | Pg | | | | | | | | | Lower Bound PCDD/F TEQ (
Mid Point PCDD/F TEQ (WH
Upper Bound PCDD/F TEQ (| O 2005) | | 159
201
203 | | | | | | | | | EDL
TEF
M
U | | Indicates t
Indicates t | he Toxic E
hat a peal | ted Detection Lim
quivalency Factor
chas been manua
ompound was not | illy integ | ated. | | this target in this
e Toxic Equivalend | | | | J
R | | | | et analyte was de
n abundance ratio | | | ibrated range.
did not meet the acceptance | criterion. | | | | LQL | | | | | | | | | | | | EMPC | | Estimated | Maximum | Possible Concent | ration – i | elevated de | n level corrected for sample s
tection limit due to interferen | nze, spiits and dili
nce or positive id (| utions.
criterion failure | | ### **ALS Life Sciences** Sample Analysis Report 20-22050-SVOC-(6 THRU 10) TEST#2 APC OUTLET #1 Sampling Date 11-Nov-20 ALS Sample ID Analysis Method Analysis Type L2529311-2 Approved: N Ashtari -e-signature-Extraction Date 25-Nov-20 EPA M23 Sample Sample Size Percent Moisture sample n/a Sample Matrix Stack Split Ratio 6 15-Dec-2020 Run Information 7-201214A08 Run Date 14-Dec-20 18:31 Final Volume 10 uL Dilution Factor 1 Analysis Units pq Instrument - Column HRMS-7 DB5MSUS0287846H TEF Ret. Conc. EDL EMPC Target Analytes (WHO 2005) Time pg Flags pg LQL pg 2,3,7,8-TCDD 1 NotFnd 2.5 < 2.5 ·U 30 1,2,3,7,8-PeCDD 31.79 2.5 33.8 150 1,2,3,4,7,8-HxCDD 0.1 33,95 107 150 1,2,3,6,7,8-HxCDD 0.1 34.00 321 5.6 150 1.2.3.7.8.9-HxCDD 0.1 34.13 152 6.2 150 1,2,3,4,6,7,8-HpCDD 0.01 35.60 1840 12 150 OCDD 0.0003 37.05 1260 14 В 300 2,3,7,8-TCDF 0.1 26.16 18.7 6.6 30 1,2,3,7,8-PeCDF 0.03 30.76 31.2 11 150 2,3,4,7,8-PeCDF 0.3 31.55 79.6 9.8 150 1,2,3,4,7,8-HxCDF 0.1 33.43 105 5.2 150 1,2,3,6,7,8-HxCDF 33.50 119 5.0 150 2,3,4,6,7,8-HxCDF 0.1 33.84 202 150 1,2,3,7,8,9-HxCDF 0.1 34,29 63.1 6,3 150 1.2.3.4.6.7.8-HpCDF 0.01 35.04 633 4.2 150 1,2,3,4,7,8,9-HpCDF 35.83 0.01 <99 5.3 M,J,R . 99 150 0.0003 37.14 330 8.6 300 Field Spike Standards pg % Rec 37CH-2,3,7,8-TCDD 13C12-1,2,3,4,7,8-HxCDD 13C12-2,3,4,7,8-PeCDF 13C12-1,2,3,4,7,8-HxCDF 13C12-1,2,3,4,7,8,9-HpCDF Extraction Standards 13C12-2,3,7,8-TCDD 19920 27.05 45 40-130 13C12-1,2,3,7,8-PeCDD 19920 31.77 46 40-130 13C12-1,2,3,6,7,8-HxCDD 19920 33.99 56 40-130 13C12-1,2,3,4,6,7,8-HpCDD 42 25-130 19920 35.59 13C12-OCDD 39840 37.04 33 25-130 13C12-2,3,7,8-TCDF 19920 26.14 45 40-130 13C12-1,2,3,7,8-PeCDF 19920 30.74 40 40-130 13C12-1,2,3,6,7,8-HxCDF 19920 33.50 48 40-130 13C12-1,2,3,4,6,7,8-HoCDF 19920 35.04 41 25-130 Conc. FDI Homologue Group Totals # peaks pg pg Total-TCDD 5 324 2.5 Total-PeCDD 10 1700 2.5 150 Total-HxCDD 8 4400 6.4 150 Total-HpCDD - 2 4050 12 150 Total-TCDF 12 289 6.6 30 Total-PeCDF 15 797 11 150 Total-HxCDF 10 1200 150 Total-HnCDF 3 973 5.3 150 Toxic Equivalency - (WHO 2005) pg Lower Bound PCDD/F TEQ (WHO 2005) 193 Mid Point PCDD/F TEQ (WHO 2005) Upper Bound PCDD/F TEQ (WHO 2005) 195 196 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. Indicates the Toxic Equivalency Factor TEE М Indicates that a peak has been manually integrated. Ú Indicates that this compound was not detected above the EDL Indicates that a target analyte was detected below the calibrated range. R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. В Indicates that this target was detected in the blank at greater than 10% of the sample concentration. Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. LOL **EMPC** Estimated Maximum Possible Concentration - elevated detection limit due to interference or positive id criterion failure | ALS Life Sciences | | | | | | | | | | | | |--|--|----------------------------|---|------------------------|----------------------|-----------------|--------------|---|--|---|----------| | Sample Analysis Report Sample Name 20-22050-SVOC-(11 THRU 15) TEST#3 APC OUTLET #1 Sampling Date 12-Nov-20 | | | | | | | | | | | | | ALS Sample ID
Analysis Method
Analysis Type | 20-22050-590
L2529311-3
EPA M23
Sample
Stack | C-(11 /H | KO 15) I | ES1#3 A | PC OUT | EF#1 | | Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio | 12-Nov-20
25-Nov-20
1 sample
n/a
6 | Approved:
N Ashtari
e-signature-
15-Dec-2020 | | | Run Information | | Run 1 | | | | | - 43/3/3 | | | | | | Filename | | 7-201214 | A09 | | | | | | | | | | Run Date | | 14-Dec-20 | | | | | | | | | | | Final Volume Dilution Factor | | | uL | | | | | | | | | | Analysis Units | | 1 | | | | | | | | | | | Instrument - Column | | pg
HRMS-7 | DB5MSUS | 0287846 | н | | | | | | | | | | | i de la companya | Tagala a | | 12000 | | | | | EAN ASSE | | Target Analytes | TEF
(WHO 2005) | Ret.
Time | Conc.
pg | EDL
pg (| Flags | EMPC
Pg | LQL | | | | | | 2,3,7,8-TCDD | 1 | NotFnd | <4.2 | 4.2 | บ | | 30 | | | | | | 1,2,3,7,8-PeCDD | 1 | 31.78 | 32.1 | 2.8 | J | | 150 | | | | | | 1,2,3,4,7,8-HxCDD | 0.1 | 33.93 | 81.9 | 7.0 | J | | 150 | | | | | | 1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD | 0.1 | 33.99
34.12 | 252
106 | 6.2
6.7 | J | | 150 | | | | | | 1,2,3,4,6,7,8-HpCDD | 0.01 | 35.59 | 1590 | 11 | | | 150
150 | | | | | | OCDD | 0.0003 | 37.04 | 1040 | 17 | В | | 300 | | | | | | 2,3,7,8-TCDF | 0.1 | NotFnd | <5.6 | 5.6 | | | 30 | | | | | | 1,2,3,7,8-PeCDF | 0.03 | 30.74 | 22.6 | 6.2 | ,
J | | 30
150 | | | | | | 2,3,4,7,8-PeCDF | 0.3 | 31.54 | 54.9 | 5.8 | | | 150 | | | | | | 1,2,3,4,7,8-HxCDF | 0.1 | 33.42 | 74.0 | 13 | J | | 150 | | | | | | 1,2,3,6,7,8-HxCDF | 0.1 | 33.49 | 91.3 | 13 | 3 | | 150 | | | | | | 2,3,4,6,7,8-HxCDF | 0.1 | 33.83 | 165 | 14 | | | 150 | | | | | | 1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF | 0.1
0.01 | 34.28
35.03 | 47.6
513 | 16
6.1 | M,J | | 150
150 | | | | | | 1,2,3,4,7,8,9-HpCDF | 0.01 | 35.82 | <77 | 7.9 | M,J,R | 77 | 150 | | | | | | OCDF | 0.0003 | 37.13 | 313 | 7.8 | В | | 300 | | | | | | Field Spike Standards | pg | | % Rec | | | | | | | | | | 37Cl4-2,3,7,8-TCDD
13C12-1,2,3,4,7,8-HxCDD
13C12-2,3,4,7,8-PcDF
13C12-1,2,3,4,7,8-HxCDF
13C12-1,2,3,4,7,8,9-HpCDF
Extraction Standards |
0
0
0
0
0 | | | | | | | | | | | | 13C12-2,3,7,8-TCDD | 19920 | 27.04 | 75 | 40.120 | | | | | | | | | 13C12-1,2,3,7,8-PeCDD | 19920 | 31.76 | | 40-130 | | | | | | | | | 13C12-1,2,3,6,7,8-HxCDD | 19920 | 33.98 | | 40-130 | | | | | | | | | 13C12-1,2,3,4,6,7,8-HpCDD | 19920 | 35.58 | | 25-130 | | | | | | | | | 13C12-OCDD
13C12-2,3,7,8-TCDF | 39840
19920 | 37.04
26.13 | | 25-130
40-130 | | | | | | | | | 13C12-1,2,3,7,8-PeCDF | 19920 | 30.73 | | 40-130 | | | | | | | | | 13C12-1,2,3,6,7,8-HxCDF | 19920 | 33.48 | 36 | 40-130 | | | | | | | | | 13C12-1,2,3,4,6,7,8-HpCDF | 19920 | 35.03 | 33 | 25-130 | | | | | | | | | Homologue Group Totals | | # nooks | Conc. | EDL | | | | | | | | | | | * peaks | Pg | pg | | | | | | | | | Total-TCDD | | 6 | 158 | 4.2 | | | 30 | | | | | | Total-PeCDD
Total-HxCDD | | 8
7 | 1340
3590 | 2.8
7.0 | | | 150
150 | | | | | | Total-HpCDD | | 2 | 3310 | 11 | | | 150 | | | | | | Total-TCDF | | 10 | 132 | 5.6 | | | 30 | | | | | | Total-PeCDF | | 11 | 578 | 6.2 | | | 150 | | | | | | Total-HxCDF
Total-HpCDF | | 11
3 | 928
794 | 16
7.9 | | | 150
150 | | | | | | Toxic Equivalency - (WHO | 2005) | | pg | | | | | | | | | | Lower Bound PCDD/F TEQ (
Mid Point PCDD/F TEQ (WH
Upper Bound PCDD/F TEQ (| WHO 2005)
O 2005) | | 152
156
158 | | | | | | | | | | EDL
TEF
M | | Indicates t
Indicates t | he Toxic !
hat a pea | Equivalen
k has bee | ry Factor
n manua | r
iliy integ | rated. | | this target in this sample.
e Toxic Equivalency | | | | | | Indicates t | nat this c | ompound | was not | detected | above the | EDL. | | | | | | | Indicates t | hat a targ | jet analyti | e was de | tected b | elow the cal | brated range. | | | | | in a company of the c | | | | | | | | | | | | | igi a taga a kabana a kabana kaba | | | | | | | | ild not meet the acceptance | | | | | B
LQL | | Indicates t | hat this t | arget was | detected | in the l | lank at gre | nd not meet the acceptance
ater than 10% of the sample
level corrected for sample s | concentration. | | | ### **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(16 THRU 20) BLANK#1 Sampling Date 12-Nov-20 ALS Sample ID Analysis Method Analysis Type L2529311-4 EPA M23 Sample Extraction Date 25-Nov-20 Approved: Sample Size Percent Moisture sample N Ashtari n/a signature Sample Matrix Stack Split Ratio 6 15-Dec-2020 Run Information Filename 7-201214A10 Run Date 14-Dec-20 19:54 Final Volume 10 uL Dilution Factor 1 pg Instrument - Column HRMS-7 DB5MSUS0287846H TEF Ret. Conc. EDL EMPC Target Analytes (WHO 2005) Time pg pg Flags pg LQL 2,3,7,8-TCDD NotFnd <4.3 4.3 30 1,2,3,7,8-PeCDD NotFnd <4.4 4.4 υ 150 1,2,3,4,7,8-HxCDD 0.1 NotFnd <4.0 4.0 150 1.2.3.6.7.8-HxCDD 0.1 NotEnd <3.5 3.5 υ 150 1,2,3,7,8,9-HxCDD 0.1 NotFnd < 3.8 3.8 υ 150 1,2,3,4,6,7,8-HpCDD 0.01 35.61 47.9 5.3 17 150 OCDD 0.0003 37.06 177 17 J.B 300 2.3.7.8-TCDF 0.1 NotFnd < 3.3 3,3 -U 30 1,2,3,7,8-PeCDF 0.03 NotFnd < 2.6 2.6 υ 150 2,3,4,7,8-PeCDF 0.3 NotFnd <2.4 2.4 U 150 1,2,3,4,7,8-HxCDF 0.1 NotFnd <2.2 2.2 U 150 1,2,3,6,7,8-HxCDF 0.1 NotFnd <2.1 2.1 150 2,3,4,6,7,8-HxCDF 0.1 NotFnd < 2.3 2,3 150 1,2,3,7,8,9-HxCDF 0.1 NotFnd < 2.7 2.7 ш 150 1,2,3,4,6,7,8-HpCDF 0.01 35.04 < 9.8 5.8 1.R 9.8 150 1,2,3,4,7,8,9-HpCDF 0.01 NotEnd <7.4 7.4 U 150 OCDF 0.0003 37.14 <19 19 J,R 300 Field Spike Standards Pg % Rec 37CI4-2,3,7,8-TCDD 0 13C12-1,2,3,4,7,8-HxCDD 13C12-2,3,4,7,8-PeCDF ົດ 13C12-1,2,3,4,7,8-HxCDF 0 13C12-1,2,3,4,7,8,9-HpCDF **Extraction Standards** 13C12-2,3,7,8-TCDD 27.05 29 40-130 13C12-1.2.3.7.8-PeCDD 19920 31.78 27 40-130 13C12-1,2,3,6,7,8-HxCDD 19920 34.00 32 40-130 13C12-1,2,3,4,6,7,8-HpCDD 19920 35.60 25 25-130 13C12-OCDD 39840 37.05 19 25-130 13C12-2,3,7,8-TCDF 19920 26.14 27 40-130 13C12-1,2,3,7,8-PeCDF 19920 30.75 23 40-130 13C12-1.2.3.6.7.8-HxCDF 19920 33.50 29 40-130 13C12-1,2,3,4,6,7,8-HpCDF 19920 35.04 24 25-130 Conc. EDL Homologue Group Totals # peaks Pg pg Total-TCDD 0 <4.3 4.3 30 Total-PeCDD .0 <4.4 4.4 U 150 Total-HxCDD 0 <4.0 4.0 u 150 Total-HpCDD 47.9 5.3 150 Total-TCDF 0 <3.3 3.3 30 Total-PeCDF 0 <2.6 2.6 150 Total-HxCDF 3.54 2.7 Total-HpCDF 0 <7.4 7.4 u 150 Toxic Equivalency - (WHO 2005) P9 Lower Bound PCDD/F TEQ (WHO 2005) 0.532 Mid Point PCDD/F TEQ (WHO 2005) Upper Bound PCDD/F TEQ (WHO 2005) 6.62 12.6 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor U Indicates that this compound was not detected above the EDL. J Indicates that a target analyte was detected below the calibrated range. R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. В Indicates that this target was detected in the blank at greater than 10% of the sample concentration. LOL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. EMPC Estimated Maximum Possible Concentration - elevated detection limit due to interference or positive id criterion failure ### **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(21 THRU 25) TEST#1 APC OUTLET #2 Sampling Date 11-Nov-20 ALS Sample ID Analysis Method Analysis Type L2529311-5 Extraction Date 25-Nov-20 Approved: EPA M23 Sample Sample Size Percent Moisture sample N Ashtari n/a e-signature Sample Matrix Stack Split Ratio 6 15-Dec-2020 Run Information Filename 7-201214A11 Run Date 14-Dec-20 20:35 Final Volume 10 uL Dilution Factor 1 pg Instrument - Column HRMS-7 D85MSUS0287846H TEF Ret. Conc EDL EMPC Target Analytes (WHO 2005) Time pg pg Flags LQL рg 2,3,7,8-TCDD 1 NotFnd <4.1 4.1 30 1,2,3,7,8-PeCDD 31.77 < 6.7 3.7 6.7 150 J,R 1,2,3,4,7,8-HxCDD 0.1 33.94 18.2 4.1 м,з 150 1,2,3,6,7,8-HxCDD 0.1 33.99 46.5 3.6 M,J 150 1,2,3,7,8,9-HxCDD 0.1 34.12 19.3 3.9 150 1,2,3,4,6,7,8-HpCDD 0.01 35.59 284 3.7 150 OCDD 0.0003 37.04 311 6.9 В 300 2,3,7,8-TCDF 0.1 26.13 < 5.8 5.8 M,U 30 1,2,3,7,8-PeCDF 0.03 30.75 6.69 6.5 150 2,3,4,7,8-PeCDF 0.3 31.54 <17 17 150 6.1 M,J,R 1,2,3,4,7,8-HxCDF 33.42 <20 7.0 M,3,R 20 150 1,2,3,6,7,8-HxCDF 0.1 33.50 6.7 M,3 150 2,3,4,6,7,8-HxCDF 0.1 33.84 44.6 7.4 150 1,2,3,7,8,9-HxCDF 0.1 34.29 11.2 8.4 М,3 150 1,2,3,4,6,7,8-HpCDF 0.01 35.04 116 3.9 150 1,2,3,4,7,8,9-HpCDF 0.01 35.82 <18 5.0 J.R .18 150 OCDF 0.0003 37.13 7.8 M,J,R 43 Field Spike Standards pg % Rec 37CI4-2,3,7,8-TCDD 0 13C12-1,2,3,4,7,8-HxCDD 0 13C12-2,3,4,7,8-PeCDF Ö 13C12-1,2,3,4,7,8-HxCDF 0 13C12-1,2,3,4,7,8,9-HpCDF Extraction Standards 32 40-130 13C12-2,3,7,8-TCDD 19920 27.04 13C12-1,2,3,7,8-PeCDD 19920 31.77 32 40-130 13C12-1,2,3,6,7,8-HxCDD 19920 33.99 39 40-130 13C12-1,2,3,4,6,7,8-HpCDD 19920 35.58 34 25-130 13C12-OCDD 39840 37.04 29 25-130 13C12-2,3,7,8-TCDF 19920 32 40-130 26.13 13C12-1,2,3,7,8-PeCDF 19920 30.74 27 40-130 13C12-1.2.3.6.7.8-HxCDF 19920 33.49 33 40-130 13C12-1,2,3,4,6,7,8-HpCDF 19920 35.03 32 25-130 Conc. EDL Homologue Group Totals # peaks pg рg Total-TCDD 113 4.1 30 Total-PeCDD 5 311 3.7 150 Total-HxCDD 779 4.1 150 Total-HpCDD 626 3.7 150 Total-TCDF 24.8 5.8 30 Total-PeCDF 202 6.5 150 Total-HxCDF 8 236 150 Total-HpCDF 2 154 5.0 150 Toxic Equivalency - (WHO 2005) pg Lower Bound PCDD/F TEQ (WHO 2005) 20.9 Mid Point PCDD/F TEQ (WHO 2005) 37.3 Upper Bound PCDD/F TEQ (WHO 2005) 39.6 Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample, Indicates the Toxic Equivalency Factor TEQ Indicates the Toxic Equivalency TEF М Indicates that a peak has been manually integrated. U Indicates that this compound was not detected above the EDL. 'n Indicates that a target analyte was detected below the calibrated range. R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. В Indicates that this target was detected in the blank at greater than 10% of the sample concentration. LOL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. EMPC Estimated Maximum Possible Concentration – elevated detection limit due to interference or positive id criterion failure ### **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(26 THRU 30) TEST#2 APC OUTLET #2 Sampling Date 11-Nov-20 ALS Sample ID Analysis Method Extraction Date Approved: N Ashtari 25-Nov-20 Sample Size Percent Moisture EPA M23 Sample 1 n/a Analysis Type -e-signature Sample Matrix Stack Split Ratio Ġ 15-Dec-2020 Run Information Run 1 Filename 7-201214A12 Run Date 14-Dec-20 21:17 Final Volume 10 uL Dilution Factor 1 Analysis Units DO Instrument - Column HRMS-7 DB5MSUS0287846H TEF Ret. EDL Conc. Target Analytes (WHO 2005) Time LQL pg pg Flags pq 2,3,7,8-TCDD NotFnd < 5.9 5.9 ωŪ 30 1,2,3,7,8-PeCDD 31.78 <7.0 5.3 M,J,R 7.0 150 1,2,3,4,7,8-HxCDD 0.1 33.94 <23 22 23 150 J,R 1,2,3,6,7,8-HxCDD 0.1 33.99 <51 19 51 150 J,R 1,2,3,7,8,9-HxCDD 0.1 NotFnd <21 21 150 1,2,3,4,6,7,8-HpCDD 0.01 35 59 333 21 150 OCDD 0.0003 37.04 712 20 M,B 300 2,3,7,8-TCDF 0.1 26.16 <13 13 30 1,2,3,7,8-PeCDF 0.03 30.74 <8.6 8.6 Ü 6.4 150 2,3,4,7,8-PeCDF 0.3 31.54 24.8 8.0 1 150 1,2,3,4,7,8-HxCDF 33.42 0.1 25.2 10 M.3 150 1,2,3,6,7,8-HxCDF 0.1 33.49 <20 20 9.6 M,J,R 150 2,3,4,6,7,8-HxCDF 0.1 33.84 44.6 11 M,J 150 1,2,3,7,8,9-HxCDF 0.1 34.29 <12 12 U 150 1,2,3,4,6,7,8-HpCDF 0.01 35.03 155 5.8 150 1,2,3,4,7,8,9-HpCDF 0.01 35.83 <17 7.4 J.R 17 150 OCDF 0.0003 37.14 <88 21 M,3,R 88 300 Field Spike Standards pg % Rec 37CI4-2.3.7.8-TCDD 0 13C12-1,2,3,4,7,8-HxCDD 13C12-2,3,4,7,8-PeCDF 13C12-1,2,3,4,7,8-HxCDF 13C12-1,2,3,4,7,8,9-HpCDF Extraction Standards 13C12-2,3,7,8-TCDD 19920 27.04 28 40-130 13C12-1,2,3,7,8-PeCDD 19920 31.77 29 40-130 13C12-1.2.3.6.7.8-HxCDD 19920 33.98 34 40-130 13C12-1,2,3,4,6,7,8-HpCDD 19920 35.58 26 25-130 13C12-OCDD 39840 37.04 13C12-2.3.7.8-TCDF 19920 26.13 27 40-130 13C12-1,2,3,7,8-PeCDF 19920 30.73 24 40-130 13C12-1,2,3,6,7,8-HxCDF 19920 33.48 32 40-130 13C12-1,2,3,4,6,7,8-HpCDF 19920 35.03 27 25-130 **Homologue Group Totals** # peaks pg
Pg Total-TCDD 128 5.9 30 Total-PeCDD 418 Total-HxCDD 5 1030 22 150 Total-HpCDD 2 820 21 150 Total-TCDF 62.5 13 30 Total-PeCDF 85.9 150 8.6 Total-HxCDF 232 12 150 Total-HpCDF 3 230 7.4 150 Toxic Equivalency - (WHO 2005) P9 Lower Bound PCDD/F TEQ (WHO 2005) 19.5 Mid Point PCDD/F TEQ (WHO 2005) Upper Bound PCDD/F TEQ (WHO 2005) 46.9 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEQ Indicates the Toxic Equivalency М Indicates that a peak has been manually integrated. U Indicates that this compound was not detected above the EDL 3 Indicates that a target analyte was detected below the calibrated range R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. В Indicates that this target was detected in the blank at greater than 10% of the sample concentration. Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. 101 Estimated Maximum Possible Concentration – elevated detection limit due to interference or positive id criterion failure EMPC ### **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(31 THRU 35) TEST#3 APC OUTLET #2 Sampling Date 12-Nov-20 ALS Sample ID L2529311-7 Extraction Date 25-Nov-20 Approved: Analysis Method Analysis Type EPA M23 Sample Sample Size Percent Moisture sample N Ashtari n/a Sample Matrix Stack Split Ratio 6 15-Dec-2020 Run Information Run 1 Filename 7-201214A13 Run Date 14-Dec-20 21:59 Final Volume 10 uL Dilution Factor 1 Analysis Units pg Instrument - Column HRMS-7 DB5MSUS0287846H TEF EDL Ret. Conc. EMPC **Target Analytes** (WHO 2005) Time LQL 2,3,7,8-TCDD 1.1 1,2,3,7,8-PeCDD 31.78 6.19 3.8 150 Μ,3 1,2,3,4,7,8-HxCDD 0.1 33.95 <17 5.1 J,R 17 150 1,2,3,6,7,8-HxCDD 0.1 34.00 42.2 4.5 150 1,2,3,7,8,9-HxCDD 0.1 34.14 < 20 4.9 M,J,R 20 150 1,2,3,4,6,7,8-HpCDD 35.60 263 9.4 150 OCDD 0.0003 37.06 326 11 м,в 300 2,3,7,8-TCDF 0.1 26.14 <4.0 4.0 U.M 2.8 30 1,2,3,7,8-PeCDF 0.03 30.75 9.13 5.3 :M,3 150 2,3,4,7,8-PeCDF 0.3 31.55 <14 4.9 M,J,R 14 150 1,2,3,4,7,8-HxCDF 0.1 33.43 150 1.2.3.6.7.8-HxCDF 0.1 33.50 <18 18 M,U 17 150 2,3,4,6,7,8-HxCDF 0.1 33.84 37.0 20 150 1,2,3,7,8,9-HxCDF 0.1 34.29 <23 -23 M.U 6.0 150 1,2,3,4,6,7,8-HpCDF 0.01 35.04 104 1.9 150 1,2,3,4,7,8,9-HpCDF 0.01 15.0 150 OCDF 0.0003 37.15 <49 7.4 M,J,R 49 Field Spike Standards pg 37CI4-2,3,7,8-TCDD 13C12-1,2,3,4,7,8-HxCDD 13C12-2,3,4,7,8-PeCDF 'n 0 13C12-1,2,3,4,7,8-HxCDF 13C12-1,2,3,4,7,8,9-HpCDF 0 **Extraction Standards** 13C12-2,3,7,8-TCDD 19920 27.05 34 40-130 13C12-1,2,3,7,8-PeCDD 19920 31.78 32 40-130 13C12-1,2,3,6,7,8-HxCDD 39 40-130 33.99 13C12-1,2,3,4,6,7,8-HpCDD 13C12-OCDD 19920 35.59 31 25-130 39840 37.05 24 25-130 13C12-2,3,7,8-TCDF 19920 33 40-130 13C12-1,2,3,7,8-PeCDF 13C12-1,2,3,6,7,8-HxCDF 19920 30.74 28 40-130 19920 33.50 37 40-130 13C12-1,2,3,4,6,7,8-HpCDF 35.04 32 25-130 Conc. EDL **Homologue Group Totals** # peaks PS pg Total-TCDD 75.8 4.3 Total-PeCDD 267 3.8 150 Total-HxCDD 655 5.1 150 Total-HpCDD 576 9.4 150 Total-TCDF 36,9 30 4.0 Total-PeCDE 128 5.3 150 Total-HxCDF 172 23 150 Total-HpCDF 180 2.5 150 Toxic Equivalency - (WHO 2005) pg Lower Bound PCDD/F TEQ (WHO 2005) 18.3 Mid Point PCDD/F TEQ (WHO 2005) 31.6 Upper Bound PCDD/F TEQ (WHO 2005) Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TER Indicates the Toxic Equivalency Factor М Indicates that a peak has been manually integrated. Ü Indicates that this compound was not detected above the EDL. Indicates that a target analyte was detected below the calibrated range. R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. 8 Indicates that this target was detected in the blank at greater than 10% of the sample concentration. LQL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. EMPC Estimated Maximum Possible Concentration - elevated detection limit due to interference or positive id criterion failure ### **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(36 THRU 40) BLANK#2 Sampling Date 12-Nov-20 ALS Sample ID Analysis Method Analysis Type L2529311-8 Extraction Date 25-Nov-20 Approved: EPA M23 Sample Sample Size Percent Moisture sample N Ashtari n/a Sample Matrix Split Ratio 6 15-Dec-2020 Run Information Filename 7-201214A14 Run Date 14-Dec-20 22:40 Final Volume 10 uL. Dilution Factor 1 Analysis Units pg Instrument - Column HRMS-7 D85MSUS0287846H TEF Ret. Conc. EDL EMPC Target Analytes (WHO 200S) Time pg Flags pg LQL 2,3,7,8-TCDD NotFnd <3.0 3.0 30 1,2,3,7,8-PeCDD NotFnd <2.3 2.3 U 150 1,2,3,4,7,8-HxCDD 0.1 NotFnd <3.2 3.2 1,2,3,6,7,8-HxCDD 0.1 NotEnd <2.8 2.8 U 150 1,2,3,7,8,9-HxCDD 0.1 NotFnd <3.1 3.1 u 150 1,2,3,4,6,7,8-HpCDD 35.59 0.01 <16 5.1 J.R 16 150 OCDD 0.0003 37.05 <82 7.6 M,J,R 82 300 2,3,7,8-TCDF 0.1 NotFnd <1.8 1.8 IJ 30 1,2,3,7,8-PeCDF 0.03 NotFnd <1.7 1.7 U 150 2,3,4,7,8-PeCDF 0.3 NotFnd <1.6 1.6 150 Ù 1,2,3,4,7,8-HxCDF 0.1 NotFnd <1.8 1.8 U 150 1,2,3,6,7,8-HxCDF 0.1 NotFnd <1.8 1.8 2,3,4,6,7,8-HxCDF 0.1 NotEnd <1.9 1.9 Ù 150 1,2,3,7,8,9-HxCDF 0.1 NotFnd <2.2 2.2 'n 150 1,2,3,4,6,7,8-HpCDF 0.01 35.03 <3.1 2.0 M,J,R 3.1 150 1,2,3,4,7,8,9-HpCDF 0.01 NotFnd <2.5 2.5 :0 150 OCDF 0.0003 37.14 17.9 M,J,B Field Spike Standards % Rec pg 37CI4-2,3,7,8-TCDD 0 13C12-1,2,3,4,7,8-HxCDD 0 13C12-2,3,4,7,8-PeCDF 'n 13C12-1,2,3,4,7,8-HxCDF 0 13C12-1,2,3,4,7,8,9-HpCDF **Extraction Standards** 13C12-2,3,7,8-TCDD 19920 35 40-130 13C12-1,2,3,7,8-PeCDD 19920 31.76 32 40-130 13C12-1,2,3,6,7,8-HxCDD 19920 38 40-130 33.99 13C12-1,2,3,4,6,7,8-HpCDD 19920 35.58 34 25-130 13C12-OCDD 39840 37.04 28 25-130 13C12-2,3,7,8-TCDF 19920 26.13 34 40-130 13C12-1,2,3,7,8-PeCDF 19920 30.73 29 40-130 13C12-1,2,3,6,7,8-HxCDF 19920 33.48 35 40-130 13C12-1,2,3,4,6,7,8-HpCDF 35.03 33 25-130 Conc. EDL Homologue Group Totals # peaks рg pg Total-TCDD ō <3.0 3.0 30 Total-PeCDD 2.89 2.3 150 Total-HxCDD 0 <3.2 3.2 Ù 150 Total-HpCDD < 5.1 5.1 U 150 Total-TCDF <1.8 1.8 30 Total-PeCDF 0 <1.7 1.7 150 Total-HxCDF Ð <2.2 2.2 150 Total-HpCDF 0 <2.5 2.5 ·u 150 Toxic Equivalency - (WHO 2005) рg Lower Bound PCDD/F TEQ (WHO 2005) 0.00537 Mid Point PCDD/F TEQ (WHO 2005) 4.08 Upper Bound PCDD/F TEQ (WHO 2005) 7.94 Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor M Indicates that a peak has been manually integrated. Indicates that this compound was not detected above the EDL. 1 Indicates that a target analyte was detected below the calibrated range. R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. В Indicates that this target was detected in the blank at greater than 10% of the sample concentration. LOL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. Estimated Maximum Possible Concentration - elevated detection limit due to interference or positive id criterion failure ### **ALS Life Sciences** Laboratory Method Blank Analysis Report Sample Name Method Blank Sampling Date n/a ALS Sample ID WG3444637-1 Extraction Date 25-Nov-20 Approved: Analysis Method Analysis Type Sample Size Percent Moisture sample N Ashtari n/a Sample Matrix Split Ratio 6 15-Dec-2020 Run Information Filename 7-201214A05 Run Date 14-Dec-20 16:26 Final Volume 10 ul. Dilution Factor 1 pg Instrument - Column HRMS-7 DB5MSUS0287846H TEF Ret. Conc. EDL EMPC Target Analytes (WHO 2005) Time pg pg Flags pg LQL 2,3,7,8-TCDD 1 NotFnd <3.1 3.1 30 ·U 1,2,3,7,8-PeCDD <3.1 3.1 U 150 1,2,3,4,7,8-HxCDD 0.1 NotFnd <3.4 1,2,3,6,7,8-HxCDD 0.1 33 99 <3.3 3.0 J,R 3,3 150 1,2,3,7,8,9-HxCDD 0.1 34.13 < 3.3 3.3 M,U 1.1 150 1,2,3,4,6,7,8-HpCDD 0.01 35.60 <15 3.2 J,R 15 150 OCDD 0.0003 37.05 133 8.9 3 300 2,3,7,8-TCDF 0.1 NotFnd <1.9 1.9 ·u 30 1,2,3,7,8-PeCDF 0.03 30.75 <2.0 2.0 U 1.6 150 2,3,4,7,8-PeCDF NotFnd <1.9 1.9 U 150 1,2,3,4,7,8-HxCDF 0.1 33.42 <2.7 2.7 M,U . 1.1 150 1,2,3,6,7,8-HxCDF 0.1 33.48 <2.6 M,U 1.3 150 2,3,4,6,7,8-HxCDF 0.1 33,85 <2.9 2.9 U 1.7 150 1,2,3,7,8,9-HxCDF 0.1 34.27 <3.3 3,3 · U 1.4 150 1,2,3,4,6,7,8-HpCDF 0.01 35.04 <7.4 7.4 M.U. 150 1,2,3,4,7,8,9-HpCDF 0.01 35.84 <9.5 9.5 3.5 U 150 OCDF 0.0003 37.14 31,5 M,J Field Spike Standards Pg % Rec 37CH-2,3,7,8-TCDD 13C12-1,2,3,4,7,8-HxCDD 0 13C12-2,3,4,7,8-PeCDF -0 13C12-1,2,3,4,7,8-HxCDF 0 13C12-1,2,3,4,7,8,9-HpCDF **Extraction Standards** 13C12-2,3,7,8-TCDD 19920 27.04 36 40-130 13C12-1,2,3,7,8-PeCDD 19920 31.77 36 40-130 13C12-1,2,3,6,7,8-HxCDD 19920 39 40-130 33.99 13C12-1,2,3,4,6,7,8-HpCDD 19920 35.59 33 25-130 13C12-OCDD 39840 37.05 22 25-130 13C12-2,3,7,8-TCDF 19920 35 40-130 26.14 13C12-1,2,3,7,8-PeCDF 19920 30.74 31 40-130 13C12-1,2,3,6,7,8-HxCDF 19920 33.49 35 40-130 13C12-1,2,3,4,6,7,8-HpCDF 35.04 32 25-130 Conc. EDL **Homologue Group Totals** # peaks pg pg Total-TCDD 0 <3.1 3.1 Total-PeCDD 0 <3.1 3.1 U 150 Total-HxCDD 0 <3.4 3.4 ù 150 Total-HpCDD <3.2 3.2 u 150 Total-TCDF <1.9 1.9 30 Total-PeCDF 0 <2.0 2.0 150 Total-HxCDF 0 <3.3 3.3 150 Total-HpCDF 0 <9.5 9.5 ·u 150 Toxic Equivalency - (WHO 2005) pg Lower Bound PCDD/F TEQ (WHO 2005) 0.0494 Mid Point PCDD/F TEQ (WHO 2005) 5.03 Upper Bound PCDD/F TEQ (WHO 2005) 9.54 Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor M Indicates that a peak has been manually integrated. Ü Indicates that this compound was not detected above the EDL. 1 Indicates that a target analyte was detected below the calibrated range B Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. LOL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. Estimated Maximum Possible Concentration - elevated detection limit due to
interference or positive id criterion failure # ALS Life Sciences # Laboratory Control Sample Analysis Report Split Ratio Sample Name Sample Matrix Filename Run Date Final Volume Dilution Factor Laboratory Control Sample ALS Sample ID Analysis Method Analysis Type WG3444637-2 EPA M23 LCS QC Sampling Date Extraction Date Sample Size Percent Moisture 25-Nov-20 1 n/a 6 sample Approved: N Ashtari --e-signature--15-Dec-2020 Run Information Run 1 7-201214A02 14-Dec-20 14:22 10 uL 1 % Rec Analysis Units % Instrument - Column HRMS-7 DB5MSUS0287846H | | pg | Ret. | | Limits | | | |---------------------|-------|-------|-------|--------|-------|--| | Target Analytes | | Time | % Rec | | Flags | | | 2,3,7,8-TCDD | 1200 | 27.10 | 82 | 70-130 | | | | 1,2,3,7,8-PeCDD | 6000 | 31.80 | 98 | 70-130 | | | | 1,2,3,4,7,8-HxCDD | 6000 | 33.95 | 93 | 70-130 | | | | 1,2,3,6,7,8-HxCDD | 6000 | 34.01 | 91 | 70-130 | | | | 1,2,3,7,8,9-HxCDD | 6000 | 34.14 | 95 | 70~130 | | | | 1,2,3,4,6,7,8-HpCDD | 6000 | 35.61 | 92 | 70-130 | | | | OCDD | 12000 | 37.06 | 92 | 70-130 | | | | 2,3,7,8-TCDF | 1200 | 26.19 | 88 | 70-130 | | | | 1,2,3,7,8-PeCDF | 6000 | 30.77 | 88 | 70-130 | | | | 2,3,4,7,8-PeCDF | 6000 | 31.57 | 88 | 70-130 | | | | 1,2,3,4,7,8-HxCDF | 6000 | 33.44 | . 84 | 70-130 | | | | 1,2,3,6,7,8-HxCDF | 6000 | 33.51 | 89 | 70-130 | | | | 2,3,4,6,7,8-HxCDF | 6000 | 33.86 | 91 | 70-130 | | | | 1,2,3,7,8,9-HxCDF | 6000 | 34.28 | 89 | 70-130 | | | | 1,2,3,4,6,7,8-HpCDF | 6000 | 35.06 | 87 | 70-130 | | | | 1,2,3,4,7,8,9~HpCDF | 6000 | 35.84 | 85 | 70-130 | | | | OCDF | 12000 | 37.15 | 79 | 70-130 | | | | | | | | | | | | ield | Spike | Standa | rds | P9 | |------|-------|--------|-----|----| | | | | | | 37Cl4-2,3,7,8-TCDD 0 13C12-1,2,3,4,7,8-HxCDD 0 13C12-2,3,4,7,8-PeCDF 0 13C12-1,2,3,4,7,8-HxCDF 0 0 13C12-1,2,3,4,7,8,9-HpCDF | Extraction Standards | | | | | |---------------------------|-------|-------|----|--------| | 13C12-2,3,7,8-TCDD | 19920 | 27.08 | 39 | 40-130 | | 13C12-1,2,3,7,8-PeCDD | 19920 | 31.79 | 42 | 40-130 | | 13C12-1,2,3,6,7,8-HxCDD | 19920 | 34.00 | 43 | 40-130 | | 13C12-1,2,3,4,6,7,8-HpCDD | 19920 | 35.60 | 37 | 25-130 | | 13C12-OCDD | 39840 | 37.05 | 29 | 25-130 | | 13C12-2,3,7,8-TCDF | 19920 | 26.17 | 37 | 40-130 | | 13C12-1,2,3,7,8-PeCDF | 19920 | 30.76 | 34 | 40-130 | | 13C12-1,2,3,6,7,8-HxCDF | 19920 | 33.50 | 36 | 40-130 | | 13C12-1,2,3,4,6,7,8-HpCDF | 19920 | 35.04 | 32 | 25-130 | | | | | | | 1435 Norjohn Court, Unit 1, Burlington, ON, Canada L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 # **Certificate of Analysis** ALS Project Contact: Lynne Wrona ALS Project ID: **ORT100** L2529311 ALS WO#: Date of Report 11-Dec-20 Date of Sample Receipt 13-Nov-20 Client Name: **ORTECH Environmental** 804 Southdown Road Client Address: Mississauga ON L5J 2Y4 Chris Belore **Client Contact:** Client Project ID: 22050 Covanta COMMENTS: PCB Congeners by EPA 1668C PCB Congener Group Totals and Total PCB are a sum of detected values, including EMPC values, consistent with USEPA CLP SOW CBC1.2 Certified by: Ron McLeod, PhD Director, Air Toxics & Special Chemistries, Life Sciences Results in this certificate relate only to the samples as submitted to the laboratory. This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd. | ALS Life Sciences | | | | | | | | |---|------------|--|---|---|---|--|--| | | Sa | mple Analysis Su | | | | | | | Sample Name | | 20-22050-SVOC-(6
THRU 10) TEST#2
APC OUTLET #1 | 20-22050-SVOC-
(11 THRU 15)
TEST#3 APC
OUTLET #1 | 20-22050-SVOC-
(16 THRU 20)
BLANK#1 | 20-22050-SVOC-
(21 THRU 25)
TEST#1 APC
OUTLET #2 | 20-22050-SVO
(26 THRU 30
TEST#2 AP
OUTLET # | | | ALS Sample ID | L2529311-1 | L2529311-2 | L2529311-3 | L2529311-4 | L2529311-5 | L2529311 | | | Sample Size | 1 | 1 | 1 | | 1. | | | | Sample size units | sample | sample | sample | sample | sample | samp | | | Percent Moisture | n/a | n/a | n/a | n/a | n/a | n | | | Sample Matrix | Stack | Stack | Stack | Stack | Stack | Sta | | | Sampling Date | 11-Nov-20 | 11-Nov-20 | 12-Nov-20 | 12-Nov-20 | 11-Nov-20 | 11-Nov-2 | | | Extraction Date | 25-Nov-20 | 25-Nov-20 | 25-Nov-20 | 25-Nov-20 | 25-Nov-20 | 25-Nov-2 | | | Target Analytes | pg | pg | pg | pg | pg | p | | | PCB-081 | <27 | <26 | <27 | <22 | <27 | < | | | PCB-077 | 66.9 | 213 | <63 | <23 | 70.8 | 22 | | | PCB-123 | <27 | 135 | <27 | <27 | 25.7 | 84 | | | PCB-118 | 859 | 6370 | 1010 | 61.5 | 1780 | 47 | | | 78.73 19.13 19.13 19.14 PCB-114 | 30.6 | 181 | <22 | <21 | 40.9 | which is a contracting (1) | | | PCB-105 | 251 | 2070 | 331 | <21 | 456 | 13 | | | PCB-126 | <25 | <35 | <27 | <24 | <15 | <. | | | PCB-167 | 27.2 | 85.8 | <17 | <13 | 27.6 | </td | | | PCB-156/157 | 79.8 | 330 | 55.0 | <19 | 79.5 | 14 | | | PCB-169 | 31.4 | 32.5 | <23 | <15 | <8.3 | <1 | | | PCB-189 | 37.4 | 42.6 | 24.3 | <11 | 18.9 | 15 | | | Extraction Standards | % Rec | % Rec | % Rec | % Rec | % Rec | % Re | | | 13C12-PCB-081 | 74 | 93 | 54 | 68 | 79 | | | | 13C12-PCB-077 | 75 | 96 | 55 | 71 | 82 | | | | 13C12-PCB-123 | 73 | 92 | 55 | 69 | 82 | | | | 13C12-PCB-118 | 72 | 93 | 52 | 67 | 79 | | | | 13C12-PCB-114 | 85 | 108 | 62 | 81 | 97 | 1 | | | 13C12-PCB-105 | 87 | 107 | 61 | 82 | 96 | | | | 13C12-PCB-126 | 93 | 113 | 67 | 92 | 99 | | | | 13C12-PCB-167 | 77 | 95 | 56 | 68 | 87 | | | | 13C12-PCB-156/157 | 75 | 98 | 55 | 68 | 87 | | | | 13C12-PCB-169 | 88 | 112 | 64 | 75 | 100 | | | | 13C12-PCB-189 | 88 | 114 | 62 | 79 | 99 | | | | Field Spike Standards | | | | | | | | | 13C12-PCB-031 | 89 | 94 | 92 | 119 | 93 | | | | 13C12-PCB-095 | 95 | 84 | 94 | 87 | 89 | | | | 13C12-PCB-153 | 85 | 89 | 88 | 92 | 91 | | | | Cleanup Standards | | | | | | | | | 13C12-PCB-028 | 50 | 56 | 41 | 64 | 46 | | | | 13C12-PCB-111 | 64 | 73 | 53 | 77 | 73 | | | | 13C12-PCB-178 | 66 | 88 | 54 | 67 | 85 | 6 | | | Toxic Equivalency - (WHO 2005) | pg | pg | pg | pg | pg | Ţ. | | | Lower Bound PCB TEQ | 0.987 | 1.27 | 0.0426 | 0.00185 | 0.0799 | 0.2 | | | Mid Point PCB TEQ | 2.24 | 3.03 | 2.09 | 1.43 | 0.958 | 1 | | | Upper Bound PCB TEQ | 3.50 | 4.78 | 3.45 | 2.86 | 1.84 | 3.3 | | | | · · · · · · · · · · · · · · · · · · · | LS Life Sci | ences | |--------------------------------|---|---|-------------| | | Sam | iple Analysis Sumn | nary Report | | Sample Name | 20-22050-SVOC-
(31 THRU 35)
TEST#3 APC
OUTLET #2 | 20-22050-SVOC-
(36 THRU 40)
BLANK#2 | | | ALS Sample ID | L2529311-7 | L2529311-8 | | | Sample Size | 1 | 1 | | | Sample size units | sample | sample | | | Percent Moisture | n/a | n/a | | | Sample Matrix | Stack | Stack | | | Sampling Date | 12-Nov-20 | 12-Nov-20 | | | Extraction Date | 25-Nov-20 | 25-Nov-20 | | | Target Analytes | pg | pg | | | PCB-081 | <25 | <22 | | | PCB-077 | 194 | 33.2 | | | PCB-123 | 76.9 | <29 | | | PCB-118 | 5080 | 680 | | | PCB-114 | 144 | <23 | | | PCB-105
PCB-126 | 2240
<39 | 304
<26 | | | PCB-126
PCB-167 | <39
177 | <26
51.4 | | | PCB-156/157 | 617 | 144 | | | PCB-169 | <18 | <22 | | | PCB-189 | 40.9 | 20.2 | | | Extraction Standards | | | | | Extraction Standards | % Rec | % Rec | | | 13C12-PCB-081 | 64 | 70 | | | 13C12-PCB-077 | 65 | 69 | | | 13C12-PCB-123 | 64 | 70 | | | 13C12-PCB-118 | 64 | 68 | | | 13C12-PCB-114 | 73 | 83 | | | 13C12-PCB-105
13C12-PCB-126 | 72
81 | 83
90 | | | 13C12-PCB-126 | 67 | 90
69 | | | 13C12-PCB-156/157 | 66 | 69 | | | 13C12-PCB-169 | 73 | 79 | | | 13C12-PCB-189 | 77 | 81 | | | Field Spike Standards | | | | | 13C12-PCB-031 | 88 | 95 | | | 13C12-PCB-095 | 88 | 85 | | | 13C12-PCB-153 | 82 | 92 | | | Cleanup Standards | | | | | 13C12-PCB-028 | 44 | 49 | | | 13C12-PCB-111 | 59 | 64 | | | 13C12-PCB-178 | 64 | 59 | | | Toxic Equivalency - (WHO 2005) | pg | pg | | | Lower Bound PCB TEQ | 0.271 | 0.0393 | | | Mid Point PCB TEQ | 2.49 | 1.67 | | | Upper Bound PCB TEQ | 4.72 | 3.31 | | | | ALS Life S | Sciences |
--|--|---| | TO THE PROPERTY OF PROPERT | Quality Control Si | | | Sample Name | Method Media Blank | | | | riethou rietha Biank | | | | | | | | | | | ALS Sample ID | WG3444637-1 | | | Sample Size Sample size units | 1
sample | | | Percent Moisture | n/a | | | Sample Matrix | oc | | | Sampling Date | n/a | | | Extraction Date | 25-Nov-20 | | | | A FIGURE AND FIG | | | Target Analytes | pg | | | PCB-081 | | | | PCB-077 | <12 | | | PCB-123 | | | | PC8-118 | 18.3 | | | PCB-114
PCB-105 | <14
<14 | | | PCB-105 | <14
<17 | | | PCB-167 | | | | PCB-156/157 | <16 | | | PCB-169 | <13 < 13 < 13 < 13 < 13 < 13 < 13 < 13 | | | PCB-189 | | | | Extraction Standards | % Rec | | | 13C12-PCB-081 | 89 | 여름 이번 발표 보고 있다는 그는 이다. 그들은 한 경기를 받는다. | | 13C12-PCB-077 | 92 | | | 13C12-PCB-123 | 87 | | | 13C12-PCB-118
13C12-PCB-114 | 83. 13. 1 | | | 13C12-PCB-105 | 90
94 | | | 13C12-PCB-126 | 94 | 보인으로 통일로 보다 어른 말을 먹다 하는 그 때로 등했 | | 13C12-PCB-167 | 79 | | | 13C12-PCB-156/157 | | | | 13C12-PCB-169
13C12-PCB-189 | [12] 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 | | | 13C12-7CB-107 | 75 | | | Field Spike Standards | | | | 13C12-PCB-031 | | F. B. B. B. 다른 다른 다른 다른 다른 경우를 받는 것 같다. | | 13C12-PCB-095 | NS | | | 13C12-PCB-153 | NS . | | | Cleanup Standards | | | | 13C12-PCB-028 | | | | 13C12-PCB-111 | . 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 194 | | | 13C12-PCB-178 | 72 | | | Toxic Equivalency - (WHO 2005) | pg | | | | | | | Lower Bound PCB TEQ Mid Point PCB TEQ | 0.000549 | | | Upper Bound PCB TEQ | 1.05
2.10 | | | 4 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : | 보고 보고 있는 경우를 가고 있다. 함께 가고 있다. | | | ALS Life Sciences | | | | | | | |--|---|---|--|--|--|--| | \$\$7.3 (\$6000) \$6500 (\$1870 \$1000) \$6500
(\$1870 \$1000) \$6500 (\$1870 | Samı | ole Analysis Summary Report | | | | | | Sample Name | Laboratory Control
Sample | | | | | | | | Sample | | | | | | | ALS Sample ID | WG3444637-2 | | | | | | | Sample Size | 1 | | | | | | | Sample size units | n/a | | | | | | | Percent Moisture | n/a | 그는 이름을 모르는 가루를 보고 말했다는 그 그를 된다고 있는데 그리다고 말했다. | | | | | | Sample Matrix | QC | | | | | | | Sampling Date | n/a | | | | | | | Extraction Date | 25-Nov-20 | | | | | | | Target Analytes | % Rec | | | | | | | PCB-081 | 95 | | | | | | | PCB-077 | 94 | | | | | | | PCB-123 | 95 | | | | | | | PCB-118 | 95 | | | | | | | ************************************** | A 18 | | | | | | | PCB-105
PCB-126 | 89 | | | | | | | PCB-120
PCB-167 | 94
91 | | | | | | | PCB-156/157 | 93 | | | | | | | PCB-169 | 94 | | | | | | | PCB-189 | 97 | | | | | | | 그 시간 사람들은 사람들이 없다. | | | | | | | | Extraction Standards | % Rec | | | | | | | | | | | | | | | 13C12-PCB-081 | 81 | | | | | | | 13C12-PCB-077 | 84 | | | | | | | 13C12-PCB-123 | 90 | | | | | | | 13C12-PCB-118 | 90 | | | | | | | 13C12-PCB-114 | 93 | | | | | | | 13C12-PCB-105 | 96 | | | | | | | 13C12-PCB-126
13C12-PCB-167 | 99
96 | | | | | | | 13C12-PCB-167 | 96
98 | | | | | | | 13C12-PCB-169 | 125 | | | | | | | 13C12-PCB-189 | 135 | | | | | | | Field Spike Standards | | | | | | | | The Spine Stainer | | | | | | | | 13C12-PCB-031 | NS | | | | | | | 13C12-PCB-095 | NS | | | | | | | 13C12-PCB-153 | NS | | | | | | | Cleanup Standards | | | | | | | | 13C12-PCB-028 | 62 | | | | | | | 13C12-PCB-026 | 74 | | | | | | | 13C12-PCB-178 | 7 5 | | | | | | ## **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(1 THRU 5) TEST#1 APC OUTLET #1 Sampling Date 11-Nov-20 ALS Sample ID L2529311-1 Extraction Date 25-Nov-20 Approved: Analysis Method Analysis Type EPA 1668C Sample Size Percent Moisture sample 5. Jin --e-signature--Sample n/a Stack Sample Matrix Solit Ratio 12 11-Dec-2020 Run Information Run 1 Filename 5-201210409 Run Date 10-Dec-20 21:13 Final Volume 25 - 11 Dilution Factor 1 Analysis Units pg Instrument - Column HRMS-5 SPBOctyl 256001-01 TEF Ret. Conc. EDL EMPC Target Analytes (WHO 2005) Time pg Flags LQL pg pg PCB-081 0.0003 NotFnd <27 27 Ū 300 PCB-077 0.0001 22.13 66,9 28 Μ,3 300 PCB-123 0.00003 NotFnd <27 27 U 300 PCB-118 0.00003 23.26 859 26 300 PCB-114 0.00003 23.55 30.6 22 M,J 300 PCB-105 0.00003 23.91 251 22 300 PCB-126 0.1 NotFnd <25 25 υ 300 PCB-167 0.00003 26.39 27.2 16 1 300 PCB-156/157 0.00003 27.00 79.8 23 M,J 600 PCB-169 0.03 28.67 31.4 17 M,J 300 PCB-189 0.00003 29.95 37.4 11 300 Extraction Standards pg Time % Rec Limits 13C12-PCB-081 12000 21.81 74 10-145 13C12-PCB-077 12000 22.11 75 10-145 13C12-PCB-123 12000 23.07 73 10-145 13C12-PCB-118 12000 23.24 72 10-145 13C12-PCB-114 12000 23.55 85 10-145 13C12-PCB-105 12000 23.90 87 10-145 13C12-PCB-126 12000 25.50 93 10-145 13C12-PCB-167 12000 26.37 77 10-145 13C12-PCB-156/157 24000 27.01 75 10-145 13C12-PCB-169 12000 28.66 88 10-145 13C12-PCB-189 12000 88 10-145 29.93 Field Spike Standards 13C12-PCB-031 10000 15.81 89 70-130 13C12-PCB-095 10000 19.11 95 70-130 13C12-PCB-153 10000 85 70-130 24.16 Cleanup Standards 13C12-PCB-028 12000 15.99 50 5-145 13C12-PCB-111 12000 22.00 64 10-145 13C12-PCB-178 12000 25.04 66 10-145 Toxic Equivalency - (WHO 2005) pg Lower Bound PCB TEO 0.987 Mid Point PCB TEQ 2.24 Upper Bound PCB TEQ 3.50 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEQ Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. Estimated Maximum Possible Concentration - elevated detection limit due to interference or positive id criterion failure Indicates that the analyte was positively identifed. The associated numerical result is an estimate. Indicates the Toxic Equivalency TEF LQL EMPC M Indicates the Toxic Equivalency Factor Indicates that a peak has been manually integrated. Indicates that this compound was not detected above the EDL. # **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(6 THRU 10) TEST#2 APC OUTLET #1 Sampling Date 11-Nov-20 ALS Sample ID L2529311-2 Extraction Date 25-Nov-20 Approved; Analysis Method EPA 1668C Sample Size Percent Moisture sample S. Jin --e-signature--Analysis Type Sample n/a Sample Matrix Stack Split Ratio 12 11-Dec-2020 Run Information Run 1 Filename 5-201210A10 Run Date 10-Dec-20 21:55 Final Volume 25 111 Dilution Factor 1 pg Instrument - Column HRMS-5 SPBOctyl 256001-01 TEF Ret. Conc. EDL EMPC Target Analytes (WHO 2005) Time pg Flags LQL pg .pg ₽CB-081 0.0003 NotFnd <26 26 u 300 0.0001 PCB-077 22.13 213 27 . 3 300 PCB-123 0.00003 23.07 135 35 M,J 300 PCB-118 0.00003 23.26 6370 32 300 PCB-114 0.00003 23.56 181 29 M,3 300 PCB-105 0.00003 23.93 2070 30 300 PCB-126 0.1 3% 25.52 <35 35 M,U 27 300 PCB-167 0.00003 26.38 85.8 19 Ü ้ากก PCB-156/157 0.00003 27.01 330 26 ij 600 PCB-169 0.03 28.69 32.5 20 М,3 300 PCB-189 0.00003 29.96 42.6 12 300 Extraction Standards pg Time % Rec Limits 13C12-PCB-081 12000 21.81 93 10-145 13C12-PCB-077 12000 22.12 96 10-145 13C12-PCB-123 12000 23.08 92 10-145 13C12-PCB-118 12000 23.25 93 10-145 13C12-PCB-114 12000 23.55 108 10-145 13C12-PCB-105 12000 23.91 107 10-145 13C12-PCB-126 12000 25.51 113 10-145 13C12-PCB-167 12000 26.38 95 10-145 13C12-PCB-156/157 24000 27.02 98 10-145 13C12-PCB-169 12000 28.67 112 10-145 13C12-PCB-189 12000 29.93 114 10-145 Field Spike Standards 13C12-PCB-031 10000 15.82 94 70-130 13C12-PCB-095 10000 84 70-130 19.12 13C12-PCB-153 10000 89 70-130 24.17 Cleanup Standards 13C12-PCB-028 12000 15.99 56 5-145 13C12-PCB-111 12000 22.01 73 10-145 13C12-PCB-178 12000 25.04 88 10-145 Toxic Equivalency - (WHO 2005) pg Lower Bound PCB TEO 1.27 Mid Point PCB TEQ 3,03 Upper Bound PCB TEQ 4.78 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEQ Indicates the Toxic Equivalency LQL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. Indicates that a peak has been manually integrated. M U Indicates that this compound was not detected above the EDL. Indicates that the analyte was positively identified. The associated numerical result is an estimate, EMPC Estimated Maximum Possible Concentration - elevated detection limit due to interference or positive id criterion failure # **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(11 THRU 15) TEST#3 APC OUTLET #1 Sampling Date 12-Nov-20 ALS Sample ID L2529311-3 Extraction Date 25-Nov-20 Approved: Analysis Method Analysis Type EPA 1668C Sample Sample Size Percent Moisture sample S. Jin n/a --e-signature--Sample Matrix Stack Solit Ratio 12 11-Dec-2020 Run 1 Filename 5-201210A11 Run Date 10-Dec-20 22:38 Final Volume 25 ul Dilution Factor 1 Analysis Units pg Instrument - Column HRMS-5 SPBOctyl 256001-01 TEF Ret. Conc. EDL EMPC Target Analytes (WHO 2005) Time pg Flags LQL pg pg PCB-081 0.0003 NotFnd <27 27 U 300 PCB-077 0.0001 22.14 <63 28 M,J,R .63 300 PCB-123 0.00003 23.07 <27 27 M,U 300 PCB-118 0.00003 23.26 1010 26 300 PCB-114 0.00003 NotFnd <22 22 U 300 PCB-105 0.00003 23.93 331 25 300 PCB-126 0.1 NotFnd 27 U <27 300 PCB-167 0.00003 NotFnd <17 17 ΉJ 300 PCB-156/157 0.00003 27,03 55.0 24 M.J 600 PCB-169 0.03 28.66 <23 19 M, J, R 23 300 PCB-189 0.00003 29,96 24.3 15 300 **Extraction Standards** Time % Rec Limits pq 13C12-PCB-081 12000 21.81 54 10-145 13C12-PCB-077 12000 22.12 55 10-145 13C12-PCB-123 12000 23.08 55 10-145 13C12-PCB-118 12000 52 10-145 23,25 13C12-PCB-114 12000 23.55 62 10-145 13C12-PCB-105 12000 61 10-145 23.91 13C12-PCB-126 12000 25.50 67 10-145 13C12-PCB-167 12000 26.37 56 10-145 13C12-PCB-156/157 24000 27.02 55 10-145 13C12-PCB-169 12000 28.67 64 10-145 13C12-PCB-189 12000 29.93 62 10-145 Field Spike Standards 13C12-PCB-031 10000 15.82 92 70-130 13C12-PCB-095 10000 19.12 94 70-130 13C12-PCB-153 10000 24.17 88 70-130 Cleanup Standards 13C12-PCB-028 12000 16.00 41 5-145 13C12-PCB-111 12000 22.00 10-145 53 13C12-PCB-178 25.04 54 10-145 Toxic Equivalency - (WHO 2005) pq Lower Bound PCB TEQ 0.0426 Mid Point PCB TEQ 2.09 Upper Bound PCB TEQ 3.45 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEQ Indicates the Toxic Equivalency LQL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. Indicates that a peak has been manually integrated. . U Indicates that this compound was not detected above the EDL. Indicates that the analyte was positively identifed. The associated numerical result is an estimate. Indicates that the ion abundance ratio for this analyte did not meet the control limit. The reported value represents an estimated concentration, EMPC Estimated Maximum Possible Concentration – elevated detection limit due to interference or positive id criterion failure # **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(16 THRU 20) BLANK#1 Sampling Date 12-Nov-20 ALS Sample ID Extraction Date 25-Nov-20 Approved: Analysis Method Analysis Type EPA 1668C Sample Size Percent Moisture 1 n/a sample S. Jin -e-signature--Sample
Sample Matrix Stack Split Ratio 12 11-Dec-2020 Run Information Run 1 Filename 5-201210A07 Run Date 10-Dec-20 19:49 Final Volume 25 ul Dilution Factor 1 Analysis Units pq Instrument - Column HRMS-5 SPBOctyl 256001-01 TEF Ret. Conc. EDL EMPC Target Analytes (WHO 2005) Time pg pg Flags pg LQL PCB-081 0.0003 NotEnd <22 22 11 300 PCB-077 0.0001 NotFnd. <23 23 U 300 PCB-123 0.00003 NotFnd <27 27 υ 300 PCB-118 0.00003 23.26 61.5 26 м,ј,в 300 PCB-114 0.00003 NotFnd <21 21 300 PCB-105 0.00003 NotFnd <21 21 υ 300 PCB-126 0.1 NotFnd <24 24 υ 300 PCB-167 0.00003 NotFnd <13 13 υ 300 PCB-156/157 0.00003 NotFnd <19 19 600 PCB-169 0.03 NotFnd <15 15 υ 300 PCB-189 0.00003 NotFnd <11 11 300 **Extraction Standards** Time % Rec Limits 13C12-PCB-081 12000 21.82 68 10-145 13C12-PCB-077 12000 22.13 71 10-145 13C12-PCB-123 12000 23.08 69 10-145 13C12-PCB-118 12000 23.25 67 10-145 13C12-PCB-114 12000 23.55 81 10-145 13C12-PCB-105 12000 23.91 82 10-145 13C12-PCB-126 12000 25.51 92 10-145 13C12-PCB-167 12000 26.38 68 10-145 13C12-PCB-156/157 24000 27.02 68 10-145 13C12-PCB-169 12000 28.67 75 10-145 13C12-PCB-189 12000 29.93 79 10-145 Field Spike Standards 13C12-PCB-031 10000 15.82 119 70-130 13C12-PCB-095 10000 19.12 87 70-130 13C12-PCB-153 10000 24.17 92 70-130 Cleanup Standards 13C12-PCB-028 12000 16.00 64 5-145 13C12-PCB-111 12000 22.01 77 10-145 13C12-PCB-178 12000 25.05 67 10-145 Toxic Equivalency - (WHO 2005) pg Lower Bound PCB TFO 0.00185 Mid Point PCB TEO 1.43 Upper Bound PCB TEO 2.86 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEQ Indicates the Toxic Equivalency LQL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. M Indicates that a peak has been manually integrated. U Indicates that this compound was not detected above the EDL. ر Indicates that the analyte was positively identifed. The associated numerical result is an estimate. В Indicates that this target was detected in the blank at greater than 10% of the sample concentration. EMPC Estimated Maximum Possible Concentration - elevated detection limit due to interference or positive id criterion failure # **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(21 THRU 25) TEST#1 APC OUTLET #2 Sampling Date 11-Nov-20 ALS Sample ID Analysis Method Analysis Type L2529311-5 Extraction Date 25-Nov-20 Approved: EPA 1668C Sample Sample Size Percent Moisture sample S. Jin n/a --e-signature--Sample Matrix Stack Split Ratio 12 11-Dec-2020 Run Information Run 1 Filename 5-201210A12 Run Date 10-Dec-20 23:20 Final Volume 25 ul Dilution Factor 1 Analysis Units pg Instrument - Column HRMS-5 SPBOctyl 256001-01 TEF Ret. Conc. EDL EMPC Target Analytes (WHO 2005) Time LQL pg Flags pg P9 PCB-081 0.0003 NotFnd <27 27 U 300 PCB-077 0.0001 22.13 70.8 28 300 PCB-123 0.00003 23.09 25.7 16 М,3 300 PCB-118 0.00003 23,26 1780 15 300 PCB-114 0.00003 23,55 40.9 13 M,J 300 PCB-105 0.00003 23.91 456 14 300 PCB-126 0.1 25.52 <15 15 M,U 9.3 300 0.00003 PCB-167 26.39 27.6 8.0 1 300 PCB-156/157 0.00003 27.01 79.5 11 600 PCB-169 0.03 28.70 <B,3 8.3 M.U 7.1 300 PCB-189 0.00003 29.95 18.9 6.6 M,J 300 Extraction Standards Time po % Rec Limits 13C12-PCB-081 12000 79 10-145 21.81 13C12-PCB-077 12000 22.11 82 10-145 13C12-PCB-123 12000 23.08 82 10-145 13C12-PCB-118 12000 23,25 79 10-145 13C12-PCB-114 12000 23.55 97 10-145 13C12-PCB-105 12000 23.90 96 10-145 13C12-PCB-126 12000 25.50 99 10-145 13C12-PCB-167 12000 26.38 87 10-145 13C12-PCB-156/157 24000 27.02 87 10-145 13C12-PCB-169 12000 100 10-145 28.67 13C12-PCB-189 12000 29.93 99 10-145 Field Spike Standards 13C12-PCB-031 10000 15.82 93 70-130 13C12-PCB-095 10000 19.11 89 70-130 13C12-PCB-153 10000 91 70-130 24.17 Cleanup Standards 13C12-PCB-028 12000 15.99 46 5-145 13C12-PCB-111 12000 22.00 10-145 73 13C12-PCB-178 12000 85 25.04 10-145 Toxic Equivalency - (WHO 2005) pq Lower Bound PCB TEQ 0.0799 Mid Point PCB TEQ 0.958 Upper Bound PCB TEQ 1.84 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEO Indicates the Toxic Equivalency LQL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. Indicates that a peak has been manually integrated. Indicates that this compound was not detected above the EDL. Indicates that the analyte was positively identifed. The associated numerical result is an estimate. EMPC Estimated Maximum Possible Concentration - elevated detection limit due to interference or positive id criterion failure # **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(26 THRU 30) TEST#2 APC OUTLET #2 Sampling Date 11-Nov-20 ALS Sample ID Analysis Method Analysis Type L2529311-6 25-Nov-20 Extraction Date Approved: **EPA 1668C** Sample Size Percent Moisture sample S. Jin --e-signature-n/a Sample Matrix Stack Split Ratio 12 11-Dec-2020 Run Information Run 1 Filename 5-201210A13 Run Date 11-Dec-20 00:02 Final Volume 25 ul Dilution Factor 1 Analysis Units pg Instrument - Column HRMS-5 SPBOctyl 256001-01 TEF Ret. Conc. EDL EMPC Target Analytes (WHO 2005) Time pg Flags LQL pg pg PCB-081 0.0003 NotFnd <24 24 ·U 300 PCB-077 0.0001 22.10 226 25 M,3 300 PCB-123 0.00003 23.06 84.7 26 Μ,3 300 PCB-118 0.00003 23.25 4710 25 300 PCB-114 0.00003 23.55 118 22 3 300 PCB-105 0.00003 23.91 1350 22 300 PCB-126 0.1 NotFnd <26 26 U 300 PCB-167 0.00003 < 50 26.38 16 J,R 50 300 PCB-156/157 0.00003 27.01 142 23 ij 600 PCB-169 0.03 NotFnd <17 17 ·U 300 PCB-189 0.00003 29.93 15.0 12 M,3 300 Extraction Standards PG Time % Rec Limits 13C12-PCB-081 12000 21.80 70 10-145 13C12-PCB-077 12000 22.11 73 10-145 13C12-PCB-123 12000 23.07 71 10-145 13C12-PCB-118 12000 23.24 69 10-145 13C12-PCB-114 12000 23.54 82 10-145 13C12-PCB-105 12000 23.90 82 10-145 13C12-PCB-126 12000 25,50 88 10-145 13C12-PCB-167 12000 26.37 75 10-145 13C12-PCB-156/157 24000 27.01 74 10-145 13C12-PCB-169 12000 28.66 86 10-145 13C12-PCB-189 12000 29.92 83 10-145 Field Spike Standards 10000 13C12-PCB-031 15.81 84 70-130 13C12-PCB-095 10000 19.10 91 70-130 13C12-PCB-153 10000 24.16 86 70-130 Cleanup Standards 13C12-PCB-028 12000 15.98 42 5-145 13C12-PCB-111 12000 21.99 10-145 64 13C12-PCB-178 12000 25.04 66 10-145 Toxic Equivalency - (WHO 2005) pg Lower Bound PCB TEQ 0.215 Mid Point PCB TEQ 1.78 Upper Bound PCB TEQ 3.33 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEQ Indicates the Toxic Equivalency LQL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. Indicates that a peak has been manually integrated. U Indicates that this compound was not detected above the EDL. j Indicates that the analyte was positively identified. The associated numerical result is an estimate. Indicates that the ion abundance ratio for this analyte did not meet the control limit. The reported value represents an estimated concentration. EMPC Estimated Maximum Possible Concentration – elevated detection limit due to interference or positive id criterion failure # **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(31 THRU 35) TEST#3 APC OUTLET #2 Sampling Date 12-Nov-20 ALS Sample ID L2529311-7 Extraction Date 25-Nov-20 Approved: EPA 1668C Sample Analysis Method Analysis Type Sample Size Percent Moisture sample S. Jin --e-signature-n/a Sample Matrix Stack Split Ratio 12 11-Dec-2020 Run 1 Filename 5-201210A14 Run Date 11-Dec-20 00:44 Final Volume 25 ul Dilution Factor :1 Analysis Units pg Instrument - Column HRMS-5 SPBOctyl 256001-01 TEF Ret. Conc. EDL EMPC Target Analytes (WHO 2005) Time LQL pg Flags Pg pg PCB-081 0.0003 NotFnd < 25 25 U 300 PCB-077 0.0001 22.12 194 26 3 300 PCB-123 0.00003 23.09 76.9 42 3 300 PCB-118 0.00003 23.25 5080 38 M. 300 PCB-114 0.00003 23.55 35 144 M,3 300 PCB-105 0.00003 23.91 2240 36 300 PCB-126 0.1 NotFnd <39 39 U 300 0.00003 PCB-167 26.38 177 16 ٠ ۲ 300 PCB-156/157 0.00003 27.01 617 23 600 PCB-169 0.03 28.66 <18 18 M.U 14 300 PCB-189 0.00003 29,93 40.9 12 M,J 300 Extraction Standards Time Dα % Rec Limits 13C12-PCB-081 12000 21,80 64 10-145 13C12-PCB-077 12000 22.11 65 10-145 13C12-PCB-123 12000 23.07 64 10-145 13C12-PCB-118 12000 23.24 64 10-145 13C12-PCB-114 12000 23.54 73 10-145 13C12-PCB-105 12000 23,90 72 10-145 13C12-PCB-126 12000 25.50 81 10-145 13C12-PCB-167 12000 26.37 67 10-145 13C12-PCB-156/157 24000 27.01 66 10-145 13C12-PCB-169 12000 28.66 73 10-145 13C12-PCB-189 12000 29,93 77 10-145 Field Spike Standards 13C12-PCB-031 10000 15.81 88 70-130 13C12-PCB-095 10000 19.11 88 70-130 13C12-PCB-153 10000 82 70-130 24.16 Cleanup Standards 13C12-PCB-028 12000 15.99 5-145 44 13C12-PCB-111 12000 21.99 10-145 59 13C12-PCB-178 12000 25.04 64 10-145 Toxic Equivalency - (WHO 2005) pq Lower Bound PCB TEQ 0.271 Mid Point PCB TEQ 2.49 Upper Bound PCB TEQ 4.72 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEQ Indicates the Toxic Equivalency LQL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. Indicates that a peak has been manually integrated. U Indicates that this compound was not detected above the EDL. Indicates that the analyte was positively identifed. The associated numerical result is an estimate. Estimated Maximum Possible Concentration - elevated detection limit due to interference or positive id criterion failure EMPC # **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(36 THRU 40) BLANK#2 Sampling Date 12-Nov-20 ALS Sample ID Analysis Method Analysis Type L2529311-8 Extraction Date 25-Nov-20 Approved: **EPA 1668C** Sample Size Percent Moisture S. Jin
-e-signature-Sample n/a Sample Matrix Stack Split Ratio 12 11-Dec-2020 Run Information Run 1 Filename 5-201210408 Run Date 10-Dec-20 20:31 Final Volume 25 10 Dilution Factor 1 Analysis Units pg Instrument - Column HRMS-5 SPBOctyl 256001-01 TEF Ret. Conc. EDL EMPC Target Analytes (WHO 2005) Time pg Flags pg pg LQL PCB-081 0.0003 NotFnd <22 22 u 300 PCB-077 0.0001 22.14 33.2 23 М,Э 300 PCB-123 0.00003 NotFnd <29 29 U 300 PCB-118 0.00003 23.26 680 28 300 PCB-114 0.00003 NotFnd <23 23 U 300 PCB-105 0.00003 23.93 304 23 300 PCB-126 0.1 NotFnd <26 26 Ð 300 PCB-167 0.00003 26.39 51.4 20 м,3 300 PCB-156/157 0.00003 27.01 144 28 600 PCB-169 0.03 NotFnd <22 22 υ 300 PCB-189 0.00003 29.93 20.2 8.9 300 Extraction Standards pg Time % Rec Limits 13C12-PCB-081 12000 21.82 70 10-145 13C12-PCB-077 12000 22.12 69 10-145 13C12-PCB-123 12000 23.08 70 10-145 13C12-PCB-118 12000 23.25 68 10-145 13C12-PCB-114 12000 23,55 83 10-145 13C12-PCB-105 12000 23.91 83 10-145 13C12-PCB-126 12000 25,51 90 10-145 13C12-PCB-167 12000 26.38 69 10-145 13C12-PCB-156/157 24000 27.02 69 10-145 13C12-PCB-169 12000 28.67 79 10-145 13C12-PCB-189 12000 29.93 81 10-145 Field Spike Standards 13C12-PCB-031 10000 15.82 95 70-130 13C12-PCB-095 10000 19.12 85 70-130 13C12-PCB-153 10000 24.17 92 70-130 Cleanup Standards 13C12-PCB-028 12000 16.00 49 5-145 13C12-PCB-111 12000 22.01 64 10-145 13C12-PCB-178 12000 25.05 59 10-145 Toxic Equivalency - (WHO 2005) pg Lower Bound PCB TEQ 0.0393 Mid Point PCB TEQ 1.67 Upper Bound PCB TEQ 3.31 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEQ Indicates the Toxic Equivalency LQL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. М Indicates that a peak has been manually integrated. υ Indicates that this compound was not detected above the EDL. Indicates that the analyte was positively identified. The associated numerical result is an estimate. EMPC Estimated Maximum Possible Concentration - elevated detection limit due to interference or positive id criterion failure # **ALS Life Sciences** Laboratory Method Blank Analysis Report Sample Name Method Blank Sampling Date n/a ALS Sample 1D WG3444637-1 Extraction Date 25-Nov-20 Approved: EPA 1668C Blank Analysis Method Analysis Type Sample Size Percent Moisture samole S. Jin -e-signature n/a Sample Matrix QC Split Ratio 12 11-Dec-2020 Run 1 Filename 5-201211A05 Run Date 11-Dec-20 10:37 Final Volume 25 ul Dilution Factor 1 Analysis Units рg Instrument - Column HRMS-5 SPBOctyl 256001-01 TEF Ret. Conc. EDL EMPC **Target Analytes** (WHO 2005) Time pg Flags LQL Pg pg PCB-081 0.0003 NotFnd <12 12 U 300 PCB-077 0.0001 NotFnd. <12 12 U 300 PCB-123 0.00003 NotFnd <14 14 U 300 PCB-118 0.00003 23.27 18.3 14 M,3 300 PCB-114 0.00003 NotFnd <14 14 U 300 PCB-105 0.00003 NotEnd <14 14 Ù 300 PCB-126 0.1 NotFnd <17 17 Ù. 300 PCB-167 0.00003 NotEnd <11 11 41 300 PCB-156/157 0.00003 NotFnd <16 16 U 600 PCB-169 0.03 NotFnd <13 13 U 300 PCB-189 0.00003 NotFnd <10 10 300 Extraction Standards pg Time % Rec Limits 13C12-PCB-081 12000 21.82 89 10-145 13C12-PCB-077 12000 22.13 92 10-145 13C12-PCB-123 12000 23.09 87 10-145 13C12-PCB-118 12000 23.26 83 10-145 13C12-PCB-114 12000 23.56 90 10-145 13C12-PCB-105 12000 23.93 94 10-145 13C12-PCB-126 12000 25.52 94 10-145 13C12-PCB-167 12000 26.38 79 10-145 13C12-PCB-156/157 24000 27.03 77 10-145 13C12-PCB-169 12000 28.69 84 10-145 13C12-PCB-189 12000 29,95 75 10-145 Field Spike Standards 13C12-PCB-031 NS 70-130 13C12-PCB-095 NS 70-130 13C12-PCB-153 NS 70-130 Cleanup Standards 13C12-PCB-028 12000 16.01 70 5-145 13C12-PCB-111 12000 22.02 10-145 77 13C12-PCB-178 12000 25.05 72 10-145 Toxic Equivalency - (WHO 2005) pg Lower Bound PCB TEQ 0.000549 Mid Point PCB TEQ 1.05 Upper Bound PCB TEQ 2.10 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEQ Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions. Estimated Maximum Possible Concentration – elevated detection limit due to interference or positive id criterion failure Indicates that the analyte was positively identifed. The associated numerical result is an estimate, Indicates the Toxic Equivalency TEF LQL M υ NS EMPC Indicates the Toxic Equivalency Factor Indicates that a peak has been manually integrated. Indicates that this compound was not added. Indicates that this compound was not detected above the EDL. # **ALS Life Sciences** # **Laboratory Control Sample Analysis Report** Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix Laboratory Control Sample WG3444637-2 EPA 1668C LCS QC Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio n/a 25-Nov-20 n/a 1 n/a 1 Approved: S. Jin --e-signature--11-Dec-2020 Run Information Run 1 Filename 5-201210A03 Run Date 10-Dec-20 17:00 Final Volume 25 ul Dilution Factor 1 Analysis Units % Rec Instrument - Column HRMS-5 SPBOctyl 256001-01 | et Analytes | | Ret. | | | |-----------------------|-------|-------|---|--| | et Analytes | pg | Time | % Rec Flags | | | PCB-081 | 6000 | 21.84 | 95 60-135 | | | PCB-077 | 6000 | 22.15 | | | | PCB-123 | 6000 | 23.10 | 400.135 40.135 40.135 40.135 40.135 40.135 40.135 | | | PCB-118 | 6000 | 23.27 | 95 60-135 | | | PCB-114 | 6000 | 23.58 | 91 60-135 | | | PCB-105 | 6000 | 23.94 | 89 60-135 | | | PCB-126 | 6000 | 25.53 | 94 60-135 | | | PCB-167 | 6000 | 26.40 | 91 60-135 | | | PCB-156/157 | 12000 | 27.04 | 93 60-135 | | | PCB-169 | 6000 | 28.70 | 94 60-135 | | | PCB-189 | 6000 | 29.96 | 97 60-135 | | | | | 23.30 | | | | Extraction Standards | | Time | % Rec Limits | | | | | | | | | 13C12-PCB-081 | 12000 | 21.83 | 81 40-145 | | | 13C12-PCB-077 | 12000 | 22.13 | 84 40-145 | | | 13C12-PCB-123 | 12000 | 23.09 | 90 40-145 | | | 13C12-PCB-118 | 12000 | 23.26 | 90 40-145 | | | 13C12-PCB-114 | 12000 | 23.56 | 93 40-145 | | | 13C12-PCB-105 | 12000 | 23.93 | 96 40-145 | | | 13C12-PCB-126 | 12000 | 25.52 | 99 40-145 | | | 13C12-PCB-167 | 12000 | 26.39 | 96 40-145 | | | 13C12-PCB-156/157 | 24000 | 27.03 | 98 40-145 | | | 13C12-PCB-169 | 12000 | 28,69 | 125 40-145 | | | 13C12-PCB-189 | 12000 | 29.95 | 135 40-145 | | | | | | | | | Field Spike Standards | | | | | | | | | 추천병원을 보고 되어 되는 데에 관심을 보고 아직하는 그를 하는 것이다. 그는 그는 그는 것은 사람들은 그리 | | | 13C12-PCB-031 | | | NS 70-130 | | | 13C12-PCB-095 | | | (1) NS 70-130 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 13C12-PCB-153 | | | HINS 70-130 () | | | | | | | | | Cleanup Standards | | | | | | | | | | | | 13C12-PCB-028 | 12000 | 16.01 | | | | 13C12-PCB-111 | 12000 | 22.02 | 열등74/40-145 - 본스 방문 등 본 등 발문 사람들은 항 가장을 받아 할 수 있는 모양을 받았는데 된 장상 가는 장상 전문이 달라고 있었다. | | | 13C12-PCB-178 | 12000 | 25.06 | | | NS Indicates that this compound was not added. 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 # **Certificate of Analysis** ALS Project Contact: Lynne Wrona ALS Project ID: ORT100 ALS WO#: L2529311 Date of Report 8-Dec-20 Date of Sample Receipt 13-Nov-20 Client Name: C ORTECH Environmental 804 Southdown Road Mississauga, ON L5J 2Y4 Canada Client Contact: Chris Belore Client Project ID: 22050 Covanta COMMENTS: CB by LRGC/MS - Isotope dilution Certified by: Ron McLeod, Ph.D, Technical Director Results in this certificate relate only to the samples as submitted to the laboratory. This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd. | | | Sample Analysis Summary R | eport | | | | |---|-------------------------|---|--|------------|---|------| | Sample Name | Method Blank
(Media) | 20-22050-SVOC-(1
THRU 5) TEST#1
APC OUTLET #1 | 20-22050-SVOC-(6
THRU 10) TEST#2
APC OUTLET #1 | | 20-22050-SVOC-
(16 THRU 20)
BLANK#1 | | | ALS Sample ID | WG3444637-1 | L2529311-1 | L2529311-2 | L2529311-3 | L2529311-4 | ĤΉ | | Sample Size | | 그리아 얼마 얼마 그리는 얼마를 가셨다. | | | | | | sample units | sample | sample | sample | sample | sample | 10.3 | | Moisture Content | n/a | n/a | n/a | n/a | n/a | | | Matrix | QC | Stack | Stack | | Stack | | | Sampling Date | n/a | 11-Nov-20 | 11-Nov-20 | 12-Nov-20 | 12-Nov-20 | | | Extraction Date | 25-Nov-20 | 25-Nov-20 | 25-Nov-20 | 25-Nov-20 | 25-Nov-20 | | | Target Analytes | ng/sample | ng/sample | ng/sample | ng/sample | ng/sample | | | Chlorobenzene | <12 . | U 3120 | 4210 | 3240 | <12 | | | 1,3-Dichlorobenzene | <12 | U 588 | 564 | 722 | <12 | | | 1,4-Dichlorobenzene | <12 | U 419 | 360 | 443 | <12 | | | 1,2-Dichlorobenzene | <12 | U 485 | 474 | 586 | <12 | | | 1,3,5-Trichlorobenzene | <12 | | 65 | M | | | | 1,2,4-Trichiorobenzene | <12 | U 164 | 179 | 281 | <12 | | | 1,2,3-Trichlorobenzene | <12 | U 49.7 | 51.4 | 59 | <12 | ı i | | 1,2,3,5/1,2,4,5-Tetrachloroben: | | U 37.3 | 36.5 | 43.4 | <12 | | | 1,2,3,4-Tetrachlorobenzene | <12 | U <12 | U <12 | U <12 | U <12 | ι | | Pentachiorobenzene | <12 | Ų <12 | U 13.2 | <12 | U <12 | ···U | | Hexachlorobenzene | <12 | U <12 | U <12 | U <12 | U <12 | · U | | Field Sampling Standards | %Rec | %Rec | %Rec | %Rec | %Rec | | | 1-Bromo-2,3-Dichlorobenzene | NS | 107 | 99 | 110 | 107 | | | Extraction Standards | %Rec | %Rec | %Rec | %Rec | %Rec | | | 13C6-Chlorobenzene | 31 | 19 | 19 | 23 | 27 | | | 13C6-1,4-Dichlorobenzene | 57 | 48 | 55 | 46 | 51 | | | 13C6-1,2,3-Trichlorobenzene | 65 | 58 | 69 | .58 | 62 | | | 13C6-1,2,3,4-Tetrachlorobenze | | 66 | 67 | 69 | 76 | | | | 87 | 66
70 | 76 | 77 | 83 | | |
13C6-Pentachlorobenzene
13C6-Hexachlorobenzene | 101 | | | | 91 | | | | | 1 + 41 (1 + 41 V | ALS Life Sciences | | | | | | |---|---|---|---|-------|---|---|--------------------------------------|-------------------------------------| | | | Sample | Analysis Summary Re | eport | | | | | | Sample Name | 20-22050-SVOC-
(21 THRU 25)
TEST#1 APC
OUTLET #2 | 20-22050-SVOC-
(26 THRU 30)
TEST#2 APC
OUTLET #2 | 20-22050-SVOC-
(31 THRU 35)
TEST#3 APC
OUTLET #2 | | 20-220S0-SVOC-
(36 THRU 40)
BLANK#2 | | Laboratory Control
Sample (300ng) | Laboratory Control
Sample (30ng) | | LS Sample ID | L2529311-5 | L2529311-6 | £2529311-7 | | L2529311-8 | | WG3444637-2 | WG3444637-5 | | ample Size | | | | | | | | 1 | | ample units | sample | sample | sample | | sample | | n/a | n/a | | oisture Content | п/а | n/a | n/a | | n/a | | n/a | n/a | | atrix | Stack | Stack | Stack | | Stack | | QC | QC | | ampling Date | 11-Nov-20 | 11-Nov-20 | 12-Nov-20 | | 12-Nov-20 | | n/a | n/a | | xtraction Date | 25-Nov-20 | 25-Nov-20 | 25-Nov-20 | | 25-Nov-20 | | 25-Nov-20 | 25-Nov-20 | | arget Analytes | ng/sample | ng/sample | ng/sample | | ng/sample | | % Recovery | % Recovery | | hlorobenzene | 1950 | 1970 | 1430 | | <12 | U | NS | NS | | 3-Dichlorobenzene | 188 | 198 | 144 | | <12 | U | 113 | 120 | | 4-Dichlorobenzene | 133 | 128 | 91.8 | | <12 | U | 108 | 111 | | ,2-Dichlorobenzene | 141 | 148 | 109 | | <12 | U | 115 | 116 | | ,3,5-Trichlorobenzene | 23.9 | 19.3 | 18.1 | | <12 | U | 94 | 109 | | ,2,4-Trichlorobenzene | 42.9 | 45.1 | 35 | | <12 | U | 90 | 103 | | ,2,3-Trichlorobenzene | 20.5 | 20.2 | 22 | M | <12 | U | 93 | 109 | | ,2,3,5/1,2,4,5-Tetrachlorobenzene | | M <12 | U <12 | U | <12 | U | 111 | 135 | | ,2,3,4-Tetrachlorobenzene | | U <12 | U . <12 | U | <12 | U | 110 | 111 | | entachlorobenzene | | U <12 | U <12 | U | <12 | U | 115 | 103 | | iexachlorobenzene | <12 | U <12 | U <12 | U | <12 | U | 113 | 103 | | ield Sampling Standards | %Rec | %Rec | %Rec | | %Rec | | %Rec | %Rec | | -Bromo-2,3-Dichlorobenzene | 100 | 95 | 93 | | 102 | | NS | NS | | xtraction Standards | %Rec | %Rec | %Rec | | %Rec | | %Rec | %Rec | | 3C6-Chlorobenzene | 22 | 29 | 31 | | 26 | | 24 | 30 | | 3C6-1,4-Dichlorobenzene | 51 | 58 | 63 | | 52 | | 58 | 47 | | 3C6-1,2,3-Trichlorobenzene | 65 | . 69 | 73 | | . 65 | | 80 | 56 | | 3C6-1,2,3,4-Tetrachlorobenzene | 82 | 69 | 77 | | 74 | | 86 | 59 | | 3C6-Pentachlorobenzene
3C6-Hexachlorobenzene | 91
93 | 76
77 | 84
86 | | 81
88 | | 90
111 | 66
89 | Indicates that this compound was not detected above the LOD. Indicates that a peak has been manually integrated. Indicates that this compound was not spiked in U M NS ### Sample Analysis Report Sample Name ALS Sample ID **Analysis Method** Method Blank (Media) WG3444637-1 SIM GC/MS sample Analysis Type Sample Matrix Sample Size QC 1 sample n/a 6 Percent Moisture Split Ratio Sampling Date Extraction Date n/a 25-Nov-20 Approved: Andrew Reid --e-signature--08-Dec-2020 Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120706.D 12/7/2020 15:39 mL ng/sample MSD-2 HP-5MS US0411816H | Target Analytes | Ret.
Time | Concentration ng/sample | Flags | |-----------------------------------|--------------|-------------------------|-------| | Chlorobenzene | NotFnd | <12 | U | | 1,3-Dichlorobenzene | NotFnd | <12 | U | | 1,4-Dichlorobenzene | 6.88 | <12 | .U | | 1,2-Dichlorobenzene | NotFnd | <12 | U | | 1,3,5-Trichlorobenzene | NotFnd | <12 | U | | 1,2,4-Trichlorobenzene | NotFnd | <12 | U | | 1,2,3-Trichlorobenzene | NotFnd | <12 | U | | 1,2,3,5/1,2,4,5-Tetrachlorobenzen | NotFnd | <12 | U | | 1,2,3,4-Tetrachlorobenzene | NotFnd | <12 | U | | Pentachlorobenzene | NotFnd | <12 | U | | Hexachlorobenzene | NotFnd | <12 | υ | | Extraction Standards | | %Rec | | | 13C6-Chlorobenzene | 300 459 | 21 | | | Extraction Standards | | | %Rec | |---------------------------------|-----|-------|------| | 13C6-Chlorobenzene | 300 | 4.59 | 31 | | 13C6-1,4-Dichlorobenzene | 300 | 6.88 | 57 | | 13C6-1,2,3-Trichlorobenzene | 300 | 9.26 | 65 | | 13C6-1,2,3,4-Tetrachlorobenzene | 300 | 10.98 | 77 | | 13C6-Pentachlorobenzene | 300 | 12.33 | 87 | | 13C6-Hexachlorobenzene | 300 | 13.97 | 101 | #### Sample Analysis Report Sample Name ALS Sample ID 20-22050-SVOC-(1 THRU 5) TEST#1 APC OUTLET #1 Sampling Date Extraction Date 11-Nov-20 25-Nov-20 Analysis Method Analysis Type Sample Matrix Sample Size L2529311-1 SIM GC/MS sample Stack 1 sample Approved: Andrew Reid --e-signature--08-Dec-2020 Percent Moisture Split Ratio Analysis Units Instrument n/a 6 **Run Information** Filename Run Date Final Volume Dilution Factor Run 1 20120710.D 12/7/2020 17:03 mL ng/sample MSD-2 Column HP-5MS US0411816H | Target Analytes | Ret
Tin | | n de la companya de
La Flags | |-----------------------------------|------------|-----------|--| | Chlorobenzene | | 4.58 3120 | | | 1,3-Dichlorobenzene | | 5.81 588 | | | 1,4-Dichlorobenzene | | 5.89 419 | | | 1,2-Dichlorobenzene | | 7.17 485 | | | 1,3,5-Trichlorobenzene | | 3.34 64.6 | | | 1,2,4-Trichlorobenzene | | 3.86 164 | | | 1,2,3-Trichlorobenzene | | 9.27 49.7 | | | 1,2,3,5/1,2,4,5-Tetrachlorobenzen | 1 | 37.3 | | | 1,2,3,4-Tetrachlorobenzene | 1 | 0.98 <12 | | | Pentachlorobenzene | 1 | 2.32 <12 | | | Hexachlorobenzene | 1 | 3.95 <12 | gw 그리 그 시험으로 보임되었다. 그 사는 사고를 가는 보고 본 없는 수 | | Field Sampling Standards | ng spiked | %Rec | | | 1-Bromo-2,3-Dichlorobenzene | 600 1 | 0.28 107 | | | Extraction Standards | | %Rec | | | 13C6-Chlorobenzene | 300 | 1.58 19 1 | , 하는 항상 등은 전쟁을 하고 있다는 아이트 아이는 하는 것은 것을 하는 것은 것을 받았다. | | 13C6-1,4-Dichlorobenzene | 300 | 5.89 48 | | | 13C6-1,2,3-Trichlorobenzene | 300 | 9.26 58 | | | 13C6-1,2,3,4-Tetrachlorobenzene | 300 1 |).98 66 | | | 13C6-Pentachlorobenzene | 300 1 | 2.32 66 | 보통 회사 경찰으로 보는 사람들은 그는 그는 그 그는 그는 그를 모르고 말했다. | | 13C6-Hexachlorobenzene | 300 1 | 3.96 70 | | M U Indicates that a peak has been manually integrated. ### Sample Analysis Report Sample Name ALS Sample ID 20-22050-SVOC-(6 THRU 10) TEST#2 APC OUTLET #1 L2529311-2 Sampling Date Extraction Date 11-Nov-20 25-Nov-20 Analysis Method Analysis Type Sample Matrix Sample Size Percent Moisture Split Ratio SIM GC/MS sample Stack 1 sample n/a 6 Approved: Andrew Reid --e-signature--08-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120711.D 12/7/2020 17:23 mL ng/sample MSD-2 HP-5MS US0411816H | Target Analytes | | Ret.
Time | Concentration
ng/sample Flags | |-----------------------------------|----------|--------------|----------------------------------| | Chlorobenzene | | 4.58 | 4210 | | 1,3-Dichlorobenzene | | 6.81 | 564 | | 1,4-Dichlorobenzene | | 6.89 | 360 | | 1,2-Dichlorobenzene | | 7.18 | 474 | | 1,3,5-Trichlorobenzene | | 8.34 | 65 M | | 1,2,4-Trichlorobenzene | | 8.86 | 179 | | 1,2,3-Trichlorobenzene | | 9.27 | 51.4 | | 1,2,3,5/1,2,4,5-Tetrachlorobenzen | | 10.48 | 36.5 | | 1,2,3,4-Tetrachlorobenzene | | 10.98 | <12 U | | Pentachlorobenzene | | 12.32 | 13.2 | | Hexachlorobenzene | | 13.96 | <12 U | | Field Sampling Standards no | g spiked | | %Rec | | 1-Bromo-2,3-Dichlorobenzene | 600 | 10.28 | 99 | | Extraction Standards | | | %Rec | | 13C6-Chlorobenzene | 300 | 4.58 | 19 M | | 13C6-1,4-Dichlorobenzene | 300 | 6.89 | 55 | | 13C6-1,2,3-Trichlorobenzene | 300 | 9.26 | 69 | 300 300 300 10.98 12.32 13.96 M Indicates that a peak has been manually integrated. 13C6-1,2,3,4-Tetrachlorobenzene 13C6-Pentachlorobenzene 13C6-Hexachlorobenzene Indicates that this compound was not detected above the MDL. 67 76 #### Sample Analysis Report Sample Name ALS Sample ID 20-22050-SVOC-(11 THRU 15) TEST#3 APC OUTLET #1 Sampling Date Extraction Date 12-Nov-20 25-Nov-20 Analysis Method Analysis Type Sample Matrix Sample Size Percent Moisture Split Ratio L2529311-3 SIM GC/MS sample Stack n/a 6 sample Approved: Andrew Reid --e-signature--08-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120712,D 12/7/2020 17:44 mL ng/sample MSD-2 HP-5MS US0411816H | Target Analytes | | Ret.
Time | Concentration ng/sample | Flags | |-----------------------------------|-----------|--------------|-------------------------|-------| | Chlorobenzene | | 4.63 | 3240 | | | 1,3-Dichlorobenzene | | 6.81 | 722 | | | 1,4-Dichlorobenzene | | 6.89 | 443 | | | 1,2-Dichlorobenzene | | 7.18 | 586 | | | 1,3,5-Trichlorobenzene | | 8.34 | 82.1 | | | 1,2,4-Trichlorobenzene | | 8.86 | 281 | | | 1,2,3-Trichlorobenzene | | 9.27 | 59 | | | 1,2,3,5/1,2,4,5-Tetrachlorobenzer | n die ee | 10.48 | 43.4 | | | 1,2,3,4-Tetrachlorobenzene | | 10.98 | <12 | U | | Pentachlorobenzene | | 12.32 | <12 | U | | Hexachlorobenzene | | NotFnd | <12 | υ | | Field Sampling Standards | ng spiked | | %Rec | | | 1-Bromo-2,3-Dichlorobenzene | 600 | 10.28 | 110 | | | Extraction Standards | | | %Rec | | | 13C6-Chlorobenzene | 300 | 4.62 | 23 | | | 13C6-1,4-Dichlorobenzene | 300 | 6.89 | 46 | | | 13C6-1,2,3-Trichlorobenzene | 300 | 9.27 | 58 | | | 13C6-1,2,3,4-Tetrachlorobenzene | 300 | 10.98 | 69 | | 300 300 12.32 13.96 U 13C6-Pentachlorobenzene 13C6-Hexachlorobenzene Indicates that this compound was not detected above the MDL. 77 ## Sample Analysis Report Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix 20-22050-SVOC-(16 THRU 20) BLANK#1 L2529311-4 SIM GC/MS sample Stack ock sample Sample Size 1 Percent Moisture n/a Split Ratio 6 Sampling Date Extraction Date 12-Nov-20 25-Nov-20 > Approved: Andrew
Reid --e-signature--08-Dec-2020 Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column 13C6-Chlorobenzene 13C6-1,4-Dichlorobenzene 13C6-Pentachlorobenzene 13C6-Hexachlorobenzene 13C6-1,2,3-Trichlorobenzene 13C6-1,2,3,4-Tetrachlorobenzene Run 1 20120708.D 12/7/2020 16:21 1 mL 1 ng/sample MSD-2 HP-5MS US0411816H | Target Analytes | Ret.
Time | Concentration ng/sample | Flags | |-----------------------------------|--------------|-------------------------|-------| | Chlorobenzene | NotFno | i <12 | U | | 1,3-Dichlorobenzene | NotFno | i <12 | U | | 1,4-Dichlorobenzene | NotFno | i <12 | U | | 1,2-Dichlorobenzene | NotFno | <12 | U | | 1,3,5-Trichlorobenzene | NotFnc | <12 | U | | 1,2,4-Trichlorobenzene | NotFno | <12 | U | | 1,2,3-Trichlorobenzene | NotFno | <12 | Ü | | 1,2,3,5/1,2,4,5-Tetrachlorobenzer | n NotFno | <12 | υ | | 1,2,3,4-Tetrachlorobenzene | NotFno | i <12 | U | | Pentachlorobenzene | NotFno | <12 | U | | Hexachlorobenzene | NotFno | l <12 | U | | Field Sampling Standards | ng spiked | %Rec | | | 1-Bromo-2,3-Dichlorobenzene | 600 10.2 | 8 107 | | | Extraction Standards | | %Rec | | 300 300 300 300 300 300 4.60 6.91 9.27 10.98 12.32 13.97 υ Indicates that this compound was not detected above the MDL. 27 51 62 76 83 #### Sample Analysis Report Sample Name ALS Sample ID Analysis Method Analysis Type 20-22050-SVOC-(21 THRU 25) TEST#1 APC OUTLET #2 Sampling Date Extraction Date 11-Nov-20 25-Nov-20 Sample Matrix Sample Size Percent Moisture Split Ratio L2529311-5 SIM GC/MS sample Stack 1 6 sample n/a Approved: Andrew Reid --e-signature--08-Dec-2020 Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Pentachlorobenzene Run 1 20120713.D 12/7/2020 18:05 ng/sample MSD-2 HP-5MS US0411816H 12.19 Ret. Concentration **Target Analytes** Time ng/sample Chlorobenzene 4.59 1950 1,3-Dichlorobenzene 6.81 188 1,4-Dichlorobenzene 6.89 133 1,2-Dichlorobenzene 7.18 141 1,3,5-Trichlorobenzene 8.34 23.9 1,2,4-Trichlorobenzene 8.86 42.9 1,2,3-Trichlorobenzene 9.26 20.5 1,2,3,5/1,2,4,5-Tetrachlorobenzen 10.49 17.8 M 1,2,3,4-Tetrachlorobenzene 10.94 <12 U | Hexachlorobenzene | | 13.59 | <12 U | |---------------------------------|-----------|-------|-------| | Field Sampling Standards | ng spiked | | %Rec | | 1-Bromo-2,3-Dichlorobenzene | 600 | 10.28 | 100 | | Extraction Standards | | | %Rec | | 13C6-Chlorobenzene | 300 | 4.59 | 22 | | 13C6-1,4-Dichlorobenzene | 300 | 6.89 | 51 | | 13C6-1,2,3-Trichlorobenzene | 300 | 9.27 | 65 | | 13C6-1,2,3,4-Tetrachlorobenzene | 300 | 10.98 | 82 | | 13C6-Pentachiorobenzene | 300 | 12.32 | 91 | | 13C6-Hexachlorobenzene | 300 | 13.96 | 93 | M Indicates that a peak has been manually integrated. Indicates that this compound was not detected above the MDL. <12 U ### Sample Analysis Report Sample Name ALS Sample ID Analysis Method 20-22050-SVOC-(26 THRU 30) TEST#2 APC OUTLET #2 Sampling Date Extraction Date 11-Nov-20 25-Nov-20 Analysis Type Sample Matrix Sample Size Percent Moisture Split Ratio L2529311-6 SIM GC/MS sample Stack 1 sample n/a Approved: Andrew Reid --e-signature--08-Dec-2020 Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120714.D 12/7/2020 18:26 mL ng/sample MSD-2 HP-5MS US0411816H | Target Analytes | | Ret.
Time | Concentration ng/sample | of the first of the first of the first state | |-----------------------------------|-----------|--------------|-------------------------|--| | Chlorobenzene | | 4.60 | 1970 | | | 1,3-Dichlorobenzene | | 6.81 | 198 | | | 1,4-Dichlorobenzene | | 6.89 | 128 | | | 1,2-Dichlorobenzene | | 7.18 | 148 | | | 1,3,5-Trichlorobenzene | | 8.34 | | | | 1,2,4-Trichlorobenzene | | 8.86 | | | | 1,2,3-Trichlorobenzene | | 9.27 | | | | 1,2,3,5/1,2,4,5-Tetrachlorobenzen | | 10.48 | | | | 1,2,3,4-Tetrachlorobenzene | | 10.98 | | | | Pentachlorobenzene | | 12.32 | | | | Hexachlorobenzene | | NotFnd | 1.4 7 7 7 | | | Field Sampling Standards | ng spiked | | %Rec | 생활되는 것이 얼마나 하는 사람들은 그리고 말했다. | | 1-Bromo-2,3-Dichlorobenzene | 600 | 10.28 | 95 | | | Extraction Standards | | | %Rec | | | 13C6-Chlorobenzene | 300 | 4.59 | 29 | | | 13C6-1,4-Dichlorobenzene | 300 | 6.89 | 58 | | | 13C6-1,2,3-Trichlorobenzene | 300 | 9.26 | 69 | | | 13C6-1,2,3,4-Tetrachlorobenzene | 300 | 10.98 | 69 | | | 13C6-Pentachlorobenzene | 300 | 12.32 | 76 | | | 13C6-Hexachlorobenzene | 300 | 13.96 | | | U ### Sample Analysis Report Sample Name ALS Sample ID 20-22050-SVOC-(31 THRU 35) TEST#3 APC OUTLET #2 L2529311-7 Sampling Date Extraction Date 12-Nov-20 25-Nov-20 Analysis Method Analysis Type Sample Matrix Sample Size Percent Moisture Split Ratio SIM GC/MS sample Stack sample n/a 6 Approved: Andrew Reid --e-signature--08-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120715.D 12/7/2020 18:46 ng/sample MSD-2 HP-5MS US0411816H | Target Analytes | | Ret.
Time | Concentration ng/sample | Flags | |-----------------------------------|-----------|--------------|-------------------------|-------| | Chlorobenzene | | 4.59 | 1430 | | | 1,3-Dichlorobenzene | | 6.82 | 144 | | | 1,4-Dichlorobenzene | | 6.90 | 91.8 | | | 1,2-Dichlorobenzene | | 7.19 | 109 | | | 1,3,5-Trichlorobenzene | | 8.34 | 18.1 | | | 1,2,4-Trichlorobenzene | | 8.86 | 35 | | | 1,2,3-Trichlorobenzene | | 9.27 | 22 M | 1 . | | 1,2,3,5/1,2,4,5-Tetrachlorobenzen | | 10.47 | <12 | U | | 1,2,3,4-Tetrachlorobenzene | | NotFnd | <12 | U | | Pentachlorobenzene | | NotFnd | <12 | U | | Hexachlorobenzene | | NotFnd | <12 | U | | Field Sampling Standards | ıg spiked | | %Rec | | | 1-Bromo-2,3-Dichlorobenzene | 600 | 10.28 | 93 | | | Extraction Standards | | | %Rec | | | 13C6-Chlorobenzene | 300 | 4.59 | 31 | | | 13C6-1,4-Dichlorobenzene | 300 | 6.90 | 63 | | | 13C6-1,2,3-Trichlorobenzene | 300 | 9.27 | 73 | | | 13C6-1,2,3,4-Tetrachlorobenzene | 300 | 10.98 | 77 | | | 13C6-Pentachlorobenzene | 300 | 12.32 | 84 | | 300 13.96 M U Indicates that a peak has been manually integrated. 13C6-Hexachlorobenzene Indicates that this compound was not detected above the MDL. ### Sample Analysis Report Sample Name ALS Sample ID Analysis Method Analysis Type **20-22050-SVOC-(36 THRU 40) BLANK#2** L2529311-8 SIM GC/MS sample Stack Sample Matrix Sample Size Percent Moisture Split Ratio n/a 6 **Run Information** Sampling Date Extraction Date 12-Nov-20 25-Nov-20 > Approved: Andrew Reid --e-signature--08-Dec-2020 Run 1 sample Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column 20120709.D 12/7/2020 16:42 mL ng/sample MSD-2 HP-5MS US0411816H | Target Analytes | Ret.
Time | Concentration ng/sample | Flags | |----------------------------------|--------------|-------------------------|-------| | Chlorobenzene | NotFnd | <12 | U. | | 1,3-Dichlorobenzene | NotFnd | <12 | U | | 1,4-Dichlorobenzene | 6.90 | <12 | U | | 1,2-Dichlorobenzene | NotFnd | <12 | U | | 1,3,5-Trichlorobenzene | NotFnd | <12 | U | | 1,2,4-Trichlorobenzene | NotFnd | <12 | U | | 1,2,3-Trichlorobenzene | NotFnd | <12 | U | | 1,2,3,5/1,2,4,5-Tetrachlorobenze | n NotFnd | <12 | U | | 1,2,3,4-Tetrachlorobenzene | NotFnd | <12 | U | | Pentachlorobenzene | NotFnd | <12 | U : | | Hexachlorobenzene | NotFnd | <12 | U | | Field Sampling Standards | ng spiked | %Rec | | | ricia Samping Standards | ng spikeu | | 70KeC | |---------------------------------|-----------|-------|-------| | 1-Bromo-2,3-Dichlorobenzene | 600 | 10.28 | 102 M | | Extraction Standards | | | %Rec | | 13C6-Chlorobenzene | 300 | 4.59 | 26 | | 13C6-1,4-Dichlorobenzene | 300 | 6.90 | 52 | | 13C6-1,2,3-Trichlorobenzene | 300 | 9.27 | 65 | | 13C6-1,2,3,4-Tetrachlorobenzene | ≥ 300 | 10.98 | 74 | | 13C6-Pentachlorobenzene | 300 | 12.32 | 81 | | 13C6-Hexachlorobenzene | 300 | 13.97 | 88 | | | | | | M U Indicates that a peak has been manually integrated. ### **Laboratory Control Sample Analysis Report**
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix Sample Size Laboratory Control Sample WG3444637-2 SIM GC/MS LCS QC n/a Sampling Date Extraction Date n/a 25-Nov-20 Approved: Andrew Reid --e-signature--08-Dec-2020 Percent Moisture Split Ratio n/a 6 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120704.D 12/7/2020 14:58 mL % MSD-2 HP-5MS US0411816H | [유명함 제품 등을 가는 것 | Ret. | | | |---|------------------------|-------------|-------| | Target Analytes | ng spiked Time % | ∕o Recovery | Flags | | Chlorobenzene | | | | | 1,3-Dichlorobenzene | 300 6.84 | 113 | | | 1,4-Dichlorobenzene | 300 6.92 | 108 | | | 1,2-Dichlorobenzene | 300 7.20 | 115 | | | 1,3,5-Trichlorobenzene | 300 8.35 | 94 | | | 1,2,4-Trichlorobenzene | 300 8.87 | 90 | | | 1,2,3-Trichlorobenzene | 300 9.28 | 93 | | | 1,2,3,5/1,2,4,5-Tetrachiorobenzen | | 111 | | | 1,2,3,4-Tetrachlorobenzene Pentachlorobenzene | 300 10.98
300 12.32 | 110
115 | | | Hexachiorobenzene | 300 13.97 | 113 | | | Extraction Standards | | %Rec | | | 13C6-Chlorabenzene | 300 4.57 | 24 | | | 13C6-1,4-Dichlorobenzene | 300 6.92 | 58 | | | 13C6-1,2,3-Trichlorobenzene | 300 9.27 | 80 | | | 13C6-1,2,3,4-Tetrachlorobenzene | 300 10.98 | 86 | | | 13C6-Pentachlorobenzene
13C6-Hexachlorobenzene | 300 12.32
300 13.97 | 90
111 | | R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. ### **Laboratory Control Sample Analysis Report** Sample Name ALS Sample ID Analysis Method Analysis Type Laboratory Control Sample WG3444637-5 SIM GC/MS LCS QC Sample Matrix Sample Size Percent Moisture Split Ratio n/a 6 Sampling Date Extraction Date n/a 25-Nov-20 Approved: Andrew Reid --e-signature--08-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120703.D 12/7/2020 14:37 mL % MSD-2 HP-5MS US0411816H | Target Analytes | ng spiked | Ret.
Time | % Recovery | Flags | |-----------------------------------|-----------|--------------|------------|--| | Chlorobenzene | | | | | | 1,3-Dichlorobenzene | 30 | 6.81 | 120 | | | 1,4-Dichlorobenzene | 30 | 6.89 | 111 | | | 1,2-Dichlorobenzene | 30 | 7.18 | 116 | 그리고 살아 된 현대에 가운데 아름다면 사람들이 내려가 있다. 하나는 하나 하나 하나는 것이다는 하는 | | 1,3,5-Trichlorobenzene | 30 | 8.35 | 109 | 化氯化氯化 化铁铁 化基氯基 不完,其他这些原则有更大的大概是有原则,就是这个大概是是是 | | 1,2,4-Trichlorobenzene | 30 | 8.87 | 103 | | | 1,2,3-Trichlorobenzene | 30 | 9.27 | 109 | | | 1,2,3,5/1,2,4,5-Tetrachlorobenzen | 60 | 10.50 | 135 | | | 1,2,3,4-Tetrachlorobenzene | 30 | 10.99 | 111 | 化二氯基丁基二二氯甲二二二氯甲基乙基二氯二甲二氯二甲二氯二异甲二二异二 | | Pentachlorobenzene | 30 | 12.35 | 103 | | | Hexachiorobenzene | 30 | 13.98 | 103 | | | Extraction Standards | | | %Rec | | | 13C6-Chlorobenzene | 300 | 4.61 | 30 | | | 13C6-1,4-Dichlorobenzene | 300 | 6.89 | 47 | | | 13C6-1,2,3-Trichlorobenzene | 300 | 9.27 | 56 | | | 13C6-1,2,3,4-Tetrachlorobenzene | 300 | 10.98 | | | | 13C6-Pentachlorobenzene | 300 | 12.34 | 66 | | | 13C6-Hexachlorobenzene | 300 | 13.98 | 89 | | 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 # **Certificate of Analysis** ALS Project Contact: Lynne Wrona ALS Project ID: ORT100 ALS WO#: L2529311 Date of Report 8-Dec-20 Date of Sample Receipt 13-Nov-20 Client Name: Client Address: ORTECH Environmental 804 Southdown Road Mississauga, ON L5J 2Y4 Canada Client Contact: Chris Belore Client Project ID: 22050 Covanta COMMENTS: Chlorophenols as acetate derivatives by SIM GC/MS Selected C-13 extraction/internal standards were biased low and below the targeted 20% lower control limit. Due to isotope dilution corrections such lower recoveries will not compromise the quantitation of postive target responses. Certified by: Ron McLeod, PhD Laboratory Manager and Technical Director | | | ALS Environmental | 313 | francisco de la facilita facil | | | | | | |-------------------------------------|---------------------------------------|---|------|--|---------------|---|--------------|---|---------| | | | Sample Analysis Summary Re | port | | NAMES VERICES | | SOURCE STATE | | anesau | | Sample Name | Method Blank
(Media) | 20-22050-SVOC-(1
THRU 5) TEST#1
APC OUTLET #1 | | 20-22050-SVOC-(6
THRU 10) TEST#2
APC OUTLET #1 | | 20-22050-SVOC-
(11 THRU 15)
TEST#3 APC
OUTLET #1 | | 20-22050-SVOC-
(15 THRU 20)
BLANK#1 | | | ALS Sample ID | WG3444637-1 | L2529311-1 | | L2529311-2 | | L2529311-3 | | L2529311-4 | | | Sample Size | | | | | | | | | | | Sample units | sample | sample | | sample | | sample | | sample | | | Moisture Content | n/a | n/a | | n/a | | n/a | | n/a | | | Matrix | QC | Stack | | Stack | | Stack | | Stack | | | Sampling Date | n/a | 11-Nov-20 | | 11-Nov-20 | | 12-Nov-20 | | 12-Nov-20 | | | Extraction Date | 25-Nov-20 | 25-Nov-20 | | 25-Nov-20 | | 25-Nov-20 | | 25-Nov-20 | | | Target Analytes | ng/sample | ng/sample | | ng/sample | | ng/sample | | ng/sample | CHINOSO | | 2-Chlorophenol | <60 U | <60 | U | <60 | U | <60 | U | <60 | U | | 3-Chlorophenol | <60 U | <60 | U | <60 | U | <60 | U | <60 | U | | 4-Chlorophenol | : : : : : : : : : : : : : : : : : : : | | U | <60 | U | <60 | U | <60 | U | | 2,6-Dichlorophenol | <60 U | <60 | U | <60 | U | <60 | U | <60 | U | | 2,4/2,5-Dichlorophenol | <60 U | <60 | Ü | 76.1 | M | 65.6 | M | <60 | U | | 3,5-Dichlorophenol | <60 U | <60 | , U | <60 | . ; U | <60 | U | <60 | U | | 2,3-Dichlorophenol | <60 U | <60 | U | <60 | U | <60 | U | <60 | u | | 3,4-Dichlorophenol | <60 U | <60 | U | <60 | U | <60 | U | <60 | ι | | 2,4,6-Trichlorophenol | <60 U | 200 | M | 201 | M | 171 | | <60 | ŭ | | 2,3,6-Trichlorophenol | <60 U | <60 | Ų | <60 | .U | <60 | U | <60 | , U | | 2,3,5-Trichlorophenol | <60 U | <60 | ,U | <60 | U | <60 | U | <60 | J | | 2,4,5-Trichlorophenol | <60 U | <60 | U | <60 | U | <60 | U | <60 | U | | 2,3,4-Trichlorophenol | <60 U | <60 | U. | <60 | U. | <60 | U | <60 | U | | 3,4,5-Trichlorophenol | <60 U | <60 | U | <60 | -, U | <60 | U | <60 | U | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | <60 U | <60 | U, | <60 | U | <60 | U | <60 | U | | 2,3,4,5-Tetrachiorophenol | <60 U | <60 | U | <60 | U | <60 | υŲ | <60 | U | | Pentachlorophenol | <60 U | <60 | U | <60 | U | <60 | U | <60 | U | | Extraction Standards | % Rec | % Rec | | % Rec | | % Rec | | % Rec | | | 13C6-4-Chlorophenol (ES) | 12 M | 52 | | 29 | | 25 | | 49 | | | 13C6-2,4-Dichlorophenol (ES) | 4 | 38 | | 34 | | 41 | | 49 | | | 13C6-2,4,5-Trichlorophenol (ES) | 21 | 10. | | 27 | | 33 | | 47 | | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 35 M | . : : : : : : : : : : : : : : : : : : : | | 32 | | 31 | | 53 | | | 13C6-Pentachlorophenol (ES) | 26 | | M | 25 | | 6 | | 46 | | U Indicates that this compound was not detected above the LOR, M Indicates that a peak has been manually integrated. | | | AL | SE | nvironmental | | | | | | |
--|--|---|------|---|------|---|----------|--------------------------------------|--|----| | SUPPLIES STATES OF PRINCIPES AND AUTOMAS AND AREA AND AUTOMAS AND AREA AND AND AREA AND AUTOMAS AND AREA AND AUTOMAS AUTOM | No. of the second secon | Sample A | naly | sis Summary Re | port | | NAME WAS | | SidentNewshitzsнocrawssanach в сполько шисон шерүүддэгсэ | ~~ | | Sample Name | 20-22050-SVOC-
(21 THRU 25)
TEST#1 APC
OUTLET #2 | 20-22050-SVOC-
(26 THRU 30)
TEST#2 APC
OUTLET #2 | | 20-22050-SVOC-
(31 THRU 35)
TEST#3 APC
OUTLET #2 | | 20-22050-SVOC-
(36 THRU 40)
BLANK#2 | | Laboratory Control
Sample (1.2ug) | Laboratory Control
Sample (0.12ug) | | | ALS Sample ID | 12529311-5 | L2529311-6 | | L2529311-7 | | L2529311-8 | | WG3444637-2 | WG3444637-5 | | | Sample Size | | | | | | | | | | | | Sample units | sample | sample | | sample | | sample | | n/a | n/a | | | Moisture Content | n/a | n/a | | n/a | | n/a | | n/a | n/a | | | Matrix | Stack | Stack | | Stack | | Stack | | QC | QC | | | Sampling Date | 11-Nov-20 | 11-Nov-20 | | 12-Nov-20 | | 12-Nov-20 | | n/a | n/a | | | Extraction Date | 25-Nov-20 | 25-Nov-20 | | 25-Nov-20 | | 25-Nov-20 | 1. | 25-Nov-20 | 25-Nov-20 | | | Target Analytes | n/a | ng/sample | | ng/sample | | ng/sample | | % Recovery | % Recovery | | | 2-Chlorophenol | <60 U | <60 | U | <60 | U | <60 | U | 109 | M 87 | М | | 3-Chlorophenol | ≤60 U | <60 | U | <60 | U | <60 | Ū | | | | | 1-Chlorophenol | | <60 | U | <60 | U | <60 | U | | | | | 2,6-Dichlorophenoi | <60 U | <60 | U | <60 | U | <60 | Ü | 89 | M 86 | М | | 2,4/2,5-Dichlorophenol | <60 U | <60 | U | <60 | U | <60 | U | 105 | 83 | М | | 3,5-Dichlorophenol | 238 M | <60 | U · | 248 | M | <60 | . ·U | | | | | 2,3-Dichlorophenol | <60 U | <60 | U. | <60 | u | <60 | U, | | | | | 3,4-Dichlorophenol | <60 U | <60 | U | <60 | U | <60 | U | | | | | 2,4,6-Trichlorophenol | <60 U | <60 | U | <60 | U | <60 | U | 100 | 79 | М | | 2,3,6-Trichlorophenol | <60 U | <60 | U | <60 | Ų | <60 | U | | | | | 2,3,5-Trichlorophenol | <60 U | <60 | U | <60 | U | <60 | U | | | | | 2,4,5-Trichlorophenol | <60 U | <60 | U | <60 | Ü | <60 | υ | 117 | 96 | М | | 2,3,4-Trichlorophenol | <60 U | < 60 | U | <60 | U | <60 | . U | | | | | 3,4,5-Trichlorophenol | <60 U | <60 | U | <60 | U | <60 | U | | | | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | <60 U | <60 | U | <60 | U | <60 | U | 96 | м | М | | 2,3,4,5-Tetrachlorophenol | <60 U | <60 | U | <60 | U | <60 | U | 108 | 90 | | | Pentachlorophenol | <60 U | <60 | U | <60 | U | <60 | U | 102 | 99 | | | Extraction Standards | % Rec | % Rec | | % Rec | | % Rec | | % Rec | % Rec | | | 13C6-4-Chlorophenol (ES) | 42 | 21 | | 30 | | 29 | | 54 | 36 | | | 13C6-2,4-Dichlorophenol (ES) | 30 | 13 | | 16 | | 12 | | 56 | 33 | | | 13C6-2,4,5-Trichlorophenol (ES) | 42 | 19 | | 23 | | 25 | | 47 | 34 | | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 44 | 27 | | 16 | | 39 | | 44 | 40 | | | 13C6-Pentachlorophenol (ES) | 38 | 10 | | 23 | | 44 | | 28 | 35 | | Indicates that this compound was not detected above the LOR. Indicates that a peak has been manually integrated, U M ## Laboratory Method Blank Analysis Report Sample Name ALS Sample ID **Analysis Method** Method Blank (Media) WG3444637-1 SIM GC/MS blank Analysis Type Sample Matrix QC Sample Size sample Percent Moisture n/a 6 Sampling Date Extraction Date n/a 25-Nov-20 > Approved: Andrew Reid --e-signature--08-Dec-2020 **Run Information** Split Ratio Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Col Run 1 20120724.D 12/7/2020 22:09 mL ng/sample MSD-2 Н | Target Analytes | | ncentration
Sample Flags | | | |---|------------|-----------------------------|--------|--| | 2-Chiorophenol | NotFnd | <60 U | | | | 3-Chlorophenol | NotFnd | <60 U | | | | 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基 | | | | | | 4-Chlorophenol | NotFnd | <60 U | | | | 2,6-Dichlorophenol | NotFnd | <60 U | | | | 2,4/2,5-Dichlorophenol | NotFnd | <60 U | | | | 3,5-Dichlorophenol | NotFnd | <60 U | | | | 2,3-Dichlorophenol | NotFnd | <60 U | | | | 3,4-Dichlorophenol | NotFnd | <60 U | | | | 2,4,6-Trichlorophenol | NotFnd | <60 U | | | | 2,3,6-Trichlorophenol | NotFnd | <60 U | | | | 2,3,5-Trichlorophenol | NotFnd | <60 U | | | | 2,4,5-Trichlorophenol | NotFnd | <60 U | | | | 2,3,4-Trichlorophenol | NotFnd | <60 U | | | | 3,4,5-Trichlorophenol | NotFnd | <60 U | | | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | NotFnd | <60 U | | | | 2,3,4,5-Tetrachlorophenol | NotFnd | <60 U | | | | Pentachiorophenol | NotFnd | <60 U | | | | , 2015년 1월 1일 | | | | | | Extraction Standards | | % Rec | | | | 13C6-4-Chlorophenol (ES) | 1200 8.35 | 12 M | 20-150 | | | 13C6-2,4-Dichlorophenol (ES) | 1200 9.52 | 4 | 20-150 | | | 13C6-2,4,5-Trichlorophenol (ES) | 1200 10.99 | 21 | 20-150 | | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 1200 12.60 | 35 M | 20-150 | | | 13C6-Pentachlorophenol (ES) | 1200 13.57 | 26 | 20-150 | | U Indicates that a peak has been manually integrated. Indicates that this compound was not detected above the LOR. ## Sample Analysis Report Sample Name ALS Sample ID 20-22050-SVOC-(1 THRU 5) TEST#1 APC OUTLET #1 Sampling Date Extraction Date 11-Nov-20 25-Nov-20 Analysis Method Analysis Type Sample Matrix Sample Size L2529311-1 SIM GC/MS sample Stack Stack 1 sample Percent Moisture n/a Split Ratio 6 n/a Approved: Andrew Reid --e-signature--08-Dec-2020 Run Information Run 1 Filename Run Date Final Volume Dilution Factor Analysis Units Instrument 20120728.D 12/7/2020 23:44 1 mL 1 ng/sample MSD-2 HP5MS US0411816H Column HP5MS US0411816 | arget Analytes | | Concentration
ng/sample Flags | andra francische Deutschleiter der
State State
Deutschleiter der State St | |-------------------------------------|------------|----------------------------------|--| | 2-Chlorophenol | NotFnd | <60 U | | | 3-Chlorophenol | NotFnd | <60 U | | | 4-Chlorophenol | NotFnd | <60 U | | | 2,6-Dichlorophenol | NotFnd | <60 U | | | 2,4/2,5-Dichlorophenol | 9.52 | <60 U | | | 3,5-Dichlorophenol | NotFnd | <60 U | | | 2,3-Dichlorophenol | NotFnd | <60 U | | | 3,4-Dichlorophenol | NotFnd | <60 U | | | 2,4,6-Trichlorophenol | 10.44 | 200 M | | | 2,3,6-Trichlorophenol | NotFnd | <60 U | | | 2,3,5-Trichlorophenol | NotFnd | <60 U | | | 2,4,5-Trichlorophenol | NotFnd | <60 U | | | 2,3,4-Trichlorophenol | NotFnd | <60 U | | | 3,4,5-Trichlorophenol | NotFnd | <60 U | | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | NotFnd | <60 U | | | 2,3,4,5-Tetrachlorophenol | NotFnd | <60 U | | | Pentachlorophenol | NotFnd | <60 U | | | | | | | | Extraction Standards | | % Rec | | | 13C6-4-Chlorophenol (ES) | 1200 8.35 | 52 | | | 13C6-2,4-Dichlorophenol (ES) | 1200 9.52 | 38 | | | 13C6-2,4,5-Trichlorophenol (ES) | 1200 10.98 | 10 | 20-150 | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 1200 12.59 | 5 | 20-150 | | 13C6-Pentachlorophenol (ES) | 1200 13.57 | 4 M | | M Indicates that a peak has been manually integrated. ## Sample Analysis Report 20-22050-SVOC-(6 THRU 10) TEST#2 APC OUTLET #1 L2529311-2 SIM GC/MS Sampling Date Extraction Date 11-Nov-20 25-Nov-20 Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix Sample Size sample Stack 1 sample Percent Moisture Split Ratio n/a Approved: Andrew Reid --e-signature--08-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Run 1 20120729.D 12/8/2020 0:08 mL ng/sample MSD-2 | O1 | uı | mn | | | | | | | 100 | пP: |) IVI | o U | 504 | +11 | 810 |) TI | | |----|----|----|--|--|--|--|--|--|-----|-----|-------|-----|-----|-----|-----|------|--| Target Analytes | | oncentration
g/sample Flags | | | | | | |-------------------------------------|------------|--------------------------------|--------|--|--|--|--| | 2-Chlorophenol | NotFnd | <60 U | | | | | | | 3-Chlorophenol | NotFnd | <60 U | | | | | | | 4-Chlorophenol | NotFnd | <60 U | | | | | | | 2,6-Dichlorophenol | NotFnd | <60 U | | | | | | | 2,4/2,5-Dichlorophenol | 9.52 | 76.1 M | | | | | | | 3,5-Dichlorophenol | NotFnd | <60 U | | | | | | | 2,3-Dichlorophenol | NotFnd | <60 U | | | | | | | 3,4-Dichlorophenol | NotFnd | <60 U | | | | | | | 2,4,6-Trichlorophenol | 10.44 | 201 M | | | | | | | 2,3,6-Trichlorophenol | NotFnd | <60 U | | | | | | | 2,3,5-Trichlorophenol | NotFnd | <60 U | | | | | | | 2,4,5-Trichlorophenol | NotFnd | <60 U | | | | | | | 2,3,4-Trichlorophenol | NotFnd | <60 U | | | | | | | 3,4,5-Trichlorophenol | NotFnd | <60 U | | | | | | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | NotFnd | <60 U | | | | | | | 2,3,4,5-Tetrachlorophenol | NotFnd | <60 U | | | | | | | Pentachlorophenol | NotFnd | <60 U | | | | | | | Extraction Standards | | % Rec | | | | | | | 13C6-4-Chlorophenol (ES) | 1200 8.35 | 29 | 20-150 | | | | | | 13C6-2,4-Dichlorophenol (ES) | 1200 9.52 | 34 | 20-150 | | | | | | 13C6-2,4,5-Trichlorophenol (ES) | 1200 10.98 | 27 | 20-150 | | | | | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 1200 12.59 | 32 | 20-150 | | | | | | 13C6-Pentachlorophenol (ES) | 1200 13.56 | 25 | 20-150 | | | | | Indicates that a peak has been manually integrated. ## Sample Analysis Report Sample Name ALS Sample ID 20-22050-SVOC-(11 THRU 15) TEST#3 APC OUTLET #1 Sampling Date Extraction Date 12-Nov-20 25-Nov-20 Analysis Method Analysis Type Sample Matrix Sample Size Percent Moisture Split Ratio Column L2529311-3 SIM GC/MS sample Stack sample n/a Approved: Andrew Reid --e-signature--08-Dec-2020 **Run Information** Run 1 Filename Run Date Final Volume Dilution Factor Analysis Units Instrument 20120730.D 12/8/2020 0:32 ng/sample MSD-2 HP5MS US0411816H | arget Analytes | | oncentration
g/sample Flags | | |-------------------------------------|------------|--------------------------------|---| | | tinic ili | g/sample riags | | | 2-Chlorophenol | NotFnd | <60 U | | | 3-Chlorophenol | NotFnd | <60 U | | | 4-Chlorophenol | NotFnd | <60 U | | | 2,6-Dichlorophenol | NotFnd | <60 U | | | 2,4/2,5-Dichlorophenol | 9.52 | 65.6 M | | | 3,5-Dichlorophenol | NotFnd | <60 U | | | 2,3-Dichlorophenol | NotFnd | <60 U | | | 3,4-Dichlorophenol | NotFnd | <60 U | | | 2,4,6-Trichlorophenol | 10.44 | 171 | | | 2,3,6-Trichlorophenol | NotFnd | <60 U | | | 2,3,5-Trichlorophenol | NotFnd | <60 U | | | 2,4,5-Trichlorophenol | NotFnd | <60 U | | | 2,3,4-Trichlorophenol | NotFnd | <60 U | | | 3,4,5-Trichlorophenol | NotFnd | <60 U | | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | NotFnd | <60 U | | | 2,3,4,5-Tetrachlorophenol | NotFnd | <60 U | 나는 사람들은 물로 그리는 걸로 살을 받는 사람들이 되는 사람이 되고 있는데 없다. | | Pentachlorophenol | NotFnd | <60 U | | | Extraction Standards | | % Rec | | | 13C6-4-Chlorophenol (ES) | 1200 8.35 | 25 | 20-150 | | 13C6-2,4-Dichlorophenol (ES) | 1200 9.52 | 41 | | | 13C6-2,4,5-Trichlorophenol (ES) | 1200 10.98 | 33 | [1] [20-150] - [1 | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 1200 12.59 | 31 | 20-150 | | 13C6-Pentachlorophenol (ES) | 1200 13.56 | 6 | 20-15 0 | ## Sample Analysis Report **Sample Name** ALS Sample ID Analysis Method Analysis Type 20-22050-SVOC-(16 THRU 20) BLANK#1 L2529311-4 SIM GC/MS sample Sample Matrix Stack Sample Size sample Percent Moisture Split Ratio n/a Sampling Date 12-Nov-20 Extraction Date 25-Nov-20 > Approved: Andrew Reid --e-signature--08-Dec-2020 **Run Information** Filename Run Date Final Volume
Dilution Factor Analysis Units Instrument Column Run 1 20120726.D 12/7/2020 22:57 mL ng/sample MSD-2 HP5MS US0411816H | 승규를 가는 것이 그 그 가는 것이 없다. | Ret. Concentr | ation | | | | | | |-------------------------------------|---------------|----------|--------|--|--|--|--| | Target Analytes | Time ng/samp | le Flags | | | | | | | 2-Chlorophenol | NotFnd | <60 U | | | | | | | 3-Chlorophenol | | <60 U | | | | | | | 4-Chlorophenol | NotFnd | <60 U | | | | | | | 2,6-Dichlorophenol | NotFnd | <60 U | | | | | | | 2,4/2,5-Dichlorophenol | NotFnd | <60 U | | | | | | | 3,5-Dichlorophenol | NotFnd | <60 U | | | | | | | 2,3-Dichlorophenol | NotFnd | <60 U | | | | | | | 3,4-Dichlorophenol | NotFnd | <60 U | | | | | | | 2,4,6-Trichlorophenol | 10.44 | <60 U | | | | | | | 2,3,6-Trichlorophenol | NotFnd | <60 U | | | | | | | 2,3,5-Trichlorophenol | NotFnd | <60 U | | | | | | | 2,4,5-Trichlorophenol | NotFnd | <60 U | | | | | | | 2,3,4-Trichlorophenol | NotFnd | <60 U | | | | | | | 3,4,5-Trichlorophenol | NotFnd | <60 U | | | | | | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | NotFnd | <60 U | | | | | | | 2,3,4,5-Tetrachlorophenol | NotFnd | <60 U | | | | | | | Pentachlorophenol | NotFnd | <60 U | | | | | | | Extraction Standards | % | Rec | | | | | | | 13C6-4-Chlorophenol (ES) | 1200 8.35 | 49 | 20-150 | | | | | | 13C6-2,4-Dichlorophenol (ES) | 1200 9.52 | 49 | 20-150 | | | | | | 13C6-2,4,5-Trichlorophenol (ES) | 1200 10.98 | 47 | 20-150 | | | | | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 1200 12.59 | 53 | 20-150 | | | | | | 13C6-Pentachlorophenol (ES) | 1200 13.56 | 46 | 20-150 | | | | | U ## Sample Analysis Report Sample Name 20-22050-SVOC-(21 THRU 25) TEST#1 APC OUTLET #2 ALS Sample ID L2529311-5 Analysis Method SIM GC/MS sample Stack Sample Size Percent Moisture n/a Split Ratio Analysis Type Sample Matrix Sampling Date Extraction Date 11-Nov-20 25-Nov-20 Approved: Andrew Reid --e-signature--08-Dec-2020 **Run Information** Run 1 Filename Run Date Final Volume **Dilution Factor** Analysis Units Instrument 20120731.D 12/8/2020 0:56 n/a MSD-2 sample | Column | HP5MS US0411816 | |--------|-----------------| |--------|-----------------| | Target Analytes | Ret. Concentra
Time n/a | tion
The Flags | |-------------------------------------|----------------------------|---| | | | eringsille annual annual bear agus gu ann ar ear ann agus gu ann aighean an agus agus an Aireann, at gliang | | 2-Chlorophenol | | | | 3-Chlorophenol | | | | 4-Chlorophenol | | | | 2,6-Dichlorophenol | NotFnd < | | | 2,4/2,5-Dichlorophenol | NotFnd < | 60 Paulinia – Paulinia Karajas II. Laikin katang kabagai dan terbigai kabagai Sebagai Kabagai Kabagai Kabagai | | 3,5-Dichlorophenol | 9.64 2 | | | 2,3-Dichlorophenol | NotFnd < | 60 au 🗀 chairtean agus an t-airean an t-airean agus an t-airean a | | 3,4-Dichlorophenol | NotFnd < | 60 - Quinner and the company of the control of the control of the control of the control of the control of the | | 2,4,6-Trichlorophenol | 10.44 < | so nounce in a colon fermion of the large frame to the graph of the colonial color | | 2,3,6-Trichlorophenol | NotFnd < | | | 2,3,5-Trichlorophenol | NotFnd < | | | 2,4,5-Trichlorophenol | NotFnd < | 60일 입자 기계를 받는 사람들이 살아왔다. 그는 사람들이 가는 사람들이 되고 있는 것 같다. | | 2,3,4-Trichlorophenol | NotFnd < | | | 3,4,5-Trichlorophenol | | | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | | | | 2,3,4,5-Tetrachlorophenol | | | | Pentachlorophenol | | ************************************** | | | | 선생들이 살아가 있는데 모든 것이 하고 말을 하는데 되는데 하는데 하는데 이 모든데 되었다. 그 것은 | | Extraction Standards | % R | 속 그리는 사람들이 되는 것이 하는 것은 것이라면 하는 것이 없는 것이다. | | 13C6-4-Chlorophenol (ES) | 1200 8.35 | 42 20-150 | | 13C6-2,4-Dichlorophenol (ES) | 그는 사람들은 경기를 받는데 하시는 것이다. | 30 · · · · · · · · · · · · · · · · · · · | | 13C6-2,4,5-Trichlorophenol (ES) | | 42 20-150 | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | | 72
44
44 | | 13C6-Pentachlorophenol (ES) | | 38 20-150 | Indicates that a peak has been manually integrated. ## Sample Analysis Report Sample Name ALS Sample ID 20-22050-SVOC-(26 THRU 30) TEST#2 APC OUTLET #2 Sampling Date Extraction Date 11-Nov-20 25-Nov-20 Analysis Method Analysis Type Sample Matrix L2529311-6 SIM GC/MS sample Stack ck sample Sample Size 1 Percent Moisture n/a Split Ratio 6 Approved: Andrew Reid --e-signature--08-Dec-2020 Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Run 1 20120732.D 12/8/2020 1:20 1 mL 1 ng/sample MSD-2 Column HP5MS US0411816H | | Ret. Concent | | | | | | |-------------------------------------|--------------|-----------|--------|--|--|--| | Target Analytes | Time ng/sam | ple Flags | | | | | | 2-Chlorophenol | NotFnd | <60 U | | | | | | 3-Chlorophenol | NotFnd | <60 U | | | | | | 4-Chlorophenol | NotFnd | <60 U | | | | | | 2,6-Dichlorophenol | NotFnd | <60 U | | | | | | 2,4/2,5-Dichlorophenol | 9.52 | <60 U | | | | | | 3,5-Dichlorophenol | NotFnd | <60 U | | | | | | 2,3-Dichlorophenol | NotFnd | <60 U | | | | | | 3,4-Dichlorophenol | NotFnd | <60 U | | | | | | 2,4,6-Trichlorophenol | NotFnd | <60 U | | | | | | 2,3,6-Trichlorophenol | NotFnd | <60 U | | | | | | 2,3,5-Trichlorophenol | NotFnd | <60 U | | | | | | 2,4,5-Trichlorophenol | NotFnd | <60 U | | | | | | 2,3,4-Trichlorophenol | NotFnd | <60 U | | | | | | 3,4,5-Trichlorophenol | NotFnd | <60 U | | | | | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | NotFnd | <60 U | | | | | | 2,3,4,5-Tetrachlorophenol | NotFnd | <60 U | | | | | | Pentachlorophenol | NotFnd | <60 U | | | | | | Extraction Standards | 9/ | Rec | | | | | | 13C6-4-Chlorophenol (ES) | 1200 8.35 | 21 | 20-150 | | | | | 13C6-2,4-Dichlorophenol (ES) | 1200 9.52 | 13 | 20-150 | | | | | 13C6-2,4,5-Trichlorophenol (ES) | 1200 10.98 | 19 | 20-150 | | | | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 1200 12.59 | 27 | 20-150 | | | | | 13C6-Pentachlorophenol (ES) | 1200 13.56 | 10 | 20-150 | | | | L ### Sample Analysis Report Sample Name ALS Sample ID Analysis Method 20-22050-SVOC-(31 THRU 35) TEST#3 APC OUTLET #2 L2529311-7 SIM GC/MS Sampling Date Extraction Date 12-Nov-20 25-Nov-20 Analysis Method Analysis Type Sample Matrix Instrument SIM GC/MS sample Stack 1 sample Sample Size 1 Percent Moisture n/a Split Ratio 6 Sumple Approved: Andrew Reid -e-signature--08-Dec-2020 Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Run 1 20120733.D 12/8/2020 1:43 1 mL 1 ng/sample MSD-2 Column HP5MS US0411816H | Target Analytes | Ret. Concentration Time ng/sample | grade traffice (traffice) de la gradie de la companya de la companya de la companya de la companya de la compa
D Flags de la companya | |-------------------------------------|-----------------------------------
--| | | | | | 2-Chlorophenol | NotFnd <60 | | | 3-Chlorophenol | NotFnd <60 | | | 4-Chlorophenol | NotFnd <60 | $B(\mathbf{U})$ is the section of $S(\mathbf{v})$ and $S(\mathbf{v})$ is the section $S(\mathbf{v})$ and $S(\mathbf{v})$ is $S(\mathbf{v})$ and $S(\mathbf{v})$ | | 2,6-Dichlorophenol | NotFnd <60 | agur - The thing of the figure at a first of the contract of the figure of the contract | | 2,4/2,5-Dichlorophenol | NotFnd <60 | an u n en egit i keyeri ang kiliking mengalang ang kalang ang keyeri ang kalang ang keyeri ang kelang ang keyer | | 3,5-Dichlorophenol | 9.65 248 | | | 2,3-Dichlorophenol | NotFnd <60 | ignor in the contract of c | | 3,4-Dichlorophenol | NotFnd <60 | | | 2,4,6-Trichlorophenol | NotFnd <60 | ilione a cientico de Alexandro interese de ciente de la companya de la companya de la companya de la companya | | 2,3,6-Trichlorophenol | NotFnd <60 | | | 2,3,5-Trichlorophenol | NotFnd <60 | #w 이번 14 - 14 - 이번 시간 보고 있는 사람들의 사람들이 되는 것 같아. | | 2,4,5-Trichlorophenol | NotFnd <60 | 불합 그는 사람들이 얼마를 하는 사람들이 보고 하는 사람들이 살 때문에 살다. | | 2,3,4-Trichlorophenol | NotFnd <60 | ligo de la Calenda C | | 3,4,5-Trichlorophenol | NotFnd <60 | | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | NotFnd <60 | | | 2,3,4,5-Tetrachlorophenol | NotFnd <60 | [86g - 기타의 IP : 1 등 기자 및 시 하실 : 1 등 기타 하는 1 등 1 등 1 등 기자 기타 | | Pentachlorophenol | NotFnd <60 | 돌 i 그는 물을 보면 하는 것 같은 것이 얼마나 있는 것 같아. | | Extraction Standards | % Rec | | | 13C6-4-Chlorophenol (ES) | 1200 8.36 30 | 20-150 | | 13C6-2,4-Dichlorophenol (ES) | 1200 9.52 16 | - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15 | | 13C6-2,4,5-Trichlorophenol (ES) | 1200 10.98 23 | 20-150 20-150 | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 1200 12.59 16 | 20-150 (20-150) | | 13C6-Pentachlorophenol (ES) | 1200 13.57 23 | 10^{-1} | 111 Indicates that a peak has been manually integrated. ## Sample Analysis Report Sample Name ALS Sample ID Analysis Method 20-22050-SVOC-(36 THRU 40) BLANK#2 L2529311-8 SIM GC/MS sample Analysis Type Sample Matrix Stack Sample Size n/a Percent Moisture Split Ratio sample Sampling Date Extraction Date 12-Nov-20 25-Nov-20 Approved: Andrew Reid --e-signature--08-Dec-2020 **Run Information** Run 1 Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column 6 20120727.D 12/7/2020 23:20 mL ng/sample MSD-2 HP5MS US0411816H | Target Analytes | | Concentration ng/sample | Flags | | | | | | | | | | |-------------------------------------|------------|-------------------------|-------|--------|--|--|--|--|--|--|--|--| | 2-Chlorophenol | NotFnd | <60 | U | | | | | | | | | | | 3-Chlorophenol | NotFnd | <60 | ับ | | | | | | | | | | | 4-Chlorophenol | NotFnd | <60 | U | | | | | | | | | | | 2,6-Dichlorophenol | NotFnd | <60 | U | | | | | | | | | | | 2,4/2,5-Dichlorophenol | NotFnd | <60 | U | | | | | | | | | | | 3,5-Dichlorophenol | NotFnd | <60 | U | | | | | | | | | | | 2,3-Dichlorophenol | NotFnd | <60 | υ . | | | | | | | | | | | 3,4-Dichlorophenol | NotFnd | <60 | U | | | | | | | | | | | 2,4,6-Trichlorophenol | NotFnd | <60 | U | | | | | | | | | | | 2,3,6-Trichlorophenol | NotFnd | <60 | U | | | | | | | | | | | 2,3,5-Trichlorophenol | NotFnd | <60 | U | | | | | | | | | | | 2,4,5-Trichlorophenol | NotFnd | <60 | U | | | | | | | | | | | 2,3,4-Trichlorophenol | NotFnd | <60 | U | | | | | | | | | | | 3,4,5-Trichlorophenol | NotFnd | <60 | U | | | | | | | | | | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | NotFnd | <60 | U | | | | | | | | | | | 2,3,4,5-Tetrachlorophenol | NotFnd | <60 | U | | | | | | | | | | | Pentachlorophenol | NotFnd | <60 | U | | | | | | | | | | | Extraction Standards | | % Rec | | | | | | | | | | | | 13C6-4-Chlorophenol (ES) | 1200 8.35 | 29 | | 20-150 | | | | | | | | | | 13C6-2,4-Dichlorophenol (ES) | 1200 9.52 | 12 | | 20-150 | | | | | | | | | | 13C6-2,4,5-Trichlorophenol (ES) | 1200 10.98 | 25 | | 20-150 | | | | | | | | | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 1200 12.59 | 39 | | 20-150 | | | | | | | | | | 13C6-Pentachlorophenol (ES) | 1200 13.57 | 44 | | 20-150 | | | | | | | | | ## **Laboratory Control Sample Analysis Report** Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix Percent Moisture Sample Size Split Ratio **Laboratory Control Sample** WG3444637-2 SIM GC/MS LCS QC 6 n/a n/a Sampling Date Extraction Date n/a 25-Nov-20 Approved: Andrew Reid -e-signature--08-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Run 1 20120722.D 12/7/2020 21:21 mL % MSD-2 HP5MS US0411816H Column | Target Analytes | l
ng spiked 1 | Ret.
Time % | Recovery Flags | | |---|------------------|----------------|----------------|---------| | -Chlorophenol
-Chlorophenol
-Chlorophenol | 1200 | 8.00 | 109 M | 211-124 | | 4-Cinorophenol
2,6-Dichlorophenol | 1200 | 9.31 | 89 M | 10-110 | | 2,4/2,5-Dichlorophenol | 1200 | 9.52 | 105 | 35-98 | | 3,5-Dichlorophenol | | | | | | 2,3-Dichlorophenol | | | | | | 3,4-Dichlorophenol | | | | | | 2,4,6-Trichlorophenol | 1200 | 10.44 | 100 | 10-102 | | 2,3,6-Trichlorophenol
2,3,5-Trichlorophenol | | | | | | 2,4,5-Trichlorophenol | 1200 | 10.99 | 117 | 45-95 | | 2,3,4-Trichlorophenol | | | | | | 3,4,5-Trichlorophenol | | | | | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | 2400 | 12.10 | 96 M | 30-109 | | 2,3,4,5-Tetrachlorophenol | 1200 | 12.60 | 108 | 44-103 | | Pentachlorophenol | 1200 | 13.57 | 102 | 32-121 | | Extraction Standards | | | % Rec | | | 13C6-4-Chlorophenol (ES) | 1200 | 8.35 | 54 | 50-150 | | 13C6-2,4-Dichlorophenol (ES) | 1200 | 9.52 | 56 | 50-150 | | 13C6-2,4,5-Trichlorophenol (ES) | 1200 | 10.99 | 47 | 50-150 | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 1200 | 12.60 | 44 | 50-150 | | 13C6-Pentachlorophenol (ES) | 1200 | 13.57 | 28 | 50-150 | Indicates that a peak has been manually integrated. ## **Laboratory Control Sample Analysis Report** Sample Name ALS Sample ID Analysis Method Analysis Type Laboratory Control Sample (Low Level) WG3444637-5 SIM GC/MS LCS QC Sample Matrix Sample Size Percent Moisture n/a Split Ratio 6 n/a Sampling Date Extraction Date n/a 25-Nov-20 Approved: Andrew Reid --e-signature--08-Dec-2020 **Run Information** Run 1 Filename Run Date Final Volume Dilution Factor Analysis Units Instrument 20120721.D 12/7/2020 20:57 mL MSD-2 Column HP5MS US0411816H | | | Ret. | | | | |-------------------------------------|-----------|--------|----------------|---------|--| | Target Analytes | ng spiked | fime % | Recovery Flags | | | | 2-Chlorophenol | 120 | 8.01 | 87 M | 212-124 | | | 3-Chlorophenol | | | | | | | 4-Chlorophenol | | | | | | | 2,6-Dichlorophenol | 120 | 9.31 | 86 M | 10-110 | | | 2,4/2,5-Dichlorophenol | 120 | 9.52 | 83 M | 35-98 | | | 3,5-Dichlorophenol | | | | | | | 2,3-Dichlorophenol | | | | | | | 3,4-Dichlorophenol | | | | | | | 2,4,6-Trichlorophenol | 120 | 10.44 | . 79 M | 10-102 | | | 2,3,6-Trichlorophenol | | | | | | | 2,3,5-Trichlorophenol | | | | | | | 2,4,5-Trichlorophenol | 120 | 11.00 | 96 M | 45-95 | | | 2,3,4-Trichlorophenol | | | | | | | 3,4,5-Trichlorophenol | | | | | | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | 240 | 12.10 | 88 M | 30-109 | | | 2,3,4,5-Tetrachlorophenol | 120 | 12.60 | 90 | 44-103 | | | Pentachlorophenol | 120 | 13.57 | 99 | 32-121 | | | Extraction Standards | | | % Rec | | | | | | | 70 Ket | | | | 13C6-4-Chlorophenol (ES) | 1200 | 8.35 | 36 | 50-150 | | | 13C6-2,4-Dichlorophenol (ES) | 1200 | 9.52 | 33 | 50-150 | | | 13C6-2,4,5-Trichlorophenol (ES) | 1200 | 11.00 | 34 | 50-150 | | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 1200 | 12.60 | 40 | 50-150 | | | 13C6-Pentachlorophenol (ES) | 1200 | 13.57 | 35 | 50-150 | | Indicates that a peak has been manually integrated. 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 # **Certificate of Analysis** ALS Project Contact: Lynne Wrona ALS Project ID: **ORT100** ALS WO#: L2529311 Date of Sample Receipt Date of Report 8-Dec-20 13-Nov-20 Client
Name: **ORTECH Environmental** Client Address: 804 Southdown Road Mississauga, ON L5J 2Y4 Canada **Client Contact:** Chris Belore Client Project ID: 22050 Covanta COMMENTS: PAH by CARB method 429 (LR option)- Isotope dilution Certified by: Ron McLeod, Ph.D. **Technical Director** | | | | Sample Analysis Summar | | | | | | | | |---|-------------------------|------------------------------|---|----------|--|------------|---|--------|---|-------| | Sample Name | Method Blank
(Media) | | 20-22050-SVOC-
(1 THRU 5)
TEST#1 APC
OUTLET #1 | | 20-22050-SVOC-
(6 THRU 10)
TEST#2 APC
OUTLET #1 | | 20-22050-SVOC-
(11 THRU 15)
TEST#3 APC
OUTLET #1 | | 20-22050-SVOC-
(16 THRU 20)
BLANK#1 | | | ALS Sample ID | WG3444637-1 | | L2529311-1 | | L2529311-2 | | L2529311-3 | | L2529311-4 | | | Sample Size | | | | | | | 4 | | | | | ample units | sample | | sample | | sample | | sample | | sample | | | loisture Content
latrix | n/a | | n/a | | n/a | | n/a | | n/a | | | Sampling Date | QC
n/a | | Stack
11-Nov-20 | | Stack
11-Nov-20 | | Stack
12-Nov-20 | | Stack | | | Extraction Date | 25-Nov-20 | | 25-Nov-20 | | 25-Nov-20 | | 25~Nov-20 | | 12-Nov-20
25-Nov-20 | | | Target Analytes | ng/sample | | ng/sample | | ng/sample | | ng/sample | | ng/sample | | | laphthalene
-Methylnaphthalene | 190
<12 | M,R
U | | M,R,B | | M,R,B | | M,R,B | | M,R,E | | -Methylnaphthalene | <12
<12 | . N. U. z. in a na la jiya l | 43.3 | | 85.7
42.5 | R | 29.7
21.8 | | <12
<12 | U | | cenaphthylene | <12 | U | <12 | U | <12 | U | <12 | U | <12 | U | | cenaphthene | <12 | U | <12 | U | 87.1 | R | <12 | U | <12 | U | | uorene | <12 | | | | 48.7 | R | <12 | U | <12 | U | | nenanthrene
nthracene | <12
<12 | U | 76.9 | | 516 | | 59.5 | | <12 | U | | uoranthene | <12 | U | <12
26.1 | U | <12
111 | U | <12
13.9 | U | <12
<12 | U | | yrene | <12 | Ű | 32.2 | R | 83.2 | R | 12.8 | R | <12 | U | | enzo(a)Anthracene | <12 | 140 | <12 | U | <12 | U | <12 | υ | <12 | Ü | | hrysene/Triphenylene | <12 | Ü | <12 | U | 21.9 | | <12 | U | <12 | Ü | | enzo(b)Fluoranthene | <12 | U | <12 | U | <12 | U | <12 | υ | <12 | Ų | | enzo(k/j)Fluoranthene
enzo(e)Pyrene | <12
<12 | U | <12
<12 | U
U | <12 | U | <12 | U | <12 | U | | enzo(a)Pyrene | <12 | U | <12 | U | <12
<12 | U | <12
<12 | υ
υ | <12
<12 | U | | erylene | <12 | Ü | <12 | U | <12 | U | <12 | U | <12 | U | | ndeno(1,2,3-cd)Pyrene | <12 | U | 13.0 | R | <12 | U | <12 | Ü | <12 | U | | ibenzo(a,h/a,c)Anthracene | <12 | U | <12 | U | <12 | U | <12 | U | <12 | U | | enzo(g,h,i)Perylene
dditional Analytes | <12 | :U | 96.3 | | 24.4 | R | <12 | U | <12 | U | | | | | | | | | | | | | | etralin
-Chloronaphthalene | 276
<12 | U | | M,R,B | and the second of o | M,R,B | 496 | В | | M,R,E | | phenyl | <12 | U | <12
24.2 | ∖ U
R | <12
559 | U | <12
24.1 | U
R | <12
<12 | U | | Terphenyl | <12 | Ŭ . | <12 | Ü | 56.5 | М | <12 | Ü | <12
<12 | U | | -Methylphenanthrene | <12 | U | 51.6 | R | 43.6 | M,R | 25.5 | R | <12 | U | | -Methylphenanthrene | <12 | U | <12 | U | 107 | M,R | 13.3 | R | <12 | U | | -methylanthracene
.10-dimethylanthracene | <12 | U
U | 22.0 | R | 117 | M | 21.1 | M | <12 | U | | n-terphenyl | <12
<12 | Ü | <12
<12 | U | 26.7
33.8 | M,R
M,R | <12
<12 | U
U | <12
<12 | U | | -terphenyl | <12 | U | <12 | Ü | 16.5 | M,R | <12 | U | <12 | U | | enzo(a)fluorene | <12 | U | <12 | υ | <12 | U | <12 | U | <12 | U | | enzo(b)fluorene | <12 | Ü | <12 | U | <12 | U | <12 | U | <12 | U | | ,12-Dimethylbenzo(a)anthracene
-Methylcholanthrene | <12 | U | <12 | U | <12 | U | <12 | U | <12 | U | | icene | <60
<60 | U | <60
<60 | U | <60
<60 | U | <60 | U | <60 | U | | ibenzo(a,e)pyrene | <60 | Ŭ | <60 | U | <60 | U | <60
<60 | U | <60
<60 | U | | oronene | <60 | U | 69.9 | | <60 | Ü | <60 | U | <60 | U | | ield Sampling Standards | % Rec | | % Rec | | % Rec | | % Rec | | % Rec | | | -Methylnaphthalene-D10 | NS | | 92.4 | | 88.3 | | 94.7 | | 89.4 | | | luorene D10
erphenyl D14(Surr.) | NS
NS | | 102.5 | | 110.2 | | 100.9 | | 77.9 | | | xtraction Standards | % Rec | | 83.7
% Rec | | 83.8
% Rec | | 81.3
% Rec | | 86.6
% Rec | | | aphthalene D8 | 90.9 | | 66.4 | | 70 Rec
72.5 | | 75.2 | | % Rec
79.9 | | | Methylnaphthalene-D10 | 78.8 | | 56.4 | | 72.5
69.0 | | 62.1 | | 79.9
66.4 | | | enaphthylene D8 | 81.8 | | 70.1 | | 79.5 | | 87.3 | | 81.5 | | | enanthrene D10
ithracene-D10 | 98.5 | | 66.3 | | 44.2 | | 76.2 | | 0.88 | | | uoranthene D10 | 76.9
104.2 | | 65.0
71.5 | | 52.8
50.1 | | 81.4
88.1 | | 81.8
93.2 | | | enz(a)Anthracene-D12 | 107.3 | | 81.3 | | 54.1 | | 109.2 | | 93.2
110.9 | | | rysene D12 | 100.7 | | 66.1 | | 45.5 | | 85.0 | | 90.4 | | | enzo(b)Fluoranthene-D12 | 100.2 | | 79.0 | | 102.1 | | 101.4 | | 97.0 | | | enzo(k)Fluoranthene-D12
enzo(a)Pyrene D12 | 87.0 | | 65.8 | | 79.6 | | 85.8 | | 84.7 | | | erylene D12 | 82.0
83.6 | | 88.3
76.6 | | 97.5
87.6 | R | 120.3
106.0 | | 108.6 | | | ideno(1,2,3,cd)Pyrene-D12 | 94.5 | | 70.0
77.7 | | 113.3 | | 119.8 | | 90.9
91.4 | | | ibenz(a,h)Anthracene-D14 | 89.2 | | 72.1 | 4334 | 110.3 | | 110.6 | | 85.8 | | | enzo(g,h,i)Perylene D12 | 84.2 | | 65.7 | | 94.0 | | 94.9 | | 78.2 | | ALS Canada Ltd M B R NS Indicates that a peak has been manually integrated. Indicates that this compound was not spiked in Indicates that this compound was detected in the method blank at greater than 10% of the sample value. Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. | | | Samı | ole An | alysis Summar | v Rep | ort | Wednesday Construction | | | |--|--|--|---|--|---|---|--|------------------------------|-------| | Sample Name | 20-22050-SVOC-
(21 THRU 25)
TEST#1 APC | 20-22050-SVOC-
(26 THRU 30)
TEST#2 APC | | 20-22050-SVOC-
(31 THRU 35)
TEST#3 APC | | 20-22050-SVOC-
(36 THRU 40)
BLANK#2 | | Laboratory
Control Sample | | | ALS Sample ID | OUTLET #2
L2529311-5 | OUTLET #2
L2529311-6 | | OUTLET #2
L2529311-7 | | L2529311-8 | | WG3444637-2 | | | Sample Size | | | | | | | | | | | Sample units | sample | sample | | sample | | sample | | n/a | | | Moisture Content | n/a | п/а | | n/a | | n/a | | n/a | | | Matrix | Stack | Stack | | Stack | | Stack | | QC | | | Sampling Date
Extraction Date | 11-Nov-20
25-Nov-20 | 11-Nov-20
25-Nov-20 | | 12-Nov-20
25-Nov-20 | | 12-Nov-20
25-Nov-20 | | n/a | | | EXCIDENT DATE | *************************************** | ZJ-NOV-ZO | *************************************** | 23-1404-20 | *************************************** | ZJ-NOV-ZU | 00000000000000000000000000000000000000 | 25~Nov-20 | don't | | Target Analytes | ng/sample | ng/sample | | ng/sample | | ng/sample | | .% | | | Naphthalene
2-Methylnaphthalene | 290 M,R
39.1 | ,B 277
54.1 | M,R,B
R | | M,R,B | | M,R,B | 113.9 | | | 1-Methylnaphthalene | 39.1
22.3 R | | K | 32.5
22.0 | R | <12
<12 | U | 104.3
123 | | | Acenaphthylene | <12 U | | U | <12 | U | <12 | U | 93.6 | | | Acenaphthene | <12 U | 44.7 | R | <12 | U | <12 | U | 90.8 | | | Fluorene | <12 U | | | <12 | U | <12 | U | 83.6 | | | Phenanthrene | 78.5 | 230 | | 66.1 | | <12 | | 90.4 | | | Anthracene
Fluoranthene | <12 U
19,4 | 12,4
64.0 | R |
<12
27.2 | U | <12
<12 | | 94.1
85.9 | | | Pyrene | 19.4
20.3 R | | | 18.5 | R | <12
<12 | | 85.9
85.6 | | | Benzo(a)Anthracene | <12 U | | | <12 | ΰ | <12 | | 82.7 | | | Chrysene/Triphenylene | <12 U | | | <12 | U | <12 | | 88.3 | | | Benzo(b)Fluoranthene | <12 U | | | <12 | U | <12 | | 82.3 | | | Benzo(k/j)Fluoranthene | <12 U | | | <12 | U | <12 | | 82.2 | | | Benzo(e)Pyrene
Benzo(a)Pyrene | <12 U
<12 U | | | <12 | U | <12 | | 99.1 | | | Perviene | <12 U | | | <12
<12 | U | <12
<12 | | 77.3
82.9 | | | Indeno(1,2,3-cd)Pyrene | <12 U | | | <12 | U | <12 | | 76.9 | | | Dibenzo(a,h/a,c)Anthracene | <12 U | <12 | . U | <12 | U | <12 | | 81.2 | | | Benzo(g,h,i)Perylene | 61.1 | 47.5 | R | 19.9 | R | <12 | U | 81.9 | | | Additional Analytes | | | | | | | | | | | Tetralin | 204 M,R | ,B 278 | M,R,B | 288 | м,в | 129 | M,R,B | | | | 2-Chioronaphthalene | <12 U | <12 | U | <12 | U | <12 | U | | | | Biphenyl | 32.0 R | | | 29.6 | | <12 | | | | | o-Terphenyl
1-Methylphenanthrene | <12 U
36.4 R | | | <12
21.1 | U
R | <12
<12 | | | | | 9-Methylphenanthrene | 13.1 | 42.2
67.4 | | 14.5 | R | <12 | | | | | 2-methylanthracene | 21.6 | 66.5 | | 21.6 | М | <12 | | | | | 9,10-dimethylanthracene | <12 U | | | <12 | U | <12 | | | | | m-terphenyl | <12 U | | | <12 | U | <12 | | | | | p-terphenyl
Benzo(a)fluorene | <12 U
<12 U | | | <12 | U | <12 | | | | | Benzo(a)nuorene
Benzo(b)fluorene | <12 U | | | <12
<12 | U | <12
<12 | U
U | | | | 7,12-Dimethylbenzo(a)anthracene | <12 U | | | <12
<12 | U | <12
<12 | U | | | | 3-Methylcholanthrene | <60 U | | | <60 | U | <60 | U | | | | Picene | <60 U | | | <60 | U | <60 | U | | | | Dibenzo(a,e)pyrene
Coronene | <60 U
<60 U | | | <60
<60 | U | <60
<60 | U
U | | | | Field Sampling Standards | % Rec | % Rec | | % Rec | ~ | % Rec | | % Rec | | | 1-Methylnaphthalene-D10 | 84.1 | 80.8 | | 90.4 | | 94.5 | | NS NS | | | Fluorene D10 | 91.3 | 119.3 | | 96.9 | | 75.5 | | NS | | | Terphenyl D14(Surr.) | 83 | 88.9 | | 80.3 | | 84.3 | | NS | | | Extraction Standards | % Rec | % Rec | | % Rec | | % Rec | | % Rec | | | Naphthalene D8 | 72.5 | 84.8 | | 77.2 | | 82.4 | | 87.7 | | | 2-Methylnaphthalene-D10 | 64.7 | 69.8 | | 68.4 | | 68.9 | | 76.5 | | | Acenaphthylene D8 | 68.9 | 85.7 | | 81.0 | | 91.3 | | 85.2 | | | Phenanthrene D10 | 78.4 | 72.8 | | 80.0 | | 89.5 | | 100.4 | | | inthracene-D10
iuoranthene D10 | 66.0
85.5 | 74.4
82.8 | | 73.4
89.2 | | 85.5
99.0 | | 87.9
104.0 | | | Benz(a)Anthracene-D12 | 94.8 | 96.8 | | 104.7 | | 122.7 | | 114.1 | | | Chrysene D12 | 79.5 | 77.1 | | 82.7 | | 98.2 | | 106.7 | | | Benzo(b)Fluoranthene-D12 | 95.2 | 107.2 | | 101.0 | | 105.9 | | 103.0 | | | Benzo(k)Fluoranthene-D12 | 81.0 | 86.7 | | 86.3 | | 88.5 | | 91.9 | | | Benzo(a)Pyrene D12 | 91.0 | 101.0 | | 102.6 | | 118.3 | | 110.9 | | | Perylene D12
Indeno(1,2,3,cd)Pyrene-D12 | 87.0
99.9 | 97.4
123.9 | | 98.2
113.2 | | 100.8
108.3 | | 95.1
96.2 | | | Dibenz(a,h)Anthracene-D14 | 92.5 | 114.4 | | 104.1 | | 101.9 | | 96.7 | | | Benzo(g,h,i)Perylene D12 | 81.5 | 98.9 | | 88.9 | | 91.9 | | 89.0 | | Indicates that this compound was not detected above the LOD. U Indicates that a peak has been manually integrated. M B Indicates that this compound was detected in the method blank at greater than 10% of the sample value. Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. Indicates that this compound was not spiked in. R NS #### **ALS Life Sciences Laboratory Method Blank Analysis Report** Sample Name Method Blank (Media) Sampling Date 25-Nov-20 ALS Sample ID WG3444637-1 Extraction Date Analysis Method PAH by CARB 429 Analysis Type blank Sample Matrix QC Approved: Sample Size sample Andrew Reid Percent Moisture n/a -e-signature-Split Ratio Workgroup WG3444637 08-Dec-2020 Run Information Run 1 Filename 201207A07.D Run Date Final Volume 12/7/2020 18:59 mL Dilution Factor Analysis Units ng/sample MSD-5 Instrument HP5MS US0179454H Column Ret. Concentration **Target Analytes** Time ng/sample Flags Naphthalene 2.78 190 M R 2-Methylnaphthalene 3,40 <12 ···U 1-Methylnaphthalene 3.52 <12 U Acenaphthylene NotFnd <12 U Acenaphthene NotFnd <12 Fluorene NotFnd <12 U Phenanthrene 8.09 <12 υ Anthracene 8.21 <12 U Fluoranthene 11.56 <12 υ 12.22 <12 U Pyrene Benzo(a)Anthracene NotFnd <12 U Chrysene NotFnd <12 L) Benzo(b)Fluoranthene NotEnd <12 ·U Benzo(k)Fluoranthene NotFnd <12 ü 3000 Benzo(e)Pyrene NotFnd <12 U Benzo(a)Pyrene NotFnd <12 U Perylene NotFnd <12 U Indeno(1,2,3-cd)Pyrene NotFnd <12 Dibenzo(a,h)Anthracene NotFnd <12 U Benzo(g,h,i)Perylene NotFnd <12 Ų Additional Analytes Tetralin 2.66 276 2-Chloronaphthalene NotFnd <12 U Biphenyl 3.95 <12 o-Terphenyl NotFnd <12 U 1-Methylphenanthrene 9.68 <12 9-Methylphenanthrene NotFnd <12 2-methylanthracene NotFnd <12 9,10-dimethylanthracene NotFnd <12 U m-terphenyl NotFnd <12 U p-terphenyl NotFnd <12 œ. Benzo(a)fluorene NotFnd <12 u Benzo(b)fiuorene NotFnd <12 Ú 7,12-Dimethylbenzo(a)anthracene NotEnd <12 u 3-Methylcholanthrene NotFnd <60 U Picene NotFnd <60 U Dibenzo(a,e)pyrene NotFnd <60 U Coronene NotFnd <60 **Extraction Standards** % Rec Limits Naphthalene D8 2.77 50-150 600 90.9 2-Methylnaphthalene-D10 600 50-150 3.37 78.8 Acenaphthylene D8 600 4.56 81.8 50-150 Phenanthrene D10 600 8.03 98.5 50-150 Anthracene-D10 600 8.16 76.9 50-150 Fluoranthene D10 600 11.51 104.2 50-150 Benz(a)Anthracene-D12 600 16.12 107.3 50-150 Chrysene D12 600 16.24 100.7 50-150 Benzo(b)Fluoranthene-D12 600 19.52 100.2 50-150 Benzo(k)Fluoranthene-D12 600 19.60 87.0 50-150 Benzo(a)Pyrene D12 600 20.42 82.0 50-150 Perylene D12 600 20.67 50-150 83.6 Indeno(1,2,3,cd)Pyrene-D12 600 24.38 94.5 50-150 Dibenz(a,h)Anthracene-D14 600 24.55 50-150 89.2 Benzo(g,h,i)Perylene D12 600 25.43 84.2 50-150 Indicates that a peak has been manually integrated. Indicates that this compound was not detected above the MDL. Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. #### **ALS Life Sciences** Sample Analysis Report 20-22050-SVOC-(1 THRU 5) TEST#1 APC OUTLET #1 Sample Name Sampling Date 11-Nov-20 ALS Sample ID Analysis Method L2529311-1 PAH by CARB 429 25-Nov-20 Analysis Type sample Sample Matrix Stack Approved: Sample Size Percent Moisture sample Andrew Reid n/a 6 -e-signature-08-Dec-2020 Split Ratio Workgroup WG3444637 Run Information Run 1 201207A11.D 12/7/2020 21:31 Filename Run Date Final Volume mL Dilution Factor Analysis Units ng/sample Instrument MSD-5 Column HP5MS US0179454H Ret. Concentration **Target Analytes** ng/sample Naphthalene 2.7B 207 M R B 2-Methylnaphthalene 3.40 43.3 1-Methylnaphthalene 3.51 22,3 Acenaphthylene 4.58 <12 u Acenaphthene 4.88 <12 U Fluorene 5.83 12.0 Phenanthrene 8.09 76.9 Anthracene 8.21 <12 ·U Fluoranthene 11.56 26.1 Pyrene 12.22 32.2 R Benzo(a)Anthracene 16.19 U <12 Chrysene 16.31 <12 U Benzo(b)Fluoranthene NotFnd <12 U Benzo(k)Fluoranthene NotFnd <12 U Benzo(e)Pyrene NotFnd <12 U Benzo(a)Pyrene NotFnd <12 .U Pervlene NotFod <12 U Indeno(1,2,3-cd)Pyrene 24.48 13.0 Dibenzo(a,h)Anthracene 24.70 ú <12 Benzo(g,h,i)Perylene 25.55 96.3 Additional Analytes Tetralin 2.71 188 M R B 2-Chloronaphthalene NotFnd <12 U Biphenyl 3.95 24.2 R o-Terphenyl 9.39 <12 Ū 1-Methylphenanthrene 9.68 51.6 R 9-Methylphenanthrene 9.80 <12 U 2-methylanthracene 9.86 22.0 R 9.10-dimethylanthracene NotFnd <12 Ù m-terphenyl 12,60 <12 U p-terphenyl 13.10 <12 υ Benzo(a)fluorene NotFnd <12 U Benzo(b)fluorene NotFnd <12 U 7,12-Dimethylbenzo(a)anthracene NotFnd <12 U 3-Methylcholanthrene NotFnd <60 U Picene NotFnd <60 U Dibenzo(a,e)pyrene NotFnd <60 U Coronene 30.15 69.9 Field Sampling Standards ng spiked % Rec 1-Methylnaphthalene-D10 600 3.48 92.4 Fluorene D10 600 5.78 102.5 Terphenyl D14(Surr.) 600 13.02 83.7 **Extraction Standards** % Rec Limits Naphthalene D8 600 2.77 66.4 50-150 2-Methylnaphthalene-D10 600 3.36 56.4 50-150 Acenaphthylene D8 600 4.56 70.1 50-150 Phenanthrene D10 600 8.03 66,3 50-150 Anthracene-D10 600 8.16 65.0 50-150 Fluoranthene D10 600 11.50 71.5 50-150 Benz(a)Anthracene-D12 600 16.12 81.3 50-150 Chrysene D12 600 16.23 66.1 50-150 Benzo(b)Fluoranthene-D12 600 19.52 79.0 50-150 Benzo(k)Fluoranthene-D12 600 19.60 65.8 50-150 Benzo(a)Pyrene D12 600 20.42 88.3 50-150 Perylene D12 600 20.67 76.6 50-150 Indeno(1,2,3,cd)Pyrene-D12 600 24.38 77.7 50-150 Dibenz(a,h)Anthracene-D14 600 24.55 72.1 50-150 Benzo(g,h,i)Perylene D12 600 25.42 65.7 50-150 Indicates that a peak has been manually integrated. Indicates that this compound was not detected above the MDL. В Indicates that this compound was detected in the method blank at greater than 10% of the sample value. Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. #### **ALS Life Sciences** Sample Analysis Report 20-22050-SVOC-(6 THRU 10) TEST#2 APC OUTLET #1 Sampling Date 11-Nov-20 ALS Sample ID L2529311-2 PAH by CARB 429 Extraction Date 25-Nov-20 Analysis Method Analysis Type Sample Matrix sample Stack Sample Size Percent Moisture Andrew Reid n/a -e-signature-08-Dec-2020 Split Ratio Workgroup WG3444637 **Run Information** Run 1 Filename 201207A12.D Run Date Final Volume Dilution Factor 12/7/2020 22:09 mi Analysis Units Instrument ng/sample MSD-5 Column HP5MS US0179454H Ret. Concentration Target Analytes Time ng/sample Flags Naphthalene 2.78 524 M 2-Methylnaphthalene 3.40 85.7 1-Methylnaphthalene 3.51 42.5 Acenaphthylene 4.57 <12 'n Acenaphthene 4.88 87,1 R Fluorene 5.83 48.7 R Phenanthrene 8.09 516 Anthracene 8.21 U <12 Fluoranthene 11.56 111 Pyrene 12.22 83.2 Benzo(a)Anthracene 16.20 <12 U Chrysene 16.31 21.9 Benzo(b)Fluoranthene NotFnd <12 Ü Benzo(k)Fluoranthene NotFnd <12 ·U Benzo(e)Pyrene NotFnd <12 11 Benzo(a)Pyrene NotFnd <12 U Perylene NotFnd <12 ٠U Indeno(1,2,3-cd)Pyrene NotFnd <12 U Dibenzo(a,h)Anthracene 24.71 <12 ·U Benzo(g,h,i)Perylene 25.55 24.4 Additional Analytes Tetralin 2.71 355 M RВ 2-Chloronaphthalene
NotFnd <12 Biphenyl 3.95 559 o-Terphenyl 9.39 56.5 M 1-Methylphenanthrene 9.68 43.6 M R 9-Methylphenanthrene 9.82 107 M R 2-methylanthracene 9.85 117 M 9,10-dimethylanthracene 12.48 26.7 M R m-terphenyl 12.60 33.8 M R p-terphenyl 13,10 16.5 M R Benzo(a)fluorene NotFnd <12 Benzo(b)fluorene NotFnd <12 U 7,12-Dimethylbenzo(a)anthracene NotFnd <12 Ü 3-Methylcholanthrene NotFnd <60 Ú. Picene NotFnd <60 ·u Dibenzo(a,e)pyrene NotFnd <60 u Coronene 30.14 <60 U Field Sampling Standards ng spiked % Rec 1-Methylnaphthalene-D10 600 3.48 88.3 Fluorene D10 600 5.78 110.2 Terphenyl D14(Surr.) 13.02 83.8 **Extraction Standards** % Rec Limits Naphthalene D8 600 2.77 72.5 50-150 2-Methylnaphthalene-D10 600 3,36 69.0 50-150 Acenaphthylene D8 600 4.56 79.5 50-150 Phenanthrene D10 600 8.03 44.2 50-150 Anthracene-D10 600 8.16 52.8 50-150 Fluoranthene D10 600 11.50 50.1 50-150 Benz(a)Anthracene-D12 600 16.12 54.1 50-150 Chrysene D12 600 45.5 16.23 50-150 Benzo(b)Fluoranthene-D12 600 19.52 102.1 50-150 Вепzo(k)Fluoranthene-D12 600 19.60 79.6 50-150 Benzo(a)Pyrene D12 600 20,42 97.5 50-150 Perylene D12 600 20.67 87.6 50-150 Indeno(1,2,3,cd)Pyrene-D12 600 24.38 113.3 50-150 Dibenz(a,h)Anthracene-D14 600 24.55 110.3 50-150 Benzo(g,h,i)Perylene D12 600 25.42 94.0 50-150 Indicates that a peak has been manually integrated. Indicates that this compound was not detected above the MDL. M U Indicates that this compound was detected in the method blank at greater than 10% of the sample value. Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. B R #### **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(11 THRU 15) TEST#3 APC OUTLET #1 Sampling Date 12-Nov-20 ALS Sample ID Analysis Method L2529311-3 PAH by CARB 429 Extraction Date 25-Nov-20 Analysis Type sample Sample Matrix Sample Size Stack Approved: Andrew Reid sample n/a 6 Percent Moisture --e-signature-08-Dec-2020 Split Ratio Workgroup WG3444637 Run Information Run 1 201207413 D Filename Run Date 12/7/2020 22:47 Final Volume mL Dilution Factor Analysis Units ng/sample Instrument Column HP5MS US0179454H Ret. Concentration **Target Analytes** Time Naphthalene 2.78 200 M R B 2-Methylnaphthalene 3.40 29.7 1-Methylnaphthalene 3.51 21.8 Acenaphthylene 4.58 <12 11 Acenaphthene 4.88 <12 U Fluorene 5.83 <12 U Phenanthrene 8.08 59.5 Anthracene 8.21 U <12 Fluoranthene 11.56 13.9 Pyrene 12.21 12.8 Benzo(a)Anthracene 16.23 <12 Chrysene 16.29 <12 U Benzo(b)Fluoranthene NotFnd <12 U Benzo(k)Fluoranthene NotFnd <12 U Benzo(e)Pyrene NotFnd <12 U Benzo(a)Pyrene NotFnd <12 U Pervlene NotEnd <12 U Indeno(1,2,3-cd)Pyrene 24.38 <12 U Dibenzo(a,h)Anthracene 24.70 <12 Ü Benzo(g,h,i)Perylene 25,54 <12 U Additional Analytes Tetralin 2.66 496 2-Chloronaphthalene NotFnd <12 Biphenyl 3.95 24.1 R o-Terphenyl 9.39 <12 U 1-Methylphenanthrene 9.68 25.5 R 9-Methylphenanthrene 9.81 13.3 R 2-methylanthracene 9.86 21.1 M 9.10-dimethylanthracene NotEnd 'nυ <12 m-terphenyl 12.60 <12 U p-terphenyl 13.10 <12 υ Benzo(a)fluorene NotFnd <12 U Benzo(b)fluorene NotFnd <12 U 7,12-Dimethylbenzo(a)anthracene NotFnd <12 3-Methylcholanthrene NotFnd <60 U Picene NotEnd <60 U Dibenzo(a,e)pyrene NotFnd <60 U Coronene 30.15 <60 U Field Sampling Standards ng spiked % Rec 1-Methylnaphthalene-D10 600 3.47 94.7 Fluorene D10 600 5.78 100.9 Terphenyl D14(Surr.) 600 13.02 81.3 Extraction Standards % Rec Limits Naphthalene D8 600 2.77 75.2 50-150 2-Methylnaphthalene-D10 600 3.36 62.1 50-150 Acenaphthylene D8 600 4.56 87.3 50-150 Phenanthrene D10 600 8.03 76.2 50-150 Anthracene-D10 600 8.16 81.4 50-150 Fluoranthene D10 600 11.50 88.1 50-150 Benz(a)Anthracene-D12 600 16.12 109.2 50-150 Chrysene D12 600 16.23 85.0 50-150 Benzo(b)Fluoranthene-D12 101.4 50-150 600 19.51 Benzo(k)Fluoranthene-D12 600 19.60 85.8 50-150 Benzo(a)Pyrene D12 600 20.41 120.3 50-150 Perylene D12 600 20,66 106.0 50-150 Indeno(1,2,3,cd)Pyrene-D12 600 24.38 119.8 50-150 Dibenz(a,h)Anthracene-D14 600 24.54 110.6 50-150 Benzo(g,h,i)Perylene D12 600 25.42 94.9 50-150 Indicates that a peak has been manually integrated. M Indicates that this compound was not detected above the MDL. В Indicates that this compound was detected in the method blank at greater than 10% of the sample value. Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. #### ALS Life Sciences Sample Analysis Report 20-22050-SVOC-(16 THRU 20) BLANK#1 Sampling Date 12-Nov-20 ALS Sample ID L2529311-4 Extraction Date 25-Nov-20 PAH by CARB 429 sample Analysis Method Analysis Type Sample Matrix Stack Approved: Sample Size Percent Moisture Andrew Reid n/a e-signature-Solit Ratio Workgroup WG3444637 08-Dec-2020 Run Information Run 1 Filename 201207A09.D Run Date 12/7/2020 20:15 Final Volume mL Dilution Factor ng/sample MSD-5 HP5MS US0179454H Analysis Units Instrument Column Concentration **Target Analytes** Time ng/sample Flags Naphthalene 2,78 164 M 2-Methylnaphthalene 3.40 <12 11 1-Methylnaphthalene 3.52 <12 U Acenaphthylene 4.57 <12 ិប Acenaphthene NotFnd <12 U Fluorene 5,82 <12 υ Phenanthrene 8.09 <12 U Anthracene 8.20 <12 ប Fluoranthene 11.56 <12 Pyrene 12.21 <12 U Benzo(a)Anthracene 16.23 <12 U Chrysene NotEnd <12 U Benzo(b)Fluoranthene NotEnd <12 Ω Benzo(k)Fluoranthene NotFnd <12 ·U Benzo(e)Pyrene NotFnd <12 IJ Benzo(a)Pyrene NotFnd <12 U Perylene NotFnd <12 υ Indeno(1,2,3-cd)Pyrene NotFnd <12 U Dibenzo(a,h)Anthracene <12 U Beπzo(g,h,i)Perylene 25.54 <12 Additional Analytes Tetralin 2.71 181 M R B 2-Chloronaphthalene NotFnd <12 U Biphenyl 3.93 <12 11 o-Terphenyl NotFnd <12 u 1-Methylphenanthrene 9.68 <12 ìu 9-Methylphenanthrene NotFnd U <12 2-methylanthracene NotFnd <12 ับ 9,10-dimethylanthracene NotFnd <12 U m-terphenyl NotFnd <12 U p-terphenyl NotFnd <12 Benzo(a)fluorene NotFnd <12 U Benzo(b)fluorene NotFnd <12 ប 7,12-Dimethylbenzo(a)anthracene NotEnd <12 U 3-Methylcholanthrene NotFnd <60 υ Рісепе NotFnd <60 υ NotFnd Dibenzo(a,e)pyrene <60 ·U Coronene NotFnd <60 U Field Sampling Standards ng spiked % Rec 1-Methylnaphthalene-D10 600 3.48 89.4 600 5.78 77.9 Terphenyl D14(Surr.) 13.02 **Extraction Standards** % Rec Limits Nanhthalene D8 600 2.77 79.9 50-150 2-Methylnaphthalene-D10 600 3.37 66.4 50-150 Acenaphthylene D8 600 4.56 81.5 50-150 Phenanthrene D10 600 8.03 88.0 50-150 Anthracene-D10 600 8.16 81.8 50-150 Fluoranthene D10 600 11.50 93.2 50-150 Benz(a)Anthracene-D12 600 110.9 16.12 50-150 Chrysene D12 600 16.23 90.4 50-150 Benzo(b)Fluoranthene-D12 19.52 97.0 600 50-150 Benzo(k)Fluoranthene-D12 600 19.60 84.7 50-150 Benzo(a)Pyrene D12 600 20.42 108.6 50-150 Perviene D12 600 20.66 90.9 50-150 Indeno(1,2,3,cd)Pyrene-D12 600 24.38 91.4 50-150 Dibenz(a,h)Anthracene-D14 600 24.55 85.8 50-150 Benzo(g,h,i)Perylene D12 78.2 600 25.43 50-150 Indicates that a peak has been manually integrated. M Indicates that this compound was not detected above the MDL Indicates that this compound was detected in the method blank at greater than 10% of the sample value. Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. В #### **ALS Life Sciences** Laboratory Method Blank Analysis Report 20-22050-SVOC-(21 THRU 25) TEST#1 APC OUTLET #2 L2529311-5 PAH by CARB 429 Sample Name ALS Sample ID Sampling Date 11-Nov-20 25-Nov-20 Extraction Date Analysis Method Analysis Type Sample Matrix Blank Stack Approved Sample Size Percent Moisture Split Ratio samole Andrew Reid -e-signature WG3444637 Workgroup 08-Dec-2020 Run Information Run 1 Filename 201207A14.D 12/7/2020 23:25 Run Date Final Volume mL Dilution Factor Analysis Units ng/sample Instrument Column MSD-5 HP5MS US0179454H Concentration **Target Analytes** Time ng/sample Naphthalene 2.78 290 M R B 2-Methylnaphthalene 3,40 39.1 1-Methylnaphthalene 3.51 22.3 Acenaphthylene 4.57 <12 ិប Acenaphthene <12 U Fluorene 5.83 <12 U Phenanthrene 8.09 78.5 Anthracene 8.20 <12 U Fluoranthene 11.56 19.4 Pyrene 12.21 20.3 Benzo(a)Anthracene 16.23 <12 U Chrysene 16.31 <12 U Benzo(b)Fluoranthene NotFnd <12 Ü Benzo(k)Fluoranthene NotFnd <12 JU Benzo(e)Pyrene NotFnd <12 U Benzo(a)Pyrene NotFnd <12 Perylene NotFnd <12 Ü Indeno(1,2,3-cd)Pyrene 24.48 <12 Ü Dibenzo(a,h)Anthracene 24.70 <12 ·U Benzo(g,h,i)Perylene 25.55 61.1 Additional Analytes Tetralin 2.71 204 M R B Ü 2-Chloronaphthalene NotFnd <12 Biphenyl 3.94 32.0 o-Terphenyl 9.38 <12 U 1-Methylphenanthrene 9.68 36.4 9-Methylphenanthrene 9.80 13.1 2-methylanthracene 9.86 21.6 9,10-dimethylanthracene NotFnd <12 U m-terphenyl 12.60 <12 U p-terphenyl 13.04 <12 Ü Benzo(a)fluorene NotFnd <12 'n Benzo(b)fluorene NotFnd <12 ÷υ 7,12-Dimethylbenzo(a)anthracene NotFnd <12 :U 3-Methylcholanthrene NotFnd <60 U Picene NotFnd <60 U Dibenzo(a,e)pyrene NotFnd <60 U Coronene 30.14 <60 Field Sampling Standards ng spiked % Rec 1-Methylnaphthalene-D10 600 3.48 84.1 Fluorene D10 600 5.78 91.3 Terphenyl D14(Surr.) 600 13.02 83 Extraction Standards % Rec Limits Naphthalene D8 600 2.77 72.5 50-150 2-Methylnaphthalene-D10 600 3.36 64.7 50-150 Acenaphthylene D8 600 4.56 68.9 50-150 Phenanthrene D10 600 8.03 78.4 50-150 Anthracene-D10 600 8.16 66.0 50-150 Fluoranthene D10 600 11.50 85.5 50-150 Benz(a)Anthracene-D12 600 16.12 94.8 50-150 Chrysene D12 600 16.23 79.5 50-150 Benzo(b)Fluoranthene-D12 600 19.51 95.2 50-150 Benzo(k)Fluoranthene-D12 600 19.60 81.0 50-150 Benzo(a)Pyrene D12 600 20.41 91.0 50-150 Perviene D12 600 20.66 87.0 50-150 Indeno(1,2,3,cd)Pyrene-D12 600 24.38 99.9 50-150 Dibenz(a,h)Anthracene-D14 600 24.54 92,5 50-150 Benzo(g,h,i)Perylene D12 600 25,42 81.5 50-150 M Indicates that a peak has been manually integrated. Indicates that this compound was not detected above the MDL Indicates that this compound was detected in the method blank at greater than 10% of the sample value. B Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. #### **ALS Life Sciences** Sample Analysis Report Sample Name ALS Sample ID 20-22050-SVOC-(26 THRU 30) TEST#2 APC OUTLET #2 Sampling Date 11-Nov-20 L2529311-6 PAH
by CARB 429 Extraction Date 25-Nov-20 Analysis Method Analysis Type sample Stack Sample Matrix Approved: Andrew Reid Sample Size Percent Moisture 1 n/a -e-signature-Split Ratio Workgroup WG3444637 08-Dec-2020 Run Information Run 1 Filename 201207A15.D 12/8/2020 0:03 1 mL Run Date Final Volume Dilution Factor ng/sample MSD-5 HP5MS US0179454H Analysis Units Instrument Column Concentration Target Analytes Time ng/sample Flags Naphthalene 2.78 277 M R B 2-Methylnaphthalene 3.40 54.1 1-Methylnaphthalene 3.51 25.4 Acenaphthylene 4.57 <12 ិប Acenaphthene 4.88 44.7 5.83 Fluorene 26.5 Phenanthrene 8.09 230 Anthracene 8.21 12.4 Fluoranthene 11.56 64.0 Pyrene 12.21 66.2 Benzo(a)Anthracene 16.21 <12 Ü Chrysene 16.31 12.1 R Benzo(b)Fluoranthene NotFnd <12 Ď Benzo(k)Fluoranthene NotFnd <12 · U Benzo(e)Pyrene NotFnd <12 U Benzo(a)Pyrene NotFnd <12 U Perylene NotFnd <12 υ Indeno(1,2,3-cd)Pyrene 24.48 <12 Ų Dibenzo(a,h)Anthracene 24.70 <12 U Benzo(g,h,i)Perylene 25.55 47.5 Additional Analytes Tetralin 2.71 278 M R B 2-Chloronaphthalene NotFnd <12 U Biphenyl 3.95 57.4 o-Terphenyl 9.39 <12 U 1-Methylphenanthrene 9.68 42.2 R 9-Methylphenanthrene 9.82 67.4 M R 2-methylanthracene 9.85 66.5 M 9,10-dimethylanthracene 12.46 21.1 R m-terphenyl 12.60 25.0 p-terphenyl 13.10 <12 U Benzo(a)fluorene NotFnd <12 U Benzo(b)fluorene NotFnd <12 U 7,12-Dimethylbenzo(a)anthracene NotEnd <12 U 3-Methylcholanthrene NotEnd <60 ់ប Picene NotFnd <60 Ü Dibenzo(a,e)pyrene NotFnd <60 ·υ Согопеле 30.14 <60 U Field Sampling Standards ng spiked % Rec 1-Methylnaphthalene-D10 3.48 80.8 Fluorene D10 600 5.78 119.3 Terphenyl D14(Surr.) 88.9 **Extraction Standards** % Rec Limits Naphthalene D8 600 2.77 84.8 50-150 2-Methylnaphthalene-D10 600 3.36 69.8 50-150 Acenaphthylene D8 600 4.56 85.7 50-150 Phenanthrene D10 600 8.03 72.8 50-150 Anthracene-D10 600 8.16 74.4 50-150 Fluoranthene D10 600 11.50 82.8 50-150 Benz(a)Anthracene-D12 600 16.12 96.8 50-150 Chrysene D12 600 16.23 77.1 50-150 Benzo(b)Fluoranthene-D12 19.52 107.2 600 50-150 Benzo(k)Fluoranthene-D12 600 19,60 86.7 50-150 Benzo(a)Pyrene D12 600 20.42 101.0 50-150 Perviene D12 600 20.66 97.4 50-150 Indeno(1,2,3,cd)Pyrene-D12 600 24.38 123.9 50-150 Dibenz(a.h)Anthracene-D14 600 24.55 114.4 50-150 Benzo(g,h,i)Perylene D12 600 25.42 98.9 50-150 M Indicates that a peak has been manually integrated. Indicates that this compound was not detected above the MDL Indicates that this compound was detected in the method blank at greater than 10% of the sample value. Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. B R #### **ALS Life Sciences** Sample Analysis Report Sample Name 20-22050-SVOC-(31 THRU 35) TEST#3 APC OUTLET #2 Sampling Date 12-Nov-20 ALS Sample ID Analysis Method L2529311-7 PAH by CARB 429 Extraction Date 25-Nov-20 Analysis Type Sample Matrix sample Stack Approved: Andrew Reid Sample Size sample Percent Moisture n/a -e-signature-Split Ratio Workgroup WG3444637 08-Dec-2020 Run Information Run 1 Filename 201207A16.D Run Date 12/8/2020 0:41 Final Volume Dilution Factor ng/sample MSD-5 HP5MS US0179454H Analysis Units Instrument Column Ret. Time Target Analytes Flags ng/sample Naphthalene 2.78 224 M R B 2-Methylnaphthalene 3.40 32.5 1-Methylnaphthalene 3.51 22.0 Acenaphthylene 4.57 ្យ <12 Acenaphthene 4.88 <12 U Fluorene 5.83 U <12 Phenanthrene 8.09 66.1 Anthracene 8.20 <12 Ų Fluoranthene 11,56 27.2 Pyrene 12.21 18.5 Benzo(a)Anthracene 16.19 <12 U Chrysene 16.31 <12 U Benzo(b)Fluoranthene NotFnd <12 Ū Benzo(k)Fluoranthene NotFnd <12 U Benzo(e)Pyrene NotFnd <12 U Benzo(a)Pyrene NotFnd <12 Perylene NotFnd <12 U Indeno(1,2,3-cd)Pyrene 24,46 <12 Dibenzo(a,h)Anthracene 24.71 <12 U Benzo(g,h,i)Perylene 25.54 19.9 Additional Analytes Tetralin 2.66 288 M В 2-Chloronaphthalene NotFnd <12 : 0 Biphenyl 3.93 29.6 o-Terphenyl 9.39 <12 U 1-Methylphenanthrene 9.68 21.1 9-Methylphenanthrene 9.81 14.5 2-methylanthracene 9.86 21.6 M 9,10-dimethylanthracene NotFnd <12 U m-terphenyl 12.60 <12 p-terphenyl 13,10 <12 U Benzo(a)fluorene NotFnd <12 ·Ù Benzo(b)fluorene NotFnd <12 ·U 7,12-Dimethylbenzo(a)anthracene NotFnd <12 .U 3-Methylcholanthrene NotFnd <60 U NotFnd <60 U Dibenzo(a,e)pyrene NotFnd <60 U Coronene 30.14 <60 Field Sampling Standards ng spiked % Rec 1-Methylnaphthalene-D10 600 3.48 90.4 Fluorene D10 600 5.78 96.9 Terphenyl D14(Surr.) 600 13.02 80.3 Extraction Standards % Rec Limits Naphthalene D8 600 2.77 77.2 50-150 2-Methylnaphthalene-D10 600 3.36 68.4 50-150 Acenaphthylene D8 600 4.56 50-150 81.0 Phenanthrene D10 600 8.03 80.0 50-150 Anthracene-D10 600 8.15 73.4 50-150 Fluoranthene D10 600 11.50 89.2 50-150 Benz(a)Anthracene-D12 600 16.12 104.7 50-150 Chrysene D12 600 16.23 82.7 50-150 Benzo(b)Fluoranthene-D12 600 19.52 101.0 50-150 Benzo(k)Fluoranthene-D12 600 19.60 86.3 50-150 Benzo(a)Pyrene D12 600 20.41 102.6 50-150 Perviene D12 600 20.66 98.2 50-150 Indeno(1,2,3,cd)Pyrene-D12 600 24.38 113.2 50-150 Dibenz(a,h)Anthracene-D14 600 24.55 104.1 50-150 Benzo(g,h,i)Perylene D12 600 25.42 88.9 50-150 Indicates that a peak has been manually integrated U Indicates that this compound was not detected above the MDL В Indicates that this compound was detected in the method blank at greater than 10% of the sample value. Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. #### **ALS Life Sciences** Sample Analysis Report Sample Name ALS Sample ID Analysis Method 20-22050-SVOC-(36 THRU 40) BLANK#2 Sampling Date 12-Nov-20 L2529311-8 PAH by CARB 429 Extraction Date 25-Nov-20 Analysis Type Sample Matrix sample Stack Approved: Andrew Reid -e-signature-Sample Size sample Percent Moisture Split Ratio n/a Workgroup WG3444637 08-Dec-2020 Run Information Run 1 201207A10.D Run Date 12/7/2020 20:53 Final Volume Dilution Factor ng/sample MSD-5 HP5MS US0179454H Analysis Units Instrument Column Concentration Target Analytes Time Flags ng/sample Naphthalene 2.78 172 M RB 2-Methylnaphthalene 3.40 IJ <12 1-Methylnaphthalene 3.52 <12 U Acenaphthylene 4.58 <12 ·U Acenaphthene NotFnd <12 U Fluorene NotFnd <12 U Phenanthrene 8.09 <12 U Anthracene 8.20 <12 U Fluoranthene 11,56 <12 U Pyrene 12.21 <12 U Benzo(a)Anthracene NotFnd <12 U Chrysene NotFnd <12 U Benzo(b)Fluoranthene NotFnd <12 U Benzo(k)Fluoranthene NotFnd <12 U Benzo(e)Pyrene NotFnd <12 U Benzo(a)Pyrene NotFnd <12 Perylene NotFnd <12 U Indeno(1,2,3-cd)Pyrene NotFnd <12 U Dibenzo(a,h)Anthracene 24.71 <12 ·U Benzo(g,h,i)Perylene 25.53 <12 U Additional Analytes Tetralin 2.71 129 M R B 2-Chloronaphthalene NotFnd <12 ·U Biphenyl 3.95 <12 Ù o-Terphenyl NotFnd <12 Ü 1-Methylphenanthrene 9.68 <12 U 9-Methylphenanthrene NotFnd <12 U 2-methylanthracene NotFnd <12 9,10-dimethylanthracene NotFnd <12 U m-terphenyl 12.60 <12 U p-terphenyl 13.10 <12 Ū Benzo(a)fluorene NotEnd <12 'n Benzo(b)fluorene NotFnd <12 Ù 7,12-Dimethylbenzo(a)anthracene NotFnd <12 u 3-Methylcholanthrene NotFnd <60 U NotFnd <60 U Dibenzo(a,e)pyrene NotFnd <60 U Coronene NotFnd <60 Field Sampling Standards ng spiked % Rec 1-Methylnaphthalene-D10 600 3.48 94.5 Fluorene D10 600 5,78 75.5 Terphenyi D14(Surr.) 600 13.02 84.3 Extraction Standards % Rec Limits Naphthalene D8 500 2.77 82.4 50-150 2-Methylnaphthalene-D10 600 3.37 68.9 50-150 Acenaphthylene D8 600 4.56 50-150 91.3 Phenanthrene D10 600 8.03 89.5 50-150 Anthracene-D10 600 8.16 B5.5 50-150 Fluoranthene D10 600 11.50 99.0 50-150 Benz(a)Anthracene-D12 600 16.12 122.7 50-150 Chrysene D12 600 16.23 98.2 50-150 Benzo(b)Fluoranthene-D12 600 19.52 105.9 50-150 Benzo(k)Fluoranthene-D12 600 19,60 88.5 50-150 Benzo(a)Pyrene D12 600 20.42 118.3 50-150 Perviene D12 20.66 600 100.8 50-150 Indeno(1,2,3,cd)Pyrene-D12 600 24.38 108.3 50-150 Dibenz(a,h)Anthracene-D14 600 24.55 101.9 50-150 Benzo(g,h,i)Perylene D12 600 25.42 91.9 50-150 M Indicates that a peak has been manually integrated Indicates that this compound was not detected above the MDL B Indicates that this compound was detected in the method blank at greater than 10% of the sample value. Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. #### **Laboratory Control Sample Analysis Report** Sample Name ALS Sample ID Analysis Method Split Ratio Laboratory Control Sample WG3444637-2 PAH by CARB 429 Analysis Type Sample Matrix LCS Sample Size Percent Moisture QC 1 n/a n/a 6 Sampling Date Extraction Date Workgroup n/a 25-Nov-20 WG3444637 Approved: Andrew Reid --e-signature--08-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Run 1 201207A05.D 12/7/2020 17:43 mL Column HP5MS US0179454H | | | Ret. | | | |----------------------------|-----------|--------|-----------|------------------| | Target Analytes | ng spiked | Time % | Flags | Limits | | Naphthalene (| 600 | 2.79 | 113.9 M R | 50-150 | | 2-Methylnaphthalene | 600 | 3.40 | 104.3 | 50-150 | | 1-Methylnaphthalene | 600 | 3.52 | 123 | 50-150 | | Acenaphthylene | 600 | 4.58 | 93.6 | 50-150 | | Acenaphthene | 600 | 4.88 | 90.8 | 50-150 | | Fluorene | 600 | 5.83 | 83.6 | 50-150 | | Phenanthrene | 600 | 8.09 | 90.4 | 50-150 | | Anthracene | 600 | 8.21 | 94.1 | 50-150 | | Fluoranthene | 600 | 11.56 | 85.9 | 50-150 | | Pyrene | 600 | 12.22 | 85.6 | 50-150 | | Benzo(a)Anthracene | 600 | 16.19 | 82.7 | 50-150 | | Chrysene | 600 | 16.32 | 88.3 | 50-150 | | Benzo(b)Fluoranthene | 600 | 19.58 | 82.3 | 50-150 | | Benzo(k)Fluoranthene | 600 | 19.66 | 82.2 | 50-150 | | Benzo(e)Pyrene | 600 | 20.34 | 99.1 | 50-150 | | Benzo(a)Pyrene | 600 | 20.48 | 77.3 | 50-150 | | Perylene | 600 | 20.73 | 82.9 | 50-150
50-150 | | ndeno(1,2,3-cd)Pyrene | 600 | 24.48 | 76.9 | 50-150 | | Dibenzo(a,h)Anthracene | 600 | 24.68 | 81.2 | 50-150 | | Benzo(g,h,i)Perylene | 600 | 25.55 | 81.9 | 50-150 | | activa(g)(i)()) Fol yielle | 300 | | 01.5 | 20-130 | | extraction Standards | | | % Rec | Limits | | laphthalene D8 | 600 | 2.77 | 87.7 | 30-150 | | 2-Methylnaphthalene-D10 | 600 | 3.37 | 76.5 | 30-150 | | Acenaphthylene D8 | 600 | 4.56 |
85.2 | 30-150 | | Phenanthrene D10 | 600 | 8.03 | 100.4 | 50-150 | | Anthracene-D10 | 600 | 8.16 | 87.9 | 50-150 | | Fluoranthene D10 | 600 | 11.51 | 104.0 | 50-150 | | Benz(a)Anthracene-D12 | 600 | 16.12 | 114.1 | 50-150 | | | 600 | 16.12 | 114.1 | | | Chrysene D12 | | | | 50-150 | | Benzo(b)Fluoranthene-D12 | 600 | 19.52 | 103.0 | 50-150 | | Benzo(k)Fluoranthene-D12 | 600 | 19.60 | 91.9 | 50-150 | | Benzo(a)Pyrene D12 | 600 | 20.42 | 110.9 | 30-150 | | Perylene D12 | 600 | 20.67 | 95.1 | 50-150 | | Indeno(1,2,3,cd)Pyrene-D12 | | 24.38 | 96.2 | 50-150 | | Dibenz(a,h)Anthracene-D14 | 600 | 24.55 | 96.7 | 50-150 | | Benzo(g,h,i)Perylene D12 | 600 | 25.43 | 89.0 | 50-150 | Indicates that a peak has been manually integrated. R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. #### **APPENDIX 16** Acid Gas Recovery Data Sheets (8 pages) | Client: Covanta DYEC | | |--------------------------------------|--| | Project No.: 22050 | | | Date: Nov9, 2720 | | | Test No.: | | | Test Location: UNIT | | | | | | Filter is used but not | | | recovered as sample | | | | t.
On the transfer of the composition of the company of the property of the company of the company of the company | | Impingers 1, 2, 3 | Impinger 4 | | | Вонности на положения на принципання принципан | | Impinger #1 0.1 N H ₂ SO4 | Impinger #4 Silica Gel | | Empty Wt: 577. 8 | Initial Wt: 947.0 | | Initial Wt: 678-1 | Final Wt: 96/-6 | | Final Wt: 783.5 | 4 Gain: 14-6 | | Gain: 105.4 | | | Colour: lean | | | | | | Impinger #2 0.1 N H ₂ SO4 | | | Empty Wt: 543.0 | Box ID: | | Initial Wt: 652-8 | | | Final Wt: 693.6 | | | Gain: 40.8 | | | Colour: Jaan | | | | | | Impinger #3 EMPTY | CWTR = 1+2+3: /4/.2 | | Empty Wt: 620. 7 | | | Final Wt: 625 7 | WCBDA= 4: 14.6 | | Gain: 5.0 | | | Colour: lean | | | | | | CONTAINER TS3 WEIGHTS | SAMPLE ID: 20-22050-M26A- / | | Empty Wt: 28/. / | | | With Imp. 1,2,3 Soln: 639.4 | | | After Rinse: 744.5 | | | Total TS3: 463.4 | | | | | | | • | | Train Loaded By: | | | Train Recovered By: | - Walter State Continue and Con | 1 2 | Client: Covanta DYEC | | |--------------------------------------|--| | Project No.: 22050 | SON (INC.) (INC. | | Date: 1/059, 20 | | | Test No.: 2 | | | Test Location: UNIT 1 | | | | | | Filter is used but not | | | recovered as sample | | | | | | Impingers 1, 2, 3 | Impinger 4 | | | Becommen promonence control of control | | Impinger #1 0.1 N H ₂ SO4 | Impinger #4 Silica Gel | | Empty Wt: 670.3 | Initial Wt: 942-6 | | Initial Wt: 772-1 | Final Wt: 957-5 | | Final Wt: 881-0 | 4 Gain: 14-9 | | Gain: 108-9 | *************************************** | | Colour: lean | | | | | | Impinger #2 0.1 N H ₂ SO4 | : | | Empty Wt: 6523 | Box ID: 15 | | Initial Wt: 754.7 | | | Final Wt: 802. Z | | | Gain: 47. 5 | | | Colour: Lean | | | | | | Impinger #3 EMPTY | CWTR = 1+2+3: 163.4 | | Empty Wt: 635-6 | | | Final Wt: 64Z-6 | WCBDA= 4: / 4.9 | | Gain: 7.0 | | | Colour: clean | | | | | | CONTAINER TS3 WEIGHTS | SAMPLE ID: 20-22050-M26A- 2 | | Empty Wt: 280.8 | | | With Imp. 1,2,3 Soln: 650. ▽ | | | After Rinse: 744-6 | | | Total TS3: 463-8 | | | | | | | | | Train Loaded By: | | | Train Recovered By: | | 1 2 | Client : Covanta DYEC | | |--
--| | Project No.: 22050 | and and a second and a second as second | | Date: 1/0/9 20 | | | Test No.: | | | Test Location: 1/1/1771 | and the state of t | | | in the control of | | Filter is used but not | | | recovered as sample | | | | | | Impingers 1, 2, 3 | Impinger 4 | | Total despondence of the second secon | | | Impinger #1 0.1 N H ₂ SO4 | Impinger #4 Silica Gel | | Empty Wt: 572.8 | Initial Wt: 9/9. D | | Initial Wt: 677.4 | Final Wt: 93/-4 | | Final Wt: 83/.4 | 4 Gain: / Z · Y | | Gain: 154 0 | · · | | Colour: | | | | | | Impinger #2 0.1 N H ₂ SO4 | | | Empty Wt: \$543.0 | Box ID: | | Initial Wt: 645.2 | | | Final Wt: 680,7 | | | Gain: 35.0 | | | Colour: Lean | | | | | | Impinger #3 EMPTY | CWTR = 1+2+3: 195 | | Empty Wt: 620. 7 | | | Final Wt: 627.0 | WCBDA= 4: /2.4 | | Gain: 6-3 | | | Colour: lean | | | | | | CONTAINER TS3 WEIGHTS | SAMPLE ID: 20-22050-M26A- 3 | | Empty Wt: 280.0 | | | With Imp. 1,2,3 Soln: 677-/ | | | After Rinse: 790.7 | | | Total TS3: 5/0.7 | | | | | | | | | Train Loaded By: | | | Train Pacayarad Ry | See 2 | 1 2 | Client : Covanta DYEC | | |-------------------------------|---------------------------| | Project No.: 22050 | | | Date: NOV 10, 20 | | | Test No.: | | | Test Location: UNIT 2 | | | | | | Filter is used but not | | | recovered as sample | | | | | | Impingers 1, 2, 3 | Impinger 4 | | | | | Impinger #1 0.1 N H₂SO4 | Impinger #4 Silica Gel | | Empty Wt: 577-8 | Initial Wt: 931.4 | | Initial Wt: 675-1 | Final Wt: 946~0 | | Final Wt: 800.0 | 4 Gain: 14. 6 | | Gain: 1249 | | | Colour: clean | | | | | | Impinger #2 0.1 N H₂SO4 | | | Empty Wt: 5 43.0 | Box ID: | | Initial Wt: 646-0 | | | Final Wt: 690.7 | | | Gain: 44.7 | | | Colour: lean | | | | | | Impinger #3 EMPTY | CWTR = 1+2+3: 176.8 | | Empty Wt: 620.7 | | | Final Wt: 627.9 | WCBDA= 4: 14.6 | | Gain: 7. Z | | | Colour: Ikan | | | | | | CONTAINER TS3 WEIGHTS | SAMPLE ID: 20-22050-M26A- | | Empty Wt: 281. 4 | | | With Imp. 1,2,3 Soln: 659 - 2 | | | After Rinse: 761.8 | | | Total TS3: 480-4 | | | | | | | | | Train Loaded By: | | | Train Recovered By: | | 1 2 | Client : Covanta DYEC | | |--------------------------------------|--| | Project No.: 22050 | | | Date: 10/1/0,20 | | | Test No.: | | | Test Location: UV1772 | | | | | | Filter is used but not | | | recovered as sample | | | | e valence and the comment of com | | Impingers 1, 2, 3 | Impinger 4 | | | processing and the second of t | | Impinger #1 0.1 N H ₂ SO4 | Impinger #4 Silica Gel | | Empty Wt: 670-3 | Initial Wt: 398-8 | | Initial Wt: 772-5 | Final Wt: 910-5 | | Final Wt: 9/4-7 | 4 Gain: (//) | | Gain: 142-2 | | | Colour: | | | | | | Impinger #2 0.1 N H₂SO4 | | | Empty Wt: 652-3 | Box ID: | | Initial Wt: 761-5 | | | Final Wt: 79/-7 | | | Gain: 30-2 | | | Colour: Lean | | | | Come di | | Impinger #3 EMPTY | CWTR = 1+2+3: / 78.4 | | Empty Wt: 635.6 | V | | Final Wt: 641-6 | WCBDA= 4: //- | | Gain: 6.0 | | | Colour: clean | | | | | | CONTAINER TS3 WEIGHTS | SAMPLE ID: 20-22050-M26A- | | Empty Wt: 280-8 | | | With Imp. 1,2,3 Soln: 670.6 | | | After Rinse: 791-2 | | | Total TS3: 5/0-4 | | | | | | Train Loaded By: | | | Train Recovered By: | | | LINILIZECOACIEM DA | | 1 2 | Client : Covanta DYEC | | |---|--| | Project No.: 22050 | | | Date: 1/0/10,20 | | | Test No.: | • | | Test Location: UNIT 2 | · · · · · · · · · · · · · · · · · · · | | | | | Filter is used but not | | | recovered as sample | | | | and the state of t | | Impingers 1, 2, 3 | Impinger 4 | | | | | Impinger #1 0.1 N H ₂ SO4 | Impinger #4 Silica Gel | | Empty Wt: 572-6 | Initial Wt: 946-0 | | Initial Wt: 675.5 | Final Wt: 957-8 | | Final Wt: 804-7 | 4 Gain: //- 8 | | Gain: /2 ?. Z | | | Colour: Clean | | | | | | Impinger #2 0.1 N H₂SO4 | | | Empty Wt: 543,0 | Box ID: | | Initial Wt:
6444 | | | Final Wt: 668-7 | | | Gain: 2 4. 3 | | | Colour: | | | | | | Impinger #3 EMPTY | CWTR = 1+2+3: 157.4 | | Empty Wt: 6197 | | | Final Wt: 623.6 | WCBDA= 4: //- 8 | | Gain: 3.9 | | | Colour: | | | | | | CONTAINER TS3 WEIGHTS | SAMPLE ID: 20-22050-M26A- | | Empty Wt: 2 80.7 | | | With Imp. 1,2,3 Soln: 635.7 | | | After Rinse: 779-6 | | | Total TS3: 498.3 | | | | | | n de Norden en e | | | Train Loaded By: | | | Train Recovered By: | | 1 2 | Client: Covanta DYEC | | |--------------------------------------|---| | Project No.: 22050 | | | Date: NOV 10, 20 | | | Test No.: Pank | | | Test Location: | | | | 1400 Maria - | | Filter is used but not | | | recovered as sample | | | | | | Impingers 1, 2, 3 | Impinger 4 | | Impinger #1 0.1 N H ₂ SO4 | Impinger #4 Silica Gel | | Empty Wt: | Initial Wt: | | Initial Wt: | Final Wt: | | Final Wt: | 4 Gain: | | Gain: | - Comm | | Colour: | | | | | | Impinger #2 0.1 N H ₂ SO4 | | | Empty Wt: | Box ID: | | Initial Wt: | | | Final Wt: | | | Gain: | | | Colour: | | | | | | Impinger #3 EMPTY | CWTR = 1+2+3: | | Empty Wt: | VIII | | Final Wt: | WCBDA= 4: | | Gain: | | | Colour: | | | | | | CONTAINER TS3 WEIGHTS | SAMPLE ID: 20-22050-M26A- BLANK 1 | | Empty Wt: 281.5 | | | With Imp. 1,2,3 Soln: 488-7 | | | After Rinse: 587 - 1 | | | Total TS3: 300-6 | | | | | | | | | Train Loaded By: | | | Client: Covanta DYEC | | |---|--| | Project No.: 22050 | | | Date: Nov 10, 2P | : | | Test No.: Pan A | | | Test Location: DLMM | | | | | | Filter is used but not | | | recovered as sample | | | | | | Impingers 1, 2, 3 | Impinger 4 | | | | | Impinger #1 0.1 N H ₂ SO4 | Impinger #4 Silica Gel | | Empty Wt: | Initial Wt: | | Initial Wt: | Final Wt: | | Final Wt: | 4 Gain: | | Gain: | L | | Colour: | | | | | | Impinger #2 0.1 N H₂SO4 | | | Empty Wt: | Box ID: | | Initial Wt: | | | Final Wt: | | | Gain: | | | Colour: | | | Andrews and the second of | | | Impinger #3 EMPTY | CWTR = 1+2+3: | | Empty Wt: | ed source control of | | Final Wt: | WCBDA= 4: | | Gain: | | | Colour: | | | | | | CONTAINER TS3 WEIGHTS | SAMPLE ID: 20-22050-M26A- BIANK | | Empty Wt: 281.5 | | | With Imp. 1,2,3 Soln: 485.6 | | | After Rinse: 587-7 | | | Total TS3: 306.2 | | | | | | | | | Train Loaded By: | | | Train Recovered By: 8 7 | de la companya | ## **APPENDIX 17** VOST Analytical Report (4 pages) 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 # **Certificate of Analysis** ALS Project Contact: ORT100 ALS Project ID: Lynne Wrona ALS WO#: L2529317 Date of Report 27-Nov-20 Date of Sample Receipt 13-Nov-20 00 Client Name: Wrona Client Address: Client Name: ORTECH Environmental Client Address: 804 Southdown Road Mississauga, ON L5J 2Y4 Canada Client Contact: Chris Belore Client Project ID: 22050 Covanta COMMENTS: VOCs via SW846 Method 5041A/8260C Ketone data by VOST analyses are estimated values only Certified by: Ron McLeod, Ph.D. Technical Director Results in this certificate relate only to the samples as submitted to the laboratory. This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd. | | | | Α | LS | Environmen | tal | | | | | | | |--|---|--------------|--|--------|--|------|--|------------|--|---|--|---| | | | | Sample | e An | alysis Summarı | / Re | port | CHIMCHTOIN | | | | *************************************** | | Sample Name | 20-22050-VOST-
(1A,1B) TEST#1
APC OUTLET #1 | | 20-22050-VOST
(2A,2B) TEST#2
APC OUTLET #1 | | 20-22050-VOST
(3A,3B) TEST#3
APC OUTLET #1 | | 20-22050-VOST
(4A,4B) TEST#4
APC OUTLET #1 | | 20-22050-VOST
(5A,5B) FIELD
BLANK APC
OUTLET #1 | | 20-22050-VOST
(7A,7B) TEST#1
APC OUTLET #2 | | | ALS Sample ID | L2529317-1 | | L2529317-2 | | L2529317-3 | | L2529317-4 | | L2529317-5 | | L2529317-6 | | | Sample units | sample | | sample | | sample | | sample | | sample | | sample | | | Matrix | VOST | | VOST | | VOST | | VOST | | VOST | | VOST | | | Sampling Date | 11-Nov-20 | | 11-Nov-20 | | 11-Nov-20 | | 11-Nov-20 | | 11-Nov-20 | | 11-Nov-20 | | | Extraction Date | 23-Nov-20 | | 23-Nov-20 | grafi. | 23-Nov-20 | | 23-Nov-20 | | 23-Nov-20 | | 24-Nov-20 | | | Target Analytes | ug/sample | | ug/sample | | ug/sample | | ug/sample | | ug/sample | | ug/sample | | | Dichlorodifluoromethane | 0.025 | | 0.024 | | < 0.02 | U | 0.029 | | <0.02 | U | <0.02 | U | | Vinyl Chloride | <0.02 | Ü | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | · U | | Bromomethane | < 0.09 | U | <0.09 | Ū | | Trichlorofluoromethane | 0.068 | | 0.065 | | 0.073 | | 0.079 | | <0.02 | U | 0.053 | JA. | | 1,1-Dichloroethene | < 0.01 | U | <0.01 | U | < 0.01 | U | | Acetone | 1.25 | | 1.20 | | 1.34 | | 1.46 | | 0.146 | | 1.36 | M | | Methylene Chloride | 1.12 | | 1.08 | | 1,21 | | 1.31 | | 0.113 | | 0.704 | | | trans,1,2-Dichloroethene | 0.027 | | 0.026 | | 0.029 | | 0.031 | | <0.01 | U | 0.016 | | | 2-Butanone | 1.17 | | 1.12 | | 1.26 | | 1.36 | | <0.01 | U | 1.15 | | | Chloroform 1,1,1-Trichloroethane | 0.066 | | 0.063 | | 0.071 | | 0.077 | | <0.01 | U | 0.094 | | | Carbon Tetrachloride | < 0.01 | U | <0.01 | U | | Benzene | 0.162
0.3 | | 0.155 | | 0.174 | | 0.189 | | <0.01 | U | 0.031 | | | 1,2-Dichloroethane | 0.049 | 1 | 0.287
0.047 | | 0.322 | | 0.35 | | <0.05 | U | 0.114 | | | Trichloroethene | < 0.01 | U | <0.01 | U | 0.053
<0.01 | U | 0.057
<0.01 | U | < 0.01 | U | 0.017 | | |
1,2-Dichloropropane | < 0.01 | υ | <0.01 | U | <0.01
<0.01 | U | <0.01
<0.01 | U | <0.01
<0.01 | U | <0.01 | U | | Bromodichloromethane | 0.05 | Ü | 0.048 | Ü | 0.054 | ŭ | 0.058 | U | <0.01
<0.01 | U | <0.01
0.017 | U | | Toluene | 1.63 | | 1.56 | | 1.75 | | 1.90 | | <0.01
<0.05 | U | 0.804 | | | 1,1,2-Trichloroethane | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | U | <0.03 | U | <0.02 | U | | Tetrachloroethene | <0.01 | U | < 0.01 | Ū | < 0.01 | Ŭ | < 0.01 | Ŭ | < 0.01 | Ü | 0.01 | ٠ | | Chlorodibromomethane | < 0.01 | U | < 0.01 | U | < 0.01 | U | < 0.01 | U | < 0.01 | Ü | <0.01 | U | | Ethylene Dibromide | < 0.02 | U | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | Ü | <0.02 | U | | Ethylbenzene | 0.421 | | 0.404 | | 0.453 | | 0.492 | | < 0.01 | Ū | 0.196 | Ŭ | | M&P-Xylene | 1.39 | | 1.34 | | 1.50 | | 1,63 | | < 0.03 | U | 2.49 | | | 0-Xylene | 0.621 | | 0.596 | | 0.668 | | 0.725 | | < 0.01 | U | 0.812 | | | Styrene | 0.229 | | 0.22 | | 0.247 | | 0.268 | | <0.02 | U | 0.112 | | | Bromoform | < 0.01 | U | <0.01 | U | <0.01 | U | <0.01 | U | < 0.01 | U | <0.01 | U | | Isopropylbenzene | 0.061 | | 0.059 | | 0.066 | | 0.072 | | <0.02 | U | 0.033 | | | 1,3,5-Trimethylbenzene | 0.436 | | 0.418 | | 0.469 | | 0.509 | | <0.02 | U | 0.243 | | | 1,3-Butadiene Trichlorotrifluoroethane | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | U | | Field Standard | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | U | | | % Rec | | % Rec | | % Rec | | % Rec | | % Rec | | % Rec | | | d10-Ethylbenzene(SPK) | 64 | | 61 | | 65 | | 64 | | 83 | | 119 | | | Surrogate Standards | % Rec | | % Rec | | % Rec | | % Rec | | % Rec | | % Rec | | | d4-1,2-Dichloroethane(SURR) d8-Toluene(SURR) | 110 | | 106 | | 113 | | 110 | | 102 | | 94 | | | 4-Bromofluorobenzene(SURR) | 74
107 | | 71 | | 75 | | 74 | | 102 | | 118 | | | Internal Standards | 107
% Rec | | 102 | | 109 | | 107 | | 116 | | 128 | | | Bromochloromethane | % Rec
82 | | % Rec
75 | | % Rec | | % Rec | | % Rec | | % Rec | | | 1,4-Difluorobenzene | 82
101 | | 75
91 | | 90 | | 66 | | 77. | | 82 | | | d5-Chlorobenzene | 101 | | 91
97 | | 110 | | 81 | | 114 | | 144 | | | | 100 | <u>, 940</u> | an ion diamet. | | 118 | | 86 | | 100 | | 89 | | Indicates that this compound was not detected above the RL. Indicates that a peak has been manually integrated. | | | | A | LS | Environmen | tal | | | | | |--|--|------|---|------|---|-------|--|---|--|---| | | | | Sample | e An | alysis Summary | / Re | port | | | | | Sample Name | 20-22050-VOST
(8A,8B) TEST#2
APC OUTLET #2 | | 20-22050-VOST-
(9A,9B) TEST#3
APC OUTLET #2 | | 20-22050-VOST
(10A,10B)
TEST#4 APC
OUTLET #2 | | 20-22050-VOST
(11A,11B)
FIELD BLANK
APC OUTLET #2 | | 20-22050-VOST
(12A,12B) TRIP
BLANK | | | ALS Sample ID | L2529317-7 | | L2529317-8 | | L2529317-9 | | L2529317-10 | | L2529317-11 | | | Sample units | sample | | sample | | sample | | sample | | sample | | | Matrix | VOST | | VOST | | VOST | | VOST | | VOST | | | Sampling Date | 11-Nov-20 | | 11-Nov-20 | | 11-Nov-20 | | 11-Nov-20 | | 11-Nov-20 | | | Extraction Date | 24-Nov-20 | | 24-Nov-20 | | 24-Nov-20 | 4,475 | 24-Nov-20 | | 23-Nov-20 | | | Farget Analytes | ug/sample | | ug/sample | | ug/sample | | ug/sample | | ug/sample | | | Dichlorodifluoromethane | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | U | | Vinyl Chloride | <0.02 | U | < 0.02 | U | <0.02 | U | <0.02 | Ū | <0.02 | Ü | | Bromomethane | <0.09 | U | <0.09 | U | <0.09 | U | <0.09 | U | <0.09 | Ū | | Trichlorofluoromethane | 0.065 | | 0.057 | | 0.049 | | <0.02 | U | <0.02 | U | | 1,1-Dichloroethene | < 0.01 | u, U | < 0.01 | U | < 0.01 | U | <0.01 | U | <0.01 | U | | Acetone | 1.67 | М | 1,47 | М | 1.27 | M | 0.105 | | 0.128 | | | Methylene Chloride | 0.867 | | 0.76 | | 0.661 | | <0.1 | U | <0.1 | U | | trans,1,2-Dichloroethene | 0.02 | | 0.017 | | 0.015 | | <0.01 | U | < 0.01 | U | | 2-Butanone | 1.41 | | 1.24 | | 1.08 | | < 0.01 | U | < 0.01 | U | | Chloroform | 0.116 | | 0.102 | | 0.089 | | < 0.01 | U | < 0.01 | U | | 1,1,1-Trichloroethane | <0.01 | U | < 0.01 | U | | Carbon Tetrachloride | 0.038 | | 0.034 | | 0.029 | | <0.01 | U | < 0.01 | U | | Benzene | 0.141 | | 0.123 | | 0.107 | | <0.05 | U | <0.05 | U | | ,2-Dichloroethane | 0.021 | | 0.018 | | 0.016 | | < 0.01 | U | <0.01 | U | | richloroethene | <0.01 | U | <0.01 | U | <0.01 | U | < 0.01 | U | < 0.01 | U | | ,2-Dichloropropane
Fromodichloromethane | < 0.01 | U | < 0.01 | U | <0.01 | U | <0.01 | U | < 0.01 | U | | roluene | 0.022 | | 0.019 | | 0.016 | | <0.01 | U | < 0.01 | U | | l,1,2-Trichloroethane | 0.991
<0.02 | U | 0.868 | | 0.755 | | <0.05 | U | <0.05 | U | | Tetrachloroethene | <0.02
0.013 | U | <0.02 | U | <0.02 | U | <0.02 | U | <0.02 | U | | Chlorodibromomethane | 0.013
<0.01 | U | 0.011
<0.01 | U | <0.01 | U | <0.01 | U | < 0.01 | U | | Ethylene Dibromide | <0.01
<0.02 | U | <0.01
<0.02 | U | <0.01
<0.02 | U | <0.01 | U | < 0.01 | U | | Ethylbenzene | 0.241 | J | <0.02
0.212 | U | <0.02
0.184 | U | <0.02 | U | <0.02 | U | | M&P-Xylene | 3,07 | | 2.69 | | 2.34 | | <0.01
<0.03 | U | <0.01 | U | | O-Xylene | 1.00 | | 0.877 | | 0.763 | | <0.03
<0.01 | U | <0.03
<0.01 | U | | Styrene | 0.138 | | 0.121 | | 0.105 | | <0.01
<0.02 | U | <0.01
<0.02 | U | | Bromoform | < 0.01 | U | < 0.01 | U | <0.01 | U | < 0.01 | U | <0.02
<0.01 | U | | Isopropylbenzene | 0.041 | | 0.036 | | 0.031 | | <0.01 | U | <0.01 | U | | 1,3,5-Trimethylbenzene | 0.299 | | 0.262 | | 0.228 | | <0.02 | U | <0.02 | U | | 1,3-Butadiene | <0.02 | U | < 0.02 | U | < 0.02 | U | <0.02 | U | <0.02 | U | | Frichlorotrifluoroethane | <0.02 | U | <0.02 | Ū | <0.02 | Ü | <0.02 | U | <0.02
<0.02 | Ü | | Field Standard | % Rec | | % Rec | | % Rec | | % Rec | | % Rec | | | 110-Ethylbenzene(SPK) | 98 | | 97 | | 103 | | 69 | | 80 | | | Surrogate Standards | % Rec | | % Rec | | % Rec | | % Rec | | % Rec | | | 14-1,2-Dichloroethane(SURR) | 77 | | 76 | | 81 | | 84 | | 98 | | | d8-Toluene(SURR) | 97 | | 96 | | 102 | | 85 | | 99 | | | 4-Bromofluorobenzene(SURR) | 106 | | 104 | | 111 | | 96 | | 112 | | | Internal Standards | % Rec | | % Rec | | % Rec | | % Rec | | % Rec | | | Bromochloromethane | 97 | | 76 | | 87 | | 82 | | 79 | | | I,4-Difluorobenzene | 136 | | 133 | | 62 | | 61 | | 118 | | | 15-Chlorobenzene | 84 | | 82 | | 95 | | 54 | | 103 | | Indicates that this compound was not detected above the RL. Indicates that a peak has been manually integrated. | | | A | LS | Environmenta | | | |-----------------------------|---|--|------------------------|--|--|---| | | 4405 0000 0000 0000 0000 0000 0000 0000 | Sample | An: | alysis Summary R | eport | | | Sample Name | Method Blank
(Nov 23) | Method Blank
(Nov 24) | | Laboratory
Control Sample
(Nov 23) | Laboratory
Control Sample
(Nov 24) | | | ALS Sample ID | WG3449722-1 | WG3449722-3 | | WG3449722-2 | WG3449722-4 | | | Sample units | sample | sample | | n/a | n/a | | | Matrix | QC | QC | | QC | QC | | | Sampling Date | n/a | n/a | | n/a | n/a | | | Extraction Date | 23-Nov-20 | 24-Nov-20 | MCMartinian Succession | 23-Nov-20 | 24-Nov-20 | | | Target Analytes | ug/sample | ug/sample | | % Rec | % Rec | | | Dichlorodifluoromethane | <0.02 U | <0.02 | U | 97.4 | 91.6 | lah bada bada kabupaten bada a bada a b | | Vinyl Chloride | <0.02 U | <0.02 | U | 104.5 | 99.2 | | | Bromomethane | <0.09 U | <0.09 | U | 97.1 | 95.7 | | | Trichlorofluoromethane | <0.02 U | <0.02 | U | 120.8 | 105.9 | | | 1,1-Dichloroethene | <0.01 U | <0.01 | U | 99.7 | 90.2 | | | Acetone | <0.1 U | | U | 118.4 | 118.5 | | | Methylene Chloride | <0.1 U | <0.1 | . U | 110.4 | 108.8 | | | trans,1,2-Dichloroethene | <0.01 U | | U | 89.2 | 105.1 | | | 2-Butanone | <0.01 U | | U | 82.2 | 99.6 | | | Chloroform | <0.01 U | | U | 91.6 | 100.1 | | | 1,1,1-Trichloroethane | <0.01 U | | U | 86.3 | 99.2 | | | Carbon Tetrachloride | <0.01 U | | U | 91.1 | 110.1 | | | Benzene | <0.05 U | | U | 112.8 | 100.7 | | | 1,2-Dichloroethane | <0.01 U | | U | 80.9 | 80.9 | | | Trichloroethene | <0.01 U | | U | 116.9 | 111.3 | | | 1,2-Dichloropropane | <0.01 U | 1 4 4 4 4 4 5 5 5 5 5 7 C | U | 109 | 111.3 | | | Bromodichloromethane | <0.01 U | | Ü | 98.2 | 105.6 | | | Toluene | <0.05 U | | Ü | 84,9 | 103.7 | | | 1,1,2-Trichloroethane | <0.02 U | ・ さいましょう A 16 利利を示し、 | U | 88 | 103.7 | | | Tetrachloroethene | <0.01 U | | U | 81.4 | 111.4 | | | Chlorodibromomethane | <0.01 U | | Ü | 82.6 | 111.9 | | | Ethylene Dibromide | <0.02 U | | U | 90.4 | | | | Ethylbenzene | <0.01 U | 化基金银 医电影 化二十二烷 医阿萨克克氏病 | U | 90.4
102 | 113.6 | | | M&P-Xylene | <0.03 U | | U | 108.3 | 96.1 | | | O-Xylene | <0.01 U | | U | 105.4 | 90.4 | | | Styrene | <0.01 U | | U | | 89.1 | | | Bromoform | <0.01 U | | U | 106.3 | 92.8 | | | Isopropylbenzene | <0.01 U | <0.01
<0.02 | 11年7月年 | 103.6 | 105.8 | | | 1,3,5-Trimethylbenzene | <0.02 U | | U | 100.7 | 86.5 | | | 1,3-Butadiene | <0.02 U | <0.02 | U | 107.9 | 97.1 | | | Trichlorotrifluoroethane | <0.02 U | <0.02
<0.02 | U
U | | | | | Field Standard | % Rec | % Rec | | % Rec | % Rec | | | d10-Ethylbenzene(SPK) | 87 | 72 | | 80 | 88 | | | Surrogate Standards | % Rec | % Rec | | % Rec | % Rec | | | d4-1,2-Dichloroethane(SURR) | 104 | 86 | | 100 | 98 | | | d8-Toluene(SURR) | 101 | 84 | | 65 | 106 | | | 4-Bromofluorobenzene(SURR) | 125 | 104 | | 133 | 96 | | | Internal Standards | % Rec | % Rec | | % Rec | % Rec | |
| Bromochloromethane | 92 | 80 | | 94 | 106 | | | 1,4-Difluorobenzene | 141 | 119 | | 99 | 151 | | | d5-Chlorobenzene | 140 | 114 | | 126 | 140 | | U Indicates that this compound was not detected above the RL. ## **APPENDIX 18** Aldehydes Recovery Data Sheet (1 page) # ORTECH Consulting Inc. Recovery & Sample Log NCASI Method ISS/FP-A105.01 Client: Covanata DYEC Job/Report Number: 22050 Received By: Chris Belore How Received: Train Recovery Job Assigned To: ALS Quote / PO #: 22050 - J2729 | | | | | | launanne proposition and proposition of the second | | The state of s | | | |------------------|---|-----------|------------------|---------------|---|----------------|--|---------------|--------------------| | T est | 183 | ORTECH | Date | 8 | Empty Weight | Initial Weight | Final Weight | Weight of | Weight of | | Number | Location | Sample | Sampled | of BHA | BHA Sample | Sample Bottle | of BHA | Sample Bottle | Sample Bottle | | | | A | | Sample Bottle | Bottle | + BHA | Sample Bottle | вна & н20 | BHA & H2O & Hexane | | | | 20-22050- | | | (g) | (g) | (g) | (g) | (g) | | | APC Outlet #1 | ALD-1 | | ALD-1 | 110,2 | (53.0 | O T | (76.0 | 87.8 | | 2 | APC Outlet #1 | ALD-2 | | ALD-2 | 0.0) | (53. (| 1.88.1 | 174.8 | | | C | APC Outlet #1 | ALD-3 | | ALD-3 | 10g.e | 55. | - 33 | 1760.1 | (92.5) | | Blank | APC Outlet #1 | Blank 1 | | ALD-4 | 1/0.0 | 0.75 | でが | 175.5 | N.O. | | | APC Outlet #2 | ALD-5 | | ALD-5 | 9.601 | 10.00
10.00 | が
10
10 | 173.4 | 183.0 | | 2 | APC Outlet #2 | ALD-6 | | ALD-6 | 1.00.2 | - 55 | 157.0 | 172.0 | 193.0 | | 3 | APC Outlet #2 | ALD-7 | | ALD-7 | 1,00/ | ろろう | 0000 | 0,27 | 620 | | Blank 2 | APC Outlet #2 | Blank 2 | | ALD-8 | 6.601 | 155.5 | 10 Kg | 120- | N 180 | | | | | | ACD-01 | 4072 | 1531 | | | | | | Field BHA&Spike | | na | | BHA Blank | | na | na | na | na | กล | na | 113 | | | | | | 040-10 | 40.2 | 1.006: | The second secon | | | | | | | Aldohanda Am | | | 1887 | | | | | fulaly ce eaci | Analyze each sample 101 Acetaluchyuc, i ut maluchyuc, 2 | | ialuviny uv, avi | 2)- | 0.0) | +55 | and the second s | | | | | | | | | | | | | | | Relinquished by: | | | | | | Date: | A CONTRACTOR OF THE | | | | Relinquished to: | | | | | | Date: | | | | #### **APPENDIX 19** Aldehydes Analytical Report (14 pages) 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 # **Certificate of Analysis** ALS Project Contact: Lynne Wrona ALS Project ID: ALS WO#: L2529296 Revision 1 Date of Report Revision Date of Sample Receipt 13-Nov-20 10-Jan-22 Client Name: Client Address: **ORTECH Environmental** 804 Southdown Road Mississauga, ON L5J 2Y4 Canada Client Contact: Client Project ID: Chris Belore 22050 Covanta COMMENTS: Aldehydes as benzyloxime derivatives by SIM GC/MS REVISED REPORT: Revised to provide data in the correct units Certified by: Ron McLeod, PhD Laboratory Manager and Technical Director Results in this certificate relate only to the samples as submitted to the laboratory. This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd. | | | ALS | ALS Life Sciences | | | | |------------------|--|---|---|---|--|---| | | | Sample An | Sample Analysis Summary Report | | | | | Sample Name | Method Blank | 20-22050-ALD-1
TEST#1 APC
OUTLET #1 (ALD-
1) | 20-22050-ALD-2
TEST#2 APC
OUTLET #1 (ALD-
2) | 20-22050-ALD-3
TEST#3 APC
OUTLET #1 (ALD-
3) | 20-22050-ALD-
BLANK1 APC
OUTLET #1 (ALD-
4) | 20-22050-ALD-5
TEST#1 APC
OUTLET #2 (ALD-
5) | | ALS Sample ID | WG3444795-1 | L2529296-1 | 12529296-2 | L2529296-3 | 12529296-4 | L2529296-5 | | Sample Size | - | - | - | - | - | - | | Sample units | Sample | Train | Train | Train | Train | Train | | Moisture Content | n/a | n/a | n/a | n/a | n/a | n/a | | Matrix | OC | Stack | Stack | Stack | Stack | Stack | | Sampling Date | n/a | 11-Nov-20 | 11-Nov-20 | 11-Nov-20 | 11-Nov-20 | 11-Nov-20 | | Extraction Date | 26-Nov-20 | 26-Nov-20 | 26-Nov-20 | 26-Nov-20 | 26-Nov-20 | 26-Nov-20 | | Target Analytes | ug/sample | ng/sample | ug/sample | ug/sample | ug/sample | ug/sample | | Formaldehyde | 0.69 | 2,22 | 1.69 | 1.85 | 1.27 | 2.36 | | Acetaidehyde | <0.1 U | 2.02 | 1.63 | 1.78 | 1.09 | 2.12 | | Propionaldehyde | <0.1 U | 0.91 | 0.73 | 6.0 | 0.91 | 1.08 | | Acrolein | <0.1 U | <0.1 U | <0.1 U | <0.1 U | <0.1 U | <0.1 U | | ם | Indicates that this compound was not detected above the LOD. | vas not detected above the Li | эр. | | | | | | | ALS | ALS Life Sciences | | | | |------------------|---|---|--|------------------------------------|--------------------------------------|--| | | | Sample An | Sample Analysis Summary Report | Ļ | | | | Sample Name | 20-22050-ALD-6
TEST#2 APC
OUTLET #2 (ALD-6) | 20-22050-ALD-7
TEST#3 APC
OUTLET #2 (ALD-
7) | 20-22050-ALD-
BLANK2 APC
OUTLET #2 (ALD-
8) | Laboratory Control
Sample (Sug) | Laboratory Control
Sample (2.5ug) | | | ALS Sample ID | L2529296-6 | L2529296-7 | L2529296-8 | WG3444795-2 | WG3444795-4 | | | Sample Size | • | - | - | - | ~ | | | Sample units | Train | Train | Train | n/a | n/a | | | Moisture Content | n/a | n/a | n/a | n/a | n/a | | | Matrix | Stack | Stack | Stack | ည ွှ | S
S | | | Sampling Date | 11-Nov-20 | 11-Nov-20 | 11-Nov-20 | n/a | n/a | | | Extraction Date | 26-Nov-20 | 26-Nov-20 | 26-Nov-20 |
26-Nov-20 | 26-Nov-20 | | | Target Analytes | ug/sample | ug/sample | ug/sample | % Rec | % Rec | | | Formaldehyde | 1.22 | 1.66 | 0.98 | 75 | 102 | | | Acetaidehyde | 1.83 | 2.17 | 1.44 | 119 | 144 | | | Propionaldehyde | 0.85 | 1.11 | 0.79 | 75 | 104 | | | Acrolein | <0.1 U | <0.1 U | <0.1 U | 99 | 25 | | | | | | | | | | ## Laboratory Method Blank Analysis Report Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix Sample Size Percent Moisture **Method Blank** WG3444795-1 SIM GC/MS blank QC 1 sa Sampling Date Extraction Date n/a 26-Nov-20 Split Ratio sample n/a 5 Approved: Andrew Reid --e-signature--04-Dec-2020 # **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Acetaldehyde Acrolein Propionaldehyde Run 1 20120207.D 12/3/2020 9:45 1 mL ug/sample MSD-2 Rtx-200 1610862 | Target Analytes | Ret.
Time | Concentration ug/sample | | Limits | |---------------------|--------------|-------------------------|---|--------| | Formaldehyde | 9.51 | 0.69 | | | | Acetaldehyde (B) | 14.71 | < 0.1 | U | | | Acetaldehyde (A) | 15.05 | < 0.1 | U | | | Propionaldehyde (A) | NotFnd | < 0.1 | U | | | Propionaldehyde (B) | NotFnd | < 0.1 | U | | | Acrolein (A) | NotFnd | <0.1 | U | | | Acrolein (B) | NotFnd | <0.1 | U | | | Total Aldehydes | | ug/sample | | | | Formaldehyde | | 0.69 | | | Indicates that this compound was not detected above the MDL. < 0.1 < 0.1 < 0.1 #### Sample Analysis Report Sample Name ALS Sample ID Analysis Method Analysis Type 20-22050-ALD-1 TEST#1 APC OUTLET #1 (ALD-1) Sampling Date Extraction Date 11-Nov-20 26-Nov-20 Sample Matrix Sample Size Percent Moisture 20-22050-A L2529296-1 SIM GC/MS sample Stack 1 Split Ratio n/a 5 Train Approved: Andrew Reid --e-signature--04-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120210.D 12/3/2020 11:46 1 mL 1 ug/sample MSD-2 Rtx-200 1610862 | Target Analytes | Ret.
Time | Concentration ug/sample | | Limits | |---------------------|--------------|-------------------------|---|--------| | Formaldehyde | 9.58 | 2.22 | | | | Acetaldehyde (B) | 14.76 | 0.91 | | | | Acetaldehyde (A) | 15.10 | 1.11 | | | | Propionaldehyde (A) | 18.94 | 0.42 | | | | Propionaldehyde (B) | 19.51 | 0.49 | | | | Acrolein (A) | NotFnd | <0.1 | U | | | Acrolein (B) | NotFnd | <0.1 | U | | | Total Aldehydes | | ug/sample | | | | Formaldehyde | | 2.22 | | | | Acetaldehyde | | 2.02 | | | | Propionaldehyde | | 0.91 | | | | Acrolein | | <∩ 1 | | | #### Sample Analysis Report Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix Sample Size Percent Moisture 20-22050-ALD-2 TEST#2 APC OUTLET #1 (ALD-2) Sampling Date Extraction Date 11-Nov-20 26-Nov-20 Split Ratio L2529296-2 SIM GC/MS sample Stack 1 Train n/a 5 Approved: *Andrew Reid* --e-signature--04-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120211.D 12/3/2020 12:26 1 mL ug/sample MSD-2 Rtx-200 1610862 | Target Analytes | Ret.
Time | Concentration ug/sample | | Limits | |---------------------|--------------|-------------------------|---|--------| | Formaldehyde | 9.55 | 1.69 | | | | Acetaldehyde (B) | 14.72 | 0.69 | | | | Acetaldehyde (A) | 15.06 | 0.94 | | | | Propionałdehyde (A) | 18.91 | 0.32 | | | | Propionaldehyde (B) | 19,49 | 0.41 | | | | Acrolein (A) | NotFnd | <0.1 | U | | | Acrolein (B) | NotFnd | <0.1 | U | | | Total Aldehydes | | ug/sample | | | | Formaldehyde | | 1.69 | | | | Acetaldehyde | | 1.63 | | | | Propionaldehyde | | 0.73 | | | | Acrolein | | <0.1 | | | | | | | | | #### Sample Analysis Report Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix Sample Size Percent Moisture 20-22050-ALD-3 TEST#3 APC OUTLET #1 (ALD-3) Sampling Date Extraction Date 11-Nov-20 26-Nov-20 Split Ratio L2529296-3 SIM GC/MS sample Stack 1 Train n/a 5 Approved: Andrew Reid --e-signature--04-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120212.D 12/3/2020 13:06 1 mL 1 ug/sample MSD-2 Rtx-200 1610862 | Target Analytes | Ret.
Time | Concentration ug/sample | | Limits | |---------------------|--------------|-------------------------|---|--------| | Formaldehyde | 9.55 | 1.85 | | | | Acetaldehyde (B) | 14.72 | 0.74 | | | | Acetaldehyde (A) | 15.07 | 1.04 | | | | Propionaldehyde (A) | 18.92 | 0.34 | | | | Propionaldehyde (B) | 19.50 | 0.56 | | | | Acrolein (A) | NotFnd | <0.1 | U | | | Acrolein (B) | NotFnd | <0.1 | U | | | Total Aldehydes | | ug/sample | | | | Formaldehyde | | 1.85 | | | | Acetaldehyde | | 1.78 | | | | Propionaldehyde | | 0.9 | | | | Acrolein | | < 0.1 | | | #### Sample Analysis Report Sample Name ALS Sample ID Analysis Method Analysis Type **20-22050-ALD-BLANK1 APC OUTLET #1 (ALD-4)** L2529296-4 SIM GC/MS Sampling Date Extraction Date 11-Nov-20 26-Nov-20 Analysis Type Sample Matrix Sample Size SIM GC/MS sample Stack Stack 1 Train Percent Moisture n/a Split Ratio 5 Train Approved: *Andrew Reid* --e-signature-- 04-Dec-2020 Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120208.D 12/3/2020 10:25 1 mL 1 ug/sample MSD-2 Rtx-200 1610862 | | Ret. | Concentrati | on | | |---------------------|--------|-------------|-------|--------| | Target Analytes | Time | ug/sample | Flags | Limits | | Formaldehyde | 9.58 | 1.27 | М | | | Acetaldehyde (B) | 14.77 | 0.47 | M | | | Acetaldehyde (A) | 15.12 | 0.62 | М | | | Propionaldehyde (A) | 18.95 | 0.34 | | | | Propionaldehyde (B) | 19.52 | 0.57 | | | | Acrolein (A) | NotFnd | <0.1 | U | | | Acrolein (B) | NotFnd | <0.1 | U | | | Total Aldehydes | | ug/sample | | | | Formaldehyde | | 1.27 | | | | Acetaldehyde | | 1.09 | | | | Propionaldehyde | | 0.91 | | | | Acrolein | | <0.1 | | | М Indicates that a peak has been manually integrated. #### Sample Analysis Report Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix Sample Size Percent Moisture 20-22050-ALD-5 TEST#1 APC OUTLET #2 (ALD-5) Sampling Date Extraction Date 11-Nov-20 26-Nov-20 L2529296-5 SIM GC/MS sample Stack n/a Split Ratio 5 Train Approved: Andrew Reid --e-signature--04-Dec-2020 Run Information Filename Run Date Final Volume **Dilution Factor** Analysis Units Instrument Column Run 1 20120213.D 12/3/2020 13:46 1 mL ug/sample MSD-2 Rtx-200 1610862 | Target Analytes | | Concentration ug/sample | | Limits | |---------------------|--------|-------------------------|---|--------| | Formaldehyde | 9,56 | 2.36 | | | | Acetaldehyde (B) | 14.76 | 0.91 | | | | Acetaldehyde (A) | 15.10 | 1.21 | | | | Propionaldehyde (A) | 18.93 | 0.44 | | | | Propionaldehyde (B) | 19.51 | 0.64 | | | | Acrolein (A) | NotFnd | <0.1 | U | | | Acrolein (B) | NotFnd | <0.1 | U | | | Total Aldehydes | | ug/sample | | | | Formaldehyde | | 2.36 | | | | Acetaldehyde | | 2.12 | | | | Propionaldehyde | | 1.08 | | | | Acrolein | | < 0.1 | | | #### Sample Analysis Report Sample Name ALS Sample ID Analysis Method Analysis Type 20-22050-ALD-6 TEST#2 APC OUTLET #2 (ALD-6) Sampling Date Extraction Date 11-Nov-20 26-Nov-20 Sample Matrix Sample Size Percent Moisture Split Ratio L2529296-6 SIM GC/MS sample Stack 1 Train n/a 5 Approved: Andrew Reid --e-signature--04-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120214.D 12/3/2020 14:27 1 mL ug/sample MSD-2 Rtx-200 1610862 | Target Analytes | | Concentration | | Limits | |---------------------|--------|---------------|---|--------| | Formaldehyde | 9.55 | 1.22 | | | | Acetaldehyde (B) | 14.72 | 0.76 | | | | Acetaldehyde (A) | 15.07 | | | | | Propionaldehyde (A) | 18.91 | 0.35 | | | | Propionaldehyde (B) | 19.49 | 0.5 | | | | Acrolein (A) | NotFnd | <0.1 | U | | | Acrolein (B) | NotFnd | <0.1 | U | | | Total Aldehydes | | ug/sample | | | | Formaldehyde | | 1.22 | | | | Acetaldehyde | | 1.83 | | | | Propionaldehyde | | 0.85 | | | | Acrolein | | < 0.1 | | | #### Sample Analysis Report Sample Name ALS Sample ID Analysis Method **20-22050-ALD-7 TEST#3 APC OUTLET #2 (ALD-7)** L2529296-7 SIM GC/MS Sampling Date Extraction Date 11-Nov-20 26-Nov-20 Analysis Type Sample Matrix Sample Size Percent Moisture sample Stack 1 Train n/a Split Ratio 5 Approved: Andrew Reid --e-signature-- 04-Dec-2020 **Run Information** Run 1 Filename 20120215.D 12/3/2020 15:07 Run Date Final Volume Dilution Factor Analysis Units mL ug/sample MSD-2 Rtx-200 1610862 Instrument Column U | | Ret. | Concentration | on | | |---------------------|--------|---------------|-------|--------| | Target Analytes | Time | ug/sample | Flags | Limits | | Formaldehyde | 9.55 | 1.66 | | | | Acetaldehyde (B) | 14.73 | 0.93 | | | | Acetaldehyde (A) | 15.08 | 1.24 | | | | Propionaldehyde (A) | 18.92 | 0.46 | | | | Propionaldehyde (B) | 19.50 | 0.65 | | | | Acrolein (A) | NotFnd | <0.1 | U | | | Acrolein (B) | NotFnd | <0.1 | U | | | Total Aldehydes | | ug/sample | | | | Formaldehyde | | 1.66 | | | | Acetaldehyde | | 2.17 | | | | Propionaldehyde | | 1.11 | | | | Acrolein | | <0.1 | | | #### Sample Analysis Report Sample Name ALS Sample ID Analysis Method Percent Moisture Split Ratio **20-22050-ALD-BLANK2 APC OUTLET #2 (ALD-8)** L2529296-8 SIM GC/MS Sampling Date Extraction Date 11-Nov-20 26-Nov-20 Analysis Type Sample Matrix Sample Size sample Stack 1 Train n/a Approved: Andrew Reid --e-signature--04-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120209.D 12/3/2020 11:05 mL ug/sample MSD-2 Rtx-200 1610862 | Target Analytes | Ret.
Time | Concentration ug/sample Flags Limits | |---------------------|--------------|--------------------------------------| | Formaldehyde | 9.57 | 0.98 M | | Acetaldehyde (B) | 14.75 | 0.63 | | Acetaldehyde (A) | 15.10 | 0.81 | | Propionaldehyde (A) | 18.94 | 0.32 | | Propionaldehyde (B) | 19.51 | 0.47 | | Acrolein (A) | NotFnd | <0.1 U | | Acrolein (B)
 NotFnd | <0.1 U | | Total Aldehydes | | ug/sample | | Formaldehyde | | 0.98 | | Acetaldehyde | | 1.44 | | Propionaldehyde | | 0.79 | | Acrolein | | <0.1 | Indicates that a peak has been manually integrated. Indicates that this compound was not detected above the MDL. #### **Laboratory Control Sample Analysis Report** Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix Sample Size Percent Moisture Split Ratio Laboratory Control Sample WG3444795-2 SIM GC/MS LCS QC 1 n/a Sampling Date Extraction Date n/a 26-Nov-20 n/a 5 Approved: Andrew Reid --e-signature--04-Dec-2020 **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120204.D 12/3/2020 7:45 1 mL ug/sample MSD-2 Rtx-200 1610862 | Target Analytes | ug spiked | Ret.
Time | % Rec | Flags | Limits | |---------------------|-----------|--------------|-------|-------|--------| | Formaldehyde | 5 | 9.54 | 75 | | | | Acetaldehyde (B) | 5 | 14.73 | 51 | | | | Acetaldehyde (A) | 5 | 15.07 | 68 | | | | Propionaldehyde (A) | 5 | 18.90 | 32 | | | | Propionaldehyde (B) | 5 | 19.47 | 43 | | | | Acrolein (A) | 5 | 19.26 | 34 | | | | Acrolein (B) | 5 | 20.37 | 32 | | | | Total Aldehydes | | | | | | | Formaldehyde | | | 75 | | 70-130 | | Acetaldehyde | | | 119 | | 70-130 | | Propionaldehyde | | | 75 | | 70-130 | | Acrolein | | | 66 | | 70-130 | ## **Laboratory Control Sample Analysis Report** Sample Name ALS Sample ID Analysis Method Laboratory Control Sample WG3444795-4 SIM GC/MS Analysis Type Sample Matrix Sample Size LCS QC 1 n/a n/a 5 Percent Moisture Split Ratio Sampling Date Extraction Date n/a 26-Nov-20 Approved: Andrew Reid --e-signature--04-Dec-2020 #### **Run Information** Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20120203.D 12/3/2020 7:04 1 mL 1 ug/sample MSD-2 Rtx-200 1610862 | Target Analytes | ug spiked | Ret. | % Rec | Elage | Limits | |---------------------|-----------|--------|--------|-------|--------| | - | ug spikcu | 111116 | 70 REC | riays | Limits | | Formaldehyde | 2.5 | 9.59 | 102 | | | | Acetaldehyde (B) | 2.5 | 14.77 | 63 | | | | Acetaldehyde (A) | 2.5 | 15.11 | 81 | М | | | Propionaldehyde (A) | 2.5 | 18.93 | 43 | | | | Propionaldehyde (B) | 2.5 | 19.50 | 61 | | | | Acrolein (A) | 2.5 | 19.30 | 13 | | | | Acrolein (B) | 2.5 | 20.40 | 12 | | | | Total Aldehydes | | | | | | | Formaldehyde | | | 102 | | 70-130 | | Acetaldehyde | | | 144 | | 70-130 | | Propionaldehyde | | | 104 | | 70-130 | | Acrolein | | | 25 | | 70-130 | Indicates that a peak has been manually integrated. #### **APPENDIX 20** SVOC and VOST Proof Data (15 pages) 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 # **Certificate of Analysis** ALS Project Contact: Lynne Wrona ALS Project ID: ORT100 ALS WO#: L2514397 Date of Report 30-Oct-20 Date of Sample Receipt 8-Oct-20 Client Name: : ORTECH Environmental Client Address: 804 Southdown Road Mississauga, ON L5J 2Y4 Canada Client Contact: Chris Belore Client Project ID: 22050 Covanta COMMENTS: CB by LRGC/MS - Isotope dilution Certified by: Ron McLeod, Ph.D. Technical Director Results in this certificate relate only to the samples as submitted to the laboratory. This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd. | nple Analysis Su
GLASSWARE | mmary Report | |--|--| | | | | PROOF | | | L2514397-57 | | | | | | sample | | | | | | | | | 电二氯化物 化二氯化物 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基 | | | 28-Oct-20 | | | ng/sample | TO SECURE THE THE SECURE SECU | | <10 | | | | | | | | | | Ü | | | | | | ŭ | | | Ü | | | U | | | ů, | | <10 | | | %Rec | | | 93 | | | 114 | | | 125 | | | 131 | | | 108 | | | | 1 sample n/a Media Prep n/a 28-Oct-20 ng/sample <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 ## **Certificate of Analysis** ALS Project Contact: Lynne Wrona > ALS Project ID: **ORT100** ALS WO#: L2514397 Date of Report 2-Nov-20 Date of Sample Receipt 8-Oct-20 Client Name: **ORTECH** Client Address: 804 Southdown Road MIssissauga, ON L5J 2Y4 Canada Chris Belore **Client Contact:** Client Project ID: 22050 Covanta COMMENTS: Chlorophenols as acetate derivatives by SIM GC/MS Certified by: Ron McLeod, PhD Laboratory Manager and Technical Director | | | | ALS Environm | enta | |-------------------------------------|----------------|-------|--------------------|------| | | S | ample | ⊇ Analysis Sumr | nar | | Sample Name | Method Blank | | GLASSWARE
PROOF | | | ALS Sample ID | WG3433983-1 | | L2514397-57 | | | Sample Size | | | 1 | | | Sample units | sample | | sample | | | Moisture Content | n/a | | n/a | | | Matrix | QC | | Media Prep | | | Sampling Date | n/a | | n/a | | | Extraction Date | 28-Oct-20 | | 28-Oct-20 | | | Target Analytes | ng/sample | | ng/sample | | | | | | 그 그 사람들이 가게 되었다. | | | 2-Chlorophenol | <50 | U | <50 | | | 3-Chlorophenol | <50 | U | <50 | U | | 4-Chlorophenol | < 50 | U | <50 | | | 2,6-Dichlorophenol | <50 | U | <50 | | | 2,4/2,5-Dichlorophenol | <50 | U | <50 | U | | 3,5-Dichlorophenol | <50 | Ų | <50 | U | | 2,3-Dichlorophenol | <50 | U | <50 | U | | 3,4-Dichlorophenol | <50 | U | <50 | L | | 2,4,6-Trichlorophenol | <50 | U | <50 | L | | 2,3,6-Trichlorophenol | <50 | U | <50 | L | | 2,3,5-Trichlorophenol | <50 | U | <50 | ι | | 2,4,5-Trichlorophenol | <50 | U | <50 | L | | 2,3,4-Trichlorophenol | <50 | U | <50 | ι | | 3,4,5-Trichlorophenol | <50 | U | <50 | ι | | 2,3,5,6/2,3,4,6-Tetrachlorophenol | <50 | U | <50 | U | | 2,3,4,5-Tetrachlorophenol | <50 | U | <50 | U | | Pentachlorophenol | <50 | U | <50 | U | | Extraction Standards | % Rec | | % Rec | | | 13C6-4-Chlorophenol (ES) | 130 | | 120 | | | 13C6-2,4-Dichlorophenol (ES) | 128 | | 109 | | | 13C6-2,4,5-Trichlorophenol (ES) | 78 | | 73 | | | 13C6-2,3,4,5-Tetrachlorophenol (ES) | 72 | | 68 | | | 13C6-Pentachlorophenol (ES) | 57 | | 60 | | U Indicates that this compound was not detected above the LOR. 1435 Norjohn Court, Unit 1, Burlington, ON, Canada L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 #### **Certificate of Analysis** ALS Project Contact: Lynne Wrona > **ORT100** ALS Project ID: ALS WO#: L2514397 Date of Report 11-Nov-20 Date of Sample Receipt 8-Oct-20 Client Name: **ORTECH Environmental** Client Address: 804 Southdown Road Mississauga, ON L5J 2Y4 Canada **Client Contact:** Chris Belore 22050 Covanta Client Project ID: COMMENTS: PCDD/F by EPA M23 Certified by: Ron McLeod, PhD Director, Air Toxics & Special Chemistries, Life Sciences Results in this certificate relate only to the samples as submitted to the laboratory. | ALS Life Sciences | | | | | | | | |-----------------------------------|--|--------------------------------------|--|--|--|--|--| | Sample Analysis summary Report | | | | | | | | | Sample Name | GLASSWARE
PROOF | | | | | | | | ALS Sample ID | L2514397-57 | | | | | | | | Sample Size | | | | | | | | | Sample size units | Proof | | | | | | | | Percent Moisture | n/a | | | | | | | | Sample Matrix | Media Prep | | | | | | | | Sampling Date | | | | | | | | | Extraction Date | n/a
28-Oct-20 | | | | | | | | | WATER TO THE | | | | | | | | Farget Analytes | pg | | | | | | | | 2,3,7,8-TCDD | <2.3 | | | | | | | | 1,2,3,7,8-PeCDD | <2.2 | | | | | | | | 1,2,3,4,7,8-HxCDD | <4,9 | | | | | | | | 1,2,3,6,7,8-HxCDD | <4.3 | | | | | | | | 1,2,3,7,8,9-HxCDD | <4.7 | | | | | | | | 1,2,3,4,6,7,8-HpCDD | <11 | | | | | | | | OCDD | 284 | | | | | | | | 2,3,7,8-TCDF | <2.4 | | | | | | | | 1,2,3,7,8-PeCDF | <1.5 | | | | | | | | 2,3,4,7,8-PeCDF | <1.4 | | | | | | | | 1,2,3,4,7,8-HxCDF | <1.9 | | | | | | | | 1,2,3,6,7,8-HxCDF | <1.8 | | | | | | | | 2,3,4,6,7,8-HxCDF | <2.0 | | | | | | | | 1,2,3,7,8,9-HxCDF | <2.3 | | | | | | | | 1,2,3,4,6,7,8-HpCDF | <35 | | | |
| | | | 1,2,3,4,7,8,9-HpCDF | <45 | | | | | | | | OCDF | <25 | | | | | | | | Extraction Standards | | | | | | | | | | | | | | | | | | 13C12-2,3,7,8-TCDD | 74 | 물건을 걸릴 때문로 말을 보고 있다는 말을 살 수 있다. 그 것은 | | | | | | | 13C12-1,2,3,7,8-PeCDD | 61 | 근로 하는 하는 그들은 그를 하는 것으로 하는 것을 하는 것이다. | | | | | | | 13C12-1,2,3,6,7,8-HxCDD | 79 | | | | | | | | 13C12-1,2,3,4,6,7,8-HpCDD | 55 | | | | | | | | 13C12-OCDD | 42 | | | | | | | | 13C12-2,3,7,8-TCDF | 77 | | | | | | | | 13C12-1,2,3,7,8-PeCDF | 65 | | | | | | | | 13C12-1,2,3,6,7,8-HxCDF | 84 | | | | | | | | 13C12-1,2,3,4,6,7,8-HpCDF | 63 | | | | | | | | Homologue Group Totals | pg | | | | | | | | Total-TCDD | <2.3 | | | | | | | | Total-PeCDD | <2.2 | | | | | | | | Total-HxCDD | <4.9 | | | | | | | | Total-HpCDD | 17.9 | | | | | | | | Total-TCDF | 9.50 | | | | | | | | Total-PeCDF | <1.5 | | | | | | | | Total-HxCDF | <2.3 | | | | | | | | Total-HpCDF | <45 | | | | | | | | Toxic Equivalency - (WHO 2005) | | | | | | | | | | | | | | | | | | Lower Bound PCDD/F TEQ (WHO 2005) | 0.0852 | | | | | | | | Mid Point PCDD/F TEQ (WHO 2005) | 4.30 | | | | | | | | Upper Bound PCDD/F TEQ (WHO 2005) | 8.40 | | | | | | | | ALS Life Sciences | | | | | | | |-----------------------------------|---|--|--|--|--|--| | | Quality Control Summary Report | | | | | | | Sample Name | Method Blank | | | | | | | | | | | | | | | ALS Sample ID | WG3433983-1 | | | | | | | Sample Size | | | | | | | | Sample size units | Proof | | | | | | | Percent Moisture | n/a | | | | | | | Sample Matrix | | | | | | | | Sampling Date | n/a | | | | | | | Extraction Date | 28-Oct-20 | | | | | | | Target Analytes | pg | | | | | | | 2,3,7,8-TCDD | 4.1 | | | | | | | 1,2,3,7,8-PeCDD | , en la la la 1977 de la casa de la casa de la calacteria de la calacteria de la calacteria de la calacteria d
La la | | | | | | | 1,2,3,4,7,8-HxCDD | <9.9 | | | | | | | 1,2,3,6,7,8-HxCDD | 8.7. | | | | | | | 1,2,3,7,8,9-HxCDD | | | | | | | | 1,2,3,4,6,7,8-HpCDD | p_{0} , | | | | | | | 1,2,3,4,6,7,6-прСDD
ОCDD |] | | | | | | | 2,3,7,8-TCDF | | | | | | | | 1,2,3,7,8-PeCDF | oder de de grego t fil e de la gregot en de la proposition de modern de proposition de la despressión de producti
Del la gregot en de < 2.8 després de la gregot en després de la gregot de la gregot de la gregot de la gregot de | | | | | | | 2,3,4,7,8-PeCDF | | | | | | | | 1,2,3,4,7,8-HxCDF | | | | | | | | 1,2,3,6,7,8-HxCDF | | | | | | | | | | | | | | | | 2,3,4,6,7,8-HxCDF | ###### 5:9 #################################### | | | | | | | 1,2,3,7,8,9-HxCDF | 요즘 : [1] : [1] [2] : [2 | | | | | | | 1,2,3,4,6,7,8-HpCDF | '보고 보고 <6.7 살고 그리는 사람은 사람은 사람이 되었다. | | | | | | | 1,2,3,4,7,8,9-HpCDF
OCDF | <u> </u> | | | | | | | | | | | | | | | Extraction Standards | | | | | | | | 13C12-2,3,7,8-TCDD | - 1986 | | | | | | | 13C12-1,2,3,7,8-PeCDD | | | | | | | | 13C12-1,2,3,6,7,8-HxCDD | | | | | | | | 13C12-1,2,3,4,6,7,8-HpCDD | 사용 : | | | | | | | 13C12-0CDD | # 15 | | | | | | | 13C12-2,3,7,8-TCDF | | | | | | | | 13C12-1,2,3,7,8-PeCDF | 59 | | | | | | | 13C12-1,2,3,6,7,8-HxCDF | 66 | | | | | | | 13C12-1,2,3,4,6,7,8-HpCDF | 59 | | | | | | | Homologue Group Totals | ρg | | | | | | | Total-TCDD | <4.1 | | | | | | | Total-PeCDD | | | | | | | | Total-HxCDD | | | | | | | | Total-HpCDD | | | | | | | | Total-TCDF | <2.3 | | | | | | | Total-PeCDF | <2.8 | | | | | | | Total-HxCDF | 5.7 | | | | | | | Total-HpCDF | 3.8
< | | | | | | | | | | | | | | | Toxic Equivalency - (WHO 2005) | | | | | | | | Lower Bound PCDD/F TEQ (WHO 2005) | | | | | | | | Mid Point PCDD/F TEQ (WHO 2005) | Electric 6.77 | | | | | | | Upper Bound PCDD/F TEQ (WHO 2005) | 4 4 5 5 6 13.5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | | | | 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 #### **Certificate of Analysis** ALS Project Contact: Lynne Wrona ORT100 ALS WO#: L2514397 Date of Report 20-Nov-20 Date of Sample Receipt 8-Oct-20 ALS Project ID: Client Name: ORTECH Environmental Client Address: 804 Southdown Road Mississauga, ON L5J 2Y4 Canada Client Contact: Chris Belore Client Project ID: 22050 Covanta COMMENTS: PAH by CARB method 429 (LR option)- Isotope dilution Low levels of fluorene and tetralin were detected in the proof. The ion abundance ratios were outside the control limits and the peaks detected are likely due to interferences. The glassware is approved for the collection of samples for PAH analysis. Certified by: Steve Kennedy Technical Supervisor Results in this certificate relate only to the samples as submitted to the laboratory. | MATERIAL PROPERTY OF THE PROPE | | | WOOTOMONANCE STREET, S | Sciences | |
--|--------------|--------|--|--|--| | Sample Name | Method Blank | | GLASSWARE
PROOF | Summary Report | | | ALS Sample ID | WG3433983-1 | | L2514397-57 | | | | Sample Size | 1 | | 1 | | | | Sample units | Sample | | Sample | | | | Moisture Content | n/a | | n/a | | | | Matrix | QC | | Media Prep | | | | Sampling Date
Extraction Date | n/a | | n/a | | | | Extraction Date | 28-Oct-20 | - | 28-Oct-20 | *************************************** | | | Target Analytes | ng | | ng | | | | Naphthalene | <10 | U | <10 | Ú | | | 2-Methylnaphthalene | <10 | U | <10 | U | | | 1-Methylnaphthalene
Acenaphthylene | <10
<10 | U | <10
<10 | U | | | Acenaphthene | <10 | U | <10 | Ŭ | | | Fluorene | 30.4 | R | 33.3 | R | | | Phenanthrene | <10 | U | <10 | Ü | | | Anthracene
Fluoranthene | 10.5
<10 | U | <10 | u de la companya l | | | Pyrene | <10
<10 | U | <10
<10 | U
U | | | Benzo(a)Anthracene | <10 | Ŭ | <10 | Ŭ | | | Chrysene | <10 | U | <10 | U | | | Benzo(b)Fluoranthene | <10 | U | <10 | U | | | Benzo(k)Fluoranthene
Benzo(e)Pyrene | <10
<10 | U
U | <10
<10 | U
U | | | Benzo(a)Pyrene | <10
<10 | U | <10
<10 | Ü | | | Perylene | <10 | υ | <10 | Ú | | | Indeno(1,2,3-cd)Pyrene | <10 | U | <10 | U | | | Dibenzo(a,h)Anthracene | <10 | U | <10 | U | | | Benzo(g,h,i)Perylene | <10 | U | <10 | eu
Nachara | | | Additional Analytes | | | | | | | Tetralin
Quinoline | | | 58.5 | R | | | 2-Chloronaphthalene | | | <10
<10 | U | | | Biphenyl | | | <10 | Ü | | | o-Terphenyl | | | <10 | U | | | 1-Methylphenanthrene | | | <10 | U | | | 9-Methylphenanthrene
2-methylanthracene | | | <10
<10 | U | | | 9,10-dimethylanthracene | | | <10
<10 | U | | | m-terphenyl | | | <10 | Ü | | | p-terphenyl | | | <10 | U | | | Benzo(a)fluorene | | | <10 | Ů. | | | Benzo(b)fluorene
Benzo(b)anthracene | | | <10 | U
U | | | Benzo(j)fluoranthene | | | <10
<10 | Ü | | | 7,12-Dimethylbenzo(a)anthracene | | | <10
<10 | Ü | | | 3-Methylcholanthrene | | | <50 | U | | | Dibenz(a,j)acridine | | | <50 | Ü | | | 7H-Dibenzo(c,g)carbazole Picene | | | <50 | | | | Dibenzo(a,e)pyrene | | | <50
<50 | U | | | dibenzo(a,i)pyrene | | | <50 | Ü | | | Coronene | | | <50 | U | | | Extraction Standards | % Rec | | % Rec | | | | Naphthalene D8 | 39.9 | R | 39.4 | R | | | 2-Methylnaphthalene-D10 | 64.5 | | 61.9 | | | | Acenaphthylene D8
Phenanthrene D10 | 57.2 | | 57.2 | | | | Anthracene-D10 | 60.6
32.5 | | 57.8
32.2 | | | | Fluoranthene D10 | 59.8 | | 60.1 | | | | Benz(a)Anthracene-D12 | 53.7 | | 57.3 | | | | Chrysene D12 | 59.4 | | 58.7 | | | | Benzo(b)Fluoranthene-D12 Benzo(k)Fluoranthene-D12 | 74.9
76.7 | | 78.7
80.7 | | | | Benzo(a)Pyrene D12 | 76.7
77 | | 80.7
83.3 | | | | Perylene D12 | 71.1 | | 77.7 | | | | Indeno(1,2,3,cd)Pyrene-D12 | 67.4 | | 74.4 | | | | Dibenz(a,h)Anthracene-D14 | 68.6 | | 73.9 | | | | Benzo(g,h,i)Perylene D12 | 77.7 | | 79.7 | | | U Indicates that this compound was not detected above the LOD. Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. 1435 Norjohn Court, Unit 1, Burlington, ON, Canada L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 #### **Certificate of Analysis** ALS Project Contact: Lynne Wrona ALS Project ID: **ORT100** ALS WO#: L2514397 Date of Report 10-Nov-20 Date of Sample Receipt 8-Oct-20 Client Name: Client Address: **ORTECH Environmental** 804 Southdown Road Mississauga, ON L5J 2Y4 Canada **Client Contact:** Chris Belore Client Project ID: 22050 Covanta COMMENTS: PCB Congeners by EPA 1668C PCB Congener Group Totals and Total PCB are a sum of detected values, including EMPC values, consistent with USEPA CLP SOW CBC1.2 Certified by: Ron McLeod, PhD Director, Air Toxics & Special Chemistries, Life Sciences Results in this certificate relate only to the samples as submitted to
the laboratory. | Sample Analysis Summary Report | | | | | | | | | |--|---|--|--|--|--|--|--|--| | | ALS Life Sciences Sample Analysis Summary Report | | | | | | | | | GLASSWARE
PROOF | | | | | | | | | | L2514397-57 | Sample | | | | | | | | | | 그런 사고 그리고 있는 그리고 하는 사람이를 가장 주목을 가고 된 것이 하지 않는 사람이 되었다. 그리고 있는 사람이 되었다. | 소리 내가 되는 사람들은 그리고 얼마를 통해 생각 생각하는 것이 되는 것이 되었다. 그리고 있는 것은 점점이 하고 있다. | | | | | | | | | | 28-Oct-20 | | | | | | | | | | Þď | 등로 발생 회사이 되면 어떻게 되는 밤살 날날 | 化环氯化物 医皮肤 医二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基 | \$1.4 | | | | | | | | | | % Rec | | | | | | | | | | 78 | 그리고 그리고 있는 사람들은 그리고 하는 가장 하는 가장 하는 것이 되었다. 그리고 있는 것이 없는 것이 없는 것이 없는 것이다. | 51 | | | | | | | | | | | 1 Sample n/a Nedia Prep n/a 28-Oct-20 Pg <2.4 <2.4 <1.4 10.5 <1.3 3.64 <1.4 <1.1 <1.1 <1.1 <1.4 <1.1 <1.4 <1.1 | | | | | | | | | | ALS Life Sciences | | | | | | | |--------------------------------|--|--|--|--|--|--|--| | Quality Control Summary Report | | | | | | | | | Sample Name | Method Blank | | | | | | | | | | | | | | | | | ALS Sample ID | WG3433983-1 | | | | | | | | Sample Size | 1 | | | | | | | | Sample size units | Sample | | | | | | | | Percent Moisture | n/a | | | | | | | | Sample Matrix | QC . | | | | | | | | Sampling Date | n/a | | | | | | | | Extraction Date | 28-Oct-20 | | | | | | | | | | | | | | | | | Target Analytes | PG | | | | | | | | PCB-081 | [프리카 마스크 프로ON - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | | | | | | PCB-077 | 3.6 | | | | | | | | PCB-123 | Since i is the state of i is i in the second state i is the state of i is stated in i . | | | | | | | | PCB-118 | | | | | | | | | PCB-114 | | | | | | | | | PCB-105 | 발생들하는 항상 호상 시간 등 등 하는 하는 말을 받았다. | | | | | | | | PCB-126 | | | | | | | | | PCB-167 | 경기 : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] | | | | | | | | PCB-156/157 | | | | | | | | | PCB-169 | | | | | | | | | PCB-189 | | | | | | | | | Extraction Standards | % Rec | | | | | | | | 13C12-PCB-081 | 62 | | | | | | | | 13C12-PCB-077 | E C | | | | | | | | 13C12-PCB-123 | | | | | | | | | 13C12-PCB-118 | 61 | | | | | | | | 13C12-PCB-114 | 60 | | | | | | | | 13C12-PCB-105 | 62 | | | | | | | | 13C12-PCB-126 | 65 | | | | | | | | 13C12-PCB-167 | 64 | | | | | | | | 13C12-PCB-156/157 | 66 | | | | | | | | 13C12-PCB-169 | 73 | | | | | | | | 13C12-PCB-189 | 69 | | | | | | | | | | | | | | | | | oxic Equivalency - (WHO 2005) | | | | | | | | | Lower Bound PCB TEQ | 0.00 | | | | | | | | Mid Point PCB TEQ | 0.0924 | | | | | | | | Upper Bound PCB TEQ | 0.185 | | | | | | | 1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567 ## **Certificate of Analysis** ALS Project Contact: Lynne Wrona ALS Project ID: ORT100 ALS WO#: L2514397 Date of Report 29-Oct-20 Date of Sample Receipt 8-Oct-20 Client Name: **ORTECH Environmental** Client Address: 804 Southdown Road Mississauga, ON L5J 2Y4 CANADA Client Contact: Chris Belore Client Project ID: 22050 COVANTA COMMENTS: VOCs via SW846 Method 5041A/8260C Ketone data by VOST analyses are estimated values only Certified by: Ron McLeod, Ph.D. Technical Director Results in this certificate relate only to the samples as submitted to the laboratory. #### **ALS Environmental** #### Sample Analysis Report Sample Name ALS Sample ID Analysis Method Analysis Type Method Blank WG3434617-1 VOCs by 5041A/8260C sample QC Sampling Date Extraction Date n/a 29-Oct-20 Approved: Andrew Reid --e-signature--29-Oct-2020 Sample Matrix Split Ratio 1 Workgroup WG3434617 Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column Run 1 20102905.D 10/29/2020 7:22 1 mL ug/sample MSD-3 Rxi-624Sil MS 1360231 | Target Analytes | Rel
Tin | | oncentration
ug/sample | Flags | |-----------------------------|------------|------|---------------------------|-------| | Dichlorodifluoromethane | | 1.33 | <0.02 | U | | Vinyl Chloride | | 2.12 | <0.02 | U | | Bromomethane | | 2.42 | <0.09 | U | | Trichlorofluoromethane | | 2.84 | <0.02 | U | | 1,1-Dichloroethene | | 3.47 | < 0.01 | U | | Acetone | | 3.51 | <0.1 | U | | Methylene Chloride | | 4.48 | <0.1 | U | | trans,1,2-Dichloroethene | | 4.63 | <0.01 | U | | 2-Butanone | | 6.14 | < 0.01 | U | | Chloroform | | 6.70 | < 0.01 | U | | 1,1,1-Trichloroethane | | 7.36 | <0.01 | U | | Carbon Tetrachloride | | 7.49 | < 0.01 | U | | Benzene | | 7.99 | <0.05 | U | | 1,2-Dichloroethane | | 8.11 | < 0.01 | U | | Trichloroethene | | 9.18 | <0.01 | U | | 1,2-Dichloropropane | | 9.36 | <0.01 | U | | Bromodichloromethane | | 0.12 | <0.01 | U | | Toluene | | 1.29 | <0.05 | U | | 1,1,2-Trichloroethane | | 2.03 | <0.02 | U | | Tetrachloroethene | | 1.97 | < 0.01 | U | | Chlorodibromomethane | | 2.36 | <0.01 | U | | Ethylene Dibromide | | 2.59 | <0.02 | U | | Ethylbenzene | | 3.17 | <0.01 | U | | M&P-Xylene | | 3.31 | <0.03 | U | | D-Xylene | | 3.73 | <0.01 | U | | Styrene | | 3.77 | <0.02 | U | | Bromoform | | 3.97 | <0.01 | U | | Isopropylbenzene | | 4.12 | <0.02 | U | | 1,3,5-Trimethylbenzene | | 4.90 | <0.02 | U | | Trichlorotrifluoroethane | Not | | <0.02 | U | | 1,3-Butadiene | Not | Fnd | <0.02 | U | | Field Standard | ug spike | | % Rec | | | d10-Ethylbenzene(SPK) | 0.2 1 | 3.09 | 83.7 | | | Surrogate Standards | | | % Rec | | | d4-1,2-Dichloroethane(SURR) | 0.25 | 7.97 | 103.3 | | | d8-Toluene(SURR) | 0.25 1 | 1.20 | 91.8 | | | 4-Bromofluorobenzene(SURR) | 0.25 1 | 4.30 | 73.5 | | | Internal Standards | | | % Rec | | | Bromochloromethane | 1 | 6.89 | 96.3 | | | 1,4-Difluorobenzene | | 8.81 | 90.2 | | | d5-Chlorobenzene | 1 1 | 3.02 | 86.8 | | Indicates that this compound was not detected above the RL. #### **ALS Environmental** #### Sample Analysis Report Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix VOST PROOF L2514397-71 VOCs by 5041A/8260C Run 1 Ret. Concentration sample Media Prep Sampling Date Extraction Date n/a 29-Oct-20 Approved: Andrew Reid --e-signature--29-Oct-2020 Split Ratio Workgroup WG3434617 Filename Run Date Final Volume **Run Information** 20102906.D 10/29/2020 7:56 mL Dilution Factor ug/sample MSD-3 Analysis Units Instrument Column Rxi-624Sil MS 1360231 | Target Analytes | Tim | e ug/sample | Flags | |--|-----------|-------------|-------| | Dichlorodifluoromethane | NotF | nd <0.02 | U | | Vinyl Chloride | NotF | nd <0.02 | U | | Bromomethane | | .39 <0.09 | U | | Trichlorofluoromethane | NotF | nd <0.02 | U | | 1,1-Dichloroethene | | .42 <0.01 | U | | Acetone | | .48 <0.1 | U | | Methylene Chloride | | .14 <0.1 | U | | trans,1,2-Dichloroethene | 2 | .64 <0.01 | U | | 2-Butanone | • | .56 <0.01 | U | | Chloroform | 7 | .30 <0.01 | U | | 1,1,1-Trichloroethane | | .36 <0.01 | U | | Carbon Tetrachloride | NotF | nd <0.01 | U | | Benzene | 7 | .93 <0.05 | U | | 1,2-Dichloroethane | NotF | | U | | Trichloroethene | NotF | | U | | 1,2-Dichloropropane | Note | | U | | Bromodichloromethane | NotF | | U | | Toluene | | .25 <0.05 | U | | 1,1,2-Trichloroethane | NotF | | U | | Tetrachloroethene | NotF | | U | | Chlorodibromomethane | NotF | | U | | Ethylene Dibromide | NotF | | U | | Ethylbenzene | NotF | | U | | M&P-Xylene | NotF | | U | | O-Xylene | NotF | | U | | Styrene | NotF | | U | | Bromoform | NotF | | U | | Isopropylbenzene | NotF | | U | | 1,3,5-Trimethylbenzene | Note | | U | | Trichlorotrifluoroethane 1,3-Butadiene | Note | | U | | 1,3-butaulene | NotF | nd <0.02 | U | | Field Standard | ug spiked | % Rec | | | d10-Ethylbenzene(SPK) | 0.2 13 | .06 86.0 | | | Surrogate Standards | | % Rec | | | d4-1,2-Dichloroethane(SURR) | 0.25 | .92 110.6 | | | d8-Toluene(SURR) | | .16 91.2 | | | 4-Bromofluorobenzene(SURR) | | .27 79.6 | | | Internal Standards | | % Rec | | | Bromochloromethane | 1 6 | .84 88.7 | | | 1,4-Difluorobenzene | | .77 87.7 | | | d5-Chlorobenzene | | .99 93.4 | | Indicates that this compound was not detected above the RL. #### **APPENDIX 21** ORTECH Equipment Calibration Data (29 pages) | Project Number: 22050 | Date: November 9, 2020 | |--------------------------------------|------------------------| | Company: COVANTA | Operator: J. Grollman | | Location: DYEC | Analyzer ID VIG | | Test Location: Unit 1 - Quench Inlet | Test 1 | | THC Full Scale Setting | 100 | |------------------------|----------------------------| | Zero Gas (ppm) | <0.1 ppm | | Low Gas Value (ppm) | 20-35 % full scale setting | | Mid Gas Value (ppm) | 45-55 % full scale setting | | High Gas Value (ppm) | 80-90 % full scale setting | Perform analyzer calibration as per manufacturers instructions. Calculate the linearity factor "C" based on the zero and high gas values. Based on the calculated linearity, predict the analyzer response for low and mid values (D3 and D4). Calculate calibration error with the low and mid (B3 and B4) gasses. | | Cal.Gas
Value
(A) | Initial Analyzer
Response
(B) | Linearity
(B2-B1)/(A2-A1) | Predicted
Response
(A X C) | Calibration
Error %
((B)-(D)/AX100 | |------|-------------------------|-------------------------------------|------------------------------|----------------------------------|--| | Zero | 0 A1 | 0.45 B1 | 0.995 | | | | High
| 89.4 A2 | 89.38 B2 | 0.993
C | | | | Mid | 51.6 A4 | 51.3 в4 | | 51.3 d4 | -0.1 E4 | | Low | 30.51 аз | 30.88 вз | | 30.3 D3 | 1.7 E3 | Criteria +/-5% Note: If the calibration Error (E3 and E4) are greater than 5%, repeat the procedure until values are acceptable. Perform test. At the completion of the test or hourly; Calculate the calibration drift as a percent of full scale value. Introduce the zero and mid level gases at the probe and record data as the system final response. | | System Initial | System Final | Calibration Drift | |------|----------------|--------------|-------------------| | | Response (F) | Response (G) | (G-F)/span*100 | | Zero | 0 | 0.1 | -0.1 | | Mid | 30.88 | 30.3 | 0.6 | Criteria 3% | | Zero Response
Time (seconds) | | Upscale Response
Time (seconds) | |---------|---------------------------------|-----|------------------------------------| | Run 1 | 10 | | 15 | | Run 2 | 10 | | 15 | | Run 3 | 10 | AND | 15 | | Average | 10 | | 15 | | Project Number: 22050 | Date: November 9, 2020 | |--------------------------------------|------------------------| | Company: COVANTA | Operator: J. Grollman | | Location: DYEC | Analyzer ID VIG | | Test Location: Unit 1 - Quench Inlet | Test 2 | | THC Full Scale Setting | 100 | |------------------------|----------------------------| | Zero Gas (ppm) | <0.1 ppm | | Low Gas Value (ppm) | 20-35 % full scale setting | | Mid Gas Value (ppm) | 45-55 % full scale setting | | High Gas Value (ppm) | 80-90 % full scale setting | Perform analyzer calibration as per manufacturers instructions. Calculate the linearity factor "C" based on the zero and high gas values. Based on the calculated linearity, predict the analyzer response for low and mid values (D3 and D4). Calculate calibration error with the low and mid (B3 and B4) gasses. | | Cal.Gas
Value
(A) | Initial Analyzer
Response
(B) | Linearity
(B2-B1)/(A2-A1) | Predicted
Response
(A X C) | Calibration
Error %
((B)-(D)/AX100 | |------|-------------------------|-------------------------------------|------------------------------|----------------------------------|--| | Zero | 0 | A1 0.45 E | 0.995 | | | | High | 89.4 | A2 89.38 E | 0.995
32 C | | | | Mid | 51.6 | A4 51.3 E | 34 | 51.3 d4 | -0.1 E4 | | Low | 30.51 | аз 30.88 г | 33 | 30.3 p3 | 1.7 E3 | Criteria +/-5% Note: If the calibration Error (E3 and E4) are greater than 5%, repeat the procedure until values are acceptable. Perform test. At the completion of the test or hourly; Calculate the calibration drift as a percent of full scale value. Introduce the zero and mid level gases at the probe and record data as the system final response. | | System Initial | System Final | Calibration Drift | |------|----------------|--------------|-------------------| | | Response (F) | Response (G) | (G-F)/span*100 | | Zero | 0.1 | 0.55 | -0.45 | | Mid | 30.3 | 30.3 | 0.0 | Criteria 3% | | Zero Response
Time (seconds) | | Upscale Response
Time (seconds) | |---------|---------------------------------|-------|------------------------------------| | Run 1 | 10 | | 15 | | Run 2 | 10 | | 15 | | Run 3 | 10 | 14000 | 15 | | Average | 10 | | 15 | | Project Number: 22050 | Date: November 9, 2020 | |--------------------------------------|------------------------| | Company: COVANTA | Operator: J. Grollman | | Location: DYEC | Analyzer ID VIG | | Test Location: Unit 1 - Quench Inlet | Test 3 | | THC Full Scale Setting | 100 | |------------------------|----------------------------| | Zero Gas (ppm) | <0.1 ppm | | Low Gas Value (ppm) | 20-35 % full scale setting | | Mid Gas Value (ppm) | 45-55 % full scale setting | | High Gas Value (ppm) | 80-90 % full scale setting | Perform analyzer calibration as per manufacturers instructions. Calculate the linearity factor "C" based on the zero and high gas values. Based on the calculated linearity, predict the analyzer response for low and mid values (D3 and D4). Calculate calibration error with the low and mid (B3 and B4) gasses. | | Cal.Gas
Value
(A) | Initial Analyzer
Response
(B) | Linearity
(B2-B1)/(A2-A1) | Predicted
Response
(A X C) | Calibration
Error %
((B)-(D)/AX100 | |------|-------------------------|-------------------------------------|------------------------------|----------------------------------|--| | Zero | 0 A1 | 0.45 ва | 0.995 | | | | High | 89.4 A2 | 89.38 в2 | 0.995
c | | | | Mid | 51.6 A4 | 51.3 ва | | 51.3 D4 | -0.1 E4 | | Low | 30.51 аз | 30.88 вз | | 30,3 D3 | 1.7 ы | Criteria +/-5% Note: If the calibration Error (E3 and E4) are greater than 5%, repeat the procedure until values are acceptable. Perform test. At the completion of the test or hourly; Calculate the calibration drift as a percent of full scale value. Introduce the zero and mid level gases at the probe and record data as the system final response. | | System Initial | System Final | Calibration Drift | |------|----------------|--------------|-------------------| | | Response (F) | Response (G) | (G-F)/span*100 | | Zero | 0.55 | 0.5 | 0.05 | | Mid | 30.33 | 30.3 | 0.0 | Criteria 3% | | Zero Response
Time (seconds) | Upscale Response
Time (seconds) | |---------|---------------------------------|------------------------------------| | Run 1 | 10 | 15 | | Run 2 | 10 | 15 | | Run 3 | 10 | 15 | | Average | 10 | 15 | | Project Number: 22050 | Date: November 9, 2020 | |--------------------------------------|------------------------| | Company: COVANTA | Operator: J. Grollman | | Location: DYEC | Analyzer ID VIG | | Test Location: Unit 2 - Quench Inlet | Test 1 | | THC Full Scale Setting | 100 | |------------------------|----------------------------| | Zero Gas (ppm) | <0.1 ppm | | Low Gas Value (ppm) | 20-35 % full scale setting | | Mid Gas Value (ppm) | 45-55 % full scale setting | | High Gas Value (ppm) | 80-90 % full scale setting | Perform analyzer calibration as per manufacturers instructions. Calculate the linearity factor "C" based on the zero and high gas values. Based on the calculated linearity, predict the analyzer response for low and mid values (D3 and D4). Calculate calibration error with the low and mid (B3 and B4) gasses. | | Cal.Gas
Value
(A) | Initial Analyzer
Response
(B) | Linearity
(B2-B1)/(A2-A1) | Predicted
Response
(A X C) | Calibration Error % ((B)-(D)/AX100 | |------|-------------------------|-------------------------------------|------------------------------|----------------------------------|------------------------------------| | Zero | 0 A1 | 0.07 в1 | 0.998 | | | | High | 89.4 A2 | 89.28 в2 | 0.998
c | | and with the | | Mid | 51.6 A4 | 51.13 в4 | | 51.5 D4 | -0.7 е4 | | Low | 30.51 аз | 30.13 вз | | 30.4 рз | -1.0 E3 | Criteria +/-5% Note: If the calibration Error (E3 and E4) are greater than 5%, repeat the procedure until values are acceptable. Perform test. At the completion of the test or hourly; Calculate the calibration drift as a percent of full scale value. Introduce the zero and mid level gases at the probe and record data as the system final response. | | System Initial | System Final | Calibration Drift | |---|----------------|--------------|-------------------| | 000000000000000000000000000000000000000 | Response (F) | Response (G) | (G-F)/span*100 | | Zero | 0.07 | 0.45 | -0.38 | | Mid | 30.13 | 30.8 | -0.6 | Criteria 3% | | Zero Response
Time (seconds) | Upscale Response
Time (seconds) | |---------|---------------------------------|------------------------------------| | Run 1 | 10 | 15 | | Run 2 | 10 | 15 | | Run 3 | 10 | 15 | | Average | 10 | 15 | | Project Number: 22050 | Date: November 9, 2020 | |--------------------------------------|------------------------| | Company: COVANTA | Operator: J. Grollman | | Location: DYEC | Analyzer ID VIG | | Test Location: Unit 2 - Quench Inlet | Test 2 | | THC Full Scale Setting | 100 | |------------------------|----------------------------| | Zero Gas (ppm) | <0.1 ppm | | Low Gas Value (ppm) | 20-35 % full scale setting | | Mid Gas Value (ppm) | 45-55 % full scale setting | | High Gas Value (ppm) | 80-90 % full scale setting | Perform analyzer calibration as per manufacturers instructions. Calculate the linearity factor "C" based on the zero and high gas values. Based on the calculated linearity, predict the analyzer response for low and mid values (D3 and D4). Calculate calibration error with the low and mid (B3 and B4) gasses. | | Cal.Gas
Value
(A) | Initial Analyzer
Response
(B) | Linearity
(B2-B1)/(A2-A1) | Predicted
Response
(A X C) | Calibration
Error %
((B)-(D)/AX100 | |------|-------------------------|-------------------------------------|------------------------------|----------------------------------|--| | Zero | 0 A1 | 0.07 в1 | 0.998 | | | | High | 89.4 A2 | 89.28 в2 | 0.338
C | | | | Mid | 51.6 да | 51.13 в4 | | 51.5 D4 | -0.7 E4 | | Low | 30.51 аз | 30.13 вз | | 30.4 дз | -1.0 E3 | Criteria +/-5% Note: If the calibration Error (E3 and E4) are greater than 5%, repeat the procedure until values are acceptable. Perform test. At the completion of the test or hourly; Calculate the calibration drift as a percent of full scale value. Introduce the zero and mid level gases at the probe and record data as the system final response. | | System Initial
Response (F) | System Final
Response (G) | Calibration Drift
(G-F)/span*100 | |------|--------------------------------|------------------------------|-------------------------------------| | Zero | 0.45 | 0.47 | -0.02 | | Mid | 30.8 | 30.8 | 0.1 | Criteria 3% | | Zero Response
Time (seconds) | Upscale Response
Time (seconds) | |---------|---------------------------------|------------------------------------| | Run 1 | 10 | 15 | | Run 2 | 10 | 15 | | Run 3 | 10 | 15 | | Average | 10 | 15 | | Project Number:
22050 | Date: November 9, 2020 | |--------------------------------------|------------------------| | Company: COVANTA | Operator: J. Grollman | | Location: DYEC | Analyzer ID VIG | | Test Location: Unit 2 - Quench Inlet | Test 3 | | THC Full Scale Setting | 100 | |------------------------|----------------------------| | Zero Gas (ppm) | <0.1 ppm | | Low Gas Value (ppm) | 20-35 % full scale setting | | Mid Gas Value (ppm) | 45-55 % full scale setting | | High Gas Value (ppm) | 80-90 % full scale setting | Perform analyzer calibration as per manufacturers instructions. Calculate the linearity factor "C" based on the zero and high gas values. Based on the calculated linearity, predict the analyzer response for low and mid values (D3 and D4). Calculate calibration error with the low and mid (B3 and B4) gasses. | | Cal.Gas
Value
(A) | Initial Analyzer
Response
(B) | Linearity
(B2-B1)/(A2-A1) | Predicted
Response
(A X C) | Calibration
Error %
((B)-(D)/AX100 | |------|-------------------------|-------------------------------------|------------------------------|----------------------------------|--| | Zero | O A1 | 0.07 в1 | 0.998 | | | | High | 89.4 A2 | 89.28 в2 | 0.998
C | | | | Mid | 51.6 A4 | 51.13 в4 | 350 | 51.5 D4 | -0.7 e4 | | Low | 30.51 A3 | 30.13 вз | | 30.4 дз | -1.0 E3 | Criteria +/-5% Note: If the calibration Error (E3 and E4) are greater than 5%, repeat the procedure until values are acceptable. Perform test. At the completion of the test or hourly; Calculate the calibration drift as a percent of full scale value. Introduce the zero and mid level gases at the probe and record data as the system final response. | | System Initial
Response (F) | System Final
Response (G) | Calibration Drift
(G-F)/span*100 | |------|--------------------------------|------------------------------|-------------------------------------| | Zero | 0.47 | 0.2 | 0.27 | | Mid | 30.75 | 30.8 | 0.0 | Criteria 3% | | Zero Response
Time (seconds) | Upscale Response
Time (seconds) | |---------|---------------------------------|------------------------------------| | Run 1 | 10 | 15 | | Run 2 | 10 | 15 | | Run 3 | 10 | 15 | | Average | 10 | 15 | | Project Number: 22050 | Date: November 9, 2020 | |------------------------------------|------------------------| | Company: COVANTA | Operator: J. Grollman | | Location: DYEC | Analyzer ID VIG | | Test Location: Unit 1 - APC Outlet | Test 1 | | THC Full Scale Setting | 100 | |------------------------|----------------------------| | Zero Gas (ppm) | <0.1 ppm | | Low Gas Value (ppm) | 20-35 % full scale setting | | Mid Gas Value (ppm) | 45-55 % full scale setting | | High Gas Value (ppm) | 80-90 % full scale setting | Perform analyzer calibration as per manufacturers instructions. Calculate the linearity factor "C" based on the zero and high gas values. Based on the calculated linearity, predict the analyzer response for low and mid values (D3 and D4). Calculate calibration error with the low and mid (B3 and B4) gasses. | | Cal.Gas
Value
(A) | Initial Analyzer
Response
(B) | Linearity
(B2-B1)/(A2-A1) | Predicted
Response
(A X C) | Calibration
Error %
((B)-(D)/AX100 | |------|-------------------------|-------------------------------------|------------------------------|----------------------------------|--| | Zero | 0 | A1 0 B: | 1.007 | | | | High | 89.4 | A2 90 B3 | | | | | Mid | 51.6 | A4 50.6 вд | 170.94 | 51.9 D4 | -2.6 E4 | | Low | 30.51 | аз 29.8 в <u>з</u> | | 30.7 D3 | -3.0 es | Criteria +/-5% Note: If the calibration Error (E3 and E4) are greater than 5%, repeat the procedure until values are acceptable. Perform test. At the completion of the test or hourly; Calculate the calibration drift as a percent of full scale value. Introduce the zero and mid level gases at the probe and record data as the system final response. | | System Initial
Response (F) | System Final
Response (G) | Calibration Drift
(G-F)/span*100 | |------|--------------------------------|------------------------------|-------------------------------------| | Zero | 0 | 0.5 | -0.5 | | Mid | 29.8 | 31.0 | -1.2 | Criteria 3% | | Zero Response
Time (seconds) | Upscale Response
Time (seconds) | |---------|---------------------------------|------------------------------------| | Run 1 | 10 | 15 | | Run 2 | 10 | 15 | | Run 3 | 10 | 15 | | Average | 10 | 45. | | Project Number: 22050 | Date: November 9, 2020 | |------------------------------------|------------------------| | Company: COVANTA | Operator: J. Grollman | | Location: DYEC | Analyzer ID VIG | | Test Location: Unit 1 - APC Outlet | Test 2 | | THC Full Scale Setting | 100 | |------------------------|----------------------------| | Zero Gas (ppm) | <0.1 ppm | | Low Gas Value (ppm) | 20-35 % full scale setting | | Mid Gas Value (ppm) | 45-55 % full scale setting | | High Gas Value (ppm) | 80-90 % full scale setting | Perform analyzer calibration as per manufacturers instructions. Calculate the linearity factor "C" based on the zero and high gas values. Based on the calculated linearity, predict the analyzer response for low and mid values (D3 and D4). Calculate calibration error with the low and mid (B3 and B4) gasses. | | Cal.Gas
Value
(A) | Initial Analyzer
Response
(B) | Linearity
(B2-B1)/(A2-A1) | Predicted
Response
(A X C) | Calibration
Error %
((B)-(D)/AX100 | |------|-------------------------|-------------------------------------|------------------------------|----------------------------------|--| | Zero | 0 | A1 O B1 | 1.007 | | | | High | 89.4 | a2 90 в2 | | | | | Mid | 51.6 | A4 50.6 в4 | | 51.9 D4 | -2.6 E4 | | Low | 30.51 | аз 29.8 вз | | 30.7 дз | -3.0 ез | Criteria +/-5% Note: If the calibration Error (E3 and E4) are greater than 5%, repeat the procedure until values are acceptable. Perform test. At the completion of the test or hourly; Calculate the calibration drift as a percent of full scale value. Introduce the zero and mid level gases at the probe and record data as the system final response. | | System Initial | System Final | Calibration Drift | |------|----------------|--------------|-------------------| | | Response (F) | Response (G) | (G-F)/span*100 | | Zero | 0.5 | 0.6 | -0.1 | | Mid | 31 | 31.0 | 0.0 | Criteria 3% | | Zero Response
Time (seconds) | Upscale Response
Time (seconds) | |---------|---------------------------------|------------------------------------| | Run 1 | 10 | 15 | | Run 2 | 10 | 15 | | Run 3 | 10 | 15 | | Average | 10 | 15 | | Project Number: 22050 | Date: November 9, 2020 | |------------------------------------|------------------------| | Company: COVANTA | Operator: J. Grollman | | Location: DYEC | Analyzer ID VIG | | Test Location: Unit 1 - APC Outlet | Test 3 | | THC Full Scale Setting | 100 | |------------------------|----------------------------| | Zero Gas (ppm) | <0.1 ppm | | Low Gas Value (ppm) | 20-35 % full scale setting | | Mid Gas Value (ppm) | 45-55 % full scale setting | | High Gas Value (ppm) | 80-90 % full scale setting | Perform analyzer calibration as per manufacturers instructions. Calculate the linearity factor "C" based on the zero and high gas values. Based on the calculated linearity, predict the analyzer response for low and mid values (D3 and D4). Calculate calibration error with the low and mid (B3 and B4) gasses. | | Cal.Gas
Value
(A) | Initial Analyzer
Response
(B) | Linearity
(B2-B1)/(A2-A1) | Predicted
Response
(A X C) | Calibration
Error %
((B)-(D)/AX100 | |------|-------------------------|-------------------------------------|---------------------------------|----------------------------------|--| | Zero | 0 A1 | 0 81 | 1.007 | | Street Section 1 | | High | 89.4 A2 | 90 B2 | | | | | Mid | 51.6 A4 | 50.6 в4 | | 51.9 D4 | -2.6 E4 | | Low | 30.51 A3 | 29.8 вз | Control Medical Control Control | 30.7 дз | -3.0 E3 | Criteria +/-5% Note: If the calibration Error (E3 and E4) are greater than 5%, repeat the procedure until values are acceptable. Perform test. At the completion of the test or hourly; Calculate the calibration drift as a percent of full scale value. Introduce the zero and mid level gases at the probe and record data as the system final response. | | System Initial
Response (F) | System Final
Response (G) | Calibration Drift
(G-F)/span*100 | |------|--------------------------------|------------------------------|-------------------------------------| | Zero | 0.6 | 0.3 | 0.3 | | Mid | 31 | 30.0 | 1.0 | Criteria 3% | | Zero Response
Time (seconds) | | Upscale Response
Time (seconds) | |---------|---------------------------------|-----------------|------------------------------------| | Run 1 | 10 | Al-Gilla Access | 15 | | Run 2 | 10 | | 15 | | Run 3 | 10 | | 15 | | Average | 10 | | 15 | | Project Number: 22050 | Date: November 9, 2020 | |------------------------------------|------------------------| | Company: COVANTA | Operator: J. Grollman | | Location: DYEC | Analyzer ID VIG | | Test Location: Unit 2 - APC Outlet | Test 1 | | THC Full Scale Setting | 100 | |------------------------|----------------------------| | Zero Gas (ppm) | <0.1 ppm | | Low Gas Value (ppm) | 20-35 % full scale setting | | Mid Gas Value (ppm) | 45-55 % full scale setting | | High Gas Value (ppm) | 80-90 % full scale setting | Perform analyzer calibration as per manufacturers instructions. Calculate the linearity factor "C" based on the zero and high gas values. Based on the calculated linearity, predict the analyzer response for low and mid values (D3 and D4). Calculate calibration error with the low and mid (B3 and B4) gasses. | | Cal.Gas
Value
(A) | Initial Analyzer
Response
(B) | Linearity
(B2-B1)/(A2-A1) | Predicted
Response
(A X C) | Calibration
Error
%
((B)-(D)/AX100 | |------|-------------------------|-------------------------------------|--|----------------------------------|--| | Zero | 0 A1 | О в1 | 1.007 | | | | High | 89.4 A2 | 90 в2 | HE BEET IN NEW TOTAL T | | | | Mid | 51.6 да | 50.3 ва | | 51.9 D4 | -3.2 _{E4} | | Low | 30.51 аз | 30 вз | | 30.7 дз | -2.3 E3 | Criteria +/-5% Note: If the calibration Error (E3 and E4) are greater than 5%, repeat the procedure until values are acceptable. Perform test. At the completion of the test or hourly; Calculate the calibration drift as a percent of full scale value. Introduce the zero and mid level gases at the probe and record data as the system final response. | | System Initial
Response (F) | System Final
Response (G) | Calibration Drift
(G-F)/span*100 | |------|--------------------------------|------------------------------|-------------------------------------| | Zero | 0 | 0 | 0 | | Mid | 30 | 30.0 | 0.0 | Criteria 3% | | Zero Response
Time (seconds) | | Upscale Response
Time (seconds) | |---------|---------------------------------|--|------------------------------------| | Run 1 | 10 | | 15 | | Run 2 | 10 | | 15 | | Run 3 | 10 | The state of s | 15 | | Average | 10 | | 15 | | Project Number: 22050 | Date: November 9, 2020 | |------------------------------------|------------------------| | Company: COVANTA | Operator: J. Grollman | | Location: DYEC | Analyzer ID VIG | | Test Location: Unit 2 - APC Outlet | Test 2 | | THC Full Scale Setting | 100 | |------------------------|----------------------------| | Zero Gas (ppm) | <0.1 ppm | | Low Gas Value (ppm) | 20-35 % full scale setting | | Mid Gas Value (ppm) | 45-55 % full scale setting | | High Gas Value (ppm) | 80-90 % full scale setting | Perform analyzer calibration as per manufacturers instructions. Calculate the linearity factor "C" based on the zero and high gas values. Based on the calculated linearity, predict the analyzer response for low and mid values (D3 and D4). Calculate calibration error with the low and mid (B3 and B4) gasses. | | Cal.Gas
Value
(A) | Initial Analyzer
Response
(B) | Linearity
(B2-B1)/(A2-A1) | Predicted
Response
(A X C) | Calibration
Error %
((B)-(D)/AX100 | |------|-------------------------|-------------------------------------|------------------------------------|----------------------------------|--| | Zero | 0 A1 | О в1 | 1.007 | | | | High | 89.4 A2 | 90 в2 | 1.007
c | | | | Mid | 51.6 A4 | 50.3 в4 | 1965 (ALES) (2)
1967 (ALES) (2) | 51.9 D4 | -3.2 E4 | | Low | 30.51 A3 | 30 вз | | 30.7 вз | -2.3 вз | Criteria +/-5% Note: If the calibration Error (E3 and E4) are greater than 5%, repeat the procedure until values are acceptable. Perform test. At the completion of the test or hourly; Calculate the calibration drift as a percent of full scale value. Introduce the zero and mid level gases at the probe and record data as the system final response. | | System Initial
Response (F) | System Final
Response (G) | Calibration Drift
(G-F)/span*100 | |------|--------------------------------|------------------------------|-------------------------------------| | Zero | O | 0 | 0 | | Mid | 30 | 30.0 | 0.0 | Criteria 3% | | Zero Response
Time (seconds) | Upscale Response Time (seconds) | |---------|---------------------------------|---------------------------------| | Run 1 | 10 | 15 | | Run 2 | 10 | 15 | | Run 3 | 10 | 15 | | Average | 10 | 15 | | Project Number: 22050 | Date: November 9, 2020 | |------------------------------------|------------------------| | Company: COVANTA | Operator: J. Grollman | | Location: DYEC | Analyzer ID VIG | | Test Location: Unit 2 - APC Outlet | Test 3 | | THC Full Scale Setting | 100 | |------------------------|----------------------------| | Zero Gas (ppm) | <0.1 ppm | | Low Gas Value (ppm) | 20-35 % full scale setting | | Mid Gas Value (ppm) | 45-55 % full scale setting | | High Gas Value (ppm) | 80-90 % full scale setting | Perform analyzer calibration as per manufacturers instructions. Calculate the linearity factor "C" based on the zero and high gas values. Based on the calculated linearity, predict the analyzer response for low and mid values (D3 and D4). Calculate calibration error with the low and mid (B3 and B4) gasses. | | Cal.Gas
Value
(A) | Initial Analyzer
Response
(B) | Linearity
(B2-B1)/(A2-A1) | Predicted
Response
(A X C) | Calibration
Error %
((B)-(D)/AX100 | |------|-------------------------|-------------------------------------|------------------------------|----------------------------------|--| | Zero | 0 A1 | O 81 | 1.007 | | | | High | 89.4 A2 | 90 в2 | T.007 | | | | Mid | 51.6 A4 | 50.3 в4 | | 51.9 D4 | -3.2 e4 | | Low | 30.51 аз | 30 вз | | 30.7 вз | -2.3 ы | Criteria +/-5% Note: If the calibration Error (E3 and E4) are greater than 5%, repeat the procedure until values are acceptable. Perform test. At the completion of the test or hourly; Calculate the calibration drift as a percent of full scale value. Introduce the zero and mid level gases at the probe and record data as the system final response. | | System Initial | System Final | Calibration Drift | |------|----------------|--------------|-------------------| | | Response (F) | Response (G) | (G-F)/span*100 | | Zero | 0 | 0.7 | -0.7 | | Mid | 30 | 30.0 | 0.0 | Criteria 3% | | Zero Response
Time (seconds) | Upscale Response
Time (seconds) | |---------|---------------------------------|------------------------------------| | Run 1 | 10 | 15 | | Run 2 | 10 | 15 | | Run 3 | 10 | 15 | | Average | 10 | 15 | | Date | February 4, 2020 | |-----------------------|------------------| | Probe/Pitot ID | S8 | | Mil Number | B03769 | | Calibrated Against | B02911 | | Cp standard | 0.99948 | | Calibration Procedure | 93-T62-SP-012 | | Calibration Facility | ORTECH Consulting Ing/ | |--------------------------------------|--| | Calibrated By | Dan Tugton | | Signature | 764 III | | Reviewed/Accepted By | 6/1/ | | | |
| ika kaga da ika manda paramilia da i | egint tetta kipini katapa kipinjangagilakan ngan | | | Pstd | |--------------|------| Cp = Cpstd * | | | | | | | | | | | | | | | | De | | | | | | | | | | | Configuration | Wind Tunnel Velocity
m/s | Velocity Head
Standard Pitot
in. H₂O
Pstd | Velocity Head
S-Type Pitot
in. H₂O
Ps | S-Type Pitot
Coefficient
Cp _s | Deviation
From The
Mean | |---------------|-----------------------------|--|--|--|-------------------------------| | With Nozzle | 7.53 | 0.137 | 0.190 | 0.849 | 0.0023 | | (0.25") | 9.32 | 0.210 | 0.290 | 0.851 | 0.0004 | | | 11.68 | 0.330 | 0.450 | 0.856 | 0.0049 | | | 13.94 | 0.470 | 0.650 | 0.850 | 0.0011 | | | 15.75 | 0.600 | 0.830 | 0.850 | 0,0012 | | | | | Mean | 0.851 | 0.0020 | | Without Nozzle | 7.33 | 0.130 | 0.180 | 0.849 | 0.0003 | |----------------|-------|-------|-------|-------|--------| | | 9.32 | 0.210 | 0.290 | 0.851 | 0.0014 | | | 11.14 | 0.300 | 0.420 | 0.845 | 0.0044 | | | 13.79 | 0.460 | 0.630 | 0.854 | 0.0050 | | | 15.88 | 0.610 | 0.850 | 0.847 | 0.0024 | | | | | Mean | 0.849 | 0.0027 | Note: Pitots must always be used in the orientation that they are calibrated in (marked F for front and B for back). #### Acceptance Criteria: The Cp of Standard Pitots must be in the range of 0.99 ±0.01. | | *************************************** | |-----------------------|---| | Date | February 4, 2020 | | Probe/Pitot ID | SP4 | | MII Number | B04011 | | Calibrated Against | B02911 | | Cp standard | 0.99948 | | Calibration Procedure | 93-T62-SP-012 | | Cp standard | 0.99948 | | Calibration Facility | ORTECH Consulting Inc//// | |----------------------|---------------------------| | Calibrated By | Dan Turfon | | Signature | | | Reviewed/Accepted By | Jay 13 | | | // | | | Pstd | |--------------|------| Cp = Cpstd * | | | | | | | | | | | | | | | | Dc l | | | | | | | | | | | | | | | | | Configuration | Wind Tunnel Velocity
m/s | Velocity Head
Standard Pitot
in. H ₂ O | Velocity Head
S-Type Pitot
in. H ₂ O | S-Type Pitot
Coefficient | Deviation
From The
Mean | |---------------|-----------------------------|---|---|-----------------------------|-------------------------------| | | | Pstd | Ps | Cp _s | | | With Nozzle | 7.53 | 0.137 | 0.190 | 0.849 | 0.0011 | | (0.25") | 9.65 | 0.225 | 0.310 | 0.851 | 0.0039 | | | 11.50 | 0.320 | 0.450 | 0.843 | 0.0048 | | | 13.79 | 0.460 | 0.640 | 0.847 | 0.0003 | | | 15.62 | 0.590 | 0.820 | 0.848 | 0.0002 | | | | | Mean | 0.848 | 0.0020 | | Without Nozzle | 7.47 | 0.135 | 0.190 | 0.842 | 0.0053 | |---|-------|-------|-------|-------|--------| | | 9.32 | 0.210 | 0.295 | 0.843 | 0.0045 | | | 11,32 | 0.310 | 0.430 | 0.849 | 0.0009 | | | 14.09 | 0.480 | 0.660 | 0.852 | 0.0046 | | | 16.08 | 0.625 | 0.860 | 0.852 | 0.0043 | | 마리 글로 보고 있는 것이 되었다.
그는 그들은 말을 보고 있는 것이다. | | | Mean | 0.848 | 0.0039 | Note: Pitots must always be used in the orientation that they are calibrated in (marked F for front and B for back). #### Acceptance Criteria: The Cp of Standard Pitots must be in the range of 0.99 \pm 0.01. | Date | February 4, 2020 | |-----------------------|------------------| | Probe/Pitot ID | S7A | | Mil Number | COE20112 | | Calibrated Against | B02911 | | Cp standard | 0.99948 | | Calibration Procedure | 93-T62-SP-012 | | Calibration Facility | ORTECH Consulting Inc | | | | |----------------------|-----------------------|--|--|--| | Calibrated By | Dan Tuyton | | | | | Signature | 900/1/11 | | | | | Reviewed/Accepted By | Hay 13 | | | | | | | | | | | | Pstd | |--------------|------| | Cp = Cpstd * | | | Configuration | Wind Tunnel Velocity m/s | Velocity Head
Standard Pitot
In. H ₂ O
Pstd | Velocity Head
S-Type Pitot
in. H₂O
PS | S-Type Pitot
Coefficient
Cp _s | Deviation
From The
Mean | |---------------|--------------------------|---|--|--|-------------------------------| | | | | | | | | With Nozzle | 7.33 | 0.130 | 0.180 | 0.849 | 0.0003 | | (0.25") | 9.32 | 0.210 | 0.290 | 0.851 | 0.0014 | | | 11.14 | 0.300 | 0.420 | 0.845 | 0.0044 | | | 13.79 | 0.460 | 0.630 | 0.854 | 0.0050 | | | 15.88 | 0.610 | 0.850 | 0.847 | 0.0024 | | | | | Mean | 0.849 | 0.0027 | | | Without Nozzle | 7.33 | 0.130 | 0.180 | 0.849 | 0.0023 | |---|----------------|-------|-------|-------|-------|--------| | | | 9.32 | 0.210 | 0.295 | 0.843 | 0.0038 | | | | 11.32 | 0.310 | 0.430 | 0.849 | 0.0016 | | - | | 14.38 | 0.500 | 0.700 | 0.845 | 0.0024 | | L | | 16.39 | 0.650 | 0.900 | 0.849 | 0.0023 | | | | | | Mean | 0.847 | 0.0025 | Note: Pitots must always be used in the orientation that they are calibrated in (marked F for front and B for back). #### Acceptance Criteria: The Cp of Standard Pitots must be in the range of 0.99 ±0.01. | Date | February 5, 2020 | |-----------------------|------------------| | Probe/Pitot ID | PM 10 2.5 | | MII Number | COE 20132 | | Calibrated Against | B02911 | | Cp standard | 0.99948 | | Calibration Procedure | 93-T62-SP-012 | | Ca | libration Facility | ORTECH Consulting Inc. | Î | 1 | |----|---------------------|------------------------|----|---------------| | Ca | ilibrated By | Dan Turdon // | | | | Si | gnature | | 71 | | | Re | eviewed/Accepted By | les H | | $\overline{}$ | | | | | | | | ************************************** | | - 5 | |--|------|--| |
Section of the sectio | | OF STREET, STR | | | | | | | | | | | Pstd | | | | | | | | | | | | | | | | | | | Cp = Cpstd * | | | | E CD = LOSTO T | Hereconstruction and the second secon | | | | | | | | | | 1 4 F 1 F 2 F 1 | | | | |--|-----------------------------|---------------------------------|-------------------------------|-----------------------------|-----------------------| | Nozzle Size
Inches | Wind Tunnel Velocity
m/s | Velocity Head
Standard Pitot | Velocity Head
S-Type Pitot | S-Type Pitot
Coefficient | Deviation
From The | | | | in. H ₂ O | in. H₂O | | Mean | | | | Pstd | Ps | Cp _s | | | Androper of the energy and a configuration
And a management of the configuration of the configuration | | | | | | | NA | 7.33 | 0.130 | 0.180 | 0.849 | 0.0014 | | | 9.09 | 0.200 | 0.280 | 0.845 | 0.0033 | | | 11.50 | 0.320 | 0.440 | 0.852 | 0.0044 | | | 13.49 | 0.440 | 0.620 | 0.842 | 0.0060 | | | 15.69 | 0.595 | 0.820 | 0.851 | 0.0034 | | | | | Mean | 0.848 | 0.0037 | Note: Pitots must always be used in the orientation that they are calibrated in. #### Acceptance Criteria: The Cp of Standard Pitots must be in the range of 0.99 ±0.01. # ORTECH Dry Gas Meter Calibration Data | Calibration Procedure | 03-J004 | |-----------------------|------------------| | Meter Number | Vost 2 | | Date | November 3, 2020 | | Barometric Pressure | 29.50 | | System Leak Check | NDL Lpm @ 22 "Hg | ft3 cm* 1.332 litres per cm/28.3168 litres per ft3 | Tdgm °F+460 | Tstd °F+460 | |----------------------|----------------------| | | | | Vstd ft ³ | Vdgm ft ³ | | DGMCF= | | | 1 1 1 1 1 1 | | |---------------|--| | 1 1 1 1 | | | | | | | | | 1 1 1 | 100 | | | | | | g) | | | - 00 | | | mont. | | | | | | percent a | | | | | | | | | 100 | | | in the second | | | * 1993 | | | | | | r (in. Hg) | | | | | | | | | , pps (| | | | | | | | | | | | | | | hound | | | 4 1 1 1 1 | | | | | | | | | | | | | | | | | | Pbai | 0 | | | 0 | | | 0 | | | 0 | | | 0 | | | 0 | | | 0 | | | 0 | | | | | (Phar in. Hg+DGMPressure/13.6) | DGM | A1017 | |--------------------------|------------| | Gasometer | A01463 | | Barometer | COE20028 | | | | | Calibrated By | J Gholiman | | Signature | | | Reviewed and Accepted By | | | Flow | Rate | per
lone
lone
lone
lone
lone | 9.0 | 9.0 | 9.0 | | |-------------------|-------------|---|--------------|----------------|-------|--| | Time | | TABLE. | 2.1 | 27 | 25 | telement error scharterschilderen tyrnere | | DGM | Calibration | Factor | 1.005 | 1.027 | 1.028 | and the second s | | DGM | Outlet | ပို | 27.0 | 26.0 | 26.0 | STATE STATES OF STREET, STATES OF STREET, STATES OF STREET, STATES OF O | | DCM | Pressure | in. H,0 | 1.2 | 1.2 | 1.2 | deriver's article of the control | | DGM Average | Temperature | ၁, | 27.0 | 26.5 | 26.5 | معاورة والمتافية والمتارات والمتاريخ والمتاريخ والمتاريخ والمتاركة والمتاركة والمتاركة والمتاركة والمتاركة والمتاركة | | DGM | Volume | ĮĮ. | 0.448 | 0.568 | 0.525 | and an open property of the state sta | | DGM Reading | | Initial Final | .920 135.600 | 91.980 108.050 | 1.0 | a Constituent and an annual contract of the co | | Gasometer | Temperature | °C In | 21.0 122 | 21.0 | 21.0 | manufactural photos and the second se | | Gasometer | Volume | | 0.442 | 0.574 | 0.532 | netritera de la constanta l | | ding | | cım | 9.40 | 12.20 | 11.30 | distribution of the second sec | | Gasometer Reading | сш | Final | 50.50 | 41.60 | 59.90 | and animal department of the second second second | | Gasi | | Initial | 59.90 | 53.80 | 71.20 | And the second s | Acceptance Criteria: DGMCF AVERAGE 0.5 Lpm Individual values of DGM calibration factor must be within \pm 1.5% of the average value. If not the calibration must be repeated. Also, the DGMCF average value must be 1.00 \pm 0.05, otherwise the meter must be repaired and/or adjusted as necessary and recalibrated prior to use. (Environment Canada Reference Method EPS 1/RM/8, Section 6) # ORTECH Trendicator Calibration | Calibration Procedure | 03-J005 | |--------------------------|------------------| | Trendicator Type | Nutech | | MII | A10117 | | Date | November 3, 2020 | | Calibrated By | 1. Grollman | | Signature | | | Reviewed and Accepted By | D#010= | | | | | Fluke Calibrator Output | Tredicator I | Display Value | Percent
Difference | |-------------------------|------------------------|--|-----------------------| | (COE 20024)
(°C) | Before Adjustment (°C) | After Adjustment
(°C) | (%) | | 0 | 0 | NA | 0.0 | | 10 | 10 | | 0.0 | | 20 | 20 | | 0.0 | | 50 | 50 | | 0.0 | | 75 | 75 | | 0.0 | | 100 | 101 | | -1.0 | | 125 | 125 | | 0.0 | | 150 | 151 | | -0.7 | | 200 | 200 | | 0.0 | | 300 | 301 | | -0.3 | | 400 | 400 | | 0.0 | | 500 | 501 | | -0.2 | | 600 | 602 | The state of s | -0.3 | % Difference = (micromite - after adjustment reading)x 100 micromite #### Acceptance Criteria: Trendicator display must read within $\pm 1.5\%$ of the micromite value at each output. Otherwise, the Trendicator must be repaired and/or adjusted as necessary, and recalibrated prior to use. (MOE Source Testing Code, Version #2, Method 5) # ORTECH # Dry Gas Meter Calibration Data | Calibration Procedure | 03-3004 | |-----------------------|------------------| | Meter Number | Vost 5 | | Date | November 2, 2020 | | Barometric Pressure | 29.41 | | System Leak Check | NDL ipm @ 22 "Hg | ft3= cm* 1.332 litres per cm/28.3168 litres per ft3 | | 100 | |----------------------|----------------------| | _ | | | °F+460 | 0 | | 4 | 70 | | +1 | 7 | | 1 | G. | | ۰_ ا |
44° 5 | | E | трог | | Tdgm | Tstd | | 75 | 7 | | Ĕ | | | | | | | | | | | | | | | | | | Vstd ft ³ | m | | <u>~</u> | Part
Part
Part | | | gran | | 2 | gm | | ste | 1 | | 2 | 5 | | | bear | | | | | 1 22 | | | 11 | | | r) | | | \sim | | | ~ | | | 65 | | | | | | paras) | | | | 1 104 | |---------------|---| | | - | | | 11. | | | 25 | | | | | | Second . | | | - | | | 4.5 | | | - 100 | | | 2== | | 1. 1. 1. 1. | | | | · em | | _ | 7.00 | | | 42 | | 2.0 | - 60 | | | - ca | | mont 3 | | | Pbar (in. Hg) | Hg+DGMPressure/13.6) | | 1 11 11 1 | A | | | - Butta | | | bond | | for 8 | | | part 5 | - | | | | | | 7 19 | | - 1 | 1 | | - bur [| , CO. | | | forms | | | | | | | | - | | | 1 | | | | property. | | | تبلية | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | - American | | | , Accord | | | - pt North | | | | | | - 500 | | | | | | | | | _ | | | , and | | | - CI | | 1 | | | | (Pbar in. | . VO I | - | | 460 | | | 4 | -01 | | | | | DGW | COE 20018 | |--------------------------|-------------| | Gasometer | A01463 | | Barometer | COM 20028 | | | | | Calibrated By | f. Grollman | | Signature | | | Reviewed and Accepted By | | # Acceptance Criteria: Individual values of DGM calibration factor must be within \pm 1.5% of the average value. If not the calibration must be repeated. Also, the DGMCF average value must be 1.00 ± 0.05 , otherwise the meter must be repaired and/or adjusted as necessary and recalibrated prior to use. (Environment Canada Reference Method EPS 1/RM/8, Section 6) 1.010 0.5Lpm DGMCF AVERAGE # ORTECH Trendicator Calibration | Calibration Procedure | 03-J005 | |--------------------------|------------------| | Trendicator Type | Jenco 765 | | MII | COE 200/18 | | Date | November 2, 2020 | | Calibrated By | . Grollman | | Signature | | | Reviewed and Accepted By | 1 10:010= | | Fluke Calibrator Output | Tredicator I | Pisplay Value | Percent
Difference | |-------------------------|---------------------------|--|-----------------------| | (COE 20024)
(°C) | Before Adjustment
(°C) | After Adjustment
(°C) | (%) | | 0 | 0 | NA | 0.0 | | 10 | 10 | And a second supplies to the second s | 0.0 | | 20 | 20 | | 0.0 | | 50 | 50 | | 0.0 | | 75 | 75 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 0.0 | | 100 | 100 | | 0.0 | | 125 | 125 | d the control of | 0.0 | | 150 | 150 | A STATE OF THE PARTY PAR | 0.0 | | 200 | 200 | | 0.0 | | 300 | 300 | | 0.0 | | 400 | 400 | A STATE OF COURSE HELD STATE OF THE | 0.0 | | 500 | 500 | | 0.0 | | 600 | 600 | *************************************** | 0.0 | % Difference = (micromite - after adjustment reading)x 100 micromite #### Acceptance Criteria: Trendicator display must read within $\pm 1.5\%$ of the micromite value at each output. Otherwise, the Trendicator must be repaired and/or adjusted as necessary, and recalibrated prior to use. (MOE Source Testing Code, Version #2, Method 5) ORTECH # Dry Gas Meter Calibration Using Calibrated Critical Orifice | | Meter Number Teal Meter MII Number COE 2 Orifice Set ID COE2 | Team 1 COE 20094 COE 20999 | |--|--|----------------------------| |--|--|----------------------------| | Calibration Conditions | tions | | |-----------------------------|------------------|---------------------| | Barometric Pressure | 28.29 | in Hg | | Theoretical Critical Vacuum | 13.4 | in Hg | | System Leak Check | <0.001 dm | <0.001 cfm @ 26" Hg | | Calibration Date | October 30, 2020 | 30, 2020 | | Calibration Technician | J. Gro | J. Grollman | | Reviewed and Accepted By | NAZO. | SEN ACCEP | | Fact | Factors/Conversions | Suc | |-----------|---------------------|----------------| | Std Temp | 528 | N _o | | Std Press | 29.92 | in Hg | | K_1 | 17.647 | oR/in Hg | | Gritical Orifical Outlines Aug. DGM Temp Serial Coefficient Amb Temp Amb Temp Actual Actual Amb Temp | | | | | Ŭ | Calibration Data | | | | | | |---|-------|---------------------|--------------------|--------------------|--------------------|-------------------|--------|-------------|-----------------------|---------------------|--------| | Volume Avg. DGM Temp Serial Coefficient Amb Temp Amb Temp Final Initial Final Number Initial Final (V _{mf}) (t _{ml}) (t _{ml}) K' (t _{amb}) (t _{amb}) cubic feet °F °F °F °F °F 772.910 67.5 70.5 UR-40 0.2352 69.8 70.7 778.048 69.5 69.5 UR-48 0.3308 70.7 70.7 789.200 69.5 69.5 UR-55 0.4520 70.7 70.7 802.969 69.5 UR-63 0.5874 70.7 70.7 818.777 70.5 UR-73 0.8107 70.7 70.7 | | | | Metering | | | | | Critical Orifice | | | | Initial Final Initial Final Number Initial Final (Vml) (Vml) (tml) (tml) (tml) (taml) (taml) (taml) cubic feet cubic feet cubic feet °F °F °F °F °F 768.945 772.910 67.5 70.5 UR-40 0.2352 69.8 70.7 778.048 789.200 69.5 69.5 UR-55 0.4520 70.7 70.7 789.200 802.969 69.5 UR-63 0.5874 70.7 70.7 802.969 818.777 70.5 UR-73 0.8107 70.7 70.7 | - 111 | DGM Orifice | Volume | Volume | Avg. DGM Temp | Avg. DGM Temp | Serial | Coefficient | Amb Temp | Amb Temp | Actual | | (Vmil) (Vmil) (tmil) (tmil)< | | ᆼ | Initial | Final | Initial | Final | Number | | Initial | Final | Vacuum | | cubic feet cubic feet °F | | (P _m) | (V _{mi}) | (V _{mf}) | (t _{ml}) | (f _m) | | K | (t _{amb}) | (t _{smb}) | | | 768.945 772.910 67.5 70.5 UR-40 0.2352 69.8 70.7 772.910 778.048 69.5 UR-48 0.3308 70.7 70.7 778.048 789.200 69.5 69.5 UR-55 0.4520 70.7 70.7 802.969 818.777 70.5 70.5 UR-73 0.8107 70.7 70.7 | | in H ₂ O | cubic feet | cubic feet | Ľ, | Ľ, | | | 4 ₀ | J _o | in Hg | | 772.910 778.048 69.5 UR-48 0.3308 70.7 70.7 778.048 789.200 69.5 69.5 UR-55 0.4520 70.7 70.7 802.969 818.777 70.5 70.5 UR-73 0.8107 70.7 70.7 | | 0.26 | 768.945 | 772.910 | 67.5 | 70.5 | UR-40 | 0.2352 | 69.8 | 70.7 | 24.0 | | 778.048 789.200 69.5 69.5 UR-55 0.4520 70.7 70.7 802.369 802.969 69.5 0.5874 70.7 70.7 | | 0.59 | 772.910 | 778.048 | 69.5 | 69.5 | UR-48 | 0.3308 | 70.7 | 70.7 | 23.5 | | 789.200 802.969 69.5 69.5 UR-63 0.5874 70.7 70.7 802.969 818.777 70.5 UR-73 0.8107 70.7 70.7 | | 1.20 | 778.048 | 789.200 | 89.5 | 25.55 | UR-55 | 0.4520 | 7.0.7 | 7.0.7 | 22.0 | | 802.969 818.777 70.5 0.5 UR-73 0.8107 70.7 70.7 | | 2.00 | 789.200 | 802.969 | 69.5 | 10.00 | UR-63 | 0.5874 | 70.7 | 70.7 | 20.0 | | | . 7 | 3.80 | 802.969 | 818.777 | 70.5 | 70.5 | UR-73 | 0.8107 | 70.7 | 70.7 | 16.0 | | *************************************** | Standard | Standardized Data | | | Dry 6 | Dry Gas Meter | | | |---|------------------------
-------------------------|-------------------------|-----------|--------------------|-----------------|--|-------------| | | | | | Calibrati | Calibration Factor | Flowrate | DH @ | | | Dry Ga | Dry Gas Meter | Critical | Critical Orifice | Value | Variation | Std & Corr | 0.75 SCFM | Variation | | (V _{m(std)}) | (Q _{m(std)}) | (Vcr _(std)) | (Q _{cr(std)}) | (λ) | 80 | (Qm(std)(corr)) | 1 | (Фрифа) | | subic feet | cfm | cubic feet | ctm | | | ctm | in H20 | | | 3.744 | 0.288 | 3.756 | 0.289 | 1.003 | 0.004 | 0.289 | 1.752 | -0.277 | | 4.852 | 0.404 | 4.875 | 0.406 | 1.005 | 0.005 | 0.406 | 2.011 | -0.018 | | 10.547 | 0.555 | 10.546 | 0.555 | 1.000 | 0.001 | 0.555 | 2.191 | 0.162 | | 13.049 | 0.725 | 12.984 | 0.721 | 0.995 | -0.004 | 0.721 | 2.162 | 0.133 | | 15.023 | 1.002 | 14.933 | 966.0 | 0.994 | -0.005 | 0.996 | 2.157 | 0.128 | | | | | DGMCF | 0.999 | | | 2.029 | DH@ Average | | | | | | | | | The state of s | | Individual values of DGM calibration factor (Y) must be within \pm 1.5% of the average value. If not the calibration must be repeated. Also, the DGMCF average value (Y) must be 1.00 \pm 0.05, otherwise the meter must be repaired and/or adjusted as necessary and recalibrated prior to use. (Environment Canada Reference Method EPS 1/RM/8, Section 6) ### ORTECH Trendicator Calibration | Calibration Procedure | 03 - J005 | |--------------------------|-----------------| | Trendicator Type | Omega DP118 | | MII | COE 20094 | | Date | October 1, 2020 | | Calibrated By | J. Grollman | | Reviewed and Accepted By | CHRIC PELOTE | | Fluke Calibrator Output | Tredicator D | isplay Value | Percent
Difference | |-------------------------|---------------------------|--------------------------|-----------------------| | (COE 20024)
(°F) | Before Adjustment
(°F) | After Adjustment
(°F) | (%) | | 32 | 32 | A, | 0.0 | | 70 | 70 | | 0.0 | | 100 | 100 | | 0.0 | | 200 | 202 | | -1.0 | | 250 | 251 | | -0.4 | | 300 | 303 | | -1.0 | | 400 | 401 | | -0.3 | | 500 | 500 | | 0.0 | | 600 | 601 | | -0.2 | | 700 | 700 | | 0.0 | | 800 | 801 | | -0.1 | | 900 | 901 | | -0.1 | | 1000 | 1001 | | -0.1 | | 1100 | 1102 | | -0.2 | | 1200 | 1201 | | -0.1 | | 1250 | 1250 | | 0.0 | % Difference = <u>(calibrator - after adjustment reading)</u>x 100 calibrator ### **Acceptance Criteria:** 'Trendicator display must read within \pm 1.5%, and \pm 3 degrees F of the standard value at each output. Otherwise, the Trendicator must be repaired and/or adjusted as necessary, and recalibrated prior to use. (Ontario Source Testing Code, June 2010, Part C: Method ON-2, 7.5 Appendix 2E) ### ORTECH Manometer Calibration Data | Date | October 1, 2020 | Calibrated By | J. Grollman | |-----------------------|-----------------|----------------------|--------------| | Manometer Number | Team 1 | Signature | | | Manometer MII Number | COE 20094 | Reviewed/Accepted By | CHPIS RELORS | | Calibrated Against | Dual 3 | | | | MII Number | COE 20008 | | | | Calibration Procedure | 03 - J010 | | | ### Front Leg | Manometer
Scale | | ter Reading
H₂O | Reference Manometer
Reading | Percent
Difference | |--------------------|----------------------|---------------------|--------------------------------|-----------------------| | "H₂0 | Before
Adjustment | After
Adjustment | "H₂O | % | | | 0.930 | 40 | 0.930 | 0.0 | | 0-1.0 | 0.560 | | 0.561 | 0.2 | | | 0.152 | | 0.156 | 2.6 | | | 9.20 | | 9.20 | 0.0 | | 1.0-10.0 | 5.39 | | 5.36 | -0.6 | | | 1.92 | | 1.91 | -0.5 | Percent Difference = (Ref. M<u>anometer - Instrument Reading</u>) x 100 Ref. Manometer ### **Acceptance Criteria:** The manometer being calibrated must be within \pm 5.0% of the Standard value at each reading. Otherwise, the manometer must be repaired and/or adjusted as necessary and recalibrated prior to use. Manometers must be capable of measuring velocity pressure to within 0.005 " H_2O on the 0 to 1 inch scale, and 0.05 " H_2O on the 1 to 10 inch scales. (Environment Canada Reference Method 1/RM/8, Section 2) ORTECH # Dry Gas Meter Calibration Using Calibrated Critical Orifice | Meter Console Information Meter Number Team 2 Meter MII Number COE 2005 Orifice Set ID COE 2099 Barometer ID COE 2005 | | | |---|----------------------|-----------| | | Meter Console Inforu | nation | | | Meter Number | Team 2 | | | Meter Mil Number | COE 20092 | | | Orifice Set ID | COE20999 | | | Barometer ID | COE 20028 | | Calibration Conditions | ions | | |-----------------------------|---------------------|-------------| | Barometric Pressure | 29,68 | in Hg | | Theoretical Critical Vacuum | 14.0 | in Hg | | System Leak Check | <0.001 cfm @ 25" Hg | @ 25" Hg | | Calibration Date | November 4, 2020 | r 4, 2020 | | Calibration Technician | Thomas Timar | Timar | | Reviewed and Accepted By | ななどと | STEE MESSIF | | Fact | Factors/Conversions | ons | |-----------|---------------------|----------| | Std Temp | 528 | °R | | Std Press | 29.92 | in Hg | | K_1 | 17.647 | oR/in Hg | | Run Time Metering Console Critical Orifice Run Time Volume Avg. DGM Temp Avg. DGM Temp Serial Coefficient Amb Temp Amb Temp Actual (Q) (Pm) (Vmil) <td< th=""><th></th><th></th><th></th><th></th><th><u> </u></th><th>Calibration Data</th><th></th><th></th><th></th><th></th><th></th></td<> | | | | | <u> </u> | Calibration Data | | | | | | |---|----------|---------------------|--------------------|--------------------|--------------------|--------------------|--------|-------------|---------------------|---------------------|--------| | DGM Orifice Volume Volume Avg. DGM Temp Avg. DGM Temp Serial Coefficient Amb Temp Amb Temp DH Initial Final Initial Final Initial Final <th>Run Time</th> <th></th> <th></th> <th>Metering</th> <th>Console</th> <th></th> <th></th> <th></th> <th>Critical Orifice</th> <th>-</th> <th></th> | Run Time | | | Metering | Console | | | | Critical Orifice | - | | | DH Initial Final Number Initial Final Final Number Initial Final Final Initial Final Initial Final Initial Final Initial Final Itamble <t< th=""><th></th><th>DGM Orifice</th><th></th><th>Volume</th><th>Avg. DGM Temp</th><th>Avg. DGM Temp</th><th>Serial</th><th>Coefficient</th><th>1.00</th><th></th><th>Actual</th></t<> | | DGM Orifice | | Volume | Avg. DGM Temp | Avg. DGM Temp | Serial | Coefficient | 1.00 | | Actual | | (Pm) (Vml) (Vml) (tml) | Elapsed | Н | Initial | Final
| Initial | Final | Number | | it. | Final | Vacuum | | in H ₂ O cubic feet °F | (a) | (P _m) | (V _{mi}) | (V _{mf}) | (t _{m1}) | (t _{m1}) | | Ά. | (t _{amb}) | (t _{amb}) | | | 0.28 326.300 331.570 69.0 70.5 UR-40 0.2352 69.8 69.8 0.59 332.200 336.560 70.5 70.5 UR-48 0.3308 69.8 69.8 1.20 337.500 343.430 70.5 71.0 UR-55 0.4520 69.8 69.8 1.90 344.850 352.540 70.5 70.5 UR-63 0.5874 69.8 69.8 3.70 353.500 372.430 70.5 70.5 UR-73 0.8107 69.8 69.8 | min | in H ₂ O | cubic feet | cubic feet | 4 0 | i do | | | 30 | 10 | in Hg | | 0.59 332.200 336.560 70.5 70.5 UR-48 0.3308 69.8 69.8 69.8 1.20 337.500 343.430 70.5 71.0 UR-55 0.4520 69.8 69.8 1.90 344.850 352.540 70.5 70.5 UR-53 0.5874 69.8 69.8 | 17.0 | 0.28 | 326.300 | 331.570 | 0.69 | 70.5 | UR-40 | 0.2352 | 69.8 | 8.69 | 21.0 | | 1.20 337.500 343.430 70.5 71.0 UR-55 0.4520 69.8 69.8 1.90 344.850 352.540 70.5 70.5 UR-63 0.5874 69.8 69.8 3.70 353.500 372.430 70.5 70.5 UR-73 0.8107 69.8 69.8 | 10.0 | 0.59 | 332.200 | 336.560 | 70.5 | 70.5 | UR-48 | 0.3308 | 8.69 | 8.69 | 20.5 | | 1.90 344.850 352.540 70.5 UR-63 0.5874 69.8 69.8 3.70 353.500 372.430 70.5 70.5 UR-73 0.8107 69.8 69.8 | 10.0 | 1.20 | 337,500 | 343,430 | 70.5 | 71.0 | UR-55 | 0.4520 | 8.69 | 8.69 | 19:0 | | 3.70 353.500 372.430 70.5 70.5 UR-73 0.8107 69.8 69.8 | 10.0 | 1.90 | 344.850 | 352.540 | 70.5 | 70.5 | UR-63 | 0.5874 | 8.69 | 8.69 | 18.0 | | | 18.0 | 3.70 | 353.500 | 372.430 | 70.5 | 70.5 | UR-73 | 0.8107 | 8.69 | 8.69 | 16.5 | | | Standardized Data | ized Data | | | Dry (| Dry Gas Meter | | | |----------------|------------------------|-------------------------|-------------------------|-----------|--------------------|-----------------|-----------|-------------| | | | | | Calibrati | Calibration Factor | Flowrate | DH@ | | | Dry Gas M | is Meter | Critical | Critical Orifice | Value | Variation | Std & Corr | 0.75 SCFM | Variation | | $(V_{m(std)})$ | (Q _{m(std)}) | (Vcr _(std)) | (Q _{cr(std)}) | ω | (AQ) | (Qm(std)(corr)) | (DH@) | (Фрифа) | | cubic feet | cfm | cubic feet | cfm | | | cfm | in H20 | | | 5.214 | 0.307 | 5.156 | 0.303 | 0.989 | -0.004 | 0.303 | 1.712 | -0.134 | | 4.311 | 0.431 | 4.266 | 0.427 | 0.989 | -0.003 | 0.427 | 1.824 | -0.023 | | 5.869 | 0.587 | 5.828 | 0.583 | 0.993 | 100.0 | 0.583 | 1.987 | 0.140 | | 7.628 | 0.763 | 7.574 | 0.757 | 0.993 | 0.001 | 0.757 | 1.863 | 0.016 | | 18.861 | 1.048 | 18.817 | 1.045 | 866.0 | 0.005 | 1.045 | 1.905 | 0.058 | | | | | DGMCF | 0.992 | | | 1.847 | DH@ Average | Individual values of DGM calibration factor (Y) must be within \pm 1.5% of the average value. If not the calibration must be repeated. Also, the DGMCF average value (Y) must be 1.00 \pm 0.05, otherwise the meter must be repaired and/or adjusted as necessary and recalibrated prior to use. (Environment Canada Reference Method EPS 1/RM/8, Section 6) ### ORTECH Trendicator Calibration | Calibration Procedure | 03 - J005 | |--------------------------|------------------| | Trendicator Type | Omega DP118 | | MII | COE 20092 | | Date | November 4, 2020 | | Calibrated By | Thomas Timar | | Reviewed and Accepted By | CHUS PRUPE | | Fluke Calibrator Output | Tredicator D | isplay Value | Percent
Difference | |-------------------------|---------------------------|--------------------------|-----------------------| | (COE 20024)
(°F) | Before Adjustment
(°F) | After Adjustment
(°F) | (%) | | 32 | 32 | NA. | 0.0 | | 70 | 70 | | 0.0 | | 100 | 100 | | 0.0 | | 200 | 201 | | -0.5 | | 250 | 251 | | -0.4 | | 300 | 301 | | -0.3 | | 400 | 400 | | 0.0 | | 500 | 501 | | -0.2 | | 600 | 601 | | -0.2 | | 700 | 700 | | 0.0 | | 800 | 801 | | -0.1 | | 900 | 901 | | -0.1 | | 1000 | 1001 | | -0.1 | | 1100 | 1101 | | -0.1 | | 1200 | 1201 | | -0.1 | | 1250 | 1251 | van de V | -0.1 | % Difference = (calibrator - after adjustment reading)x 100 calibrator ### Acceptance Criteria: 'Trendicator display must read within \pm 1.5%, and \pm 3 degrees F of the standard value at each output. Otherwise, the Trendicator must be repaired and/or adjusted as necessary, and recalibrated prior to use. (Ontario Source Testing Code, June 2010, Part C: Method ON-2, 7.5 Appendix 2E) ### ORTECH Manometer Calibration Data | Date | November 4, 2020 | Calibrated By | Thomas Timar | |-----------------------|------------------|----------------------|--------------| | Manometer Number | Team 2 | Signature | | | Manometer MII Number | COE 20092 | Reviewed/Accepted By | CHRS BEWIE | | Calibrated Against | Hand held | | | | MII Number | B02679 | | | | Calibration Procedure | 03 - J010 | | | ### Front Leg | Manometer Scale | | ter Reading
H₂O | Reference Manometer
Reading | Percent
Difference | |-------------------|----------------------|---------------------|--------------------------------|-----------------------| | "H ₂ 0 | Before
Adjustment | After
Adjustment | "H ₂ O | % | | | 0.290 | AIN | 0.290 | 0.0 | | 0-1.0 | 0.500 | | 0.510 | 2.0 | | | 0.870 | | 0.880 | 1.1 | | | 2.90 | | 2.90 | 0.0 | | 1.0-10.0 | 5.75 | | 5.82 | 1.2 | | | 9.90 | (| 9.94 | 0.4 | Percent Difference = (Ref. M<u>anometer - Instrument Reading</u>) x 100 Ref. Manometer ### Acceptance Criteria: The manometer being calibrated must be within ± 5.0% of the Standard value at each reading. Otherwise, the manometer must be repaired and/or adjusted as necessary and recalibrated prior to use. Manometers must be capable of measuring velocity pressure to within 0.005 "H₂O on the 0 to 1 inch scale, and 0.05 "H₂O on the 1 to 10 inch scales. (Environment Canada Reference Method 1/RM/8, Section 2) ### ORTECH # Dry Gas Meter Calibration Using Calibrated Critical Orifice | nation | Team 4 | COE 20090 | COE20999 | COE 20028 | |---------------------------|--------------|------------------|----------------|--------------| | Meter Console Information | Meter Number | Meter Mil Number | Orifice Set ID | Barometer ID | | Calibration Conditions | ions | 4. 经背景 | |-----------------------------|------------------|---------| | Barometric Pressure | 29.44 | in Hg | | Theoretical Critical Vacuum | 13.9 | in Hg | | System Leak Check | <.001 @ 28" | 78" | | Calibration Date | November 4, 2020 | 1, 2020 | | Calibration Technician | Thomas Timar | imar | | Reviewed and Accepted By | とはなどとなると | はいい | | Fact | Factors/Conversions | ons | |-----------|---------------------|----------| | Std Temp | 528 | 8 | | Std Press | 29.92 | in Hg | | K1 | 17.647 | oR/in Hg | | | | Actual | Vacuum | | in Hg | 25.0 | 23.0 | 22.0 | 20.5 | 17.5 | |------------------|------------------|--------------------|-------------------|---------------------|---|---------|---------|---------|---------|---------| | | | Amb Temp | Ti
n
a
i | (t _{amb}) | 30 | 70.7 | 7.07 | 70.7 | 7.0.7 | 70.7 | | | Critical Orifice | Amb Temp | Initial | (t _{amb}) | Ľ. | 70.7 | 70.7 | 70.7 | 70.7 | 70.7 | | - | | Coefficient | | Κ' | 1 | 0.2352 | 0.3308 | 0.4520 | 0.5874 | 0.8107 | | | | Serial | Number | | | UR-40 | UR-48 | UR-55 | UR-63 | UR-73 | | Calibration Data | | Avg. DGM Temp | Final | (t _{mf}) | LL o | 5.79 | 67.5 | 5.69 | 70.0 | 70.5 | | 0 | Console | Avg. DGM Temp | Initial | (t _{mi}) | Ľ. | 57.5 | 67.5 | 0.69 | 70.0 | 70.0 | | | Metering Console | Volume | Final | (V _{mf}) | cubic feet | 804.510 | 809.320 | 815.900 | 825.020 | 837.730 | | | | Volume | Initial | (V _{mi}) | cubic feet | 801.200 | 805.050 | 810.050 | 816.650 | 826.200 | | | | DGM Orifice Volume | Н | (P _m) | in H ₂ 0 | 0.31 | 0.61 | 1.20 | 2.00 | 3.70 | | | Run Time | | Elapsed | ਰ | min | 11.0 | 10.0 | 0.01 | 11.0 | 11.0 | | Dry Gas Meter Calibration Factor Flowrate DH @ (V _{m[std]}) (Q _{m[std]}) (Vcr _[std]) (Q _{cr[std]}) (V) (DH @ DH @ cubic feet cfm (Varietil) (Vcr _[std]) (Q _{cr[std]}) (Y) (DY) (DH @) (DH @) 3.263 0.297 3.306 0.301 1.013 0.009 0.301 1.930 -0.037 4.212 0.421 4.227 0.423 1.004 -0.001 0.423 1.920 -0.047 5.760 0.576 5.776 0.578 1.003 -0.001 0.578 1.920 -0.047 8.246 0.750 8.257 0.751 1.001 -0.003 0.751 1.996 0.029 11.401 1.036 1.036 1.036 1.036 1.939 -0.028 | | Standard | Standardized Data | | | Dry 6 | Dry Gas Meter | | | |--|----------------|------------------------|-------------------------|-------------------------|-----------|-----------|-----------------|-------|-------------| | as Meter Critical Orifice Value Variation Std & Corr 0.75 SCFM (Q _{m(std)}) (Vcr _(std)) (Q _{c(std)}) (Y) (DY) (Q _{m(std)}) (DH@) cfm cubic feet cfm cfm in H2O 0.297 3.306 0.301 1.013 0.009 0.301 1.930 0.421 4.227 0.423 1.004 -0.001 0.423 1.920 0.576 5.776 0.578 1.003 -0.001 0.578 2.023 0.750 8.257 0.751 1.001 -0.003 0.751 1.996 1.036 1.036 1.036 1.036 1.939 1.036 1.036 1.036 1.957 | | | | | Calibrati | on Factor | Flowrate | @ на | | | (Qm(std)) (Vor(std)) (Qcr(std)) (Y) (DY) (DH@) (DH@) cfm cubic feet cfm cfm in H2O 0.297 3.306 0.301 1.013 0.009 0.301 1.930 0.421 4.227 0.423 1.004 -0.001 0.423 1.920
0.576 5.776 0.578 1.003 -0.001 0.578 2.023 0.750 8.257 0.751 1.001 -0.003 0.751 1.996 1.036 1.036 1.036 1.036 1.939 1.036 1.036 1.036 1.936 | Dry Ga | s Meter | Critical | Orifice | Value | Variation | Std & Corr | | Variation | | offm cubic feet cfm cn H2O 0.297 3.306 0.301 1.013 0.009 0.301 1.930 0.421 4.227 0.423 1.004 -0.001 0.423 1.920 0.576 5.776 0.578 1.003 -0.001 0.578 2.023 0.750 8.257 0.751 1.001 -0.003 0.751 1.996 1.036 1.036 1.036 1.036 1.939 DGMCF 1.004 -0.005 1.036 1.939 | $(V_{m(std)})$ | (Q _{m(std)}) | (Vcr _(std)) | (Q _{cr(std)}) | (λ) | (λα) | (Qm(std)(corr)) | | (Фрнф) | | 0.297 3.306 0.301 1.013 0.009 0.301 1.930 0.421 4.227 0.423 1.004 -0.001 0.423 1.920 0.576 5.776 0.578 1.003 -0.001 0.578 2.023 0.750 8.257 0.751 1.001 -0.003 0.751 1.996 1.036 11.396 1.036 1.036 1.939 DGMCF 1.004 -0.005 1.036 1.939 | cubic feet | ctm | cubic feet | ctm | | | ctm | | | | 0.421 4.227 0.423 1.004 -0.001 0.423 1.920 0.576 5.776 0.578 1.003 -0.001 0.578 2.023 0.750 8.257 0.751 1.001 -0.003 0.751 1.996 1.036 11.396 1.036 1.000 -0.005 1.036 1.939 DGMCF 1.004 1.004 1.936 1.967 | 3.263 | 0.297 | 3.306 | 0.301 | 1.013 | 0.009 | 0.301 | 1.930 | -0.037 | | 0.576 5.776 0.578 1.003 -0.001 0.578 2.023 0.750 8.257 0.751 1.001 -0.003 0.751 1.996 1.036 1.036 1.000 -0.005 1.036 1.939 DGMCF 1.004 1.004 1.967 | 4.212 | 0.421 | 4.227 | 0.423 | 1.004 | -0.001 | 0.423 | 1.920 | -0.047 | | 0.750 8.257 0.751 1.001 -0.003 0.751 1.996 1.036 11.396 1.036 1.000 -0.005 1.036 1.939 DGMCF 1.004 1.004 1.967 | 5.760 | 0.576 | 5.776 | 0.578 | 1.003 | -0.001 | 0.578 | 2.023 | 0.056 | | 1.036 11.396 1.036 1.000 -0.005 1.036 1.939 DGMCF 1.004 1.957 | 8.246 | 0.750 | 8.257 | 0.751 | 1.001 | -0.003 | 0.751 | 1.996 | 0.029 | | 1.967 | 11.401 | 1.036 | 11.396 | 1.036 | 1.000 | -0.005 | 1.036 | 1.939 | -0.028 | | | | | | DGMCF | 1.004 | | | 1.967 | DH@ Average | Individual values of DGM calibration factor (Y) must be within \pm 1.5% of the average value. If not the calibration must be repeated. Also, the DGMCF average value (Y) must be 1.00 \pm 0.05, otherwise the meter must be repaired and/or adjusted as necessary and recalibrated prior to use. (Environment Canada Reference Method EPS 1/RM/8, Section 6) ### ORTECH Trendicator Calibration | 100 | Calibration Procedure | 03 - 1005 | |-----|--------------------------|------------------| | | Trendicator Type | Omega DP118 | | | MII | COE 20090 | | | Date | November 4, 2020 | | | Calibrated By | Thomas Timar | | | Reviewed and Accepted By | CHRIS BELORE | | Fluke Calibrator Output | Tredicator D | isplay Value | Percent
Difference | |-------------------------|---------------------------|--------------------------|-----------------------| | (COE 20024)
(°F) | Before Adjustment
(°F) | After Adjustment
(°F) | (%) | | 32 | 32 | AU | 0.0 | | 70 | 70 | | 0.0 | | 100 | 99 | | 1.0 | | 200 | 200 | | 0.0 | | 250 | 251 | | -0.4 | | 300 | 301 | | -0.3 | | 400 | 399 | | 0.3 | | 500 | 498 | | 0.4 | | 600 | 599 | | 0.2 | | 700 | 700 | CHARLES HARRED | 0.0 | | 800 | 800 | | 0.0 | | 900 | 900 | | 0.0 | | 1000 | 1000 | | 0.0 | | 1100 | 1100 | | 0.0 | | 1200 | 1200 | | 0.0 | | 1250 | 1249 | | 0.1 | % Difference = (calibrator - after adjustment reading)x 100 calibrator ### Acceptance Criteria: Trendicator display must read within \pm 1.5%, and \pm 3 degrees F of the standard value at each output. Otherwise, the Trendicator must be repaired and/or adjusted as necessary, and recalibrated prior to use. (Ontario Source Testing Code, June 2010, Part C: Method ON-2, 7.5 Appendix 2E) ### ORTECH Manometer Calibration Data | Date | November 4, 2020 | Calibrated By | Thomas Timar | |-----------------------|------------------|----------------------|--------------| | Manometer Number | Team 4 | Signature | | | Manometer MII Number | COE 20090 | Reviewed/Accepted By | CHRE BELOTTE | | Calibrated Against | Omega | | | | MII Number | B02679 | | | | Calibration Procedure | 03 - J010 | | | ### Front Leg | Manometer
Scale | | ter Reading
H₂O | Reference Manometer
Reading | Percent
Difference | |--------------------|----------------------|---------------------|--------------------------------|-----------------------| | "H ₂ 0 | Before
Adjustment | After
Adjustment | "H₂O | % | | | 0.270 | NA | 0.270 | 0.0 | | 0-1.0 | 0.610 | | 0.610 | 0.0 | | | 0.910 | | 0.910 | 0.0 | | | 2.60 | | 2.65 | 1.9 | | 1.0-10.0 | 6.00 | | 6.00 | 0.0 | | | 9.30 | | 9.35 | 0.5 | Percent Difference = (Ref. Manometer - Instrument Reading) x 100 Ref. Manometer ### Acceptance Criteria: The manometer being calibrated must be within \pm 5.0% of the Standard value at each reading. Otherwise, the manometer must be repaired and/or adjusted as necessary and recalibrated prior to use. Manometers must be capable of measuring velocity pressure to within 0.005 "H₂O on the 0 to 1 inch scale, and 0.05 "H₂O on the 1 to 10 inch scales. (Environment Canada Reference Method 1/RM/8, Section 2) ### **APPENDIX 22** Particulate and Metals Test Emission Calculations (24 pages) Plant: Covanta DYEC Plant Location: Courtice, Ontario Test Location: APC Outlet No. 1 Test No.: Date: November 9, 2020 1 - Particulate & Metals ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.851 | |---|----------------------| | DGM CORRECTION FACTOR | 0.999 | | NOZZLE DIAMETER | 6.38 mm | | DRY REF GAS VOLUME SAMPLED | 3.521 m ³ | | AVGERGE ISOKINETICITY | 97.5 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH THE SERVICE OF | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | | | | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 141.0 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 14.6 % | | AVERAGE GAS VELOCITY | 17.35 m/s | | BAROMETRIC PRESSURE (Station) | 101.558 Kpa | | STATIC PRESSURE | -2.224 Kpa | | ABSOLUTE GAS PRESSURE | 99.334 Kpa | | OXYGEN CONCENTRATION | 8.74 % | | CARBON DIOXIDE CONCENTRATION | 10.73 % | | CARBON MONOXIDE CONCENTRATION | 12.4 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | 25.63 m ³ /s | |----------------------|--------------------------| | DRY REF GAS FLOWRATE | 15.44 Rm³/s | | DRY ADJ GAS FLOWRATE | 18.96 Rm³/s | | WET REF GAS FLOWRATE | 18.09 Rm ³ /s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 14.4 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0.1 mg | | | -TOTAL | 14.5 mg | | DRY REF GAS VOLUME SAMPLED | | 3.521 m ³ | | PARTICULATE CONC ACTUAL | | 2.480 mg/m ³ | | PARTICULATE CONC DRY REF | | 4.118 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 3.353 mg/m ³ | | PARTICULATE CONC WET REF | | 3.516 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.063574 g/s | | | | | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Note: Dry Adj condition refers to 25 deg C (77 deg F)and 1 atmosphere, adjusted to 11% oxygen by volume Covanta DYEC 1 - Particulate & Metals November 9, 2020 Plant: Test No.: Date: Plant Location: Courtice, Ontario Test Location: APC Outlet No. 1 | _ | | |-----------------|-----------| | ひとし ひここり ひょく | | | • | | | | | | | | | | | | _: | | | 11 | | | _ | JB | JB | TOTAL LOCALIONS | Operator: | Pitot Factor | 0.851 | Filter (mg) | 0.1 | | Combustion Gases | | |---------------------|--------------------------|-------------------------|-------|-------------
--|--| | DGMCF | 0.999 | Probe (mg) | 14.4 | | 02% 8.74 | | | Barometric Pressure | 29.99 "Hg | CWTR (g) | 424.8 | | CO2% 10.73 | | | Static Pressure | -8.930 "H ₂ 0 | WCBDA (g) | 18.9 | | COppm 12.4 | | | Nozzle | 0.2513 inches | | | | - Commission construction and constructi | | | Stack Diameter | 4.500 ft | Leak Check Volume | | 0.4 ਜਿੰ | Measured H20 | | | Length | 0.000 ft | Reading Interval | | 2.5 minutes | 14.6 % | | | Width | 0.000 ft | Number of Ports | | 2 | | | | | | Number of points / Port | | 12 | | | | | ty Isokinetic | % | | 96.5 | | | | | | 97.3 | | | | | | 6.86 | | | 95.6 | | | | | | 96.1 | | | | | | 97.8 | | | |--------------|---------------------------------------|------------|---------------------------------------| | Leak | Check Velocity | Volume m/s | 18:13 | 18.12 | 18.33 | 18.71 | 18.58 | 18.49 | 18.60 | 18.60 | 18.37 | 18.14 | 18.25 | 17.90 | 17.28 | 17.03 | 16.90 | 16.90 | 16.24 | 16.25 | 16.78 | 16.78 | 16.90 | 16.90 | 16.90 | 17,03 | 17.03 | 17.16 | 17.15 | 16.89 | 16.89 | 17.12 | · · · · · · · · · · · · · · · · · · · | | | Vacuum | W Hg | 3.0 | | | | М | "H20 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.75 | 1.6 | 1.5 | 1.5 | 1.5 | 1.45 | 1.4 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.55 | 1.55 | 1.55 | 1.5 | 1.5 | 1.55 | | | | DGM In | u.
o | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 69 | 69 | 70 | 70 | 70 | 69 | 69 | 69 | 70 | 70 | 70 | 70 | 70 | 71 | 70 | 71 | 71 | | | ratures | DGM Out | L
o | 69 | 69 | 69 | 69 | 69 | 69 | 69 | 69 | 69 | 70 | 70 | 70 | 71 | 70 | 70 | 72 | 72 | 72 | 72 | 72 | 73 | 73 | 73 | 74 | 73 | 73 | 74 | 73 | 74 | 75 | | | Temperatures | Imp. Out | o
0 | 51 | 50 | 50 | 52 | 53 | 56 | 58 | 59 | 9 | 62 | 63 | 59 | 58 | 58 | 58 | 59 | 57 | 56 | 55 | 55 | 54 | 54 | 53 | 53 | 53 | 53 | 52 | 52 | 52 | 52 | | | | Stack | ц. | 285 | 284 | 282 | 284 | 283 | 285 | 285 | 285 | 285 | 286 | 285 | 286 | 287 | 287 | 287 | 287 | 287 | 288 | 288 | 288 | 287 | 287 | 287 | 287 | 287 | 287 | 286 | 286 | 286 | 284 | | | | dδ | ,H2O | 0.75 | 0.75 | 0.77 | 0.8 | 0.79 | 0.78 | 0.79 | 0.79 | 0.77 | 0.75 | 0.76 | 0.73 | 0.68 | 99.0 | 0.65 | 0.65 | 9.0 | 9:0 | 0.64 | 0.64 | 0.65 | 0.65 | 0.65 | 0.66 | 99.0 | 0.67 | 0.67 | 0.65 | 0.65 | 0.67 | 我们是我们的 有数的 经现代 | | | DGM | Reading | 615.10 | 616.85 | 618.67 | 620.42 | 622.18 | 623.98 | 625.74 | 627.55 | 629.31 | 631.09 | 632.87 | 634.67 | 636.43 | 638.14 | 639.78 | 641,43 | 643.05 | 644.67 | 646.26 | 647.91 | 649.54 | 651.18 | 652.81 | 654.45 | 656.08 | 657.77 | 659,44 | 661.12 | 662.78 | 664.43 | | | | | Time | 0 | 2.5 | 5 | 7.5 | 10 | 12.5 | 15 | 17.5 | 20 | 22.5 | 25 | 27.5 | 30 | 32.5 | 35 | 37.5 | 40 | 42.5 | 45 | 47.5 | 20 | 52.5 | 55 | 57.5 | 09 | 62.5 | 65 | 67.5 | 70 | 72.5 | | | | i i i i i i i i i i i i i i i i i i i | Point | Т | | | 2 | | | က | | | 4 | | | 2 | | | 9 | | | 7 | | | 8 | | | 6 | | | 10 | | | | Covanta DYEC 1 - Particulate & Metals November 9, 2020 Plant: Test No.: Date: Plant Location: Courtice, Ontario Test Location: APC Outlet No. 1 Operator: JB | 0.051 | Cilhor (mon) | , 0 | | Combinetion Good | |--------------------------|-------------------------|-------|-------------|-------------------| | 1C0 | | 1.0 | | Compusition dases | | 0.999 | Probe (mg) | 14.4 | | 02% 8.74 | | 99 "Hg | CWTR(g) | 424.8 | | CO2% 10.73 | | -8.930 "H ₂ 0 | WCBDA (g) | 18.9 | | COppm 12.4 | | 13 inches | | | | | | 4.500 ft | Leak Check Volume | | 0.4 ft² | Measured H20 | | 0.000 ft | Reading Interval | | 2.5 minutes | 14.6 % | | 00 ft | Number of Ports | | 2 | | | | Number of points / Port | | 12 | | | | Isokinetic | % | 97.4 | 97.4 | 92.6 | 97.5 | 97.4 | 8.96 | | 97.9 | 100.0 | 99.9 | 97.9 | 97.9 | 98.4 | 93.1 | 104.7 | 98.6 | 98.7 | 8.66 | 9.66 | 97.8 | 98.1 | 97.4 | 96.9 | 97.8 | 9.96 | 1.66 | 97.4 | 97.4 | 97.3 | 7.96 | 96.1 | |--------------|------------|---------|----------|--------|--------|--------| | | Velocity | m/s | 16.77 | 16.76 | 16.62 | 16.62 | 16.63 | | 18.13 | 18.15 | 18.27 | 18.16 | 18.16 | 18.16 | 18.16 | 17.54 | 17.91 | 17.28 | 17.28 | 17.28 | 16.90 | 16.92 | 16.91 | 16.92 | 16.52 | 16.52 | 17.43 | 17.31 | 17.32 | 17.45 | 17.45 | 17.43 | 17.81 | | Leak | Check | Volume | | | | | | 0.4 | Vacuum | "Hg | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | 3.0 | | | М | "H20 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.7 | 1.8 | 1.6 | 1.6 | 1.6 | 1.5 | 1.5 | 1.5 | 1.5 | 1.4 | 1.4 | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.8 | | | DGM In | iL
o | 71 | 71 | 71 | 72 | 72 | | 71 | 73 | 73 | 73 | 73 | 73 | 72 | 72 | 73 | 73 | 73 | 74 | 74 | 73 | 73 | 73 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | | itures | DGM Out | ഥ | 75 | 75 | 75 | 75 | 75 | | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 76 | 76 | 75 | 75 | 75 | 76 | 76 | 76 | 77 | 77 | 77 | 77 | 77 | 77 | | Temperatures | Imp. Out | <u></u> | 52 | 52 | 52 | 52 | 52 | | 52 | 51 | 51 | 51 | 51 | 51 | 52 | 52 | 52 | 52 | 53 | 52 | 52 | 52 | 53 | 53 | 54 | 54 | 53 | 51 | 50 | 50 | 50 | 50 | 50 | | | Stack | ዳ | 276 | 275 | 274 | 274 | 275 | | 285 | 287 | 287 | 288 | 288 | 288 | 288 | 287 | 287 | 287 | 287 | 287 | 287 | 289 | 288 | 289 | 288 | 288 | 289 | 289 | 290 | 290 | 290 | 289 | 289 | | | ΔP | "H20 | 0.65 | 0.65 | 0.64 | 0.64 | 0.64 | | 0.75 | 0.75 | 0.76 | 0.75 | 0.75 | 0.75 | 0.75 | 0.7 | 0.73 | 0.68 | 0.68 | 0.68 | 0.65 | 0.65 | 0.65 | 0.65 | 0.62 | 0.62 | 69:0 | 0.68 | 0.68 | 69:0 | 69:0 | 69.0 | 0.72 | | | DGM | Reading | 92.799 | 669.43 | 671.07 | 672.73 | 674.39 | 676.04 | 676.44 | 678.23 | 90.089 | 681.90 | 683.69 | 685.48 | 687.28 | 688.98 | 690.83 | 692.61 | 694.33 | 696.07 | 697.81 | 699.48 | 701.15 | 702.81 | 704.46 | 706.09 | 707.70 | 709,44 | 711.14 | 712.84 | 714.55 | 716.25 | 717.94 | | | | Time | 77.5 | 80 | 82.5 | 85 | 87.5 | 06 | 0 | 2.5 | 5 | 7.5 | 10 | 12.5 | 15 | 17.5 | 20 | 22.5 | 25 | 27.5 | 30 | 32.5 | 35 | 37.5 | 40 | 42.5 | 45 | 47.5 | 50 | 52.5 | 55 | 57.5 | 09 | | -3. | | Point | | | 12 | | | | H | | | 2 | | | က | | | 4 | | | 2 | | | 9 | | | 7 | | | ∞ | | | 6 | Covanta DYEC 1 - Particulate & Metals November 9, 2020 Plant: Test No.: Date: Plant Location: Courtice, Ontario Test Location: APC Outlet No. 1 Operator: JB | | | g) CO2% 10.73 COppm 12.4 | | eak Check Volume 0.4 ft | Reading Interval 2.5 minutes | Number of Ports | | |-------------------|---------------|---|---------------|-------------------------|------------------------------|-----------------|--| | 0.851 Filter (mg) | 0.999 Probe (| 29.99 "Hg CWTR (g) -8.930 "H ₂ O WCBDA (g) | 0.2513 inches | | | 0.000 ft Numbe | | | | | Sarometric Pressure
Static Pressure | | | | | | | | | | | | Temper | ratures | | | | Leak | | | |-------|------|---------|------|------------|----------|----------------|--------|------|--------|--------|----------|------------| | | | DGM | ΔP | Stack | Imp. Out | DGM Out | DGM In | М | Vacuum | Check | Velocity | Isokinetic | | Point | Time | Reading | "H20 | 5 0 | 3° 3° 3° | 3 ₀ | J. | "H20 | "Hg | Volume | m/s | % | | | 62.5 | 719.72
| 0.71 | 289 | 51 | 77 | 74 | 1.75 | 3.0 | | 17.69 | 99.1 | | | 65 | 721.48 | 0.71 | 289 | 51 | 77 | 75 | 1.75 | 3.0 | | 17.69 | 98.7 | | 10 | 67.5 | 723.25 | 0.72 | 289 | 51 | 77 | 75 | 1.75 | 3.0 | | 17.81 | 99.2 | | | 70 | 725.00 | 0.72 | 289 | 51 | 77 | 75 | 1.75 | 3.0 | | 17.81 | 97.4 | | | 72.5 | 726.76 | 0.72 | 287 | 50 | 77 | 75 | 1.75 | 3.0 | | 17.79 | 97.9 | | 11 | 75 | 728.51 | 0.63 | 285 | 49 | 77 | 75 | 1.5 | 3.0 | | 16.61 | 97.2 | | | 77.5 | 730.17 | 0.62 | 285 | 49 | 77 | 75 | 1.4 | 3.0 | | 16.48 | 98.4 | | | 80 | 731.76 | 0.61 | 285 | 50 | 77 | 75 | 1.4 | 3.0 | | 16.35 | 95.0 | | 12 | 82.5 | 733.34 | 0.61 | 284 | 50 | 77 | 75 | 1.4 | 3.0 | | 16.34 | 95.2 | | | 85 | 734.93 | 0.6 | 281 | 50 | 77 | 75 | 1.4 | 3.0 | | 16.17 | 95.7 | | | 87.5 | 736.52 | 0.6 | 284 | 50 | 77 | 75 | 1.4 | 3.0 | | 16.20 | 96.3 | | | 06 | 738.14 | | | | | | | | | | 98.3 | Plant: Covanta DYEC Plant Location: Courtice, Ontario Test Location: Test No.: APC Outlet No. 1 Date: November 9, 2020 2 - Particulate & Metals ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.851 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 0.999 | | NOZZLE DIAMETER | 6.38 mm | | DRY REF GAS VOLUME SAMPLED | 3.600 m ³ | | AVGERGE ISOKINETICITY | 98.3 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 142.3 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 15.8 % | | AVERAGE GAS VELOCITY | 17.92 m/s | | BAROMETRIC PRESSURE (Station) | 101.287 Kpa | | STATIC PRESSURE | -2.224 Kpa | | ABSOLUTE GAS PRESSURE | 99.063 Kpa | | OXYGEN CONCENTRATION | 8.75 % | | CARBON DIOXIDE CONCENTRATION | 10.67 % | | CARBON MONOXIDE CONCENTRATION | 10.2 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | | | 26.48 m ³ /s | |----------------------|--|--|--------------------------| | DRY REF GAS FLOWRATE | | | 15.65 Rm³/s | | DRY ADJ GAS FLOWRATE | | | 19.21 Rm³/s | | WET REF GAS FLOWRATE | | | 18.59 Rm ³ /s | ### **PARTICULATE EMISSION DATA** | PARTICULATE COLLECTED | -PROBE | 17.7 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0.3 mg | | | -TOTAL | 18 mg | | DRY REF GAS VOLUME SAMPLED | | 3.600 m ³ | | PARTICULATE CONC ACTUAL | | 2.955 mg/m ³ | | PARTICULATE CONC DRY REF | | 5.000 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 4.074 mg/m ³ | | PARTICULATE CONC WET REF | | 4.212 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.078259 g/s | | | | | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Note: Dry Adj condition refers to 25 deg C (77 deg F)and 1 atmosphere, adjusted to 11% oxygen by volume Covanta DYEC Test No.: Plant: Date: 2 - Particulate & Metals November 9, 2020 Plant Location: Courtice, Ontario Test Location: APC Outlet No. 1 Operator: Combustion Gases O2% 8.75 CO2% 10.67 COppm 10.2 0.3 17.7 473.1 22.2 CWTR (g) WCBDA (g) Probe (mg) Filter (mg) Number of points / Port Number of Ports Reading Interval 0.000 ft 0.000 ft 4.500 ft 2.5 minutes 2 11 Measured H20 15.8 % 0.4 代。 Leak Check Volume 29.91 "Hg -8.930 "H₂O 0.2513 inches **Barometric Pressure** Pitot Factor DGMCF Static Pressure Stack Diameter Nozzle Length Width 0.851 | | Isokinetic | % | | 7.96 | 101.4 | 101.6 | 101.8 | 98.8 | 98.2 | 96.8 | 95.8 | 96.8 | 2.66 | 97.9 | 97.8 | 8,00 | 8.60 | 9.66 | 6.66 | 99.3 | 6.66 | 98.0 | 97.8 | 97.8 | 6.96 | 97.5 | 97.5 | 98.1 | 98.5 | 99.2 | 97.9 | 98.4 | 98.2 | |--------------|------------|----------------| | | Velocity | s/m | 19.96 | 19.87 | 19.89 | 19.88 | 20.00 | 19.99 | 19.77 | 19.65 | 19.65 | 18.96 | 18.61 | 18.61 | 17.63 | 17.63 | 17.74 | 16.98 | 16.98 | 16.98 | 17.36 | 17.49 | 17.49 | 17.62 | 17.62 | 17.62 | 17.62 | 17.74 | 17.74 | 17.87 | 17.87 | 17.84 | 15.88 | | Leak | Check | Volume | Vacuum | "Hg | 3.0 | 3,0 | 3.0 | 3.0 | 3.0 | 3.0 | | | 늄 | "H20 | 2.2 | 2.2 | 2.2 | 2.2 | 2.1 | 2.1 | 2 | 2 | 2 | 1.9 | 1.8 | 1.8 | 1.7 | 1.7 | 1.7 | 1.55 | 1.55 | 1.55 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.4 | | | DGM In | o
T | 77 | 77 | 76 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 76 | 76 | 76 | 77 | 77 | 77 | 77 | 77 | 76 | 76 | 77 | 77 | 77 | | atures | DGM Out | 1 0 | 78 | 77 | 77 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 78 | 78 | 78 | 79 | 79 | 79 | 79 | 79 | 79 | 79 | 79 | 80 | 80 | | Temperatures | Imp. Out | a _0 | 72 | 57 | 53 | 50 | 49 | 48 | 48 | 48 | 49 | 47 | 47 | 48 | 48 | 48 | 46 | 46 | 46 | 46 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 43 | 43 | | | Stack | 3 ₀ | 287 | 288 | 290 | 289 | 290 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 286 | 286 | | | ΔP | "H20 | 6.0 | 0.89 | 0.89 | 0.89 | 6:0 | 6.0 | 0.88 | 0.87 | 0.87 | 0.81 | 0.78 | 0.78 | 7.0 | 0.7 | 0.71 | 0.65 | 0.65 | 0.65 | 0.68 | 0.69 | 69:0 | 7.0 | 0.7 | 0.7 | 7.0 | 0.71 | 0.71 | 0.72 | 0.72 | 0.72 | 0.57 | | | DGM | Reading | 738.54 | 740.47 | 742.48 | 744.49 | 746.50 | 748.46 | 750.41 | 752.31 | 754.18 | 756.07 | 757.94 | 759.75 | 761.56 | 763.31 | 765.06 | 766.82 | 768.51 | 770.19 | 771.88 | 773.58 | 775.29 | 777.00 | 778.71 | 780.43 | 782.15 | 783.88 | 785.63 | 787.39 | 789.14 | 790.90 | 792.66 | | - | | Time | 0 | 2.5 | 5 | 7.5 | 10 | 12.5 | 15 | 17.5 | 20 | 22.5 | 25 | 27.5 | 30 | 32.5 | 35 | 37.5 | 40 | 42.5 | 45 | 47.5 | - 20 | 52.5 | 55 | 57.5 | 09 | 62.5 | 92 | 67.5 | 70 | 72.5 | 75 | | | | Point | 1 | | | 2 | | | e
E | | | 4 | | | 2 | | | 9 | | | 7 | | | ∞ | | | 6 | | | 10 | | | 11 | Plant: Test No.: Date: Covanta DYEC 2 - Particulate & Metals November 9, 2020 Plant Location: Courtice, Ontario Test Location: APC Outlet No. 1 Operator: JB | ,es | 5 | <u> </u> | 2 | | | The second secon | | | |----------------|------------|---------------------|--------------------------|--|-------------------
--|-----------------|-------------------------| | Combustion Gas | 02% 8.75 | CO2% 10.6 | COppm 10. | Leinenvieren manmanken monten mit sterne | Measured H20 | 15.8 % | | | | | | | | | 0.4 ft² | 2.5 minutes | 2 | 1) | | 0.3 | 17.7 | 473.1 | 22.2 | | | | | | | Filter (mg) | Probe (mg) | CWTR (g) | WCBDA (g) | | Leak Check Volume | Reading Interval | Number of Ports | Number of points / Port | | 0.851 | 0.999 | 29.91 "Hg | -8.930 "H ₂ O | 0.2513 inches | 4.500 ft | 0.000 代 | 0.000 ft | | | Pitot Factor | DGMCF | Barometric Pressure | Static Pressure | Nozzle | Stack Diameter | Length | width | | | | | | | | Temperatures | atures | | | Andrews Commission Com | Leak | | | |---------|------|---------|------|-------|--------------|----------------|--------|------|--|--------|----------|------------| | | | DGM | ďΣ | Stack | Imp. Out | DGM Out | DGM In | Ħ | Vacuum | Check | Velocity | Isokinetic | | Point | Time | Reading | "H2O | 10 | 1 0 | J _O | °F. | "H20 | "Hg | Volume | m/s | % | | | 77.5 | 794.26 | 0.57 | 286 | 43 | 80 | 77 | 1,4 | 3.0 | | 15.88 | 100.2 | | | 80 | 795.87 | 0.58 | 284 | 46 | 80 | 77 | 1.4 | 3.0 | | 15,99 | 100.9 | | 12 | 82.5 | 797.48 | 0.57 | 284 | 46 | 80 | 77 | 1.4 | 3.0 | | 15.86 | 6.66 | | | 85 | 799.05 | 0.57 | 284 | 46 | 81 | 78 | 1,4 | 3.0 | | 15.86 | 98.2 | | | 87.5 | 800.63 | 0.58 | 284 | 46 | 81 | 78 | 1.4 | 3.0 | | 15.99 | 98.7 | | | 06 | 802.21 | | | | | | | | 0.4 | | 97.8 | | 1.
H | 0 | 802.61 | 0.86 | 286 | 63 | 81 | 79 | 1.9 | 3,0 | | 19.50 | | | | 2.5 | 804.46 | 0.86 | 286 | 51 | 80 | 78 | 1.9 | 3.0 | | 19.50 | 94.2 | | | 5 | 806.33 | 6.0 | 286 | 46 | 80 | 79 | 2.1 | 3.0 | | 19.95 | 95.4 | | 2 | 7.5 | 808.29 | 0.84 | 287 | 44 | 80 | 78 | 1.8 | 3.0 | | 19.29 | 27.7 | | | 10 | 810.17 | 0.84 | 287 | 44 | 79 | 78 | 1.8 | 3.0 | | 19.29 | 97.1 | | | 12.5 | 811.98 | 0.82 | 287 | 43 | 80 | 78 | 1.8 | 3.0 | | 19.06 | 93.6 | | m | 15 | 813.78 | 0.82 | 287 | 44 | 80 | 78 | 1.9 | 3.0 | | 19.06 | 94.1 | | | 17.5 | 815.65 | 0.82 | 287 | 44 | 80 | 78 | 1.9 | 3.0 | | 19.06 | 97.8 | | | 20 | 817.49 | 0.87 | 287 | 44 | 80 | 78 | 2.1 | 3.0 | | 19.63 | 96.2 | | 4 | 22.5 | 819.44 | 0.81 | 287 | 44 | 80 | 78 | 1.9 | 3.0 | | 18.94 | 0.66 | | | 25 | 821.31 | 0.81 | 287 | 44 | 80 | 78 | 1.9 | 3.0 | | 18.94 | 98.4 | | | 27.5 | 823.19 | 0.81 | 287 | 44 | 80 | 78 | 1.9 | 3.0 | | 18.94 | 98.9 | | 5 | 30 | 825.07 | 0.75 | 287 | 44 | 80 | 79 | 1.8 | 3.0 | | 18.22 | 98.9 | | | 32.5 | 826.88 | 0.75 | 288 | 44 | 80 | 79 | 1.8 | 3.0 | | 18.24 | 98.8 | | | 35 | 828.68 | 0.75 | 289 | 45 | 81 | 79 | 1.8 | 3.0 | | 18.25 | 98.4 | | 9 | 37.5 | 830.48 | 0.64 | 289 | 45 | 81 | 79 | 1.5 | 3.0 | | 16.86 | 98.3 | | | 40 | 832.14 | 0.64 | 289 | 46 | 81 | 79 | 1.5 | 3.0 | | 16.86 | 98.1 | | | 42.5 | 833.79 | 0.64 | 289 | 47 | 81 | 79 | 1.5 | 3.0 | | 16.86 | 97.5 | | 7 | 45 | 835.43 | 7.0 | 289 | 47 | 81 | 79 | 1.7 | 3.0 | | 17.63 | 96.9 | | | 47.5 | 837.19 | 0.72 | 289 | 47 | 81 | 79 | 1.7 | 3.0 | | 17.88 | 99.5 | | | 20 | 838.95 | 0.72 | 290 | 46 | 81 | 79 | 1.7 | 3.0 | | 17.89 | 98.1 | | 8 | 52.5 | 840.71 | 0.74 | 290 | 46 | 81 | 79 | 1.75 | 3.0 | | 18.14 | 98.2 | | | 55 | 842.51 | 0.73 | 290 | 46 | 81 | 79 | 1.75 | 3.0 | | 18.02 | 0.66 | | | 57.5 | 844.31 | 0.73 | 290 | 46 | 81 | 79 | 1.75 | 3.0 | | 18.02 | 7.66 | | 6 | 09 | 846.11 | 0.73 | 290 | 45 | 81 | 79 | 1.75 | 3.0 | | 18.02 | 7.66 | | | | | | | | | | | | | | | Test No.: Plant: Covanta DYEC 2 - Particulate & Metals November 9, 2020 Date: Barometric Pressure Static Pressure Pitot Factor DGMCF Stack Diameter Nozzle Length Width Plant Location: Courtice, Ontario Test Location: APC Outlet No. 1 8 Operator: Combustion Gases COppm 02% CO2% 2.5 minutes 0.4 ft² 12 2 17.7 473.1 22.2 Number of points / Port Leak Check Volume Number of Ports Reading Interval Filter (mg) Probe (mg) CWTR (g) WCBDA (g) 29.91 "Hg -8.930 "H₂O 0.2513 inches 0.000 ft 0.000 ft 4.500 ft 0.851 Measured H2O 15.8 % 10.67 8.75 | | Isokinetic | % | 98.1 | 98.1 | 2.66 | 266 | 99.5 | 9.66 | 0.66 | 98.3 | 97.1 | 97.3 | 99.2 | 96.9 | |--------|------------------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | Velocity | m/s | 18.02 | 18.02 | 17.51 | 17.50 | 17.38 | 15.77 | 15.77 | 15.77 | 15.63 | 15.63 | 15.48 | | | Leak | Check | Volume | | | | | | | | | | | | | | | Vacuum | #
Hg | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | | ч | "H20 | 1.75 | 1.75 | 1.7 | 1.7 | 1.7 | 1.35 | 1.35 | 1.35 | 1.35 | 1.35 | 1.3 | | | | DGM In | ь
С | 79 | 79 | 79 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | | | atures | DGM Out | 느 | 81 | 81 | 81 | 82 | 82 | 82 | 82 | 82 | 82 | 82 | 82 | | | Temper | ack Imp. Out DGM | ŭ. | 45 | 45 | 46 | 46 | 46 | 46 | 46 | 46 | 46 | 46 | 47 | | | | Stack | <u>ц.</u>
° | 290 | 290 | 290 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | | | | ФΔ | "H20 | 0.73 | 0.73 | 69:0 | 69:0 | 0.68 | 0.56 | 0.56 | 0.56 | 0.55 | 0.55 | 0.54 | | | | DGM | Reading | 847.88 | 849.65 | 851.44 | 853.19 | 854.94 | 826.68 | 858.25 | 859.81 | 861.35 | 862.88 | 864.44 | 865.95 | | | | Time | 62.5 | 65 | 67.5 | 70 | 72.5 | 75 | 77.5 | 80 | 82.5 | 85 | 87.5 | 06 | | | | Point | | | 10 | | | 11 | | | 12 | | | | Plant: Covanta DYEC Plant Location: Courtice, ON **Test Location:** APC Outlet No. 1 Test No.: Date: November 10, 2020 3 - Particulate & Metals ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.848 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 1.004 | | NOZZLE DIAMETER | 6.73 mm | | DRY REF GAS VOLUME SAMPLED | 3.969 m ³ | | AVGERGE ISOKINETICITY | 101.2 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 140.5 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 16.6 % |
| AVERAGE GAS VELOCITY | 17.52 m/s | | BAROMETRIC PRESSURE (Station) | 100.373 Kpa | | STATIC PRESSURE | -2.331 Kpa | | ABSOLUTE GAS PRESSURE | 98.042 Kpa | | OXYGEN CONCENTRATION | 8.39 % | | CARBON DIOXIDE CONCENTRATION | 10.79 % | | CARBON MONOXIDE CONCENTRATION | 11.7 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | 25.89 m³/s | |----------------------|--------------------------| | DRY REF GAS FLOWRATE | 15.06 Rm³/s | | DRY ADJ GAS FLOWRATE | 19.03 Rm ³ /s | | WET REF GAS FLOWRATE | 18.06 Rm ³ /s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 1.6 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0.2 mg | | | -TOTAL | 1.8 mg | | DRY REF GAS VOLUME SAMPLED | | 3.969 m ³ | | PARTICULATE CONC ACTUAL | | 0.264 mg/m ³ | | PARTICULATE CONC DRY REF | | 0.454 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.359 mg/m ³ | | PARTICULATE CONC WET REF | | 0.378 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.006830 g/s | | | | | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Note: Dry Adj condition refers to 25 deg C (77 deg F)and 1 atmosphere, adjusted to 11% oxygen by volume Plant: Test No.: Date: Covanta DYEC 3 - Particulate & Metals November 10, 2020 Plant Location: Courtice, ON | APC Outlet No. 1 | | |------------------|-----------| | | | | | | | | | | \sim | | | | | | | | | _ | | | - | | | | | | | | | ~ . | | | ·w | | | | | | | | | - | | | | | | | | | \sim | | | | | | _ | | | - 1 | | | () | | | \sim | | | . ~ | | | - 1 | - | | | | | < | | | _ | 4 1 | - | | | - 17 | | | | | | | | | | 1 1 1 | | | | | m | 200 | | Test Location: | Operator: | | ··· | - 0 | | | | | . 0 | | | | 175 | | | | | | | | | | | - | (1) | | 10 | - | | , | ~~~ | | - 61 | 2-5 | | | - | | - 1 | | | | _ | | 1000 | | | | | | | | | | | | | | | | 0.848 | Filter (mg) | 0.2 | | Combustion Gases | |--|---------------------------------------|-------------------------|---------------|----------------------|--------------------------| | | 1.004 | Probe (mg) | 1.6 | | 02% 8.39 | | Barometric Pressure
Static Pressure | 29.64 "Hg
-9.360 "H ₂ O | CWTR (g)
WCBDA (g) | 556.1
24.6 | | CO2% 10.79
COppm 11.7 | | | 0.2651 inches | | | | | | | 4.500 ft | Leak Check Volume | | 0.32 ft [°] | Measured H20 | | | 0.000 ft | Reading Interval | | 2.5 minutes | % 9.91 | | | 0.000 ft | Number of Ports | | 2 | | | | | Number of points / Port | | 12 | | | | Isokinetic | % | | 103.7 | 103.3 | 102.6 | 103.6 | 102.7 | 102.3 | 101.9 | 101,2 | 101.0 | 100.0 | 100.6 | 100.6 | 100.5 | 100.5 | 100.0 | 100.5 | 101.3 | 100.7 | 101.2 | 0.66 | 0.66 | 101.2 | 102.0 | 103.8 | 100.5 | 104.0 | 100.4 | 100.8 | 101.5 | 101.5 | |--------------|------------|------------|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | Velocity | m/s | 17.79 | 17.79 | 17.79 | 17.67 | 17.88 | 17.76 | 17.89 | 17.64 | 17.39 | 17.64 | 17.38 | 17.36 | 17.38 | 17.36 | 16.98 | 16.98 | 17.11 | 17.11 | 16.58 | 16.31 | 16.04 | 16.03 | 16.70 | 16.58 | 17.87 | 17.36 | 17.38 | 17.76 | 18.00 | 18.00 | 18.37 | | Leak | Check | Volume | Vacuum | 8H. | 5.5 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | | ₩ | "H20 | 2.15 | 2.15 | 2.15 | 2.15 | 2.2 | 2.2 | 2.2 | 2.1 | 2.05 | 2.1 | 2.05 | 2.05 | 2.05 | 2.05 | 2 | 2 | 2.05 | 2.05 | 1.9 | 1.7 | 1.7 | 1.8 | 2 | 2 | 2.2 | 2.1 | 2.05 | 2.1 | 2.2 | 2.2 | 2.3 | | | DGM In | ₽, | 77 | 77 | 79 | 81 | 84 | 85 | 87 | 88 | 68 | 06 | 91 | 91 | 92 | 92 | 93 | 93 | 93 | 93 | 93 | 93 | 93 | 93 | 93 | 94 | 93 | 92 | 93 | 92 | 92 | 92 | 92 | | atures | DGM Out | 드 | 78 | 77 | 77 | 77 | 77 | 77 | 78 | 78 | 78 | 78 | 79 | 79 | 79 | 79 | 79 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | | Temperatures | Imp. Out | 4 0 | 77 | 64 | 61 | 09 | 58 | 57 | 55 | 54 | 54 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 54 | 54 | 53 | 53 | 53 | 53 | 53 | 53 | | | Stack | n
L | 287 | . 287 | 287 | 287 | 284 | 284 | 285 | 285 | 285 | 285 | 284 | 283 | 284 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 282 | 282 | 283 | 283 | 283 | 284 | 284 | 284 | 284 | 284 | | | ФΦ | "H20 | 0.71 | 0.71 | 0.71 | 0.7 | 0.72 | 0.71 | 0.72 | 0.7 | 0.68 | 7.0 | 0.68 | 0.68 | 0.68 | 0.68 | 0.65 | 0.65 | 99.0 | 99.0 | 0.62 | 9.0 | 0.58 | 0.58 | 0.63 | 0.62 | 0.72 | 0.68 | 0.68 | 0.71 | 0.73 | 0.73 | 0.76 | | | DGM | Reading | 13.52 | 15.54 | 17.55 | 19.55 | 21.56 | 23.59 | 25.60 | 27.62 | 29.60 | 31.55 | 33.51 | 35.46 | 37.41 | 39.36 | 41.31 | 43.21 | 45.12 | 47.06 | 48.99 | 50.87 | 52.68 | 54.46 | 56.28 | 58.19 | 60.12 | 62.13 | 64.15 | 66.10 | 68.10 | 70.14 | 72.18 | | | | Time | 0 | 2.5 | 2 | 7.5 | 10 | 12.5 | 15 | 17.5 | 20 | 22.5 | 25 | 27.5 | 30 | 32.5 | 35 | 37.5 | 40 | 42.5 | 45 | 47.5 | 50 | 52.5 | 55 | 57.5 | 09 | 62.5 | 92 | 67.5 | 70 | 72.5 | 75 | | | | Point | H | | | 2 | | | m | | | 4 | | | 2 | | | 9 | | | 7 | | | ∞ | | | 6 | | | 10 | | | 11 | Plant: Test No.: Date: Covanta DYEC 3 - Particulate & Metals November 10, 2020 Plant Location: Courtice, ON Test Location: APC Outlet No. 1 Operator: TT | Pitot Factor | 0.848 | Filter (mg) | 0.2 | | Combustion Gases | |---------------------|--------------------------|-------------------------|-------|-------------|------------------| | DGMCF | 1.004 | Probe (mg) | 1.6 | | 02% 8.39 | | Barometric Pressure | 29.64 "Hg | CWTR (g) | 556.1 | | CO2% 10.79 | | Static Pressure | -9.360 "H ₂ 0 | WCBDA (g) | 24.6 | | COppm 11.7 | | Nozzie | 0.2651 inches | | | | | | tack Diameter | 4.500 ft | Leak Check Volume | | 0.32 ft³ | Measured H20 | | ength | 0.000 ft | Reading Interval | | 2.5 minutes | 16.6 % | | Nidth | 0.000 ft | Number of Ports | | 7 | | | | | Number of points / Port | | | | | | | | | | Temperatures | atures | Annual and the second | | | Leak | | | |----------|------|---------|------|-------|----------------|------------|--|------|--------|--------|----------|------------| | | | DGM | ΔP | Stack | Imp. Out | DGM Out | DGM In | PΗ | Vacuum | | Velocity | Isokinetic | | Point | Time | Reading | "H20 | ٥٦ | 3 ₀ | 3 0 | ್ರಿ | "H2O | "Hg | Volume | m/s | % | | | 77.5 | 74.27 | 0.75 | 284 | 53 | 80 | 92 | 2.3 | 6.0 | | 18.25 | 101.9 | | | 80 | 76.35 | 0.75 | 284 | 53 | 80 | 92 | 2.2 | 6.0 | | 18.25 | 102.1 | | 12 | 82.5 | 78.41 | 0.72 | 284 | 53 | 80 | 92 | 2.2 | 6.0 | | 17.88 | 101.1 | | | 85 | 80,44 | 0.72 | 284 | 54 | 80 | 92 | 2.2 | 6.0 | | 17.88 | 101.7 | | | 87.5 | 82.44 | 0.72 | 284 | 54 | 79 | 91 | 2.2 | 6.0 | | 17.88 | 100.2 | | | 06 | 84.50 | | | | | | | | 0.32 | | 103.3 | | T | 0 | 84.82 | 0.77 | 285 | 63 | 78 | 82 | 2.2 | 6.0 | | 18.50 | | | | 2.5 | 98'98 | 0.8 | 286 | 58 | 78 | 84 | 2.3 | 6.0 | | 18.87 | 100.0 | | | 2 | 88.95 | 8.0 | 286 | 55 | 78 | 98 | 2.35 | 6.0 | | 18.87 | 100.4 | | 7 | 7.5 | 91.05 | 0.78 | 283 | 54 | 78 | 87 | 2.35 | 6.0 | | 18.60 | 100.7 | | | 10 | 93.15 | 0.78 | 283 | 55 | 78 | 88 | 2.35 | 6.0 | | 18.60 | 101.7 | | | 12.5 | 95.26 | 0.78 | 283 | 55 | 77 | 89 | 2.35 | 6.0 | | 18.60 | 102.0 | | ന | 15 | 97.36 | 0.75 | 284 | 55 | 77 | 68 | 2.2 | 6.0 | | 18.25 | 101.6 | | | 17.5 | 99.42 | 0.78 | 285 | 56 | 77 | 06 | 2.35 | 6.0 | | 18.62 | 101.6 | | | 20 | 101.52 | 0.78 | 285 | 56 | 77 | 06 | 2.35 | 6.0 | | 18.62 | 101.6 | | 4 | 22.5 | 103.63 | 0.72 | 286 | 55 | 77 | 06 | 2.15 | 6.0 | | 17.90 | 102.1 | | | 25 | 105.66 | 0.72 | 286 | 54 | 77 | 06 | 2.1 | 6.0 | | 17.90 | 102.2 | | | 27.5 | 107.63 | 0.72 | 286 | 53 | 77 | 06 | 2.1 | 6.0 | | 17.90 | 2.66 | | 5 | 30 |
109.62 | 99.0 | 286 | 53 | 77 | 68 | 2 | 6.0 | | 17.14 | 100.2 | | | 32.5 | 111.54 | 0.68 | 286 | 52 | 77 | 68 | 2.05 | 6.0 | | 17.40 | 101.1 | | | 35 | 113.48 | 0.68 | 286 | 52 | 77 | 89 | 2.05 | 6.0 | | 17.40 | 100.6 | | 9 | 37.5 | 115.43 | 7.0 | 286 | 52 | 77 | 68 | 2.1 | 6.0 | | 17.65 | 101.1 | | | 40 | 117.39 | 7.0 | 286 | 52 | 77 | 68 | 2.1 | 6.0 | | 17.65 | 100.2 | | | 42.5 | 119.37 | 0.7 | 287 | 52 | 77 | 68 | 2.1 | 6.0 | | 17.67 | 101.2 | | 7 | 45 | 121.35 | 99'0 | 287 | 51 | 76 | 68 | 1.9 | 6.0 | | 17.15 | 101.3 | | | 47.5 | 123.24 | 0.64 | 287 | 51 | 76 | 89 | 1.9 | 6.0 | | 16.89 | 9.66 | | | 50 | 125.11 | 0.64 | 287 | 51 | 76 | 68 | 1.9 | 6.0 | | 16.89 | 100.1 | | ∞ | 52.5 | 126.99 | 0.64 | 287 | 51 | 76 | 68 | 1.95 | 6.0 | | 16.89 | 100.6 | | | 55 | 128.89 | 0.64 | 287 | 51 | 76 | 68 | 1.95 | 6.0 | | 16.89 | 101.7 | | | 57.5 | 130.79 | 0.64 | 287 | 51 | 76 | 68 | 1.95 | 6.0 | | 16.89 | 101.7 | | ō | 09 | 132.68 | 0.66 | 287 | 51 | 76 | 89 | 1.9 | 6.0 | | 17.15 | 101.2 | Plant: Test No.: Date: Covanta DYEC 3 - Particulate & Metals November 10, 2020 Plant Location: Courtice, ON Test Location: APC Outlet No. 1 Operator: TT | Combustion Gases | 8.39 | CO2% 10.79 | COppm 11.7 | | Measured M20 | 16.6 % | | | |------------------|------------|---------------------|--------------------------|---------------|-------------------|------------------|-----------------|-------------------------| | | | | | | 0.32 ft " | 2.5 minutes | 2 | 12 | | 0.2 | 1.6 | 556.1 | 24.6 | | | | | | | Filter (mg) | Probe (mg) | CWTR (g) | WCBDA (g) | | Leak Check Volume | Reading Interval | Number of Ports | Number of points / Port | | 0.848 | 1.004 | 29.64 "Hg | -9.360 "H ₂ 0 | 0.2651 inches | 4.500 ft | 0.000 ft | 0.000 代 | | | Pitot Factor | DGMCF | Barometric Pressure | Static Pressure | Nozzle | Stack Diameter | Length | Width | | | | Isokinetic | % | 99.1 | 100.8 | 101.3 | 101.3 | 100.6 | 100.1 | 100.8 | 100.3 | 100.8 | 101.8 | 100.7 | 101.3 | |--------------|------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | | s/w | | 17.14 | 17.14 | 17.12 | 17.13 | 17.40 | 17.40 | 17.40 | 17.14 | 16.88 | 16.88 | | | Leak | Check | Volume | | | | | | | | | | | | | | | Vacuum | "Hg | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | | | НΦ | "H20 | 2 | 2 | 7 | 7 | 2 | 2.05 | 2.05 | 2.05 | 2 | 1.95 | 1.95 | | | | DGM In | ٥F | 88 | 88 | 88 | 88 | 88 | 88 | 88 | 88 | 88 | 88 | 88 | | | atures | DGM Out | - J | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 75 | | | Temperatures | Imp. Out | 3 | 51 | 51 | 51 | 51 | 51 | 51 | 52 | 53 | 53 | 54 | 55 | | | | Stack | 물0 | 287 | 286 | 286 | 284 | 285 | 286 | 286 | 286 | 286 | 286 | 286 | | | | dδ | "H2O | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | 0.68 | 0.68 | 0.68 | 99.0 | 0.64 | 0.64 | | | | DGM | Reading | 134.56 | 136.47 | 138.39 | 140.31 | 142.22 | 144.12 | 146.06 | 147.99 | 149.93 | 151.86 | 153.74 | 155.63 | | | | Time | 62.5 | 65 | 67.5 | 70 | 72.5 | 75 | 77.5 | 80 | 82.5 | 85 | 87.5 | 06 | | | | Point | | | 10 | | | 11 | | | 12 | | | | Plant: Covanta DYEC Plant Location: Courtice, ON **Test Location:** APC Outlet No. 2 Test No.: 1 - Particulate & Metals November 9, 2020 Date: 100Veriliber 3, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.848 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 1.004 | | NOZZLE DIAMETER | 6.73 mm | | DRY REF GAS VOLUME SAMPLED | 4.165 m ³ | | AVGERGE ISOKINETICITY | 101.3 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 141.9 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 16.2 % | | AVERAGE GAS VELOCITY | 18.18 m/s | | BAROMETRIC PRESSURE (Station) | 101.118 Kpa | | STATIC PRESSURE | -2.234 Kpa | | ABSOLUTE GAS PRESSURE | 98.884 Kpa | | OXYGEN CONCENTRATION | 8.33 % | | CARBON DIOXIDE CONCENTRATION | 10.97 % | | CARBON MONOXIDE CONCENTRATION | 15.1 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | 26.86 m ³ /s | |----------------------|--------------------------| | DRY REF GAS FLOWRATE | 15.78 Rm ³ /s | | DRY ADJ GAS FLOWRATE | 20.04 Rm ³ /s | | WET REF GAS FLOWRATE | 18.83 Rm ³ /s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 14.1 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0.3 mg | | | -TOTAL | 14.4 mg | | DRY REF GAS VOLUME SAMPLED | | 4.165 m ³ | | PARTICULATE CONC ACTUAL | | 2.032 mg/m ³ | | PARTICULATE CONC DRY REF | | 3.458 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 2.723 mg/m ³ | | PARTICULATE CONC WET REF | | 2.899 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.054569 g/s | | | | | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Note: Dry Adj condition refers to 25 deg C (77 deg F)and 1 atmosphere, adjusted to 11% oxygen by volume Plant: Covanta DYEC 1 - Particulate & Metals November 9, 2020 Test No.: Date: Plant Location: Courtice, ON Test Location: APC Outlet No. 2 Operator: TT Operator: | 0.3 | 14.1 | 4g CWTR(g) 565.8 | WCBDA(g) | | Leak Check Volume | Reading Interval | Number of Ports | Number of noists / Port | |-------------|------------|---------------------|----------|---------------|-------------------|------------------|-----------------|-------------------------| | 0.848 Filte | 1.004 Prol | | | 0.2651 inches | | | | | | | | Barometric Pressure | | Nozzle | Stack Diameter | | | | | | Isokinetic | % | | 102.0 | 102.0 | 103.5 | 102.2 | 101.6 | 102.1 | 101.9 | 102.8 | 101.2 | 100.6 | 102.0 | 100.9 | 102.9 | 102.1 | 101.5 | 102.1 | 102.2 | 102.1 | 102.2 | 101.6 | 101.1 | 102.1 | 103.1 | 102.9 | 101.8 | 101.8 | 102.2 | 101.8 | 101.0 | 101.6 | |--------------|------------|----------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | Velocity | s/w | 18.42 | 18.42 | 17.80 | 17.80 | 17.82 | 18.29 | 17.93 | 18.30 | 18.30 | 18,30 | 18.32 | 18.32 | 17.95 | 18.21 | 18.21 | 18.09 | 18.10 | 17.85 | 16.82 | 16.55 | 16.82 | 17.72 | 17.72 | 17.84 | 18.92 | 18.92 | 18.92 | 19.27 | 19.27 | 19.38 | 19.61 | | Leak | Check | Volume | Vacuum | "Hg | 5.0 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | | | H | "H20 | 2.3 | 2.3 | 2.2 | 2.2 | 2.2 | 2.3 | 2.2 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.25 | 2.3 | 2.3 | 2.25 | 2.25 | 2.2 | 2 | 1.9 | 2 | 2.2 | 2.2 | 2.25 | 2.5 | 2.5 | 2.5 | 2.6 | 2.6 | 2.6 | 2.7 | | | DGM In | 3 ₀ | 75 | 75 | 78 | 81 | 83 | 85 | 87 | 88 | 68 | 06 | 91 | 92 | 92 | 92 | 93 | 93 | 93 | 93 | 94 | 94 | 94 | 94 | 94 | 94 | 94 | 94 | 95 | 95 | 95 | 95 | 95 | | tures | DGM Out | | 75 | 75 | 75 | 75 | 75 | 75 | 76 | 76 | 76 | 76 | 77 | 77 | 77 | 77 | 77 | 78 | 78 | 78 | 78 | 78 | 78 | 78 | 78 | 78 | 78 | 78 | 78 | 78 | 79 | 79 | 79 | | Temperatures | Imp. Out | J ₀ | 75 | 75 | 54 | 52 | 51 | 51 | 51 | 51 | 51 | 50 | 50 | 49 | 48 | 48 | 49 | 49 | 48 | 48 | 48 | 48 | 48 | 48 | 48 | 47 | 48 | 48 | 48 | 48 | 48 | 48 | 49 | | | Stack | u.
o | 287 | 287 | 286 | 286 | 287 | 286 | 286 | 287 | 287 | 287 | 288 | 288 | 288 | 289 | 289 | 289 | 290 | 290 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 280 | 289 | 289 | | | ďΦ | "H20 | 0.77 | 72.0 | 0.72 | 0.72 | 0.72 | 0.76 | 0.73 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.73 | 0.75 | 0.75 | 0.74 | 0,74 | 0.72 | 0.64 | 0.62 | 0.64 | 0.71 | 0.71 | 0.72 | 0.81 | 0.81 | 0.81 | 0.84 | 0.85 | 0.85 | 0.87 | | | DGM | Reading | 23.13 | 25.19 | 27.25 | 29.28 | 31.29 | 33.29 | 35.36 | 37.39 | 39.48 | 41.54 | 43.59 | 45.67 | 47.73 | 49.79 | 51.86 | 53.92 | 55.98 | 58.04 | 60.07 | 61.99 | 63.87 | 65.77 | 67.79 | 69.83 | 71.88 | 74.03 | 76.18 | 78.34 | 80.53 | 82.73 | 84.93 | | | | Time | 0 | 2.5 | 5 | 7.5 | 10 | 12.5 | 15 | 17.5 | 20 | 22.5 | 25 | 27.5 | 30 | 32.5 | 35 | 37.5 | 40 | 42.5 | 45 | 47.5 | 50 | 52.5 | 55 | 57.5 | 9 | 62.5 | 65 | 67.5 | 70 | 72.5 | 75 | | | | Point | - | | | 2 | | | ന | | | 4 | | | 5 | | | 9 | | | 7 | | | ∞ | | | 6 | | | 10 | | | 11 | Covanta DYEC 1 - Particulate & Metals November 9, 2020 Plant: Test No.: Date: Plant Location: Courtice, ON Test Location: APC Outlet No. 2 Operator: TT | Combustion Gases | 02% 8.33 | CO2% 10.97 | COppm 15.1 | . In interconcernment of the property p | Measured H20 | 16.2 % | | | |------------------|------------|---------------------|--------------------------
--|-------------------|------------------|-----------------|-------------------------| | | | | | | 0.4 ft² | 2.5 minutes | 2 | 12 | | 0.3 | 14.1 | 565.8 | 24.4 | | | | | ŗ | | Filter (mg) | Probe (mg) | CWTR (g) | WCBDA (g) | | Leak Check Volume | Reading Interval | Number of Ports | Number of points / Port | | 0.848 | 1.004 | 29.86 "Hg | -8.970 "H ₂ O | 0.2651 inches | 4.500 ft | 0:000 ft | 0.000 ft | | | Pitot Factor | DGMCF | Barometric Pressure | Static Pressure | Nozzle | Stack Diameter | Length | Width | | | | | | | | Temperatures | atures- | | | | Leak | | | |-------|------|---------|------|-------|--------------|----------------|--------|------|--------|--------|----------|------------| | | | DGM | ďΣ | Stack | Imp. Out | DGM Out | DGM In | ЧΨ | Vacuum | Check | Velocity | Isokinetic | | Point | Time | Reading | "H2O | 되 0 | 4 0 | 9 ₆ | 크0 | "H20 | "Hg | Volume | s/m | % | | | 77.5 | 87.17 | 0.87 | 288 | 48 | 78 | 95 | 2.7 | 5.5 | | 19.60 | 102.2 | | | 80 | 89.42 | 0.85 | 288 | 49 | 79 | 95 | 2.6 | | | 19.37 | 102.7 | | 12 | 82.5 | 91.62 | 0.85 | 288 | 49 | 79 | 95 | 2.6 | | | 19.37 | 101.5 | | | 85 | 93.82 | 0.85 | 288 | 49 | 79 | 95 | 2.6 | 5.5 | | 19.37 | 101.5 | | | 87.5 | 96.02 | 0.85 | 288 | 49 | 79 | 95 | 2.6 | 5.5 | | 19.37 | 101.5 | | | 06 | 98.22 | | | | | | | | 0.4 | | 101.5 | | ₩. | 0 | 98.62 | 0.81 | 288 | 58 | 77 | 83 | 2.5 | 5.5 | | 18.91 | | | | 2.5 | 100.79 | 0.82 | 288 | 51 | 78 | 86 | 2.5 | 5.5 | | 19.03 | 103.9 | | | 5 | 102.93 | 0.82 | 287 | 49 | 77 | 88 | 2.5 | 5.5 | | 19.01 | 101.4 | | 2 | 7.5 | 105.08 | 0.8 | 287 | 49 | 77 | 06 | 2.45 | 5.5 | | 18.78 | 101.7 | | | 10 | 107.20 | 0.85 | 287 | 49 | 77 | 92 | 2.5 | 5.5 | | 19.36 | 101.4 | | | 12.5 | 109.36 | 0.85 | 287 | 48 | 77 | 93 | 2.5 | 6.0 | | 19.36 | 100.0 | | æ | 15 | 111.52 | 0.85 | 287 | 49 | 77 | 93 | 2.5 | 6.0 | | 19.36 | 6.66 | | | 17.5 | 113.69 | 0.82 | 287 | 48 | 77 | 93 | 2.5 | 6.0 | | 19:01 | 100.4 | | | 20 | 115.86 | 0.82 | 287 | 48 | 77 | 93 | 2.5 | 6.0 | | 19.01 | 102.2 | | 4 | 22.5 | 118.03 | 0.75 | 287 | 48 | 77 | 93 | 2 | 5.5 | | 18.18 | 102.2 | | | 25 | 119.93 | 0.78 | 287 | 48 | 78 | 93 | 2.2 | 5.5 | | 18.54 | 93.5 | | | 27.5 | 121.97 | 0.78 | 287 | 48 | 77 | 93 | 2.2 | 5.5 | | 18.54 | 98.4 | | Ŋ | 30 | 124.02 | 0.75 | 287 | 48 | 77 | 93 | 2.2 | 5.5 | | 18.18 | 6.86 | | | 32.5 | 126.06 | 0.75 | 287 | 48 | 77 | 93 | 2.2 | 5.5 | | 18.18 | 100.4 | | | 35 | 128.10 | 0.74 | 287 | 48 | 77 | 93 | 2.2 | 5.5 | | 18.06 | 100.4 | | 9 | 37.5 | 130.14 | 0.65 | 287 | 48 | 77 | 93 | 2 | 5.5 | | 16.93 | 101.1 | | | 40 | 132.07 | 0.65 | 287 | 48 | 77 | 93 | 2 | 5.5 | | 16.93 | 102.0 | | | 42.5 | 133.97 | 0.65 | 287 | 48 | 77 | 93 | 2 | 5.5 | | 16.93 | 100.4 | | 7 | 45 | 135.86 | 0.65 | 287 | 48 | 77 | 93 | 2 | 5.5 | | 16.93 | 6.66 | | | 47.5 | 137.75 | 0.67 | 287 | 48 | 77 | 93 | 2.1 | 5.5 | | 17.19 | 6.66 | | | 20 | 139.72 | 0.67 | 287 | 48 | 77 | 93 | 2.1 | 5.5 | | 17.19 | 102.6 | | 8 | 52.5 | 141.66 | 0.67 | 288 | 49 | 77 | 93 | 2.1 | 5.5 | | 17.20 | 101.0 | | | 55 | 143.59 | 0.68 | 288 | 49 | 77 | 93 | 2.1 | 5.5 | | 17.33 | 100.5 | | | 57.5 | 145.53 | 0.68 | 288 | 48 | 77 | 93 | 2.1 | 5.5 | | 17.33 | 100.3 | | 6 | 09 | 147.47 | 0.69 | 287 | 49 | 77 | 93 | 2.1 | 5.5 | | 17.44 | 100.3 | Covanta DYEC 1 - Particulate & Metals November 9, 2020 Plant: Test No.: Date: Plant Location: Courtice, ON Test Location: APC Outlet No. 2 Operator: TT | | | | | Tempe | ratures | | | | Leak | | | |--------|--------|------|----------|------------------|------------|--------|------|---------|--------|----------|------------| | | | ДΡ | Stack | ack Imp. Out DGM | DGM Out | DGM In | ΗO | Vacuum | Check | Velocity | Isokinetic | | | | "H20 | <u>L</u> | <u>u</u> | <u>ı</u> . | ı. | "H20 | Hg
H | Volume | m/s | % | | 149.44 | | 0.7 | 288 | 49 | 77 | 93 | 2.2 | 6.0 | | 17.58 | 101.1 | | 151.49 | | 0.7 | 287 | 49 | 77 | 693 | 2.2 | 6.0 | | 17.57 | 104.5 | | 153.49 | | 0.71 | 287 | 49 | 77 | 66 | 2.2 | 6.0 | | 17.69 | 101.9 | | 155.49 | | 0.72 | 287 | 49 | 77 | 66 | 2.2 | 6.0 | | 17.82 | 101.2 | | 157.49 | | 0.73 | 287 | 49 | 77 | 93 | 2.2 | 6.0 | | 17.94 | 100.5 | | 159.49 | | 0.73 | 287 | 49 | 77 | 93 | 2.2 | 6.0 | | 17.94 | 8.66 | | 161.48 | | 0.71 | 286 | 49 | 77 | 93 | 2.2 | 6.0 | | 17.68 | 99.3 | | 163.47 | | 0.71 | 286 | 50 | 77 | 66 | 2.2 | 6.0 | | 17.68 | 100.6 | | 165.46 | | 7.0 | 286 | 50 | 77 | 93 | 2.2 | 6.0 | | 17.55 | 100.6 | | 167.45 | | 0.7 | 286 | 50 | 77 | 93 | 2.2 | 6.0 | | 17.55 | 101.3 | | | | 7.0 | 286 | 50 | 77 | 92 | 2.2 | 6.0 | | 17.55 | 100.3 | | | 171.10 | | | | | | | | | | 100 9 | Plant: Covanta DYEC Plant Location: Courtice, Ontario **Test Location:** APC Outlet No. 2 Test No.: 2 - Particulate & Metals Date: November 10, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.851 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 0.999 | | NOZZLE DIAMETER | 6.38 mm | | DRY REF GAS VOLUME SAMPLED | 3.494 m ³ | | AVGERGE ISOKINETICITY | 98.5 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 142.8 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 16.2 % | | AVERAGE GAS VELOCITY | 17.60 m/s | | BAROMETRIC PRESSURE (Station) | 100.711 Kpa | | STATIC PRESSURE | -2.400 Kpa | | ABSOLUTE GAS PRESSURE | 98.311 Kpa | | OXYGEN CONCENTRATION | 8.2 % | | CARBON DIOXIDE CONCENTRATION | 11.11 % | | CARBON MONOXIDE CONCENTRATION | 15.1 ppm | ### FLOWRATE | ACTUAL GAS FLOWRATE | 26.01 m³/s | |----------------------|-------------| | DRY REF GAS FLOWRATE | 15.16 Rm³/s | | DRY ADJ GAS FLOWRATE | 19.45 Rm³/s | | WET REF GAS FLOWRATE | 18.09 Rm³/s | ### **PARTICULATE EMISSION DATA** | PARTICULATE COLLECTED | -PROBE | 2.6 mg | |----------------------------|---------------|-------------------------| | | -FILTER | 0.8 mg | | | -TOTAL | 3.4 mg | | DRY REF GAS VOLUME SAMPLED | | 3.494 m ³ | | PARTICULATE CONC ACTUAL | | 0.567 mg/m ³ | | PARTICULATE CONC DRY REF | | 0.973 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.759 mg/m ³ | | PARTICULATE CONC WET REF | · 是因此的人类的的特别的 | 0.816 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.014754 g/s | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Note: Dry Adj condition refers to 25 deg C (77 deg F) and 1 atmosphere, adjusted to 11% oxygen by volume Covanta DYEC Test No.: Plant: Date: 2 - Particulate & Metals November 10, 2020 Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 В Operator: Combustion Gases 11.11 Measured H20 16.2 % 8.2 02% CO2% COppm es 0.8 2.6 475.5 Number of Ports Number of points / Port Leak Check Volume Reading Interval Probe (mg) CWTR (g) WCBDA (g) Filter (mg) 0.851 0.999 29.74 "Hg -9.640 "H₂O 0.2513 inches 0.000 ft 0.000 ft 4.500 ft Barometric Pressure Static Pressure Stack Diameter Pitot Factor DGMCF Length Nozzle Width | | Hئ | minute | | | |------|------|--------|---|----| | | 0.39 | 2.5 | 7 | 12 | | | | | | | | 7 (| | | | | | 20.2 | | | | | | | | | | | lemperatures | atures | | | | | | | |-------|------|---------|------|-------|--------------|---------|--------|------|--------|--------|----------|------------| | | | DGM | ΔР | Stack | Imp. Out | DGM Out | DGM in | Ηδ | Vacuum | Check | Velocity | Isokinetic | | Point | Time | Reading | "H2O | u., | - | ≟'0 | J.0 | "H20 | "Hg | Volume | m/s | % | | H | 0 | 866.44 | 0.8 | 287 | 58 | 74 | 73 | 1.9 | 3.0 | | 18.90 | | | | 2.5 | 868.28 | 0.81 | 287 | 50 | 72 | 71 | 1.9 | 3.0 | | 19.01 | 98.7 | | | 5 | 870.12 | 0.81 | 288 | 47 | 72 | 71 | 1.9 | 3.0 | | 19.03 | 98.4 | | 2 | 7.5 | 871.97 | 0.82 | 288 | 46 | 71 | 71 | 1.9 | 3.0 | | 19.14 | 0.66 | | | 10 | 873.82 | 0.82 | 288 | 46 | 71 | 70 | 1.9 | 3.0 | | 19.14 | 98.5 | | | 12.5 | 875.66 | 0.83 | 288 | 46 | 71 | 70 | 1.9 | 3.0 | | 19.26 | 98.1 | | က | 15 | 877.48 | 0.78 | 290 | 44 | 70 | 70 | 1.8 | 3.0 | | 18.70 | 96.4 |
| | 17.5 | 879.31 | 0.78 | 290 | 44 | 70 | 70 | 1.8 | 3.0 | | 18.70 | 100.2 | | | 20 | 881.09 | 0.78 | 290 | 44 | 70 | 70 | 1.8 | 3.0 | | 18.70 | 97.5 | | 4 | 22.5 | 882.87 | 0.65 | 290 | 44 | 71 | 70 | 1.5 | 3.0 | | 17.07 | 97.5 | | | 25 | 884.57 | 0.65 | 290 | 45 | 71 | 70 | 1.5 | 3.0 | | 17.07 | 101.8 | | | 27.5 | 886.24 | 0.65 | 290 | 45 | 72 | 70 | 1.5 | 3.0 | | 17.07 | 100.0 | | 5 | 30 | 887.82 | 0.63 | 290 | 45 | 72 | 70 | 1.45 | 3.0 | | 16.80 | 94.6 | | | 32.5 | 889.44 | 0.63 | 290 | 45 | 72 | 70 | 1.45 | 3.0 | | 16.80 | 98.5 | | | 35 | 891.03 | 0.63 | 290 | 45 | 72 | 71 | 1.45 | 3.0 | | 16.80 | 96.6 | | 9 | 37.5 | 892.61 | 0.57 | 290 | 45 | 72 | 71 | 1.4 | 3.0 | | 15.98 | 95.9 | | | 40 | 894.17 | 0.59 | 290 | 45 | 72 | 71 | 1.4 | 3.0 | | 16.26 | 9.66 | | | 42.5 | 895.75 | 0.59 | 290 | 45 | 73 | 71 | 1.4 | 3.0 | | 16.26 | 99.1 | | 7 | 45 | 897.31 | 0.64 | 290 | 45 | 73 | 71 | 1.5 | 3.0 | | 16.94 | 97.8 | | | 47.5 | 898.93 | 0.64 | 290 | 45 | 73 | 71 | 1.5 | 3.0 | | 16.94 | 97.5 | | | 50 | 900.54 | 0.65 | 290 | 45 | 73 | 71 | 1.5 | 3.0 | | 17.07 | 96.9 | | ∞ | 52.5 | 902.16 | 69'0 | 290 | 45 | 74 | 71 | 1.6 | 3.0 | | 17.58 | 8.96 | | | 55 | 903.84 | 0.7 | 290 | 45 | 74 | 71 | 1.6 | 3.0 | | 17.71 | 97.3 | | | 57.5 | 905.53 | 0.7 | 290 | 45 | 74 | 71 | 1.6 | 3.0 | | 17.71 | 97.2 | | 6 | 09 | 907.23 | 7.0 | 290 | 45 | 74 | 71 | 1.6 | 3.0 | | 17.71 | 97.8 | | | 62.5 | 908.93 | 0.72 | 289 | 45 | 74 | 71 | 1.65 | 3.0 | | 17.95 | 87.8 | | | 65 | 910.64 | 0.72 | 289 | 45 | 74 | 71 | 1.65 | 3.0 | | 17.95 | 6.96 | | 10 | 67.5 | 912.33 | 0.7 | 289 | 45 | 74 | 71 | 1.65 | 3.0 | | 17.70 | 95.8 | | | 70 | 914.05 | 0.7 | 290 | 45 | 75 | 72 | 1.65 | 3.0 | | 17.71 | 98.9 | | | 72.5 | 915.77 | 0.73 | 290 | 45 | 75 | 72 | 1.7 | 3.0 | | 18.09 | 98.8 | | Ħ | 75 | 917.52 | 0.5 | 290 | 45 | 75 | 72 | 1.2 | 3.0 | | [4.97 | 98.4 | | | | | | | | | | | | | | | Plant: Test No.: Date: Covanta DYEC 2 - Particulate & Metals November 10, 2020 Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 Operator: IB | | | | | ************************************** | |---------------------|--------------------------|-------------------------|-------------|--| | Pitot Factor | 0.851 | Filter (mg) | 8.0 | Combustion Gases | | DGMCF | 0.999 | | | 02% 8.2 | | Barometric Pressure | 29.74 "Hg | 7 | | CO2% 11.11 | | Static Pressure | -9.640 "H ₂ O | | | COppm 15.1 | | Nozzle | 0.2513 inches | | | | | Stack Diameter | 4.500 ft | Leak Check Volume | 0.39 ft | Measured H20 | | Length | 0.000 ft | Reading Interval | 2.5 minutes | 16.2 % | | Width | 0,000 ft | Number of Ports | | | | | | Number of points / Port | 12 | | | | | | | | | | | | 2.5 minutes | | | |-------|---|---------|-------------|------|-------------| | | | £ | Ē | | · . | | | | 0.39 ft | 2.5 | 7 | 12 | | | | | | | | | | | | | | | | 10.0 | , | | | | | | 475.5 | | | | | | | 7 | | | | | | | | | | | | ints / Port | | | | olume | | | ts/ | | | | = | Za. | irts | Ξ | | | | | | | Temperatures | atures | | | | Leak | | | |--------------|------|---------|------|------------|--------------|---------|----------|------|--------|--------|----------|------------| | | | DGM | ΔP | Stack | Imp. Out | DGM Out | DGM in | М | Vacuum | Check | Velocity | Isokinetic | | Point | Time | Reading | "H20 | 4 ° | Ľ | ∃, | ц | "H20 | "Hg | Volume | m/s | % | | | 77.5 | 919.00 | 0.48 | 290 | 45 | 75 | 72 | 1:1 | 3.0 | | 14.67 | 100.4 | | | 80 | 920.44 | 0.48 | 288 | 45 | 76 | 73 | T. | 3.0 | | 14.65 | 99.7 | | 12 | 82.5 | 921.87 | 0.48 | 288 | 45 | 76 | 73 | T; | 3.0 | | 14.65 | 98.7 | | | 85 | 923.30 | 0.47 | 288 | 45 | 76 | 73 | ij | 3.0 | | 14.49 | 98.7 | | | 87.5 | 924.71 | 0.47 | 288 | 46 | 26 | 73 | 1.1 | 3.0 | | 14.49 | 98.4 | | | 06 | 926.14 | | | | | | | | 0.39 | | 26.7 | | \mathbf{H} | 0 | 926.53 | 0.85 | 289 | 45 | 76 | 74 | 2 | 3.0 | | 19.50 | | | | 2.5 | 928.43 | 0.85 | 288 | 48 | 76 | 74 | 7 | 3.0 | | 19.49 | 98.7 | | | 5 | 930.33 | 0.85 | 288 | 48 | 76 | 74 | 2 | 3.0 | | 19.49 | 98.7 | | 2 | 7.5 | 932.24 | 0.85 | 290 | 43 | 77 | 74 | 2 | 3.0 | | 19.52 | 99.2 | | | 10 | 934.16 | 0.85 | 290 | 43 | 77 | 74 | 2 | 3.0 | | 19.52 | 8.66 | | | 12.5 | 936.07 | 0.85 | 290 | 43 | 77 | 74 | 2 | 3.0 | | 19.52 | 2.56 | | m | 15 | 937.99 | 0.8 | 289 | 42 | 76 | 74 | 1.9 | 3.0 | | 18.92 | 8.66 | | | 17.5 | 939.83 | 0.78 | 289 | 42 | 76 | 74 | 1.9 | 3.0 | | 18.68 | 98.5 | | | 20 | 941.67 | 0.79 | 289 | 42 | 76 | 74 | 1.9 | 3.0 | | 18.80 | 8.66 | | 4 | 22.5 | 943.51 | 0.74 | 289 | 42 | 76 | 74 | 1.8 | 3.0 | | 18.20 | 2.66 | | | 25 | 945.29 | 0.74 | 289 | 42 | 76 | 74 | 1.8 | 3.0 | | 18.20 | 99.1 | | | 27.5 | 947.10 | 0.74 | 289 | 42 | 76 | 74 | 1.8 | 3.0 | | 18.20 | 100.8 | | 2 | 30 | 948.89 | 69:0 | 289 | 43 | 77 | 75 | 1.6 | 3.0 | | 17.57 | 2.66 | | | 32.5 | 950.59 | 0.69 | 289 | 43 | 77 | 75 | 1.6 | 3.0 | | 17.57 | 97.8 | | | 35 | 952.29 | 0.69 | 289 | 43 | 77 | 75 | 1.6 | 3.0 | | 17.57 | 97.8 | | 9 | 37.5 | 954.00 | 0.65 | 289 | 43 | 77 | 75 | 1.5 | 3.0 | | 17.06 | 98.4 | | | 40 | 955.64 | 0.64 | 289 | 43 | 77 | 75 | 1,5 | 3.0 | | 16.92 | 97.2 | | | 42.5 | 957.27 | 0.64 | 289 | 44 | 77 | 75 | 1.5 | 3.0 | | 16.92 | 97.3 | | 7 | 45 | 958.88 | 0.7 | 289 | 44 | 77 | 75 | 1.7 | 3.0 | | 17.70 | 96.1 | | | 47.5 | 960.61 | 7.0 | 289 | 44 | 77 | 75 | 1.7 | 3.0 | | 17.70 | 98.8 | | | 50 | 962.34 | 0.7 | 289 | 44 | 77 | 75 | 1.7 | 3.0 | | 17.70 | 98.8 | | 8 | 52.5 | 964.07 | 0.72 | 289 | 44 | 77 | 75 | 1.7 | 3.0 | | 17.95 | 98.8 | | | 55 | 965.82 | 0.72 | 289 | 44 | 77 | 75 | 1.7 | 3.0 | | 17.95 | 98.6 | | | 57.5 | 967.57 | 0.72 | 289 | 44 | 77 | 75 | 1.7 | 3.0 | | 17.95 | 98.6 | | 6 | 90 | 969.33 | 0.74 | 289 | 44 | 77 | 75 | 1.8 | 3.0 | | 18.20 | 99.1 | Covanta DYEC Plant: 2 - Particulate & Metals November 10, 2020 Date: Test No.: Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 8 Operator: Combustion Gases 0.39 ft² 2.5 minutes 2 11 0.8 2.6 475.5 20.2 Number of Ports Number of points / Port Leak Check Volume Reading Interval Filter (mg) Probe (mg) CWTR (g) WCBDA (g) 29.74 "Hg -9.640 "H₂O 0.2513 inches 0.000 ft 0.000 ft 4.500 ft 0.851 Barometric Pressure Static Pressure Stack Diameter Pitot Factor DGMCF Length Width Nozzle | 8.2
11.11
15.1 | Measured H20 | % | |----------------------|--------------|--------| | O2%
CO2%
COppm | Measu | 16.2 % | | | | | | | Isokinetic | % | 97.8 | 7.76 | 8.86 | 97.5 | 98.0 | 96.9 | 6.66 | 101.1 | 100.5 | 98.3 | 100.4 | 98.6 | |-------------------------|------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | Velocity | s/m | 18.20 | 18.20 | 18.31 | 18.31 | 18.31 | 16.50 | 16.50 | 16.50 | 16.77 | 16.64 | 16.64 | | | Leak | Check | Volume | | | | | | | | | | | | | | | Vacuum | "Hg | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | er
era
era
era | ЧΖ | "H20 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | | | | DGM In | _5 | 75 | 75 | 76 | 92 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | | | atures | DGM Out | 년, | 78 | 78 | 78 | 78 | 78 | 79 | 79 | 79 | 79 | 78 | 78 | | | Temperatures | Imp. Out | Ξlo | 45 | 45 | 46 | 46 | 46 | 46 | 46 | 46 | 47 | 47 | 47 | | | | Stack | i, | 289 | 289 | 288 | 288 | 288 | 287 | 287 | 287 | 287 | 287 | 287 | | | | σ∇ | "H2O | 0.74 | 0.74 | 0.75 | 0.75 | 0.75 | 0.61 | 0.61 | 0.61 | 0.63 | 0.62 | 0.62 | | | | DGM | Reading | 971.09 | 972.85 | 974.63 | 976.40 | 978.18 | 979.94 | 981.58 | 983.24 | 984.89 | 986.53 | 988.19 | 989.82 | | | | Time | 62.5 | 65 | 67.5 | 70 | 72.5 | 75 | 77.5 | 80 | 82.5 | 85 | 87.5 | 06 | | | | Point | | | 10 | | | 11 | | | 12 | | | | Plant: Covanta DYEC Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 Test No.: Date: November 10, 2020 3 - Particulate & Metals ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.851 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 0.999 | | NOZZLE DIAMETER | 6.38 mm | | DRY REF GAS VOLUME SAMPLED | 3.511 m ³ | | AVGERGE ISOKINETICITY | 98.6 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | | | | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 142.3 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 15.6 % | | AVERAGE GAS VELOCITY | 17.56 m/s | | BAROMETRIC PRESSURE (Station) | 100.542 Kpa | | STATIC PRESSURE | -2.400 Kpa | | ABSOLUTE GAS PRESSURE | 98.142 Kpa | | OXYGEN CONCENTRATION | 8.36 % | | CARBON DIOXIDE CONCENTRATION | 10.91 % | | CARBON MONOXIDE CONCENTRATION | 16.4 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | | | 25.95 m ³ /s | |----------------------|--|--|--------------------------| | DRY REF GAS FLOWRATE | | | 15.23 Rm³/s | | DRY ADJ GAS FLOWRATE | | | 19.29 Rm ³ /s | | WET REF GAS FLOWRATE | | | 18.04 Rm³/s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 10.5 mg | |----------------------------|--------------|-------------------------| | | FILTER | 0.7 mg | | | TOTAL | 11.2 mg | | DRY REF GAS VOLUME SAMPLED | | 3.511 m ³ | | PARTICULATE CONC ACTUAL | | 1.872 mg/m ³ | | PARTICULATE CONC DRY REF | | 3.190 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 2.518 mg/m ³ | | PARTICULATE CONC WET REF | 化基质设置性基本基层基本 | 2.694 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.048577 g/s | | | | | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Note: Dry Adj condition refers to 25 deg C (77 deg F)and 1 atmosphere, adjusted to 11% oxygen by volume Covanta DYEC Test No.: Plant: Date: November 10, 2020 3 - Particulate & Metals Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 JB RW Operator: Combustion Gases 02% 8.36 CO2% 10.91 COppm 16.4 Measured H2O 15.6 % 0.42 ft² 2.5 minutes 2 0.7 10.5 460.9 14.7 Leak Check Volume Reading Interval Number of Ports Filter (mg) Probe (mg) CWTR (g) WCBDA (g) 29.69 "Hg -9.640 "H₂O 0.2513 inches 4.500 ft Stack Diameter Nozzle
0.851 **Barometric Pressure** Pitot Factor DGMCF Static Pressure | | ٠. | |--|-----------| | | | | 얼마를 살았 | 1 7 7 8 7 | | | | | | | | %9% | | | | | | | | | % | L | | 2.6 | | | | | | | | | | H | | | | | | | | 2.5 minutes
2
12 | | | nut | | | Ē | 1 | | 2.5
2
12 | ŀ | | e . | | | = | | | Po | | | l
s
ts / Poi | | | rval
orts
oints / Poo | | | nterval
of Ports
of points / Poo | | | ng Interval
er of Ports
er of points / Po | | | ading Interval
mber of Ports
mber of points / Po | | | Reading Interval
Number of Ports
Number of points / Port | | | Reading Interval
Number of Ports
Number of points / Poi | | | Reading Interval
Number of Ports
Number of points / Poi | | | Reading Interval
Number of Ports
Number of points / Po | | | Reading Interval
Number of Ports
Number of points / Po | | | t
t
Ni | | | t
t
Ni | | | 000 ft Re
000 ft NI | | | 000 ft Re
000 ft NI | | | t
t
Ni | | | 000 ft Re
000 ft NI | | | 0.000 ft
0.000 ft
N | | | 0.000 ft
0.000 ft
N | | | 000 ft Re
000 ft NI | | | 0.000 ft
0.000 ft
N | | | 0.000 ft
0.000 ft
N | | | 0.000 ft
0.000 ft
N | | | 0.000 ft
0.000 ft
N | | | Velocity Isol | Volume m/s % | 18.92 | | | | 19.01 |---------------|------------------|--------|--------|--------|--------|--------|--------|---------|--------|------------------|----------------------------|---------------------------------------|--|---|--|---|--|--|--|---|---|---|---|---|--|--|--|---|---|---|--|---| | Vacuum | "Hg | | | | 3.0 | 3.0 | 0 0 | ln l | ੱF "H20 | 75 1.9 | 79 1.9 | 79 1.9 | 78 1.9 | 78 1.9 | 78 1.9 | | 79 1.9 | 79 1.9
77 1.9 | 79 1.9
77 1.9
77 1.9 | 79 1.9
77 1.9
77 1.9
77 1.7 | 79 1.9
77 1.9
77 1.0
77 1.7
77 1.7 | 79 1.9
77 1.9
77 1.9
77 1.7
77 1.7 | 79 1.9
77 1.9
77 1.9
77 1.7
77 1.6
77 1.6 | 79 1.9
77 1.9
77 1.9
77 1.7
77 1.6
77 1.6 | 79 1.9
77 1.9
77 1.9
77 1.7
77 1.6
77 1.6
77 1.6 | 79 1.9
77 1.9
77 1.7
77 1.7
77 1.6
77 1.6
77 1.6
77 1.6
77 1.6 | | egi din din kecilik din din kecilik di din din kecilik din din kecilik din | egi din Kanada Terpanan di Bajah di Kababa di A
Abama di Kabaja di Kababa di Kabaja di Kabaja
Abama di Kabaja di Kabaja di Kabaja di Kabaja di Kabaja
Kabaja di Kabaja di Kabaja di Kabaja di Kabaja di Kabaja | | | | | | | | | enger fra de skape fra gereke en de geleg fra de tre en de en de geleg fra de fin en defin de felik filme.
De gener en de geleg en de geleg fra de felik en de geleg fra de de felik de felik filmelijk.
De geleg fra de felik fra de felik fra de felik fra de felik fra de felik fra de felik filmelijk fra de felik
De felik fra de fe | engen kan berang di kegaman ang kegamat di kebana ang kegamat di kepangalikan di Kabulia (Kabulia).
Kegaman kan di kegaman kegamat di kegamat di Kabulia di Kabulia kegamat kegamat di Kabulia di Kabulia di Kabu
Kegamat kegamat di kegamat di Kabulia kegamat kegamat kegamat kegamat di Kabulia kegamat kegamat kegamat kegam
Kabulia di Kabulia K | en de la comitación de la
La comitación de la comit
La comitación de la comit
La comitación de la | | Out | F | 77 | 80 | | 79 | 79 | 79 | | 80 | 80
78 | 80
78
78 | 80
78
78
78 | 80
78
78
78 | 80
78
78
78
78 | 80
78
78
78
78 | 80
78
78
78
78
78 | 80
78
78
78
78
79
79 | 80
78
78
78
78
79
79 | 80
78
78
78
79
79
78 | 80
78
78
78
79
78
78
78 | 80
78
78
78
78
78
78
79
79 | 80
78
78
78
78
78
79
79 | 80
78
78
78
78
78
79
79 | 80
78
78
78
78
79
79
80 | 80
78
78
78
79
79
80
80
80 | 80
87
78
78
79
79
80
80
80
80 | 80
78
78
78
79
79
80
80
80
80
80 |
80
78
78
78
78
79
79
80
80
80
80
80 | 80
78
78
78
78
78
79
79
80
80
80
80
80
80
80
80
80
80 | 80
87
87
87
87
87
87
89
80
80
80
80
80
80
80
80
80
80 | 87 78 78 78 78 78 78 78 78 78 78 78 78 7 | 80
78
78
78
78
78
78
78
78
78
78 | | Jut | F | 45 | 42 | 42 | 42 | 42 | 42 | | T† | 41 | 41
41
41 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 41
41
41
41 | 41
41
41
41
42 | 41
41
41
42
42 | 41
41
41
42
43 | 41
41
42
43
43 | 41
41
42
43
43 | 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 | 41
41
41
43
43
43 | 41
41
42
43
43
44
44 | 41
41
42
43
43
43
43
44
44 | 41
41
42
43
43
43
44
45 | 41
41
42
43
43
43
43
44
46
46 | 41
41
42
43
43
43
43
43
44
45
49 | 41
41
42
43
43
43
44
45
49
49 | 41
41
42
43
43
43
44
45
49
49
49 | 41
41
42
43
43
43
44
49
49
49 | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4.1
4.1
4.2
4.3
4.3
4.3
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9 | 41
41
41
43
43
43
49
49
49
49
49
49 | 41
41
43
43
43
49
49
49
49
49
49 | | tack | | 289 | 290 | 32 | 287 | 287 | 87 | 77 | ,, | 287
287 | 87
87
87 | 887
887
887 | .87
.87
.87 | 287
287
887
87 | 287
287
287
87
87 | 287
287
287
287
287
287 | 337
337
337
337
337
337 | 33 33 34 34 34 34 34 34 34 34 34 34 34 3 | 287
287
287
287
287
287
287 | 287
287
287
287
287
287
287
287 | 887
887
887
887
887
887
887
887 | 887
887
887
887
887
887
887
887 | 887
887
887
887
887
887
887
887
887 | 3 | 287
287
287
287
287
287
287
287
286 | 3 | 3 | 287
287
287
287
287
287
287
287
287
286
886
886 | 3 | 287
287
287
287
287
287
287
287
286
886
886
885
885 | 287
287
287
287
287
287
287
286
885
885
885
885
885 | 287
887
887
887
887
887
886
886
886
885
885
885 | | Sta | | 28 | 29 | 292 | 28 | 28 | 28 | 287 | | 78 | 28
28 | 28
28
28 | 28
28
28
28 | 28 28 28
28 28 28 | 28 28 28
28 28 28 | 28 28 28 28 28 28 28 28 28 28 28 28 28 2 | 287
287
287
287
287
287
287 | 28 28 28 28 28 28 28 28 28 28 28 28 28 2 | 287
287
287
287
287
287
287
287
287
287 | 28 28 28 28 28 28 28 28 28 28 28 28 28 2 | 28 28 28 28 28 28 28 28 28 28 28 28 28 2 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 28 28 28 28 28 28 28 28 28 28 28 28 28 2 | 28 28 28 28 28 28 28 28 28 28 28 28 28 2 | 8 | 28 28 28 28 28 28 28 28 28 28 28 28 28 2 | 287
287
287
287
287
287
287
287
287
287 | 28 28 28 28 28 28 28 28 28 28 28 28 28 2 | 8 | 8 | 28 < | 8 | | ΔP | "H2O | 0.8 | 0.8 | 0.8 | 0.81 | 0.8 | 0.8 | 0.8 | (| χ.
∩.α | o.8 | 0.8
0.8
0.7 | 0.8
0.7
0.7 | 0.8
0.7
0.7 | 0.8
0.8
0.7
0.7
0.7 | 0.8
0.7
0.7
0.7
0.7 | 8.0
0.8
7.0
7.0
7.0
7.0 | 0.8
0.7
0.7
0.7
0.7
0.7 | 0.8
0.7
0.7
0.7
0.7
0.7
0.0 | 0.8
0.7
0.7
0.7
0.7
0.0
0.0
0.0 | 0.8
0.7
0.7
0.7
0.7
0.7
0.0
0.0
0.0
0.0
0.0 | 0.8
0.7
0.7
0.7
0.7
0.7
0.6
0.6
0.65 | 0.8
0.7
0.7
0.7
0.7
0.7
0.6
0.6
0.65 | 0.8
0.7
0.7
0.7
0.7
0.7
0.6
0.6
0.65
0.65 | 0.8
0.7
0.7
0.7
0.7
0.7
0.6
0.6
0.65
0.65
0.65 | 0.8
0.7
0.7
0.7
0.7
0.7
0.6
0.6
0.65
0.65
0.65
0.65 | 0.8
0.7
0.7
0.7
0.7
0.7
0.6
0.6
0.65
0.65
0.65
0.65
0.65 | 0.8
0.7
0.7
0.7
0.7
0.6
0.65
0.65
0.65
0.65
0.65
0.65 | 0.8
0.7
0.7
0.7
0.7
0.6
0.6
0.65
0.65
0.65
0.65
0.65 | 0.8
0.7
0.7
0.7
0.7
0.6
0.6
0.65
0.65
0.65
0.65
0.65
0.65
0 | 0.8
0.7
0.7
0.7
0.7
0.6
0.65
0.65
0.65
0.65
0.67
0.67
0.65
0.67 | 0.8
0.7
0.7
0.7
0.7
0.6
0.65
0.65
0.65
0.65
0.65
0.65
0.65 | | DGM | Reading | 990.30 | 992.17 | 994.04 | 995.91 | 87.78 | 99.666 | 1001.50 | 70007 | 1003.36 | 1005.22 | 1005.22
1007.07 | 1005.35
1005.22
1007.07
1008.88 | 1003.36
1005.22
1007.07
1008.88
1010.65 | 1003.36
1005.22
1007.07
1008.88
1010.65
1012.39 | 1003.36
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11 | 1003.36
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84 | 1003.36
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84 | 1003.36
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1017.57
1019.20 | 1005.35
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1017.57
1019.20
1020.83 | 1005.35
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1017.57
1019.20
1020.83 | 1005.35
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1017.57
1019.20
1020.83
1022.44
1022.44 | 1005.35
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1017.57
1019.20
1022.44
1022.44
1022.44
1022.44
1022.44 | 1005.35
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1017.57
1019.20
1020.83
1022.44
1022.44
1022.44
1022.44
1022.44
1022.44
1022.44
1022.44 | 1005.35
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1017.57
1020.83
1020.83
1022.44
1022.44
1025.82
1025.82
1025.82 | 1005.35
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1017.57
1019.20
1020.83
1022.44
1022.44
1022.83
1022.83
1022.83
1022.83
1022.83
1022.83
1023.83 | 1005.35
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1017.57
1019.20
1020.83
1022.44
1022.44
1022.44
1022.83
1022.44
1022.14
1023.63 | 1005.35
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1017.57
1019.20
1022.44
1022.44
1022.44
1022.44
1022.44
1022.83
1022.44
1022.83
1023.63
1030.93
1030.93 | 1005.35
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1017.57
1019.20
1020.83
1022.44
1022.44
1025.82
1025.82
1029.21
1030.93
1032.63
1032.63 | 1005.35
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1020.83
1022.44
1022.44
1022.44
1022.82
1022.82
1023.21
1032.63
1033.93
1035.99
1035.99 | 1005.35
1005.22
1007.07
1008.88
1010.65
1012.39
1014.11
1015.84
1017.57
1020.83
1022.44
1022.44
1022.44
1022.44
1022.44
1022.63
1032.93
1033.93
1034.32
1034.32
1034.32 | 1003.36
1005.22
1007.07
1008.88
1010.65
1012.39
1017.11
1015.84
1022.44
1022.44
1022.44
1022.44
1022.44
1022.44
1022.63
1023.63
1039.35
1039.35
1039.35 | | | Time | 0 | 2.5 | 2 | 7.5 | 10 | 12.5 | 15 | | 17.5 | 17.5 | 17.5
20
22.5 | 17.5
20
22.5
25 | 17.5
20
22.5
25
27.5 | 17.5
20
22.5
25
27.5
30 | 17.5
20
22.5
25
27.5
30
32.5 | 17.5
20
22.5
25
27.5
30
32.5
35 | 17.5
20
22.5
25
27.5
30
32.5
37.5 | 17.5
20
22.5
27.5
30
32.5
35
37.5
40 | 17.5
20
22.5
25
27.5
30
32.5
35
37.5
40
42.5 | 17.5
20
22.5
25
27.5
30
32.5
37.5
40
42.5 | 17.5
20
22.5
25
27.5
30
32.5
35
37.5
40
42.5
47.5 | 17.5
20
22.5
25
27.5
30
32.5
37.5
40
42.5
47.5
50 | 17.5
20
22.5
25
27.5
30
32.5
37.5
40
42.5
47.5
50
50.5 | 17.5
20
22.5
25
27.5
30
32.5
37.5
40
42.5
47.5
50
52.5 | 17.5
20
22.5
25
27.5
30
32.5
37.5
40
42.5
47.5
50
52.5
57.5 | 20
22.5
22.5
25
27.5
30
32.5
37.5
40
42.5
47.5
50
52.5
57.5
60 | 20.5
22.5
25.5
27.5
30.32.5
37.5
40.42.5
47.5
50.5
52.5
57.5
60.60 | 17.5
20
20
22.5
25
27.5
30
32.5
37.5
40
40
42.5
45
47.5
50
52.5
50
57.5
60
60
62.5 | 17.5
20
20
22.5
25
27.5
30
32.5
37.5
40
40
42.5
45
47.5
50
52.5
57.5
60
62.5
67.5 | 17.5
20
22.5
25
27.5
30
32.5
37.5
40
42.5
45
47.5
50
52.5
50
52.5
60
62.5
67.5 |
17.5
20
22.5
25
27.5
30
32.5
30
32.5
37.5
40
42.5
40
42.5
45
47.5
50
52.5
50
52.5
60
62.5
67.5 | | | Point | 1 | | | 2 | | | m | | | | 4 | 4 | 4 | 4 ru | 4 ω | 4 ν | 4 ν ν | 4 ίη ω | 4 ή | 4 û 0 ¢ | 4 6 6 | 4 6 6 | 4 10 0 7 8 | 4 0 0 7 8 | 4 0 0 2 8 | 4 10 0 1 8 0 | 4 ύ ο ν α σ | 4 ή φ , α σ | 4 5 6 V 8 0 10 10 10 10 10 10 10 10 10 10 10 10 1 | 5 6 7 8
9 01 | 4 & 6 01
10 | Plant: Test No.: Date: Covanta DYEC 3 - Particulate & Metals November 10, 2020 Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 Operator: JB RW | 0.851 | Filter (mg) | 0.7 | | Combustion Gases | | |--------------------------|-------------------------|-------|-------------|------------------|--| | 0.999 | Probe (mg) | 10.5 | | 02% 8.36 | | | 29.69 "Hg | CWTR (g) | 460.9 | | CO2% 10.91 | | | -9.640 "H ₂ O | WCBDA (g) | 14.7 | | COppm 16.4 | | | 0.2513 inches | | | | | | | 4.500 ft | Leak Check Volume | | 0.42 ft² | Measured H20 | | | 0:000 ft | Reading Interval | | 2.5 minutes | 15.6 % | | | 0.000 ft | Number of Ports | | 2 | | | | | Number of points / Port | | 12 | | | | | Isokinetic | % | 98.7 | 99.4 | 101.5 | 98.4 | 98.3 | 0.66 | | 98.4 | 97.7 | 97.7 | 98.9 | 97.9 | 97.0 | 99.1 | 6.66 | 99.2 | 98.5 | 98.0 | 97.5 | 100.2 | 96.4 | 97.0 | 99.5 | 99.1 | 98.2 | 96.1 | 9.96 | 97.2 | 96.1 | 58.5 | 100.3 | |--------------|------------|-----------------------| | | Velocity | m/s | 14.15 | 14.15 | 14.31 | 14.31 | 14.31 | | 19.79 | 19.94 | 19.94 | 19.94 | 19.94 | 19.96 | 18.92 | 18.68 | 18.68 | 18.92 | 18.93 | 18.93 | 17.71 | 18.09 | 18.09 | 16.95 | 16.81 | 17.08 | 17.85 | 17.85 | 17.85 | 17.85 | 18.22 | 18.10 | 18.47 | | Leak | Check | Volume | | | | | | 0.42 | Vacuum | gH" | 3.0 | 3.0 | 3.0 | 2.8 | 2.8 | | 3.0 | | value
N | НФ | "H20 | 1.05 | 1.05 | 1.05 | 1.05 | 1.05 | | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.7 | 1.7 | 1.7 | 1.5 | 1.5 | 1.5 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | | | DGM In | д ₀ | 78 | 78 | 78 | 78 | 78 | | 78 | 80 | 80 | 79 | 79 | 79 | 79 | 79 | 79 | 79 | 79 | 79 | 80 | 80 | 80 | 80 | 80 | 79 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | | atures | DGM Out | L ₀ | 80 | 80 | 80 | 81 | 81 | | 80 | 82 | 82 | 81 | 81 | 80 | 80 | 80 | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 82 | 82 | 82 | 82 | 82 | 82 | 82 | | Temperatures | Imp. Out | Ľ. | 47 | 47 | 47 | 47 | 47 | | 46 | 48 | 48 | 46 | 46 | 46 | 46 | 46 | 46 | 46 | 46 | 46 | 46 | 46 | 46 | 46 | 46 | 46 | 47 | 47 | 47 | 47 | 47 | 47 | 46 | | | Stack | 4 0 | 285 | 285 | 285 | 285 | 285 | | 285 | 288 | 288 | 288 | 288 | 289 | 289 | 289 | 289 | 289 | 290 | 290 | 290 | 290 | 290 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | | | dδ | "H20 | 0.45 | 0.45 | 0.46 | 0.46 | 0.46 | | 0.88 | 0.89 | 0,89 | 0.89 | 0.89 | 0.89 | 0.8 | 0.78 | 0.78 | 0.8 | 0.8 | 8:0 | 7.0 | 0.73 | 0.73 | 0.64 | 0.63 | 0.65 | 0.71 | 0.71 | 0.71 | 0.71 | 0.74 | 0.73 | 0.76 | | | DGM | Reading | 1044.14 | 1045.56 | 1047.01 | 1048.43 | 1049.85 | 1051.28 | 1051.70 | 1053.66 | 1055.62 | 1057.58 | 1059.56 | 1061.52 | 1063.46 | 1065.34 | 1067.21 | 1069.07 | 1070.94 | 1072.80 | 1074.65 | 1076.43 | 1078.18 | 1079.94 | 1081.63 | 1083.30 | 1084.98 | 1086.70 | 1088.43 | 1090.17 | 1091.89 | 1093.69 | 1095.51 | | | | Time | 77.5 | 80 | 82.5 | 85 | 87.5 | 06 | 0 | 2.5 | 2 | 7.5 | 10 | 12.5 | 15 | 17.5 | 20 | 22.5 | 25 | 27.5 | 30 | 32.5 | 35 | 37.5 | 40 | 42.5 | 45 | 47.5 | 20 | 52.5 | 55 | 57.5 | 09 | | | | Point | | | 12 | | | | ⊣ | | | 7 | | | ന | | | 4 | | | 2 | | | 9 | | | 7 | | | ∞ | | | 6 | Covanta DYEC 3 - Particulate & Metals November 10, 2020 Plant: Test No.: Date: Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 Operator: JB RW | Pitot Factor | 0.851 | Filter (mg) | 7.0 | | Combustion Gases | |---------------------|--------------------------|-------------------------|-------|-------------|------------------| | DGMCF | 0.999 | Probe (mg) | 10.5 | | 8.36 | | Barometric Pressure | 29.69 "Hg | CWTR(g) | 460.9 | | CO2% 10.91 | | Static Pressure | -9.640 "H ₂ O | WCBDA (g) | 14.7 | | COppm 16.4 | | Nozzle | 0.2513 inches | | | | | | Stack Diameter | 4.500 ft | Leak Check Volume | | 0.42 ft | Measured H2O | | Length | 0.000 ft | Reading Interval | | 2.5 minutes | 15.6 % | | Width | 0.000 ft | Number of Ports | | 2 | | | | | Number of points / Port | | 12 | | | | | | | | | | and the second s | Isokinetic | % | 96.7 | 96.4 | 100.0 | 100.5 | 101.0 | 100.1 | 102.7 | 6,66 | 96.1 | 69.3 | 99.5 | 100.8 | |--|-------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | Velocity | s/m | 18.68 | 18.20 | 17.70 | 17.70 | 17.71 | 15.70 | 15.70 | 16.12 | 15.70 | 15.71 | 15.71 | | | Leak | Check | volume | | | | | | | | | | | | | | Activities and the second seco | Vacuum | пg | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | | AH (CE) | 220 | 1.8 | 1.8 | 1.7 | 1.7 | 1.7 | 1.4 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | | | | DGM In | _ | 80 | 80 | 80 | 80 | 80 | 80 | 81 | 81 | 81 | 80 | 80 | | | Temperatures | DGM Out | | 82 | 82 | 83 | 83 | 82 | 82 | 83 | 83 | 83 | 82 | 82 | | | Tempe | Imp. Out | | 47 | 47 | 48 | 48 | 48 | 48 | 48 | 48 | 48 | 49 | 49 | | | | Stack
°c | | 289 | 289 | 289 | 289 | 290 | 290 | 290 | 290 | 290 | 291 | 291 | | | | ΔP
 | 07E | 0.78 | 0.74 | 0.7 | 7.0 | 0.7 | 0,55 | 0.55 | 0.58 | 0.55 | 0.55 | 0.55 | | | | DGM | neadilig | 1097.30 | 1099.11 | 1100.94 | 1102.73 | 1104.53 | 1106.31 | 1107.93 | 1109.51 | 1111.07 | 1112.64 | 1114.21 | 1115.80 | | | | רווום | 62.5 | 9 | 67.5 | 70 | 72.5 | 75 | 77.5 | 80 | 82.5 | 85 | 87.5 | 06 | | | i
C | romit | | | 10 | | | 11 | | | 12 | | | | ### **APPENDIX 23** Particle Size Distribution Test Emission Calculations (12 pages) ## EPA Draft Method - PM_{10/2.5} Calculations | Client: Covanta Operator: DU Plant: DYEC Cation: Courtice Ontario | |---| | | | Location: Courtice Ontario | | | | 1.37 | 0.00 | 0.00 | 1.48 | 2 | 9 | 7 | 0.992 | 0.848 | 29.74 | 98'6- | 8.36 | 10.93 | 13.8 | | 0.1776 | |--------------------|-----------------|-------------------|-----------------|------------------|----------------------------|-------------------------|-------|--------------|----------------------------|-------------------------------------|--------------------|----------------------------|-------------------------------|----------------------|--------------------------| | Stack Diameter (m) | Stack Width (m) | Stack Breadth (m) | Stack Area (m²) | No. of Traverses | No. of Points Per Traverse | Data Readings Per Point | DGMCF | Pitot Factor | Barometric Pressure (" Hg) | Static Pressure ("H ₂ O) | Oxygen Content (%) | Carbon Dioxide Content (%) | Carbon Monoxide Content (PPM) | Assumed Moisture (%) | Nozzle Diameter (inches) | | | | | | | | | | | | | | | Ü | | | | Cyclone | Cyclone Sampling Parameters | ers | |------------------------------
--|---------------------| | Cyclone Qs _{ST} | 0.35 Rft³/min* | 9.8 I/min* | | Cyclone Qs _{actual} | 0.60 ft³/min | 16.9 I/min | | Stack Ga | Stack Gas Sampling Parameters | ters | | sw
V | 41.5 Rft³* | 1.176 Rm³* | | Average Cyclo | Average Cyclone I Cut Diameter | 10.17 µm | | Average Cyclon | Average Cyclone IV Cut Diameter | 2.35 µm | | Ave | Average Isokineticity | 95.7 % | | Stack Ga | Stack Gas Physical Parameters | ters | | SM | 16.7 % v/v | ۸/۸ % | | Average m | 220.4 (dimensionless) | ensionless) | | N | 30.08 lbs/lbs mole | lbs mole | | X | 28.06 lbs/lbs mole | lbs mole | | Average T, | 287 °F | 142°C | | Average U _s | 60.1 ft/s | 18.3 m/s | | Stack Area | 15.9 ft² | $1.48~\mathrm{m}^2$ | | Actual Q, | 57426 ACFM | 27.1 m³/s | | Wet Reference Q, | 40071 SCFM* | 18.9 Rm³/s* | | Dry Reference Q _s | 33369 SCFM* | 15.7 Rm³/s* | | Summary of | Summary of Particulate Emission Rates | on Rates | | | Dry Ref. Conc. | Emission Rate | | Total Part. (a) | 1.96 mg/Rm³* | 0.0308 g/s | | Total Part. (b) | 6.46 mg/Rm³* | 0.102 g/s | | PM ₁₀ Part. (b) | 6.04 mg/Rm³* | 0.095 g/s | | PM _{2.5} Part. (b) | 4.93 mg/Rm³* | 0.078 g/s | | Cond. Part. | 4.51 mg/Rm ^{3*} | 0.071 g/s | | | Egypnen is reministed to the contract of c | | - (a) does not include condensibles(b) includes condensibles | Impinger Recovery | Impinger 1 | lmpinger 2 | Impinger 3 | Impinger 4 | Impinger 5 | |-------------------------------------|---|--|--|------------|------------| | initial volume or weight (ml or mg) | 517.5 | 658.3 | 773.8 | 871.5 | | | final volume or weight (ml or mg) | 682.7 | 658.3 | 773.1 | 880.7 | | | gain in volume or weight (ml or mg) | 165.2 | 0.0 | -0.7 | 9.2 | 0:0 | | | Characteristics of contrast plans are many incommentary on each of the finishes prescribed of the finishes of | «Landone test la colonica constitue de la comunitario de la colonica del la colonica de del la colonica de la colonica de la colonica de la colonica de la colonica del la colonica de la colonica del | on de la companya | I CA CA | L CL. | | | 3.11 | | |--|----------------|-----------------------------------| | | | | | 1 | | | | 1 | نب | | | 1 | cond. part. | 5.3 | | | 10 | | | | - Printer. | ന | | 1 | ~~ | S | | | ĕ | | | 1 | Ö | | | | ŭ | | | i | ~ | | | 1 | | | | 1 | | | | 1 | | | | - 1 | | | | 1 | | | | | Q) | | | 1 | صيد | <0.1 | | 1 | 4 | | | 1 | - | \vdash | | | 52. | \circ | | | -> | \forall | | 1 | 2 | | | 1 | U | | | | Ø | | | | ~23 | | | | | | | 1 | back-up filter | | | 1 | 100 | 100 | | 1 | | | | 1 | | | | 1 | | | | - | 17.1 | | | 1 | = | | | 1 | 5 | | | 1 | E | 4 | | 1 | in | اہا | | - | | \neg | | 1 | 14 | 0.4 | | | * | | | 1 | | | | 1 | | | | 1 | <2.5mm | | | | | | | 1 | <10mm, >2.5mm | \vdash | | 1 | _ | | | | = | | | | 8 | | | | 10 | | | 1 | =: | | | | N | 1.3 | | 1 | ^ | 6.5 | | | | \vdash | | | \ | | | 1 | SE. | | | ı | ~ | | | 1 | positi | | | | v | | | d | | | | - | 40.00 | | | | | | | | | | | and the second second second second | | | | The second secon | | | | | | | | The state of s | | | | | | 5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | >10mm | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | g) 0.5 | | | | mg) 0.5 | | | | (mg) 0.5 | | | | s (mg) 0.5 | | | | ns (mg) 0.5 | | | | ins (mg) 0.5 | | | | gains (mg) 0.5 | | | | gains (mg) 0.5 | | | | nt gains (mg) 0.5 | | | | ght gains (mg) 0.5 | | | | eight gains (mg) 0.5 | | | | reight gains (mg) 0.5 | | | | weight gains (mg) 0.5 | | | | e weight gains (mg) 0.5 | | | | te weight gains (mg) 0.5 | | | | late weight gains (mg) 0.5 | |
 | ulate weight gains (mg) 0.5 | | | | culate weight gains (mg) 0.5 | | | | ticulate weight gains (mg) 0.5 | | | | articulate weight gains (mg) 0.5 | | | | particulate weight gains (mg) 0.5 | | | | particulate weight gains (mg) 0.5 | | | | particulate weight gains (mg) 0.5 | | | | particulate weight gains (mg) 0.5 | | | | particulate weight gains (mg) 0.5 | | | | particulate weight gains (mg) 0.5 | | | | particulate weight gains (mg) 0.5 | | | | particulate weight gains (mg) 0.5 | ## Test Data Page Calculations | Date: | Date: November 10, 2020 | 10, 2020 | |)
:
:
: |) | | | 一 多 不 好 不 不 | | | | | | |))) | |--|--|----------|--|--
--|--|--|--
--|--|--|---
--|--------------|---| | Client: | Client: Covanta | | | Location: | Location: Courtice, Ontar | Ontario | | | Test | location: | Test location: APC Outlet No. 1 | No. 1 | | Operator: DU | DO | | and described the second of th | egilanassa egilan egila | Clock | Dwell | Dry Gas | Delta | | Stack | Meter Temp | Temp | Meter | Pump | Stack | Cyclone I | Cyclone IV | | | Port | Point | Time | Time | Meter | ۵ | Desired | Temp | Outlet | Inlet | Pressure | Vacuum | Gas | Cut Diam. | Cut Diam. | 150 | | S
O | | | | • | 3 | Ę | 60 | (40) | į | H [| Gauge | Velocity | | | (0) | | | | (min) | (mim) | | 1 H ₂ C) | | | 3 | Ξ | (H ₂ U) | (EHE) | (tr/s) | (mm) | (mm) | 8 | | 2 | 1 | 0.00 | 10.6 | 00:00 | 0.82 | 0.35 | 287 | 70 | 71 | 0.38 | 3.0 | 62.7 | 10.21 | 2.35 | 91.4 | | | 2 | 10.6 | 10.6 | 3.64 | 0.77 | 0.35 | 286 | 71 | 72 | 0.38 | 3.0 | 8.09 | 10.20 | 2.35 | 94.4 | | | 3 | 21.1 | 10.0 | 7.29 | 0.71 | 0.35 | 287 | 7.1 | 73 | 0.38 | 3.0 | 58.4 | 10.11 | 2.31 | 99.5 | | | 4 | 31.1 | 9.7 | 10.79 | 0.68 | 0.35 | 287 | 72 | 74 | 0.38 | 3.0 | 57.1 | 10.32 | 2.40 | 6.86 | | | 5 | 40.9 | 9.6 | 14.10 | 09:0 | 0.35 | 286 | 73 | 74 | 0.38 | 3.0 | 53.6 | 10.14 | 2.33 | 107.7 | | | 9 | 50.4 | 9.3 | 17.44 | 09.0 | 0.35 | 286 | 73 | 74 | 0.38 | 3.0 | 53.6 | 10.45 | 2.45 | 103.3 | | | | 59.7 | | 20.54 | | | | | | | | | | | | | 1 | 1 | 0.00 | 10.6 | 20.54 | 06'0 | 0.35 | 286 | 74 | 75 | 0.38 | 3.0 | 65.7 | 10.15 | 2.33 | 87.9 | | | 2 | 10.6 | 10.7 | 24.26 | 0.88 | 0.35 | 288 | 74 | 92 | 0.38 | 3.0 | 65.0 | 10.17 | 2.34 | 88.8 | | | 3 | 21.3 | 10.4 | 28.00 | 0.85 | 0.35 | 288 | 75 | - 76 | 0.38 | 3.0 | 63.9 | 10.16 | 2.33 | 90.4 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4 | 31.8 | 10.1 | 31.65 | 0.83 | 0.35 | 288 | 75 | 9/ | 0.38 | 3.0 | 63.2 | 10.16 | 2.34 | 91.5 | | | 5 | 41.9 | 5.4 | 35.20 | 0.74 | 0.35 | 289 | 75 | - 76 | 0.38 | 3.0 | 59.7 | 10.04 | 2.29 | 98.7 | | | 9 | 51.3 | 9.0 | 38.55 | 0.68 | 0.35 | 289 | 75 | 76 | 0.38 | 3.0 | 57.2 | 36'6 | 2.25 | 104.3 | | | | 60.3 | | 41.80 | | | | | | | | | | | | | Argranae | | | Windows Commission of the Comm | AND THE PROPERTY OF PROPER | SAME STATE OF THE PERSON TH | AND THE PROPERTY OF PROPER | ALCOHOLOGICA CONTRACTOR CONTRACTO | Or COLUMN STREET, STRE | excessional designation of the contraction c | Deep section of the contract o | ACTIVICATION OF THE PROPERTY OF THE PARTY | CONTRACTOR OF STREET, | Chiarmeter Constitution of the | | TOTAL STREET, | # EPA Draft Method - PM_{10/2.5} Calculations | | DGMCF 0.992 | Data Readings Per Point 1 | No. of Points Per Traverse 6 | No. of Traverses | Stack Area (m^2) 1.48 | Stack breadth (III) | | | |--|-------------|---------------------------|------------------------------|------------------|-------------------------|---------------------|--|--| |--|-------------|---------------------------|------------------------------|------------------|-------------------------|---------------------|--|--| | Cyclotto | cyclone sampling Parameters | c io | |-----------------------------------|---------------------------------------|--------------------| | Cydone Qs _{ST} | 0.35 Rft³/min* | 9.8 I/min* | | Cyclone Qs _{actual} | 0.59 ft³/min | 16.7 I/min | | Stack Ga: | Stack Gas Sampling Parameters | ters | | sωΛ | 41.7 Rft³* | 1.180 Rm³* | | Average Cyclor | Average Cyclone I Cut Diameter | 10.19 µm | | Average Cyclone | Average Cyclone IV Cut Diameter | 2.34 µm | | Ave | Average Isokineticity | 101.7 % | | Stack Ga | Stack Gas Physical Parameters | ters | | \$ 8 8 9 9 9 9 9 9 9 9 9 9 | 16.1 % v/v | ۸/۸ 9 | | Average m | 219.8 (dimensionless) | insionless) | | Ž | 30.09 lbs/lbs mole | lbs mole | | N | 28.14 lbs/lbs mole | lbs mole | | Average T _s | 283 °F | 140 °C | | Average U _s | 56.1 ft/s | 17.1 m/s | | Stack Area | 15.9 ft² | $1.48\mathrm{m}^2$ | | Actual Q | 53605 ACFM | 25.3 m³/s | | Wet Reference Q _s | 37584 SCFM* | 17.7 Rm³/s* | | Dry Reference Q _s | 31525 SCFM* | 14.9 Rm³/s* | | Summary of | Summary of Particulate Emission Rates | n Rates | | | Dry Ref. Conc. | Emission Rate | | Total Part. (a) | 0.59 mg/Rm³* | 0.0088 g/s | | Total Part. (b) | 6.69 mg/Rm³* | 0.100 g/s | | PM ₁₀ Part. (b) | 6.52 mg/Rm³* | 0.097 g/s | | PM _{2.5} Part. (b) | 6.27 mg/Rm³* | 0.093 g/s | | Cond. Part. | 6.10 mg/Rm ^{3*} | 0.091 g/s | - (a) does not include condensibles (b) includes condensibles | | Impinger 1 | Impinger 2 | mpinger 3 | Impinger 4 | Impinger 5 | |-------------------------------------|------------|------------|-----------|------------|------------| | initial volume or weight (ml or mg) | 491.1 | 672.0 | 782.7 | 925.5 | | | final volume or weight (ml or mg) | 647.8 | 672.0 | 781.9 | 936.5 | | | gain in volume or weight (ml or mg) | 156.7 | 0.0 | -0.8 | 11.0 | 0.0 | | 1 | | | |---|----------------|-----------| | | cond. part. | | | | ă | 7.2 | | | Ġ. | .2 | | | b | 1 | | | ō | | | | Ŭ | | | | | | | | | | | | back-up filter | | | | te | | | | Ç. | | | | ₽. | <0.1 | | | ₹ | ⊽ | | | 30 | | | | ğ | Ę | | | | <2.5mm | 0.1 | | | Ŋ | 0 | | | 2 | | | | • | | | | | | | | 1.1.3 | | | | | - | | | Ē | | | | ž | | | | Δi | | | | 'n | ĸ. | | | E, | 0.3 | | | Ē | | | | 9 | | | | <10mm, >2.5mm | | | | | | | | | | | | | | | | >10mm | | | | Ξ | 0.2 | | | 10 | 0 | | | Λ | | | | | | | | | | | | | 1,34 | | | | | | | | | | | | | | | ins. | 8 | | | 775
2000 | E | | | Ö | S | | | ب. | 2 | | | 5 | ga | | | .e. | 4 | | | N | 00 | | | - | ve | | | Ļ | 2 | | | F79 | 1 | | | | (13) | | | 100 | ein | | | ticula | ticula | | | articula | articula | | | Particula | particula | ## Test Data Page Calculations | ב
ה
ה | שמוני. ואסעבוווטפו דט, לטבט | 10, 1010 | | | | | | | | | | | | | | |---------------|-----------------------------|----------
--|--|--|--|--|--
---|--|--|--
--|---|--| | Client: | Client: Covanta | | | Location: | Location: Courtice, Onta | Ontario | | | Test | Test location: | APC Outlet No. 1 | . No. 1 | | Operator: DU | DO | | | | Clock | Dwell | Dry Gas | Delta | | Stack | Meter Temp | Temp | Meter | Pump | Stack | Cyclone I | Cyclone IV | | | Port | Point | Time | Time | Meter | ۵. | Desired | Temp | Outlet | Inlet | Pressure | Vacuum | Gas | Cut Diam. | Cut Diam. | OSI | | No | | (wim) | (min) | (ft ²) | ("H,0 | dfm | 3. | £. | (E. | ("H,0) | Gauge
("Hg) | Velocity
(ft/s) | (mm) | (mm) | % | | 2 | 1 | 0.00 | 10.4 | 41.94 | 0.82 | 0.35 | 286 | 77 | 78 | 0.38 | 4.0 | 62.6 | 10.24 | 2.36 | 91.2 | | | 2 | 10.4 | 10.1 | 45.60 | 0.81 | 0.35 | 286 | 77 | 78 | 0.38 | 4.0 | 62.2 | 10.13 | 2.32 | 93.1 | | | 3 | 20.6 | 9.7 | 49.20 | 0.74 | 0.35 | 287 | 77 | 79 | 0.38 | 4.0 | 59.5 | 10.26 | 2.37 | 95.8 | | 1/4.1
14.1 | 4 | 30.3 | 9.5 | 52.60 | 0.68 | 0.35 | 286 | 77 | 79 | 0.38 | 4.0 | 57.0 | 10.32 | 2.39 | 0.66 | | | 5 | 39.8 | 8.9 | 55.90 | 09.0 | 0.35 | 286 | 78 | 79 | 0.38 | 4.0 | 53.6 | 10.28 | 2.38 | 106.0 | | | 9 | 48.7 | 8.9 | 59.02 | 0.53 | 0.35 | 281 | 78 | 79 | 0.38 | 4.0 | 50.2 | 9.70 | 2.15 | 121.8 | | | | 57.7 | | 62.40 | | | | | | | NAME AND ADDRESS OF THE PARTY O | | | | | | П | 1 | 0.00 | 10.9 | 62.40 | 0.70 | 0.35 | 277 | 79 | 81 | 0.38 | 4.0 | 57.5 | 10.26 | 2.36 | 97.5 | | | 2 | 10.9 | 10.8 | 66.23 | 0.70 | 0.35 | 279 | 79 | 80 | 0.38 | 4.0 | 57.6 | 10.29 | 2.38 | 97.3 | | | က | 21.8 | 10.6 | 70.00 | 0.67 | 0.35 | 282 | 79 | 80 | 0.38 | 4.0 | 56.5 | 10.09 | 2.30 | 102.5 | | | 4 | 32.4 | 10.5 | 73.81 | 0.63 | 0.35 | 282 | 80 | 81 | 0.38 | 4.0 | 54.8 | 10.16 | 2.33 | 104.8 | | | 5 | 42.9 | 6.6 | 77.55 | 0.56 | 0.35 | 283 | 80 | 81 | 0.38 | 4.0 | 51.7 | 10.29 | 2.38 | 109.3 | | | 9 | 52.8 | 9.5 | 81.02 | 0.52 | 0.35 | 283 | 81 | 82 | 0.38 | 4.0 | 49.8 | 10.29 | 2.38 | 113.3 | | XX
X | | 62.3 | | 84.35 | | | | | | | | | | | | | A | | | THE PARTY OF P | Contact Delication Contact Con | Contraction of the o | AND REAL PROPERTY OF THE PERSON NAMED IN | A STATE OF THE PROPERTY OF THE PROPERTY OF THE PARTY T | AND THE PROPERTY OF PERSONS ASSESSED FOR PERSONS ASSESSED. | CONTRACTOR | Control of the Contro | ACCRECATION OF THE PROPERTY | A COURT OF THE CASE OF THE PARTY PART | TOO CONTRACTOR CONTRACTOR OF THE PARTY TH | A PROTESTANDO DE LA CONTRACTION DEL CONTRACTION DE LA | CONTROL OF THE PROPERTY | # EPA Draft Method - PM_{10/2.5} Calculations | Date: November 10, 2020 | |---------------------------------| | Client: Covanta | | Plant: DYEC | | Location: Courtice, Ontario | | Test No.: 3 | | Test Location: APC Outlet No. 1 | | 1.37 | 0.00 | 0.00 | 1.48 | 2 | 9 | 7 | 0.992 | 0.848 | 29.67 | -9:36 | 8.45 | 10.78 | 14.2 | | 0.1776 | |--------------------|-----------------|-------------------|-----------------|------------------|----------------------------|-------------------------|-------|--------------|----------------------------|-------------------------------------|--------------------|----------------------------|-------------------------------|----------------------|--------------------------| | Stack Diameter (m) | Stack Width (m) | Stack Breadth (m) | Stack Area (m²) | No. of Traverses | No. of Points Per Traverse | Data Readings Per Point | DGMCF | Pitot Factor | Barometric Pressure (" Hg) | Static Pressure ("H ₂ O) | Oxygen Content (%) | Carbon Dioxide Content (%) | Carbon Monoxide Content (PPM) | Assumed Moisture (%) | Nozzle Diameter (inches) | | Cyclolife | Cyclone sampling Parameters | 200 | |------------------------------|---------------------------------------|----------------------| | Cyclone Qs _{ST} | 0.34 Rft³/min* | 9.7 I/min* | | Cyclone Qs _{actual} | 0.59 ft³/min | 16.7 I/min | | Stack Ga | Stack Gas Sampling Parameters | ters | | V_{ms} | 41.2 Rft³* | 1.167 Rm³* | | Average Cyclo | Average Cyclone
I Cut Diameter | 10.20 µm | | Average Cyclon | Average Cyclone IV Cut Diameter | 2.35 µm | | AV | Average Isokineticity | 99.2 % | | Stack G | Stack Gas Physical Parameters | sers. | | Bws | 16.6 % V/v | ۰ ۸/۸ % | | Average m | 220.3 (dimensionless) | nsionless) | | Š | 30.06 lbs/lbs mole | lbs mole | | 2 | 28.06 lbs/lbs mole | lbs mole | | Average T _s | 287°F | 141 °C | | Average U _s | 57.7 ft/s | 17.6 m/s | | Stack Area | 15.9 ft² | $1.48~\mathrm{m}^2$ | | Actual Q _e | 55135 ACFM | 26.0 m³/s | | Wet Reference Q _s | 38418 SCFM* | 18.1 Rm³/s* | | Dry Reference Q _s | 32026 SCFM* | 15.1 Rm³/s* | | Summary of | Summary of Particulate Emission Rates | n Rates | | | Dry Ref. Conc. | Emission Rate | | Total Part. (a) | 0.86 mg/Rm³* | 0.0129 g/s | | Total Part. (b) | 5.57 mg/Rm³* | 0.084 g/s | | PM ₁₀ Part. (b) | 5.14 mg/Rm³* | 0.078 g/s | | PM _{2.5} Part. (b) | 4.97 mg/Rm³* | 0.075 g/s | | Cond. Part. | 4.71 mg/Rm ^{3*} | 0.071 g/s | - (a) does not include condensibles (b) includes condensibles | Impinger Recovery | Impinger 1 | Impinger 2 | Impinger 3 | Impinger 4 | Impinger 5 | |-------------------------------------|------------|------------|------------|------------|------------| | initial volume or weight (ml or mg) | 517.5 | 658.3 | 773.1 | 880.7 | | | final volume or weight (ml or mg) | 680.3 | 629.9 | 772.1 | 888.7 | | | gain in volume or weight (ml or mg) | 162.8 | 1.6 | -1.0 | 8.0 | 0.0 | | | | | | TOTAL | V LA V | | ÷ | | | |---|----------------|-------------------------------------| | | ند | | | | cond. part. | | | | ů. | 5.5 | | | -: | 10 | | | 2 | - ' | | | ō | | | | Ö | | | | | | | | | | | | - | | | | | | | | back-up filter | | | | 9 | 13.11 | | | ***** | <0.1 | | | - HOME | \leftarrow | | | 꾶 | o. | | | ī | v | | | Ť | | | | æ | 11.1 | | | .0 | 100 | | | Ε | 3.5 | | | <2.5mm | 0.2 | | | Z. | | | | انما | ا `ا | | | v | | | | | | | | | 3.0 | | | | | | | 933 | 147 | | | | | | | Ξ | | | | چ | | | | L) | | | | Ni | | | | Λ | 2 | | | | ~ | | | | | | | Ε | \sim | | | mm | | | | 0mm | | | | :10mm | 0.2 | | | <10mm |) | | | <10mm | | | | <10mm, >2.5mm | | | | <10mm | J | | | | | | | | <u> </u> | | | | .5 | | | | 0.5 | | | | 0.5 | | | >10mm <10mm | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | 0.5 | | | | mg) 0.5 | | | |) 0.5 (mg) | | | |) 0.5 (mg) sr | | | | ins (mg) 0.5 | | | | gains (mg) 0.5 (| | | | t gains (mg) 0.5 | | | | int gains (mg) 0.5 | | | | ight gains (mg) 0.5 | | | | veight gains (mg) 0.5 (| | | | weight gains (mg) 0.5 | | | | e weight gains (mg) 0.5 | | | | ate weight gains (mg) 0.5 (| | | | ulate weight gains (mg) 0.5 (| | | | iculate weight gains (mg) 0.5 (| | | | rticulate weight gains (mg) 0.5 (| | | | articulate weight gains (mg) 0.5 (| | | | particulate weight gains (mg) 0.5 (| | | | particulate weight gains (mg) 0.5 | | | | particulate weight gains (mg) 0.5 | | | | particulate weight gains (mg) 0.5 | | | | particulate weight gains (mg) 0.5 | ## **Test Data Page Calculations** | Date: | Date: November 10, 2020 | 10, 2020 | | Plant: DYEC | DYEC | | | | | Test No.: 3 | 3 | | | Project No.: 22050 | 22050 | |---------|-------------------------|----------|--|--|--------------------------|--|-------|------------|-------|---------------------------------|------------|----------|-----------|--------------------|-------| | Client: | Client: Covanta | | THE STATE OF S | Location: | Location: Courtice, Onta | Ontario | | | Test | Test location: APC Outlet No. 1 | APC Outlet | No. 1 | | Operator: DU | DO | | | | Clock | Dwell | Dry Gas | Delta | | Stack | Meter Temp | Temp | Meter | Pump | Stack | Cyclone I | Cyclone IV | | | Port | Point | Time | Time | Meter | ۵. | Desired | Temp | Outlet | Inlet | Pressure | Vacuum | Gas | Cut Diam. | Cut Diam. | 150 | | So. | | | | | | dm | | | | 舌 | Gauge | Velocity | | | | | | | (min) | (min) | (لٹے) | ("H ₂ O) | | (°F) | (ae) | (%) | ("H ₂ 0) | ("Hg) | (ft/s) | (mm) | (mm) | (%) | | 2 | | 00:0 | 11.1 | 84.52 | 0.79 | 0.35 | 286 | 80 | 82 | 0.38 | 3.0 | 61.6 | 10.46 | 2.45 | 89.9 | | | 2 | 11.1 | 11.1 | 88.31 | 92.0 | 0.35 | 285 | 80 | 81 | 0.38 | 3.0 | 60.4 | 10.23 | 2.36 | 94.4 | | | 3 | 22.2 | 10.6 | 92.19 | 0.68 | 0.35 | 286 | 80 | 82 | 0.38 | 3.0 | 57.2 | 10.26 | 2.37 | 9.66 | | | 4 | 32.8 | 10.2 | 95.89 | 0.63 | 0.35 | 286 | 8.1 | 83 | 0.38 | 3.0 | 55.0 | 9.95 | 2.25 | 108.0 | | | 5 | 43.0 | 9.5 | 09.66 | 09.0 | 0.35 | 287 | 81 | 83 | 0.38 | 3.0 | 53.7 | 10.21 | 2.36 | 106.8 | | 100 | 9 | 52.5 | 9.0 | 102.96 | 09.0 | 0.35 | 288 | 81 | 83 | 0.38 | 3.0 | 53.8 | 10.28 | 2.38 | 105.9 | | N. | | 61.5 | | 106.09 | | | | | | | | | | | | | 1 | 1 | 0.00 | 10.3 | 106.00 | 0.81 | 0.35 | 285 | 82 | 84 | 0.38 | 3.0 | 62.4 | 10.06 | 2.29 | 93.6 | | | 2 | 10.3 | 10.3 | 109.71 | 0.79 | 0.35 | 287 | 82 | 84 | 0.38 | 3.0 | 61.7 | 10.09 | 2.31 | 94.7 | | | 3 | 20.6 | 10.1 | 113.41 | 0.75 | 0.35 | 287 | 82 | 84 | 0.38 | 3.0 | 60.1 | 10.29 | 2.39 | 94.5 | | | 4 | 30.7 | 8.6 | 116.93 | 0.71 | 0.35 | 287 | 83 | 84 | 0.38 | 3.0 | 58.5 | 10.26 | 2.38 | 97.5 | | | 5 | 40.4 | 9.2 | 120.36 | 0.62 | 0.35 | 287 | 83 | 84 | 0.38 | 3.0 | 54.6 | 10.11 | 2.32 | 106.5 | | | 9 | 49.7 | 8.9 | 123.66 | 0.59 | 0.35 | 287 | 83 | 84 | 0.38 | 3.0 | 53.3 | 10.23 | 2.36 | 107.4 | | | | 58.5 | | 126.79 | | | | | | | | | | | | | Andread | - | | of oriented from the state of t | ************************************** | | Vocasium parisimos de la companya | 100 | £ C | § | 000 | | 664 | C. C. P. | L C F | 600 | # EPA Draft Method - PM_{10/2.5} Calculations | Монительной применений применени | |
---|--------------------| | Date: November 9, 2020 | Project No.: 22050 | | Client: Covanta | Operator: DU | | Plant: DYEC | | | Location: Courtice, Ontario | | | Test No.: 1 | | | Test Location: APC Outlet No. 2 | | | 1.37 | 0.00 | 00.00 | 1.48 | 2 | 9 | Ţ | 0.992 | 0.848 | 30.01 | -8.20 | 8.43 | 11.07 | 19.7 | | 0.1776 | |--------------------|-----------------|-------------------|-----------------|------------------|----------------------------|-------------------------|-------|--------------|----------------------------|-------------------------------------|--------------------|----------------------------|-------------------------------|----------------------|--------------------------| | Stack Diameter (m) | Stack Width (m) | Stack Breadth (m) | Stack Area (m²) | No. of Traverses | No. of Points Per Traverse | Data Readings Per Point | DGMCF | Pitot Factor | Barometric Pressure (" Hg) | Static Pressure ("H ₂ O) | Oxygen Content (%) | Carbon Dioxide Content (%) | Carbon Monoxide Content (PPM) | Assumed Moisture (%) | Nozzle Diameter (inches) | | Cyclone Qs _{ST} | 0.35 Rft³/min* | 9.9 l/min* | |------------------------------|---------------------------------------|--------------------| | Cyclone Qs actual | 0.58 ft³/min | 16.4 I/min | | Stack Ga | Stack Gas Sampling Parameters | ers | | V. sm
V. sm Λ | 41.8 Rft³* | 1.185 Rm³* | | Average Cyclo | Average Cyclone I Cut Diameter | 10.37 µm | | Average Cyclon | Average Cyclone IV Cut Diameter | 2.40 µm | | Ž | Average Isokineticity | 103.0 % | | Stack G | Stack Gas Physical Parameters | ers | | Bws | 14.9% v/v | ٧/٧ | | Average m | 221.8 (dimensionless) | nsionless) | | Ž | 30.11 lbs/lbs mole | bs mole | | [*] | 28.31 lbs/lbs mole | bs mole | | Average T _s | 287 °F | 142°C | | Average U _s | 54.3 ft/s | 16.5 m/s | | Stack Area | 15.9 ft² | $1.48\mathrm{m}^2$ | | Actual Q, | 51878 ACFM | 24.5 m³/s | | Wet Reference Q, | 36659 SCFM* | 17.3 Rm³/s* | | Dry Reference Q _s | 31205 SCFM* | 14.7 Rm³/s* | | Summary of | Summary of Particulate Emission Rates | n Rates | | | Dry Ref. Conc. | Emission Rate | | Total Part. (a) | 0.42 mg/Rm ^{3*} | 0.0062 g/s | | Total Part. (b) | 6.33 mg/Rm³* | 0.093 g/s | | PM ₁₀ Part. (b) | 6.25 mg/Rm ^{3*} | 0.092 g/s | | PM _{2.5} Part. (b) | 6.16 mg/Rm³* | 0.091 g/s | | \$500 Percy | T 0.4 3 (D 3.3 3* | 7) 2000 | - (a) does not include condensibles (b) includes condensibles | Impinger Recovery | Impinger 1 | Impinger 2 | Impinger 3 | Impinger 4 | Impinger 5 | |-------------------------------------|------------|--|------------|------------|------------| | initial volume or weight (ml or mg) | 517.5 | 659.1 | 775.0 | 852.4 | | | final volume or weight (ml or mg) | 658.2 | 6:099 | 7.4.7 | 863.1 | | | gain in volume or weight (ml or mg) | 140.7 | 1.2 | -0.3 | 10.7 | 0.0 | | | | of decimal we're a secure of the second contract contr | | 17.L.C.). | 150.2 | | | نب | | |--|--------------------------------|------------------------------------| | | m | | | | cond. part. | 7.0 | | | | \sim | | | 2 | ` | | | 5 | | | | 8 | 100 | | | | | | | 3.33 | | | | 100 | | | | 1000 | | | | back-up filter | | | | S | | | | 9 | | | | = | <0.1 | | | 4- | ы | | | Ω. | ~ | | 1 | 3 | \forall | | | ¥ | | | | 2 | | | | 20 | 1.50 | | | | | | | | 41.4 | | 1 | - | | | 1 | | | | H | 100 | | | | 100 | | | | | 10.11 | | | 5 | | | | = | 34.4 | | | <2.5mm | 0.2 | | | rů. | 0 | | | N | | | 1 | V | | | | 3.3 | | | 1 | | | | | | | | | | | | | <10mm, >2.5mm | | | | C | | | | E | | | | ⊏ | | | 1 | S | | | 1 | N | | | | Λ | \neg | | 1 | _ | 0.1 | | 1 | 5 | | | 1 | ۶ | | | 1 | ō | | | 1 | ~ | | | 1 | V | | | : 1 | 100 | | | 1 | | | | | | | | - | | | | Section of the last las | | | | | | | | | m | | | | mm | .1 | | The state of s | 0mm | :0.1 | | The second secon | -10mm | <0.1 | | A STATE OF THE PERSON NAMED IN COLUMN | >10mm | <0.1 | | The
second of th | >10mm | <0.1 | | The second secon | >10mm | <0.1 | | Name and Address of the Owner, when the Party of the Owner, when which is the Owner, which is the Owner, which is the Owner, when the Owner, which is wh | >10mm | <0.1 | | The state of s | >10mm | <0.1 | | The Contract of o | >10mm | <0.1 | | The state of s | >10mm | <0.1 | | THE STATE OF THE PARTY P | >10mm | <0.1 | | | >10mm | <0.1 | | | >10mm | <0.1 | | | 1S >10mm | g) <0.1 | | | ins >10mm | mg) <0.1 | | | ains >10mm | (mg) <0.1 | | | Gains >10mm | s (mg) <0.1 | | | Gains >10mm | ns (mg) <0.1 | | | nt Gains >10mm | ains (mg) <0.1 | | | tht Gains >10mm | gains (mg) <0.1 | | | ight Gains >10mm | t gains (mg) <0.1 | | | eight Gains >10mm | ht gains (mg) <0.1 | | | Veight Gains >10mm | ight gains (mg) <0.1 | | | Weight Gains >10mm | eight gains (mg) <0.1 | | | e Weight Gains >10mm | weight gains (mg) <0.1 | | | te Weight Gains >10mm | e weight gains (mg) <0.1 | | | ate Weight Gains >10mm | ite weight gains (mg) <0.1 | | | ulate Weight Gains >10mm | late weight gains (mg) <0.1 | | | culate Weight Gains >10mm | ulate weight gains (mg) <0.1 | | | iculate Weight Gains >10mm | iculate weight gains (mg) <0.1 | | | rticulate Weight Gains >10mm | rticulate weight gains (mg) <0.1 | | | articulate Weight Gains >10mm | articulate weight gains (mg) <0.1 | | | Particulate Weight Gains >10mm | particulate weight gains (mg) <0.1 | | | Particulate Weight Gains >10mm | particulate weight gains (mg) <0.1 | | | Particulate Weight Gains >10mm | particulate weight gains (mg) <0.1 | | | Particulate Weight Gains 10mm | particulate weight gains (mg) <0.1 | | | Particulate Weight Gains >10mm | particulate weight gains (mg) <0.1 | | | Particulate Weight Gains >10mm | particulate weight gains (mg) <0.1 | | | Particulate Weight Gains | particulate weight gains (mg) <0.1 | ^{*}Reference conditions: 77°F, 29.92 in. Hg or 25°C, 101.3 KPa ## Test Data Page Calculations | Contraction of the o | | | | | | | | | | | | The state of s | | | | |--|--------|-------|-------|--------------------------|---------------------|---------|-------|------------|-------|---------------------|------------------|--|-----------|--------------|-------| | Client: Covanta | /anta | | | Location: Courtice, Onta | Courtice, | Ontario | | | Test | Test location: | APC Outlet No. 2 | t No. 2 | | Operator: DU | DO | | | | Clock | Dwell | Dry Gas | Delta | | Stack | Meter Temp | Temp | Meter | Pump | Stack | Cyclone 1 | Cyclone IV | | | Port | Point | Time | Time | Meter | ۵ | Desired | Temp | Outlet | Inlet | Pressure | Vacuum | Gas | Cut Diam. | Cut Diam. | OSI | | So. | | | | | | ц | | | | 舌 | Gauge | Velocity | | | | | | | (min) | (min) | (ft ²) | ("H ₂ O) | | (°F) | (%) | (°F) | ("H ₂ 0) | ("Hg) | (ft/s) | (mm) | (mm) | (%) | | 2 | 1 | 0:00 | 10.5 | 72.71 | 0.74 | 0.35 | 289 | 69 | 70 | 0.38 | 3.0 | 59.1 | 10.27 | 2.36 | 9.96 | | | 2 | 10.5 | 10.4 | 76.39 | 0.71 | 0.35 | 288 | 20 | 71 | 0.38 | 3.0 | 57.8 | 10.32 | 2.38 | 97.8 | | | 3 | 20.9 | 10.2 | 80.00 | 29.0 | 0.35 | 287 | 70 | 72 | 0.38 | 3.0 | 56.1 | 10.30 | 2.37 | 100.9 | | | 4 | 31.1 | 10.0 | 83.55 | 0.61 | 0.35 | 287 | 70 | 74 | 0.38 | 3.0 | 53.5 | 10.31 | 2.38 | 105.6 | | | 5 | 41.1 | 9.4 | 87.05 | 0.54 | 0.35 | 287 | 72 | 75 | 0.38 | 3.0 | 50.4 | 10.32 | 2.38 | 112.0 | | | 9 | 50.5 | 9.0 | 90.34 | 0.49 | 0.35 | 286 | 73 | 75 | 0.38 | 3.0 | 48.0 | 10.33 | 2.38 | 117.4 | | | | 59.5 | | 93.49 | | | | | | | | | | | | | 1 | ,
, | 00.00 | 10.3 | 93.49 | 0.67 | 0.35 | 285 | 73 | 92 | 0.38 | 3.0 | 56.0 | 10.75 | 2.55 | 94.9 | | | 2 | 10.3 | 10.4 | 06:96 | 0.72 | 0.35 | 286 | 74 | - 76 | 0.38 | 3.0 | 58.1 | 10.34 | 2.39 | 2.96 | | | 3 | 20.7 | 10.8 | 100.53 | 29'0 | 0.35 | 287 | 75 | 92 | 0.38 | 3.0 | 56.1 | 10.34 | 2.39 | 100.3 | | | 4 | 31.5 | 10.0 | 104.31 | 0.62 | 0.35 | 287 | 75 | 77 | 0.38 | 3.0 | 54.0 | 10.38 | 2.41 | 103.7 | | | 5 | 41.5 | 6.7 | 107.80 | 0.59 | 0.35 | 287 | 75 | 11 | 0.38 | 3.0 | 52.7 | 10.35 | 2.39 | 106.7 | | | 9 | 51.2 | 9.3 | 111.20 | 0.52 | 0.35 | 287 | 75 | 77 | 0.38 | 3.0 | 49.4 | 10.37 | 2.40 | 113.5 | | | | 60.5 | | 114.43 | | | | | | | | | | | | | Averages | | | | | 0.63 | | 287 | 73 | m | 0.38 | | 54.3 | 10.37 | 2.40 | 103.0 | # EPA Draft Method - PM_{10/2.5} Calculations | Date: November 9, 2020 | Project No.: 22050 | |---------------------------------|--------------------| | Client: Covanta | Operator: DU | | Plant: DYEC | | | Location: Courtice, Ontario | | | Test No.: 2 | | | Test Location: APC Outlet No. 2 | | | 1.37 | 0.00 | 0.00 | 1.48 | 2 | 9 | Ţ | 0.992 | 0.848 | 29.94 | -8.20 | 8.17 | 11.13 | 13.2 | | 0.1776 | |--------------------|-----------------|-------------------|-----------------|------------------|----------------------------|-------------------------|-------|--------------|----------------------------|-------------------------------------|--------------------|----------------------------|--------------------------------|----------------------|--------------------------| | Stack Diameter (m) | Stack Width (m) | Stack Breadth (m) | Stack Area (m²) | No. of Traverses | No. of Points Per Traverse | Data Readings Per Point | DGMCF | Pitot Factor | Barometric Pressure (" Hg) | Static Pressure ("H ₂ O) | Oxygen Content (%) | Carbon Dioxide Content (%) | Carbon Monoxide Content (PPIM) | Assumed Moisture (%) | Nozzle Diameter (inches) | | Cyclone Qs _{sctual} 0.59 ft³/min* 9.8 l/min* Cyclone Qs _{sctual} 0.59 ft³/min 16.7 l/min Stack Gas Sampling Parameters V _{ms} 41.7 Rft³* 1.181 Rm³* Average Cyclone I Cut Diameter 10.24 μm Average Cyclone IV Cut Diameter 2.36 μm Average Bokineticity 103.1 % Stack Gas Physical Parameters B _{ws} 16.1 % v/v Average Isokineticity 103.1 % 30.11 lbs/lbs mole Average U _s 55.0 ft/s 16.8 m/s Stack Area 15.9 ft² Actual Q _s 52579 ACFM 24.8 m³/s Dry Reference Q _s 37024 SCFM* 17.5 Rm³/s* Dry Reference Q _s 31065 SCFM* 14.7 Rm³/s* Dry Reference Q _s 31065
SCFM* 14.7 Rm³/s* Dry Reference Q _s 37024 SCFM* 14.7 Rm³/s* Dry Reference Q _s 37024 SCFM* 10.0186 g/s Total Part. (a) 1.27 mg/Rm³* 0.0102 g/s PM ₁₀ Part. (b) 6.94 mg/Rm³* 0.099 g/s Cond. Part. (6.35 mg/Rm³** 0.099 g/s | Cyclone | Cyclone Sampling Parameters | ers | |--|------------------------------|-----------------------------|---------------------| | 0.59 ft³/min las Sampling Paramete 41.7 Rft³* one I Cut Diameter ne IV Cut Diameter Je.1.8 v Sas Physical Parameter 30.11 lbs/lb 288 °F 55.0 ft/s 15.9 ft² 52579 ACFM 37024 SCFM* 31065 SCFM* 31065 SCFM* 31065 SCFM* 6257 mg/Rm³* 7.62 mg/Rm³* 6.94 mg/Rm³* 6.77 mg/Rm³* 6.35 mg/Rm³* | Cyclone Qs _{ST} | 0.35 Rft³/min* | 9.8 I/min* | | as Sampling Paramete 41.7 Rft³* one I Cut Diameter ne IV Cut Diameter verage Isokineticity Sas Physical Parameter 16.1 % v 220.9 (dimens 30.11 lbs/lb) 288 °F 58.0 ft/s 15.9 ft² 55.0 ft/s 37024 SCFM* 37024 SCFM* 37024 SCFM* 37024 SCFM* 37024 SCFM* 6977 mg/Rm³* 6.94 mg/Rm³* 6.77 mg/Rm³* 6.77 mg/Rm³* | Cyclone Qs _{actual} | 0.59 ft³/min | 16.7 I/min | | 41.7 Rft³* one I Cut Diameter ne IV Cut Diameter verage Isokineticity Gas Physical Parametel 16.1 % v 220.9 (dimens 30.11 lbs/lb) 288 °F 55.0 ft/s 15.9 ft² 55579 ACFM 37024 SCFM* 31065 SCFM* 77024 SCFM* 6.94 mg/Rm³* 6.94 mg/Rm³* 6.77 mg/Rm³* 6.77 mg/Rm³* | Stack Ga | s Sampling Parame | ters | | one I Cut Diameter ne IV Cut Diameter Sas Physical Parametei Gas Physical Parametei 16.1% v 220.9 (dimens 30.11 lbs/lbb 288 °F 55.0 ft/s 15.9 ft² 55.5 ft/s 15.9 ft² 52579 ACFM 37024 SCFM* 37024 SCFM* 11.27 Mg/Rm³* 7.62 mg/Rm³* 6.94 mg/Rm³* 6.77 mg/Rm³* | V_{ms} | 41.7 Rft³* | 1.181 Rm³* | | ne IV Cut Diameter
verage Isokineticity Sas Physical Parameter 16.1% v 220.9 (dimens 30.11 lbs/lbs 28.16 lbs/lbs 28.8 °F 55.0 ft/s 15.9 ft² 52579 ACFM* 37024 SCFM* 37024 SCFM* 37024 SCFM* 62579 ACFM* 37024 SCFM* 37024 SCFM* 37024 SCFM* 6257 Mg/Rm³* 6.94 mg/Rm³* 6.97 mg/Rm³* 6.35 mg/Rm³* | Average Cyclo | ne I Cut Diameter | 10.24 µm | | Sas Physical Parameter 16.1 % v 220.9 (dimens 30.11 lbs/lb) 288 °F 55.0 ft/s 15.9 ft² 52579 ACFM* 37024 SCFM* 31065 SCFM* 77024 SCFM* 31065 ACFM* | Average Cyclon | e IV Cut Diameter | 2.36 µm | | Gas Physical Paramete 16.1 % v 220.9 (dimens 30.11 lbs/lbb, 288 °F 28.16 lbs/lbb, 288 °F 55.0 ft/s 15.9 ft² 52579 ACFM* 37024 SCFM* 37024 SCFM* 37024 SCFM* 107 Ref. Conc. 1.27 mg/Rm³* 6.94 mg/Rm³* 6.77 mg/Rm³* 6.35 mg/Rm³* | Ave | rage Isokineticity | 103.1 % | | 16.1 % v
220.9 (dimens
30.11 lbs/lbb
28.16 lbs/lbb
28.8 °F
55.0 ft/s
15.9 ft²
52579 ACFM
37024 SCFM*
37024 SCFM*
10 Particulate Emission
Dry Ref. Conc.
1.27 mg/Rm³*
7.62 mg/Rm³*
6.94 mg/Rm³*
6.35 mg/Rm³* | Stack G | s Physical Paramet | ers | | 220.9 (dimens 30.11 lbs/lbs/lbb 288.°F 55.0 ft/s 15.9 ft² 52579 ACFM 37024 SCFM* 31065 SCFM* 31065 SCFM* 7.62 mg/Rm³* 7.62 mg/Rm³* 6.94 mg/Rm³* 6.94 mg/Rm³* 6.94 mg/Rm³* 6.35 mg/Rm³* 6.35 mg/Rm³* | sw
B | 16.1% | N/Λ ° | | 30.11 lbs/lbb
28.16 lbs/lbb
28.8 °F
55.0 ft/s
15.9 ft²
52579 ACFM*
31065 SCFM*
31065 SCFM*
7.024 SCFM*
1.27 mg/Rm³*
7.62 mg/Rm³*
6.94 mg/Rm³*
6.94 mg/Rm³*
6.95 mg/Rm³* | Average m | 220.9 (dime | nsionless) | | 28.16 lbs/lbb
288 °F
55.0 ft/s
15.9 ft²
52579 ACFM*
37024 SCFM*
31065 SCFM*
127 mg/Rm³*
7.62 mg/Rm³*
6.94 mg/Rm³*
6.94 mg/Rm³*
6.77 mg/Rm³* | Ŋ | 30.11 lbs/ | lbs mole | | 288 °F 55.0 ft/s 15.9 ft² 52579 ACFM 37024 SCFM* 31065 SCFM* 1105 Ref. Conc. 1.27 mg/Rm³* 7.62 mg/Rm³* 6.94 mg/Rm³* 6.77 mg/Rm³* | X | 28.16 lbs/ | lbs mole | | 55.0 ft/s 15.9 ft² 52579 ACFM 37024 SCFM* 31065 SCFM* of Particulate Emission Dry Ref. Conc. 1.27 mg/Rm³* 7.62 mg/Rm³* 6.94 mg/Rm³* 6.77 mg/Rm³* | Average T _s | 288 °F | 142°C | | 15.9 ft² 52579 ACFM 37024 SCFM* 31065 SCFM* In the second of particulate Emission Dry Ref. Conc. 1.27 mg/Rm³* 7.62 mg/Rm³* 6.94 mg/Rm³* 6.77 mg/Rm³* | Average U _s | 55.0 ft/s | 16.8 m/s | | 52579 ACFM 37024 SCFM* 31065 SCFM* if Particulate Emission Dry Ref. Conc. 1.27 mg/Rm³* 7.62 mg/Rm³* 6.94 mg/Rm³* 6.77 mg/Rm³* | Stack Area | 15.9 ft² | $1.48~\mathrm{m}^2$ | | 37024 SCFM* 31065 SCFM* Inf Particulate Emission Dry Ref. Conc. 1.27 mg/Rm³* 7.62 mg/Rm³* 6.94 mg/Rm³* 6.77 mg/Rm³* | Actual Q | 52579 ACFM | 24.8 m³/s | | 31065 SCFM* of Particulate Emission Dry Ref. Conc. 1.27 mg/Rm³* 7.62 mg/Rm³* 6.94 mg/Rm³* 6.77 mg/Rm³* | Wet Reference Q | 37024 SCFM* | 17.5 Rm³/s* | | of Particulate Emission Dry Ref. Conc. 1.27 mg/Rm³* 7.62 mg/Rm³* 6.94 mg/Rm³* 6.77 mg/Rm³* | Dry Reference Q _s | 31065 SCFM* | 14.7 Rm³/s* | | Dry Ref. Conc. 1.27 mg/Rm ^{3*} 7.62 mg/Rm ^{3*} 6.94 mg/Rm ^{3*} 6.77 mg/Rm ^{3*} | Summary of | Particulate Emissio | n Rates | | 1.27 mg/Rm ^{3*} 7.62 mg/Rm ^{3*} 6.94 mg/Rm ^{3*} 6.77 mg/Rm ^{3*} | | Dry Ref. Conc. | Emission Rate | | 7.62 mg/Rm ^{3*} 6.94 mg/Rm ^{3*} 6.77 mg/Rm ^{3*} 6.35 mg/Rm ^{3*} | Total Part. (a) | 1.27 mg/Rm³* | 0.0186 g/s | | 6.94 mg/Rm ^{3*}
6.77 mg/Rm ^{3*}
6.35 mg/Rm ^{3*} | Total Part. (b) | 7.62 mg/Rm³* | 0.112 g/s | | 6.77 mg/Rm³*
6.35 mg/Rm³* | PM ₁₀ Part. (b) | 6.94 mg/Rm³* | 0,102 g/s | | 6.35 mg/Rm³* | PM _{2.5} Part. (b) | 6.77 mg/Rm ^{3*} | s/g 660.0 | | | Cond. Part. | 6.35 mg/Rm³* | 0.093 g/s | - (a) does not include condensibles (b) includes condensibles | Impilizer Recovery | Impinger 1 | Impinger 2 | Impinger 3 | Impinger 4 | Impinger 5 | |-------------------------------------|------------|------------|------------|------------|------------| | initial volume or weight (ml or mg) | 491.1 | 673.0 | 784.1 | 914.7 | | | final volume or weight (ml or mg) | 649.4 | 672.0 | 782.7 | 925.5 | | | gain in volume or weight (ml or mg) | 158.3 | -1.0 | -1.4 | 10.8 | 0.0 | | back-up filter cond. part. | <0.1 | | |----------------------------|------------------------------|--| | <2.5mm bac | 0.4 | | | | .2 | | | mm <10mm, >2.5mm |) 8: | | | s >10 | g) (g | | | Particulate Weight Gains | particulate weight gains (mg | | ## Test Data Page Calculations | Date: | Date: November 9, 2020 | . 9, 2020 | | Mant: UYEC | בננ | | | | | | | | | | | |--
--|-----------|--|--------------------|--------------------------|-----------|-------|------------|-------|---------------------|------------------|----------|-----------|--------------|-------| | Client: | Client: Covanta | | THE PROPERTY OF O | Location: | Location: Courtice, Onta | , Ontario | | | Test | Test location: | APC Outlet No. 2 | No. 2 | | Operator: DU | DO | | NACONAL PROPERTY OF THE PROPER | AN EXPANSION CONTRACTOR DE SAN SANCTOR DE SAN CONTRACTOR DE SAN CONTRACTOR DE SAN CONTRA | Clock | Dwell | Dry Gas | Delta | | Stack | Meter Temp | Temp | Meter | Pump | Stack | Cyclone I | Cyclone IV | | | Port | Point | Time | Time | Meter | ۵ | Desired | Temp | Outlet | Inlet | Pressure | Vacuum | Gas | Cut Diam. | Cut Diam, | 150 | | No. | | | | | | cţw | | | | 舌 | Gauge | Velocity | | | | | | | (min) | (min) | (ft ³) | ("H ₂ O) | | (%) | (£) | (J.) | ("H ₂ 0) | ("Hg) | (ft/s) | (mm) | (mm) | % | | 2 | Ţ | 0.00 | 10.9 | 14.70 | 0.73 | 0.35 | 286 | 16 | 77 | 0.38 | 4.0 | 58.8 | 10.24 | 2.35 | 96.8 | | | 2 | 10.9 | 10.6 | 18.50 | 0.71 | 0.35 | 288 | 9/ | 7.2 | 0.38 | 4.0 | 58.0 | 10.24 | 2.36 | 98.2 | | | 3 | 21.5 | 10.3 | 22.22 | 0.65 | 0.35 | 288 | 177 | 78 | 0.38 | 4.0 | 55.5 | 10.27 | 2.37 | 102.4 | | | 4 | 31.9 | 6.6 | 25.83 | 0.61 | 0.35 | 287 | 77 | 78 | 0.38 | 4.0 | 53.8 | 10.21 | 2.34 | 106.4 | | - 1 | 2 | 41.7 | 9.3 | 29.30 | 0.59 | 0.35 | 287 | 78 | 79 | 0.38 | 4.0 | 52.9 | 10.17 | 2.33 | 108.8 | | 7.7 | 9 | 51.0 | 8.8 | 32.59 | 0.53 | 0.35 | 288 | 78 | - 62 | 0.38 | 4.0 | 50.1 | 10.23 | 2.35 | 114.0 | | | | 59.8 | | 35.70 | | | | | | | | | | | | | 1 | 1 | 0.00 | 10.3 | 35.70 | 0.72 | 0.35 | 287 | 78 | 80 | 0.38 | 4.0 | 58.4 | 10.24 | 2.36 | 97.5 | | | 2 | 10.3 | 10.7 | 39.33 | 0.72 | 0.35 | 289 | 79 | 80 | 0.38 | 4.0 | 58.5 | 10.30 | 2.38 | 6.96 | | | 3 | 21.1 | 10.3 | 43.07 | 29.0 | 0.35 | 289 | 80 | 81 | 0.38 | 4.0 | 56.4 | 10.27 | 2.37 | 100.9 | | | 4 | 31.4 | 6.6 | 46.70 | 0.62 | 0.35 | 288 | 80 | 81 | 0.38 | 4.0 | 54.2 | 10.21 | 2.34 | 105.7 | | | 5 | 41.3 | 9.7 | 50.22 | 09:0 | 0.35 | 288 | 80 | 81 | 0.38 | 4.0 | 53.3 | 10.26 | 2.36 | 106.7 | | | 9 | 51.0 | 9.1 | 53.63 | 0.53 | 0.35 | 288 | 80 | 81 | 0.38 | 4.0 | 50.1 | 10.31 | 2.38 | 112.7 | | - 1 | | 60.2 | | 56.81 | | | | | | | | | | | | | Averages | 36 | | | | V3 0 | | 000 | C II | | | | | | | | # EPA Draft Method - PM_{10/2.5} Calculations | Date: November 9, 2020 | Client: Covanta | DYEC | Location: Courtice, Ontario | 3 | | |------------------------|------------------------|-------------|-----------------------------|-------------|--| | Date: | Client: | Plant: DYEC | Location: | Test No.: 3 | Maria de la company comp | | 1.37 | 0.00 | 0.00 | 1.48 | 2 | 9 | | 0.992 | 0.848 | 29.88 | -8.97 | 8.28 | 10.97 | 13.6 | | 0.1776 | |--------------------|-----------------|-------------------|-----------------|------------------|----------------------------|-------------------------|-------|--------------|----------------------------|-------------------------------------|--------------------|----------------------------|-------------------------------|----------------------|--------------------------| | Stack Diameter (m) | Stack Width (m) | Stack Breadth (m) | Stack Area (m²) | No. of Traverses | No. of Points Per Traverse | Data Readings Per Point | DGMCF | Pitot Factor | Barometric Pressure (" Hg) | Static Pressure ("H ₂ O) | Oxygen Content (%) | Carbon Dioxide Content (%) | Carbon Monoxide Content (PPM) | Assumed Moisture (%) | Nozzle Diameter (inches) | | | | | | | | | | | | | | | Carb | | | | Cyclone Qs _{5T} 0.35 Rft³/min* 9.8 Cyclone Qs actual 0.59 ft³/min 16 Stack Gas Sampling Parameters V _{ms} 41.4 Rft³* 1.17. Average Cyclone I Cut Diameter 10.3 Average Cyclone IV Cut Diameter 2.3 Average Bokineticity 94 Stack Gas Physical Parameters B _{ws} 1.59 % v/v Average T _s 22.1.2 (dimensionles 30.09 lbs/lbs mole
40.3 ft/s 18.7 Average U _s 60.3 ft/s 18.7 Stack Area 15.9 ft² 1.4 Actual Q _s 57650 ACFM 27.2 Wet Reference Q _s 40415 SCFM* 16.0 Summary of Particulate Emission Rates Dry Reference Q _s 133980 SCFM* 16.0 | 55 ft³/min* | |--|------------------------------------| | 0.59 ias Sampl 41.4 41.4 ione I Cut ne IV Cut verage Iss Sas Physi 60. 15 5765(40415 | eters 1. | | 41.4 41.4 one I Cut ne IV Cut verage Isc Sas Physi 60. 15 5765(40415 | eter | | 41.4 one I Cut ne IV Cut verage Isc Gas Physi Gas Physi 528 60. 15. 57650 40415 333980 of Particul | | | one I Cut
verage Isc
Sas Physi
Sas Physi
60.
15
57650
40415
33980
of Particul | | | 28 Physis 28 28 60. 15 5765(40415) 3398(Dr.v. Ref. | | | 28 28 60. 15 57650 40415 33980 074 Re | | | 3as Physi 28 60. 15 57650 40415 33980 off Particul | e Isokineticity 94.4 % | | 28
60.
15
5765(
40415
33980
if Particul | nysical Parameters | | 28
60
15
5765(
40415
3398C
if Particul | 15.9 % v/v | | 288
60.3
15.9
57650,
40415 S
33980 S
of Particula | 221.2 (dimensionless) | | 288
60.3
15.9
57650,
40415 S
33980 S
if Particula | 30.09 lbs/lbs mole | | Average U _s 288 °F Average U _s 60.3 ft/s Stack Area 15.9 ft² Actual Q _s 57650 ACFM Wet Reference Q _s 40415 SCFM* Dry Reference Q _s 33980 SCFM* Summary of Particulate Emission Dry Ref Conc | 28.16 lbs/lbs mole | | Average U ₅ 60.3 ft/s Stack Area 15.9 ft² Actual Q ₅ 57650 ACFM Wet Reference Q ₅ 40415 SCFM* Dry Reference Q ₅ 33980 SCFM* Summary of Particulate Emission Dry Ref Conc | 288 °F 142 °C | | Stack Area 15.9 ft² Actual Q _s 57650 ACFM Wet Reference Q _s 40415 SCFM* Dry Reference Q _s 33980 SCFM* Summary of Particulate Emission Dry Ref | 60.3 ft/s 18.4 m/s | | Actual Q _s 57650 ACFM Wet Reference Q _s 40415 SCFM* Dry Reference Q _s 33980 SCFM* Summary of Particulate Emission Dry Ref. Conc. | 15.9 ft² 1.48 m² | | Wet Reference Q _s 40415 SCFM* Dry Reference Q _s 33980 SCFM* Summary of Particulate Emission Dry Ref. Conc. | 7650 ACFM 27.2 m³/s | | Summary of Particulate Emission Dry Ref Conc | 415 SCFM* 19.1 Rm³/s* | | Summary of Particulate Emission Dry Ref Conc | 980 SCFM* 16.0 Rm ³ /s* | | Dry Ref Conc | iculate Emission Rates | | | Dry Ref. Conc. Emission Rate | | Total Part. (a) 1.45 mg/Rm ^{3*} | .5 mg/Rm³* 0.0232 g/s | | Total Part. (b) 6.39 mg/Rm ^{3*} | 19 mg/Rm ³ * 0.102 g/s | | PM ₁₀ Part. (b) 5.96 mg/Rm ^{3*} | 36 mg/Rm ^{3*} 0.096 g/s | | PM _{2.5} Part. (b) 5.79 mg/Rm ^{3*} | 19 mg/Rm3* 0.093 g/s | | Cond. Part. 4.94 mg/Rm ^{3*} | 14 mg/Rm³* 0.079 g/s | - (a) does not include condensit (b) includes condensibles | Impinger Recovery | Impinger 1 | Impinger 2 | lmpinger 3 | Impinger 4 | Impinger 5 | |-------------------------------------|------------|------------|------------|------------|------------| | initial volume or weight (ml or mg) | 517.5 | 659.1 | 774.7 | 863.1 | | | final volume or weight (ml or mg) | 674.3 | 658.3 | 773.8 | 871.5 | | | gain in volume or weight (ml or mg) | 156.8 | -0.8 | -0.9 | 8.4 | 0.0 | | Particulate Weight Gains>10mm<10mm, >2.5mm<2.5mm | | | | |--|--|------------|-----------------------------------| | <10mm, >2.5mm | | | | | <10mm, >2.5mm | | | | | <10mm, >2.5mm | - | | | | <10mm, >2.5mm | 1 | 1 | | | <10mm, >2.5mm | 1 | G | | | <10mm, >2.5mm | 1 | Jaden
O | αį | | <10mm, >2.5mm | - | Ö | 5 | | <10mm, >2.5mm | - | Š | | | <10mm, >2.5mm | - | ŏ | | | <10mm, >2.5mm | - | | | | <pre><10mm, >2.5mm <2.5mm</pre> | 1 | | | | <pre><10mm, >2.5mm <2.5mm</pre> | - | | | | <pre><10mm, >2.5mm <2.5mm</pre> | 1 | | | | <pre><10mm, >2.5mm <2.5mm</pre> | - | 1 | | | <pre><10mm, >2.5mm <2.5mm</pre> | 1 | ÷. | | | <pre><10mm, >2.5mm <2.5mm</pre> | 1 | 4 | | | <pre><10mm, >2.5mm <2.5mm</pre> | | Ω | Τ. | | <pre><10mm, >2.5mm <2.5mm</pre> | 1 | ⋾ | 0 | | <pre><10mm, >2.5mm <2.5mm</pre> | 1 | ż | | | <pre><10mm, >2.5mm <2.5mm</pre> | 1 | ac | | | <pre><10mm, >2.5mm <2.5mm</pre> | ı | Ω | | | <pre><10mm, >2.5mm <2.5mm</pre> | - | | | | <10mm, >2.5mm
0.2 | | | | | <10mm, >2.5mm
0.2 | - | | | | <10mm, >2.5mm
0.2 | - | | | | <10mm, >2.5mm
0.2 | 1 | | | | <10mm, >2.5mm
0.2 | - | | | | <10mm, >2.5mm
0.2 | - | È | | | <10mm, >2.5mm
0.2 | - | Ε | 6 | | <10mm, >2.5mm
0.2 | - | τÚ | 0 | | <10mm, >2.5mm
0.2 | - | N | 1 | | | | V | | | | - | | | | | - | | | | | - | 333 | | | | - | | $\vdash \vdash$ | | | - | Ξ | | | | - | Ξ | | | | ١ | 5 | 411 | | | - | - | | | | 1 | X | 7 | | | 1 | | 0 | | | 1 | Ε | | | | ı | Ε | 48.5 | | | | 0 | | | | | 7 | | | | 1 | | | | Particulate Weight Gains >10mm particulate weight gains (mg) 0.5 | - | | 112. | | Particulate Weight Gains >10mm particulate weight gains (mg) 0.5 | - | | | | Particulate Weight Gains >10mm particulate weight gains (mg) 0.5 | Contraction of the last | | | | Particulate Weight Gains >10m | Contraction of the o | | | | Particulate Weight Gains >10 particulate weight gains (mg) 0. | Contraction of the o | | | | Particulate Weight Gains >1 particulate weight gains (mg) | Contraction of the Party | | 5 | | Particulate Weight Gains particulate weight gains (mg) | Contracting to the Contraction of o | | 0.5 | | Particulate Weight Gains particulate weight gains (mg) | Western Control of the th | | 0.5 | | Particulate Weight Gains particulate weight gains (mg) | CONTRACTOR DESCRIPTION OF THE PROPERTY | | 0.5 | | Particulate Weight Gains particulate weight gains (mg) | CONTRACTOR OF THE PROPERTY | | 0.5 | | Particulate Weight Gains particulate weight gains (mg) | CONTRACTOR DESCRIPTION OF THE PROPERTY | | 0.5 | | Particulate Weight Gains particulate weight gains (mg) | Control of the Contro | | 0.5 | | Particulate Weight Gains particulate weight gains (mg) | | | 0.5 | | Particulate Weight Gains particulate weight gains (mg) | | | 0.5 | | Particulate Weight Gains particulate weight gains (mg) | | | 0.5 | | Particulate Weight Gain: particulate weight gains (mg | | | 0.5 | | Particulate Weight Gai | | | 0.5 | | Particulate Weight Gapariculate weight gains (| | | lg) 0.5 | | Particulate Weight (| | | (mg) 0.5 | | Particulate Weight particulate weight gain | | | : (mg) 0.5 | | Particulate Weigh garticulate weight ga | | | ns (mg) 0.5 | | Particulate Weign particulate weight | | | ains (mg) 0.5 | | Particulate We particulate weigh | | | gains (mg) 0.5 | | Particulate W particulate wei | | | nt gains (mg) 0.5 | | Particulate w | | | ght gains (mg) 0.5 | | Particulate particulate v | | | eight gains (mg) 0.5 | | Particula particulate | | | weight gains (mg) 0.5 | | Particula particula | | | e weight gains (mg) 0.5 | | Partic particu | | | ite weight gains (mg) 0.5 | | Part
parti | | | ilate weight gains (mg) 0.5 | | Pal | | | culate weight gains (mg) 0.5 | | | | | ticulate weight gains (mg) 0.5 | | | | | articulate weight gains (mg) 0.5 | | | | | particulate weight gains (mg) 0.5 | | | | | particulate weight gains (mg) 0.5 | | Ш | | | particulate weight gains (mg) 0.5 | | | | | particulate weight gains (mg) 0.5 | | | | | particulate weight gains (mg) 0.5 | ## **Test Data Page Calculations** | Client: Covanta Clock Dwell Dry G Dwell Dry G Dwell Dwell Dry G Dwell
Dwell Dry G Dwell Dwell Dry G Dwell Dwell Dry G Dwell Dwel | | The state of s | | ORDER TO STATE OF THE PROPERTY OF THE PARTY | | | | | | Contract of the th | The state of s | |--|--------------------------|--|-------|---|---------|---------------------|------------------|----------|-----------|--
--| | Clock Dwell Point Time Time (min) (min) 1 0.000 10.7 2 10.7 10.5 3 21.2 10.1 4 31.3 9.8 5 41.1 9.6 5 50.7 9.1 5 59.8 1 0.000 10.6 2 10.6 10.6 3 21.2 10.6 4 31.5 9.9 | Location: Courtice, Onta | , Ontario | | | Test lo | Test location: A | APC Outlet No. 2 | No. 2 | | Operator: DU | DU | | Clock Dwell Point Time Time (min) (min) 1 0.000 10.7 2 10.7 10.5 3 21.2 10.1 4 31.3 9.8 5 41.1 9.6 6 50.7 9.1 1 0.00 10.6 2 10.6 10.6 3 21.2 10.5 4 31.5 9.9 | - | | _ | | | | | | | | | | Point Time Time 1 0.00 10.7 2 10.7 10.5 3 21.2 10.1 4 31.3 9.8 5 41.1 9.6 6 50.7 9.1 59.8 10.6 10.6 2 10.6 10.6 3 21.2 10.6 4 31.5 9.9 5 41.3 9.7 | Dry Gas Delta | | Stack | Meter Temp | dwe | Meter | Pump | Stack | Cyclone I | Cyclone IV | | | (min) (min) 1 0.00 10.7 2 10.7 10.5 3 21.2 10.1 4 31.3 9.8 5 41.1 9.6 6 50.7 9.1 6 50.7 9.1 1 0.00 10.6 2 10.6 10.6 3 21.2 10.2 4 31.5 9.9 5 41.3 9.7 | Meter | Desired | Temp | Outlet | nlet P | Pressure | Vacuum | Gas | Cut Diam. | Cut Diam. | 150 | | (min) (min) 1 0.00 10.7 2 10.7 10.5 3 21.2 10.1 4 31.3 9.8 5 41.1 9.6 6 50.7 9.1 1 0.00 10.6 2 10.6 10.6 3 21.2 10.2 4 31.5 9.9 5 41.3 9.7 | | g
m | | | | 舌 | Gauge | Velocity | | | | | 1 0.00 10.7 2 10.7 10.5 3 21.2 10.1 4 31.3 9.8 5 41.1 9.6 6 50.7 9.1 1 0.00 10.6 2 10.6 10.6 3 21.2 10.2 4 31.5 9.9 5 41.3 97 | (ft³) ("H2O) | | (°F) | (品) | (°F) | ("H ₂ O) | ("Hg) | (ft/s) | (mm) | (mm) | (%) | | 2 10.7 10.5
3 21.2 10.1
4 31.3 9.8
5 41.1 9.6
6 50.7 9.1
5 9.8
1 0.00 10.6
2 10.6 10.6
3 21.2 10.6
4 31.5 9.9 | 57.61 0.85 | 0.35 | 288 | 81 | 82 | 0.38 | 3.0 | 63.6 | 10.32 | 2.39 | 88.8 | | 3 21.2 10.1
4 31.3 9.8
5 41.1 9.6
6 50.7 9.1
5 59.8
1 0.00 10.6
2 10.6 10.6
3 21.2 10.5
4 31.5 9.9 | 61.35 0.81 | 0.35 | 289 | 81 | 82 | 0.38 | 3.0 | 62.1 | 10.02 | 2.27 | 95.0 | | 4 31.3 9.8 5 41.1 9.6 6 50.7 9.1 1 0.00 10.6 2 10.6 10.6 3 21.2 10.2 4 31.5 9.9 5 41.3 9.7 | 65.20 0.76 | 0.35 | 289 | 81 | 82 | 0.38 | 3.0 | 60.2 | 10.32 | 2.39 | 94.0 | | 5 41.1 9.6
6 50.7 9.1
1 0.00 10.6
2 10.6 10.6
3 21.2 10.2
4 31.5 9.9 | 68.73 0.70 | 0.35 | 288 | 8.1 | 83 | 0.38 | 3.0 | 57.7 | 10.33 | 2.39 | 97.8 | | 6 50.7 9.1
1 0.00 10.6
2 10.6 10.6
3 21.2 10.2
4 31.5 9.9
5 41.3 9.7 | 72.15 0.63 | 0.35 | 287 | 81 | 83 | 0.38 | 3.0 | 54.7 | 10.31 | 2.39 | 103.3 | | 59.8
1 0.00 10.6
2 10.6 10.6
3 21.2 10.2
4 31.5 9.9
5 41.3 9.7 | 75.52 0.54 | 0.35 | 288 | 81 | 83 | 0.38 | 3.0 | 50.7 | 10.32 | 2.39 | 111.5 | | 1 0.00 10.6
2 10.6 10.6
3 21.2 10.2
4 31.5 9.9
5 41.3 97 | 78.71 | | | | | | | | | | | | 10.6 10.6
21.2 10.2
31.5 9.9
41.3 9.7 | 78.71 0.89 | 0.35 | 287 | 82 | 84 | 0.38 | 3.0 | 65.1 | 10.33 | 2.39 | 9.98 | | 21.2 10.2
31.5 9.9
41.3 9.7 | 82.43 0.87 | 0.35 | 288 | 82 | 84 | 0.38 | 3.0 | 64.4 | 10.25 | 2.36 | 9.88 | | 31.5 9.9 | 86.19 0.85 | 0.35 | 288 | 82 | 84 | 0.38 | 3.0 | 63.6 | 10.19 | 2.34 | 90.5 | | 413 97 | 89.85 0.84 | 0.35 | 288 | 82 | 82 | 0.38 | 3.0 | 63.2 | 10.32 | 2.39 | 89.4 | |)
 | 93.30 0.77 | 0.35 | 288 | 82 | 82 | 0.38 | 3.0 | 9.09 | 10.33 | 2.40 | 93.2 | | 51.0 9.1 96.6 | 02:0 69:96 | 0.35 | 289 | 82 | 82 | 0.38 | 3.0 | 57.8 | 10.51 | 2.47 | 95.5 | | 60.2 | 08'66 | | | | | | | | | | | | Averages | 72.0 | | 288 | 82 | | 0.38 | | 60.3 | 10.30 | 2.37 | 94.4 | ### **APPENDIX 24** Acid Gases Test Emission Calculations (12 pages) Plant: Covanta DYEC Plant Location: Courtice, Ontario Test Location: APC Outlet No. 1 1 - M26A Test No.: Date: November 9, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.848 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 1.004 | | NOZZLE DIAMETER | 6.73 mm | | DRY REF GAS VOLUME SAMPLED | 1.338 m ³ | | AVGERGE ISOKINETICITY | 100.5 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | | | | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 140.3 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 14.4 % | | AVERAGE GAS VELOCITY | 17.15 m/s | | BAROMETRIC PRESSURE (Station) | 101.626 Kpa | | STATIC PRESSURE | -2.224 Kpa | | ABSOLUTE GAS PRESSURE | 99.402 Kpa | | OXYGEN CONCENTRATION | 8.73 % | | CARBON DIOXIDE CONCENTRATION | 10.78 % | | CARBON MONOXIDE CONCENTRATION | 13.9 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | | | 25.33 m ³ /s | |----------------------|--|--|--------------------------| | DRY REF GAS FLOWRATE | | | 15.34 Rm ³ /s | | DRY ADJ GAS FLOWRATE | | | 18.85 Rm ³ /s | | WET REF GAS FLOWRATE | | | 17.93 Rm ³ /s | ### PARTICULATE EMISSION DATA | 0 mg | |-----------------------| | 0 mg | | 0 mg | | 338 m³ | | 000 mg/m ³ | | 000 mg/m ³ | | 000 mg/m³ | | 000 mg/m ³ | | 000 g/s | | | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Plant Location: Courtice, Ontario November 9, 2020 Covanta DYEC 1 - M26A Test No.: Plant: Date: | | 11 | 11.1 | 10.5 | |--|----|------|-------------------| | | II | 2.5 | . 11 | | | H | 111 | w | | | II | | 0 | | | II | | 25 | | | II | | 10 | | | H | 1 | O | | <u> </u> | H | | - | | ≅ | I | | 5 | | ~ | H | | .= | | . ← | II | | 17 | | ധ | I | | = | | 7 | I | 1.3 | ~ | | □ □ | H | | 7 | | | l | | = | | | H | | 0 | | O | H | 1.1 | C | | $rac{1}{2}$ | II | | | | $\forall \vdash$ | I | | 51. | | | II | | | | | I | | | | ** | II | | | | | H | | | | \mathbf{Q} | H | | | | μ | II | | | | <i>œ</i> ≿ | ı | | | | 2 2 | H | | | | ~ ~ | I | | | | | ı | | | | ₹ e | H | | | | ai 🕰 | ı | | | | F 0 | ı | | | | Test Location: APC Outlet No. 1 Operator: TT | I | | | | | ı | | | | 1.0 | ı | | | | | I | | | | | ı | | | | | ı | | | | 14. 14. 14. | I | | | | | I | | | | 1.50 | l | | | | 0.1 (1.34) | ı | | | | | I | | | | | I | | | | | H | | | | | ı | | 10 | | 11,711 | H | | 0 | | | ı | | | | 1.0 | I | | | | | ı | | | | | ı | | | | | H | | | | 1.14 | ı | | | | | ı | | | | | ı | | | | | ı | | | | | ı | | | | 10.0 | ł | | | | 1000 | ı | | | | | ۱ | | | | | 1 | | | | | ۱ | | | | | ١ | | | | | ı | | _ | | | İ | | ಯ | | | I | | = | | | ı | | - | | NENNS | Ì | | S | | | Ì | | O) | | | Į | | | | | ĺ | | iI. | | | į | | - | | | ı | | | | | l | | | | | Ì | | | | | Ì | | | | | I | | | | | I | | | | - 11 | Ì | | | | | l | | | | 3.505.50 | ١ | | | | | ı | | | | | l | | | | | ١ | | 0.848 Filter (mg) | | | 1 | | ∞ | | | l | | 4 | | | l | | ∞ | | | 1 | | Ö | | | ı | | ्≣ . | | | Í | | | | | ı | | | | | į | | | | | | | | CO2% COppm 02% 5 minutes 0 ft² 151.2 14.6 Leak Check Volume Number of Ports Reading Interval CWTR (g) WCBDA (g) Probe (mg) Filter (mg) 30.01 "Hg -8.930 "H₂O 0.2651 inches 0.000 ft 0.000 ft 4.500 ft 0.848 Barometric Pressure Static Pressure Stack Diameter Pitot Factor DGMCF Length Nozzle Width Number of points / Port 10.78 8.73 Measured H20 14.4 % | | Isokinetic | % | | 0.11.0 | 6.66 | 94.4 | 100.2 | 102.7 | 100.3 | 96.7 | 99.1 | 101.4 | 100.5 | 1.66 | 100.2 | |--------------|------------|------------|-------|--------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------| | | Velocity | m/s | 16.71 | 16.90 | 16.90 | 16.91 | 17.17 | 16.92 | 17.67 | 17.18 | 17.44 | 17.44 | 17.32 | 17.20 | | | Leak | Check | Volume | | | | | | | | | | | | | | | | Vacuum | "Hg | 6.0 | 5.0 | 5.0 | 5.0 | 5.5 | 5,5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | | | | H | "H20 | 2.8 | 7 | 7 | 2.1 | 2.15 | 2.1 | 2.1 | 2.1 | 2.2 | 2.2 | 2.1 | 2.1 | | | | DGM In | °F | 89 | 71 | 75 | 79 | 83 | 85 | 86 | 87 | 88 | 68 | 06 | 91 | | | atures | DGM Out | 5 0 | 89 | 89 | 69 | 69 | 70 | 71 | 71 | 72 | 72 | 73 | 74 | 74 | | | Temperatures | Imp. Out | 95 | 99 | 50 | 49 | 50 | 50 | 51 | 51 | 52 | 52 | 52 | 53 | 53 | | | | Stack | 9Р | 288 | 282 | 282 | 283 | 284 | 284 | 284 | 285 | 285 | 285 | 286 | 286 | | | | ДΣ | "H20 | 0.64 | 99.0 | 99.0 | 99.0 | 0.68 | 99.0 | 0.72 | 0.68 | 7.0 | 7.0 | 69.0 | 0.68 | | |
 DGM | Reading | 82.60 | 86.72 | 90.49 | 94.07 | 97.88 | 101.86 | 105.70 | 109.57 | 113.43 | 117.44 | 121.42 | 125.32 | 129.24 | | | | Time | 0 | ð | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 20 | 55 | 09 | | | | Point | П | 2 | m | 4 | 5 | 9 | 7 | ∞ | 6 | 10 | 11 | 12 | | Plant: Covanta DYEC **Plant Location:** Courtice, Ontario Test Location: Test No.: APC Outlet No. 1 2 - M26A Date: November 9, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.848 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 1.004 | | NOZZLE DIAMETER | 6.73 mm | | DRY REF GAS VOLUME SAMPLED | 1.296 m ³ | | AVGERGE ISOKINETICITY | 100.0 % | | STACK DIAMETER | 1.37 m | | ELENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 142.1 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 15.8 % | | AVERAGE GAS VELOCITY | 17.04 m/s | | BAROMETRIC PRESSURE (Station) | 101.524 Kpa | | STATIC PRESSURE | -2.224 Kpa | | ABSOLUTE GAS PRESSURE | 99.300 Kpa | | OXYGEN CONCENTRATION | 8.59 % | | CARBON DIOXIDE CONCENTRATION | 10.76 % | | CARBON MONOXIDE CONCENTRATION | 12.2 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | 25.18 m ³ /s | |----------------------|--------------------------| | DRY REF GAS FLOWRATE | 14.92 Rm³/s | | DRY ADJ GAS FLOWRATE | 18.56 Rm ³ /s | | WET REF GAS FLOWRATE | 17.72 Rm ³ /s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 0 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0 mg | | | -TOTAL | 0 mg | | DRY REF GAS VOLUME SAMPLED | | 1.296 m ³ | | PARTICULATE CONC ACTUAL | | 0.000 mg/m ³ | | PARTICULATE CONC DRY REF | | 0.000 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.000 mg/m ³ | | PARTICULATE CONC WET REF | | 0.000 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.000000 g/s | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Plant: Test No.: Date: Covanta DYEC 2 - M26A November 9, 2020 Plant Location: Courtice, Ontario Test Location: APC Outlet No. 1 Operator: TT | 7960 | | |------------------|--| | 2,7 | 02% 8.59 | | co2% 10.76 | 10.76 | | madO3 | 12.2 | | | | | 0 ft° | Measured H20 | | 5 minutes 15.8 % | % | | | The second secon | | | | | | Isokinetic | % | | 102.7 | 100.3 | 69.3 | 99.5 | 102.5 | 9.66 | 99.4 | 98.1 | 9.66 | 99.5 | 99.4 | 100.4 | |--------------|------------|-----------------|----------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------| | | Velocity | s/w | 17.15 | 17.14 | 17.15 | 17.28 | 17.28 | 17.28 | 17.28 | 16.89 | 16.89 | 16.89 | 16.63 | 16.62 | | | Leak | Check | Volume | | | | | | | | | | | | | | | | Vacuum | BH. | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | | | | H | "H20 | 2.05 | 7 | 7 | 2.1 | 2.1 | 7 | 2.05 | 1.9 | 1.95 | 1.95 | 1.9 | 1.9 | | | | DGM In | -1 ₀ | 72 | 72 | 83 | 86 | 88 | - 06 | 91 | 92 | 92 | 93 | 93 | 93 | | | atures | DGM Out | 95 | 72 | 72 | 72 | 73 | 73 | 74 | 75 | 75 | 76 | 92 | 77 | 77 | | | Temperatures | Imp. Out | °F | 73 | - 60 | 58 | 09 | 59 | 59 | 58 | 58 | 56 | 56 | 56 | 56 | | | | Stack | ^o F | 288 | 287 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 287 | | | | ΦD | "H20 | 0.67 | 0.67 | 0.67 | 0.68 | 0.68 | 0.68 | 0.68 | 0.65 | 0.65 | 0.65 | 0.63 | 0.63 | | | | DGM | Reading | 29.77 | 33.63 | 37.40 | 41.17 | 44.99 | 48.93 | 52.77 | 56.61 | 60.32 | 64.09 | 67.86 | 71.57 | 75.32 | | | | Time | 0 | 2 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 20 | 55 | 09 | | | | Point | — | 2 | ന | 4 | 2 | 9 | 7 | ∞ | 6 | 10 | 11 | 12 | | Plant: Covanta DYEC Plant Location: Courtice, Ontario **Test Location:** APC Outlet No. 1 3 - M26A Test No.: Date: November 9, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.848 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 1.004 | | NOZZLE DIAMETER | 6.73 mm | | DRY REF GAS VOLUME SAMPLED | 1.322 m ³ | | AVGERGE ISOKINETICITY | 101.5 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 142.5 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 17.6 % | | AVERAGE GAS VELOCITY | 17.57 m/s | | BAROMETRIC PRESSURE (Station) | 101.321 Kpa | | STATIC PRESSURE | -2.224 Kpa | | ABSOLUTE GAS PRESSURE | 99.097 Kpa | | OXYGEN CONCENTRATION | 8.3 % | | CARBON DIOXIDE CONCENTRATION | 11.01 % | | CARBON MONOXIDE CONCENTRATION | 12.5 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | | 25.95 m ³ /s | |----------------------|--|-------------------------| | DRY REF GAS FLOWRATE | | 15.00 Rm³/s | | DRY ADJ GAS FLOWRATE | | 19.09 Rm³/s | | WET REF GAS FLOWRATE | | 18.21 Rm³/s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 0 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0 mg | | | -TOTAL | O mg | | DRY REF GAS VOLUME SAMPLED | | 1.322 m ³ | | PARTICULATE CONC ACTUAL | | 0.000 mg/m ³ | | PARTICULATE CONC DRY REF | | 0.000 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.000 mg/m ³ | | PARTICULATE CONC WET REF | | 0.000 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.000000 g/s | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Covanta DYEC Test No.: Plant: 3 - M26A Date: November 9, 2020 Plant Location: Courtice, Ontario Test Location: APC Outlet No. 1 Operator: Combustion Gases 11.01 8.3 Measured H20 17.6 % 02% CO2% COppm 5 minutes 0 ft³ 195.3 12.4 0 Number of Ports Number of points / Port Leak Check Volume Reading Interval CWTR (g) WCBDA (g) Probe (mg) Filter (mg) 1.004 29.92 "Hg -8.930 "H₂O 0.2651 inches 0.000 年 0.000 年 4.500 ft 0.848 Barometric Pressure Static Pressure Stack Diameter Pitot Factor DGMCF Nozzle Length Width | | Isokinetic | % | | 101.6 | 100.8 | 102.1 | 100.9 | 102.9 | 101.3 | 99.4 | 102.1 | 102.3 | 101.3 | 101.9 | 101.3 | |--------------|------------|------------|----------------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------| | | Velocity | m/s | 17.36 | 17.99 | 17.36 | 17.37 | 17.37 | 17.37 | 17.88 | 17.88 | 17.88 | 17.63 | 17.36 | 17.36 | | | Leak | Check | Volume | | | | | | | | | | | | | | | | Vacuum | "Hg | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | | | | PΑ | "H20 | 2 | 2.1 | 2.05 | 2.05 | 2.05 | 2.05 | 2.1 | 2.15 | 2.15 | 2.1 | 2.05 | 2.05 | | | | DGM In | 9¢ | 75 | 79 | 84 | 98 | 68 | 89 | 06 | 91 | 91 | 91 | 91 | 92 | | | atures | DGM Out | °F | 75 | 75 | 75 | 75 | 76 | 76 | 76 | 77 | 77 | 78 | 78 | 78 | | | Temperatures | Imp. Out | 9 6 | 74 | 52 | 49 | 50 | 50 | 50 | 50 | 51 | 52 | 54 | 56 | 57 | | | | Stack | °F | 288 | 288 | 288 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 288 | 288 | | | | ФΦ | "H20 | 0.68 | 0.73 | 89.0 | 0.68 | 0.68 | 0.68 | 0.72 | 0.72 | 0.72 | 0.7 | 89.0 | 0.68 | | | | DGM | Reading | 75.65 | 79.45 | 83.37 | 87.22 | 91.03 | 94.93 | 98.77 | 102.65 | 106.64 | 110.64 | 114.55 | 118.43 | 122.29 | | | | Time | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | . 09 | | | | Point | , | 2 | m | 4 | 5 | 9 | 7 | 8 | 6 | 10 | 11 | 12 | | Plant: Covanta DYEC Plant Location: Test Location: Courtice, Ontario APC Outlet No.2 Test No.: 1 - M26A Date: November 10, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.848 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 1.004 | | NOZZLE DIAMETER | 6.73 mm | | DRY REF GAS VOLUME SAMPLED | 1.319 m ³ | | AVGERGE ISOKINETICITY | 100.9 % | | STACK DIAMETER | 1.37 m | | ELENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 140.8 °C | |--------------------------------|-------------| | AVERAGE GAS
MOISTURE BY VOLUME | 16.5 % | | AVERAGE GAS VELOCITY | 17.46 m/s | | BAROMETRIC PRESSURE (Station) | 100.711 Kpa | | STATIC PRESSURE | -2.400 Kpa | | ABSOLUTE GAS PRESSURE | 98.311 Kpa | | OXYGEN CONCENTRATION | 7.9 % | | CARBON DIOXIDE CONCENTRATION | 11.21 % | | CARBON MONOXIDE CONCENTRATION | 16.7 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | 25.79 m ³ /s | |----------------------|--------------------------| | DRY REF GAS FLOWRATE | 15.05 Rm ³ /s | | DRY ADJ GAS FLOWRATE | 19.77 Rm ³ /s | | WET REF GAS FLOWRATE | 18.03 Rm ³ /s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 0 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0 mg | | | -TOTAL | 0 mg | | DRY REF GAS VOLUME SAMPLED | | 1.319 m ³ | | PARTICULATE CONC ACTUAL | | 0.000 mg/m ³ | | PARTICULATE CONC DRY REF | | 0.000 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.000 mg/m ³ | | PARTICULATE CONC WET REF | | 0.000 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.000000 g/s | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Covanta DYEC 1 - M26A November 10, 2020 Plant: Test No.: Date: Plant Location: Courtice, Ontario Test Location: APC Outlet No.2 Operator: TT | Pitot Factor | 0.848 | Filter (mg) | | Combustion Gases | |---------------------|--------------------------|-------------------------|-----------|------------------| | DGMCF | 1.004 | Probe (mg) | | 7.9 | | Barometric Pressure | 29.74 "Hg | CWTR(g) | 176.8 | CO2% 11.21 | | Static Pressure | -9.640 "H ₂ O | WCBDA (g) | 14.6 | COppm 16.7 | | Nozzle | 0.2651 inches | | | | | Stack Diameter | 4.500 ft | Leak Check Volume | | Measured H20 | | Length | 0.000 ft | Reading Interval | 5 minutes | 16.5 % | | Width | 0.000 ft | Number of Ports | | | | | | Number of points / Port | | | | | | | | Temperatures | ratures | | | | Leak | | | |------|---------|----------|---------|--------------|---------|--------|------|--------|--------|----------|------------| | - | DGM | D | Stack | Imp. Out | DGM Out | DGM In | ΗØ | Vacuum | Check | Velocity | Isokinetic | | Time | Reading | "H20 | о
П. | u.
° | U. | !L. | "H20 | gH. | Volume | s/m | % | | | 171.77 | 0.67 | 269 | | 70 | 69 | 2 | 4.5 | | 17.03 | | | | 175.51 | 0.67 | 285 | 51 | 69 | 71 | 7 | 4.5 | | 17.22 | 99.2 | | 0 | 179.25 | 0.7 | 287 | 51 | 69 | 75 | 2.1 | 4.5 | | 17.62 | 100.2 | | 7. | 183.09 | 7.0 | 287 | 54 | 70 | 79 | 2.1 | 4.5 | | 17.62 | 100.4 | | 20 | 186.99 | 0.72 | 287 | 57 | 70 | 82 | 2.2 | 5.0 | | 17.87 | 101.5 | | 25 | 190.97 | 0.66 | 287 | 09 | 71 | 83 | 7 | 4.5 | | 17.11 | 101.9 | | 30 | 194.78 | 0.66 | 286 | 61 | 72 | 85 | 2 | 4.5 | | 17.10 | 101.6 | | 35 | 198.55 | 0.68 | 287 | 09 | 72 | 98 | 2.05 | 4.5 | | 17.37 | 100.2 | | 40 | 202.39 | 0.7 | 287 | 58 | 73 | 87 | 2.15 | 5.0 | | 17.62 | 100.5 | | 45 | 206.37 | 0.7 | 287 | 56 | 73 | 88 | 2.15 | 5.0 | | 17.62 | 102.5 | | 50 | 210.32 | 0.7 | 288 | 55 | 74 | 88 | 2.15 | 5.0 | | 17.64 | 101.7 | | 55 | 214.23 | 0.7 | 288 | 55 | 74 | 68 | 2.15 | 5.0 | | 17.64 | 100.6 | | 09 | 218.15 | | | | | | | | | | 100.8 | Plant: Covanta DYEC Plant Location: Courtice, Ontario Test Location: Test No.: APC Outlet No.2 2 - M26A Date: November 10, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.848 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 1.004 | | NOZZLE DIAMETER | 6.73 mm | | DRY REF GAS VOLUME SAMPLED | 1.324 m ³ | | AVGERGE ISOKINETICITY | 100.8 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 141.5 °C | |--------------------------------|--------------------| | AVERAGE GAS MOISTURE BY VOLUME | 16.3 % | | AVERAGE GAS VELOCITY | 17.54 m/s | | BAROMETRIC PRESSURE (Station) | 100.711 Kpa | | STATIC PRESSURE | -2.400 Kpa | | ABSOLUTE GAS PRESSURE | 98. 311 Kpa | | OXYGEN CONCENTRATION | 8.28 % | | CARBON DIOXIDE CONCENTRATION | 11.10 % | | CARBON MONOXIDE CONCENTRATION | 16.5 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | 25.92 m ³ /s | |----------------------|--------------------------| | DRY REF GAS FLOWRATE | 15.13 Rm ³ /s | | DRY ADJ GAS FLOWRATE | 19.28 Rm ³ /s | | WET REF GAS FLOWRATE | 18.09 Rm³/s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 0 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0 mg | | | -TOTAL | 0 mg | | DRY REF GAS VOLUME SAMPLED | | 1.324 m ³ | | PARTICULATE CONC ACTUAL | | 0.000 mg/m ³ | | PARTICULATE CONC DRY REF | | 0.000 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.000 mg/m ³ | | PARTICULATE CONC WET REF | | 0.000 mg/m ³ | | PARTICULATE EMISSION RATE | • | .000000 g/s | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Plant: Test No.: Date: Covanta DYEC 2 - M26A November 10, 2020 Plant Location: Courtice, Ontario Test Location: APC Outlet No.2 Operator: TT | Combustion Gases | 02% 8.28 | CO2% 11.10
COppm 16.5 | | Measured H20 | 16.3 % | | | |------------------|------------|--|---------------|-------------------|------------------|-----------------|-------------------------| | | | | | | 5 minutes | . | | | Filter (mg) | Probe (mg) | CWTR (g) 178.4 WCBDA (g) 11.7 | | Leak Check Volume | Reading Interval | Number of Ports | Number of points / Port | | 0.848 | 1.004 | 29.74 "Hg
-9.640 "H ₂ O | 0.2651 inches | 4.500 ft | 0.000 ft | 0.000 ft | | | Pitot Factor | DGMCF | Barometric Pressure
Static Pressure | Nozzle | Stack Diameter | Length | Width | | | | Isokinetic | % | | 102.8 | 100.7 | 100.5 | 101.1 | 100.4 | 100.3 | 102.1 | 100.6 | 8.66 | 100.8 | 100.9 | 8.66 | |--------------|------------|------------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------| | | Velocity | s/m | 17.73 | 17.48 | 17.62 | 17.62 | 17.35 | 17.35 | 17.48 | 17.37 | 17.37 | 17.74 | 17.76 | 17.63 | | | Leak | Check | Volume | | | | | | | | | | | | | | | | Vacuum | gH" | 4.5 | 4.5 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | | | | ΑH | "H20 | 2 | 2.05 | 2.1 | 2.15 | 2.1 | 2.1 | 2.15 | 2.05 | 2.05 | 2.15 | 2.15 | 2.1 | | | | DGM In | 보 0 | 72 | 79 | 85 | 68 | 91 | 92 | 92 | 93 | 93 | 94 | 94 | 94 | | | ratures | DGM Out | 3 0 | 72 | 73 | 73 | 74 | 75 | 75 | 76 | 77 | 77 | 78 | 78 | 78 | | | Temperatures | Imp. Out | 4 ° | 69 | 52 | 50 | 50 | 50 | 51 | 52 | 52 | 52 | 53 | 54 | 55 | | | | Stack | ⊸ | 286 | 286 | 287 | 287 | 286 | 286 | 286 | 287 | 287 | 287 | 288 | 288 | | | | ДЪ | "H20 | 0.71 | 0.69 | 0.7 | 0.7 | 0.68 | 0.68 | 0.69 | 0.68 | 0.68 | 0.71 | 0.71 | 0.7 | | | | DGM | Reading | 218.65 | 222.62 | 226.48 | 230.38 | 234.32 | 238.19 | 242.06 | 246.03 | 249.92 | 253.78 | 257.77 | 261.76 | 265.68 | | | | Time | 0 | 2 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 09 | | | | Point | 1 | 2 | m | 4 | Ŋ | 9 | 7 | ∞ | 6 | 10 | 11 | 12 | | Plant: Covanta DYEC Plant Location: Courtice, Ontario Test Location: Test No.: APC Outlet No.2 3 - M26A Date: November 10, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.848 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 1.004 | | NOZZLE DIAMETER | 6.73 mm | | DRY REF GAS VOLUME SAMPLED | 1.320 m ³ | | AVGERGE ISOKINETICITY | 99.6 % | | STACK DIAMETER | 1.37 m | | ELENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | | | | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 141.0 °C | |---|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 14.8 % | | AVERAGE GAS VELOCITY | 17.39 m/s | | BAROMETRIC PRESSURE (Station) | 100.610 Kpa | | STATIC PRESSURE | -2.400 Kpa | | ABSOLUTE GAS PRESSURE | 98.209 Kpa | | OXYGEN CONCENTRATION | 8.66 % | | CARBON DIOXIDE CONCENTRATION | 10.65 % | | CARBON MONOXIDE CONCENTRATION | 18.3 ppm | | 法对法律法律证券 医乳头皮 医结膜性结膜 医皮肤炎 医皮肤炎 医皮肤炎 医二氏管 医二氏管 化二氯甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基 | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | 25.70 m ³ /s | |----------------------|--------------------------| | DRY REF GAS FLOWRATE | 15.27 Rm ³ /s | | DRY ADJ GAS FLOWRATE | 18.88 Rm ³ /s | | WET REF GAS FLOWRATE | 17.93 Rm ³ /s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 0 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0 mg | | | -TOTAL | 0 mg | | DRY REF GAS VOLUME SAMPLED | | 1.320 m ³ | | PARTICULATE CONC ACTUAL | | 0.000 mg/m ³ | | PARTICULATE CONC DRY REF | | 0.000 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.000 mg/m ³ | | PARTICULATE CONC WET REF | | 0.000 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.000000 g/s | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Covanta DYEC 3 - M26A November 10, 2020 Plant: Test No.: Date: Plant Location: Courtice, Ontario Test Location: APC Outlet No.2 Operator: | Combustion Gases | 02% 8.66 | CO2% 10.65
COppm 18.3 | | Measured H20 | 14.8 % | | | |------------------|------------|--|---------------|-------------------|------------------|-----------------|-------------------------| | | | | | 0 ft* | 5 minutes | | | | 0 | 0 | 157.4
11.8 | | | | | | | Filter (mg) | Probe (mg) | CWTR (g)
WCBDA (g) | | Leak Check Volume | Reading Interval | Number of Ports | Number of points / Port | | 0.848 | 1.004 | 29.71 "Hg
-9.640 "H ₂ O | 0.2651 inches | 4.500 ft | 0.000 ft | 0.000 ft | | | Pitot Factor | | Barometric Pressure
Static Pressure | Nozzle | Stack Diameter | | | | | | Isokinetic | % | | 107.3 | 96.1 | 99.2 | 9.66 | 99.2 | 98.9 | 98.8 | 99.4 | 1.66 | 99.2 | 99.2 | 98.8 | |--------------|------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------| | | Velocity | m/s | 18.07 | 17.46 |
17,33 | 17.32 | 17.33 | 17.07 | 17.31 | 17.32 | 17.56 | 17.31 | 17.31 | 17.31 | | | Leak | Check | Volume | | | | | | | | | | | | | | | | Vacuum | "Hg | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 5.0 | 5.0 | 5.0 | 5.0 | | | | 큠 | "H20 | 2 | 1.9 | 2.05 | 2.05 | 2.05 | 7 | 2.05 | 2.05 | 2.1 | 2.05 | 2.05 | 2.05 | | | | DGM In | 9F | 75 | 79 | 84 | 87 | 68 | 06 | 91 | 91 | 91 | 91 | 91 | 92 | | | atures | DGM Out | 9° | 75 | 75 | 75 | 76 | 76 | 77 | 77 | 77 | 78 | 78 | 78 | 79 | | | Temperatures | Imp. Out | 10 | 70 | 49 | 49 | 50 | 51 | 53 | 54 | 26 | 58 | 61 | 61 | 61 | | | | Stack | ٥,٤ | 286 | 287 | 287 | 286 | 287 | 286 | 285 | 286 | 285 | 285 | 285 | 285 | | | | ΔР | "H20 | 0.74 | 69'0 | 0.68 | 0.68 | 0.68 | 0.66 | 0.68 | 0.68 | 0.7 | 0.68 | 0.68 | 0.68 | | | | DGM | Reading | 66.05 | 70.37 | 74.12 | 77.98 | 81.87 | 85.75 | 89.57 | 93.45 | 97.35 | 101.30 | 105.20 | 109.10 | 112.99 | | | | Time | 0 | 2 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 20 | 55 | 09 | | | | Point | 1 | 7 | E | 4 | Ŋ | 9 | 7 | 8 | о
С | 10 | ŢŢ | 12 | | ### **APPENDIX 25** SVOC Test Emission Calculations (18 pages) Plant: Covanta DYEC Plant Location: Courtice, ON **Test Location:** APC Outlet No. 1 Test No.: 1 - SVOC Date: November 11, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.849 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 1.004 | | NOZZLE DIAMETER | 6.73 mm | | DRY REF GAS VOLUME SAMPLED | 5.135 m ³ | | AVGERGE ISOKINETICITY | 99.7 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | | | | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 139.7 °C | |--------------------------------|------------| | AVERAGE GAS MOISTURE BY VOLUME | 16.6 % | | AVERAGE GAS VELOCITY | 17.30 m/s | | BAROMETRIC PRESSURE (Station) | 99.932 Kpa | | STATIC PRESSURE | -2.370 Kpa | | ABSOLUTE GAS PRESSURE | 97.562 Kpa | | OXYGEN CONCENTRATION | 8.34 % | | CARBON DIOXIDE CONCENTRATION | 10.84 % | | CARBON MONOXIDE CONCENTRATION | 11.1 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | | | | 25.57 m ³ /s | |----------------------|----------|--|--|--------------------------| | DRY REF GAS FLOWRATE | | | | 14.83 Rm ³ /s | | DRY ADJ GAS FLOWRATE | | | | 18.82 Rm ³ /s | | WET REF GAS FLOWRATE | . | | | 17.78 Rm ³ /s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 0 mg | |----------------------------|--------|-------------------------| | | FILTER | 0 mg | | | -TOTAL | 0 mg | | DRY REF GAS VOLUME SAMPLED | | 5.135 m ³ | | PARTICULATE CONC ACTUAL | | 0.000 mg/m ³ | | PARTICULATE CONC DRY REF | | 0.000 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.000 mg/m ³ | | PARTICULATE CONC WET REF | | 0.000 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.000000 g/s | | | | | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Covanta DYEC 1 - SVOC November 11, 2020 Plant: Test No.: Date: Plant Location: Courtice, ON Test Location: APC Outlet No. 1 Operator: TT | Pitot Factor | 0.849 | Filter (mg) | 0 | | Combustion Gases | | |---------------------|--------------------------|-------------------------|-------------|-----------|------------------|--| | DGMCF | 1.004 | Probe (mg) | 0 | | 02% 8.34 | | | Sarometric Pressure | 29.51 "Hg
-9.520 "H,O | CWTR (g)
WCBDA (g) | 726.4
23 | | CO2% 10.84 | | | Nozzle | 0.2651 inches | | | | | | | Stack Diameter | 4.500 ft | Leak Check Volume | | 0.26 ft | Measured H20 | | | Length | 0.000 ft | Reading Interval | | 5 minutes | 16.6 % | | | Width | 0.000 ft | Number of Ports | | 2 | | | | | | Number of points / Port | | 12 | | | | | | | | | Temperatures | atures | | | | Leak | | | |------|----------|---------|------|----------------|--------------|------------------|----------------|------|--------|--------|----------|------------| | | <u>ă</u> | DGM | ΔP | Stack | Imp. Out | DGM Out | DGM In | ₹ | Vacuum | Check | Velocity | Isokinetic | | Time | | Reading | "H20 | ⁰ F | op. | o _F - | ^o F | "H20 | "Hg | Volume | m/s | % | | 0 | 52 | 55.93 | 0.76 | 285 | 71 | 70 | 70 | 2.2 | 7.0 | | 18.45 | | | 2 | 59 | .95 | 0.77 | 283 | 61 | 70 | 72 | 2.25 | 8.0 | | 18.54 | 100.7 | | 10 | . 64 | 1.04 | 0.77 | 283 | 56 | 70 | 76 | 2.2 | 8.0 | | 18.54 | 101.4 | | 15 | 89 | 3.08 | 0.79 | 281 | 54 | 71 | 79 | 2.3 | 8.0 | | 18.76 | 8.66 | | 20 | , 72 | 2.24 | 0.73 | 280 | 53 | 71 | 81 | 2.1 | 8.0 | | 18.02 | 101.0 | | 25 | 9/ | 5.19 | 0.75 | 280 | 52 | 72 | 83 | 2.2 | 8.0 | | 18.26 | 99.4 | | 30 | 08 |).24 | 0.72 | 281 | 52 | 72 | 84 | 2.1 | 8.0 | | 17.91 | 100.3 | | 35 | 84 | 1.16 | 0.72 | 282 | 52 | 73 | 85 | 2.1 | 8.0 | | 17.92 | 99.1 | | 40 | | 3.09 | 0.63 | 283 | 52 | 73 | 85 | 1.9 | 8.0 | | 16.77 | 99.2 | | 45 | 91 | 1.81 | 0.65 | 283 | 52 | 73 | 98 | 7 | 8.0 | | 17.04 | 100.4 | | 50 | | 95.60 | 0.61 | 284 | 52 | 74 | 87 | 1.8 | 8.0 | | 16.51 | 100.6 | | 55 | | 3.22 | 0.61 | 284 | 52 | 74 | 87 | 1.8 | 8.0 | | 16.51 | 0.66 | | 9 | | 2.83 | 0.66 | 284 | 53 | 74 | 87 | 7 | 8.0 | | 17.18 | 98 | | 65 | | 6.61 | 0.64 | 284 | 52 | 74 | 87 | 1.9 | 8.0 | | 16.92 | 99.5 | | 70 | | 0.37 | 0.64 | 284 | 53 | 75 | 87 | 1.85 | 8.0 | | 16.92 | 100.5 | | 75 | | 4.07 | 0.64 | 284 | 53 | 75 | 88 | 1.9 | 8.0 | | 16.92 | 98.8 | | 80 | | 7.77 | 99.0 | 288 | 53 | 75 | 88 | 1.7 | 8.0 | | 17.22 | 98.7 | | 85 | | 1.37 | 0.67 | 284 | 53 | 75 | 88 | 7 | 8.0 | | 17.31 | 94.7 | | 90 | | 5.16 | 0.65 | 281 | 53 | 75 | 88 | 2 | 8.0 | | 17.01 | 98.8 | | 95 | | 8.97 | 0.65 | 283 | 53 | 76 | 88 | 7 | 8.0 | | 17.04 | 100.6 | | 10(| | 2.84 | 0.65 | 283 | 54 | 76 | 88 | 7 | 8.0 | | 17.04 | 102.3 | | 105 | | 69.9 | 89.0 | 281 | 54 | 76 | 87 | 2 | 8.0 | | 17.40 | 101.7 | | 11(| | 0.61 | 0.55 | 284 | 54 | 76 | 88 | 1.7 | 8.0 | | 15.68 | 101.2 | | 11! | | 4.21 | 0.56 | 284 | 54 | 76 | 88 | 1.5 | 7.0 | | 15.82 | 103.4 | | 12(| | 7.46 | | | | | | | | 0.26 | | 92.5 | | 0 | 147 | 7.72 | 0.77 | 284 | 61 | 75 | 78 | 2.2 | 9.0 | | 18.55 | | | 5 | 151 | 1.77 | 0.78 | 284 | 57 | 75 | 82 | 2.2 | 9.0 | | 18.67 | 99.5 | | 10 | | 5.84 | 0.78 | 284 | 59 | 75 | 84 | 2.25 | 9.0 | | 18.67 | 6.86 | | 15 | | 96.6 | 0.78 | 284 | 55 | 75 | 85 | 2.25 | 0.6 | | 18.67 | 100.0 | | 20 | | 4.08 | 0.74 | 284 | 51 | 75 | 85 | 2.15 | 9.0 | | 18.19 | 0.00 | Plant: Test No.: Date: Covanta DYEC 1 - SVOC November 11, 2020 Plant Location: Courtice, ON Test Location: APC Outlet No. 1 Operator: TT | Pitot Factor | 0.849 | Filter (mg) | | Combustion Gases | |--|---------------------------------------|--------------------------|-----------|--------------------------| | DGMCF | 1.004 | Probe (mg) | | 02% 8.34 | | Barometric Pressure
Static Pressure | 29.51 "Hg
-9.520 "H ₂ O | CWTR (g) 72
WCBDA (g) | 26.4 | CO2% 10.84
COppm 11.1 | | Nozzle | 0.2651 inches | | | | | Stack Diameter | 4.500 ft | Leak Check Volume | 0.26 ft | Measured H2O | | Length | 0.000 ft | Reading Interval | 5 minutes | 16.6 % | | Width | 0.000 ft | Number of Ports | | | | | | Number of points / Port | 12 | | | | The state of s | | | Temper | Temperatures | | | | Leak | | | |------|--|------|---------|------------|--------------|------------|------|--------|--------|----------|------------| | | DGM | ΔP | Stack | Imp. Out | DGM Out | DGM In | HQ | Vacuum | Check | Velocity | Isokinetic | | Time | Reading | "H20 | ٥.
خ | ქ 0 | o, | 5 0 | "H20 | "Hg | Volume | m/s | % | | 25 | 168.08 | 0.77 | 285 | 49 | 75 | 98 | 2.25 | 0.6 | | 18.57 | 99.5 | | 30 | 172.17 | 0.71 | 285 | 51 | 75 | 98 | 2.1 | 9.0 | | 17.83 | 8.66 | | 35 | 176.12 | 0.71 | 285 | 51 | 75 | 98 | 2.1 | 9.0 | | 17.83 | 100.3 | | 40 | 180.07 | 0.64 | 285 | 51 | 75 | 87 | 1.9 | 9.0 | | 16.93 | 100.3 | | 45 | 183.81 | 0.64 | 285 | 51 | 75 | 87 | 1.9 | 8.5 | | 16.93 | 6.66 | | 50 | 187.52 | 0.61 | 285 | 52 | 75 | 87 | 1.8 | 8.5 | | 16.53 | 99.1 | | 55 | 191.18 | 0.59 | 285 | 52 | 75 | 87 | 1.75 | 8.5 | | 16.25 | 100.1 | | 09 | 194.78 | 0.65 |
285 | 52 | 75 | 87 | 1.95 | 8.5 | | 17.06 | 100.1 | | 92 | 198.55 | 0.65 | 285 | 51 | 75 | 87 | 1.95 | 8.5 | | 17.06 | 6.66 | | 70 | 202.33 | 99.0 | 286 | 48 | 75 | 87 | 1.95 | 8.5 | | 17.20 | 100.2 | | 75 | 206.12 | 99.0 | 285 | 46 | 75 | 87 | 1.95 | 8.5 | | 17.19 | 8.66 | | 80 | 209.92 | 99.0 | 283 | 45 | 75 | 87 | 1.95 | 8.5 | | 17.17 | 100.0 | | 85 | 213.73 | 0.64 | 282 | 45 | 75 | 87 | 1.9 | 8.5 | | 16.89 | 100.1 | | 06 | 217.48 | 99.0 | 282 | 46 | 75 | 87 | 1.95 | 8.5 | | 17.16 | 100.0 | | 95 | 221.27 | 99.0 | 283 | 46 | 75 | 87 | 1.95 | 8.5 | | 17.17 | 99.5 | | 100 | 225.06 | 0.56 | 281 | 46 | 75 | 87 | 1.7 | 8.0 | | 15.79 | 98.6 | | 105 | 228.65 | 9.0 | 281 | 46 | 75 | 87 | 1.8 | 0.6 | | 16.35 | 102.2 | | 110 | 232.30 | 0.57 | 281 | 46 | 75 | 87 | 1.6 | 8.0 | | 15.93 | 100.4 | | 115 | 235.78 | 9.0 | 281 | 56 | 92 | 88 | 1.8 | 0.6 | | 16.35 | 98.2 | | 120 | 239.23 | | | | | | | | | | 94.7 | Plant: Covanta DYEC Plant Location: Courtice, ON **Test Location:** APC Outlet No. 1 Test No.: 2 - SVOC Date: November 11, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.849 | |--|----------------------| | DGM CORRECTION FACTOR | 1.004 | | NOZZLE DIAMETER | 6.73 mm | | DRY REF GAS VOLUME SAMPLED | 5.077 m ³ | | AVGERGE ISOKINETICITY | 99.0 % | | STACK DIAMETER | 1.37 m | | LENGTH MANAGEMENT OF THE STREET AND A STREET OF THE STREET | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 138.9 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 16.2 % | | AVERAGE GAS VELOCITY | 17.09 m/s | | BAROMETRIC PRESSURE (Station) | 100.068 Kpa | | STATIC PRESSURE | -2.370 Kpa | | ABSOLUTE GAS PRESSURE | 97.697 Kpa | | OXYGEN CONCENTRATION | 8.49 % | | CARBON DIOXIDE CONCENTRATION | 10.81 % | | CARBON MONOXIDE CONCENTRATION | 14.0 ppm | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | | | 25.25 m ³ /s | |----------------------|--|--|--------------------------| | DRY REF GAS FLOWRATE | | | 14.76 Rm ³ /s | | DRY ADJ GAS FLOWRATE | | | 18.51 Rm ³ /s | | WET REF GAS FLOWRATE | | | 17.62 Rm ³ /s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 0 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0 mg | | | -TOTAL | 0 mg | | DRY REF GAS VOLUME SAMPLED | | 5.077 m ³ | | PARTICULATE CONC ACTUAL | | 0.000 mg/m ³ | | PARTICULATE CONC DRY REF | | 0.000 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.000 mg/m ³ | | PARTICULATE CONC WET REF | | 0.000 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.000000 g/s | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Covanta DYEC Plant: Test No.: Date: November 11, 2020 2 - SVOC APC Outlet No. 1 Plant Location: Courtice, ON Test Location: Operator: Combustion Gases 10.81 8.49 Measured H20 16.2 % CO2% 02% 5 minutes 0.3 ft² 699.9 Leak Check Volume Reading Interval CWTR (g) WCBDA (g) Probe (mg) Filter (mg) 29.55 "Hg -9.520 "H₂O 0.2651 inches 4.500 ft 0.000 ft 0.849 Barometric Pressure Static Pressure Stack Diameter Pitot Factor DGIMCF Length Nozzle Width | | H | |--|--| | | | | | - | | | | | | - | | | | | 1 | ۲ | | | 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | | | | | | | | | 1 | | | | | | | H | | | | | | | | Access to the state of | | | | | | | | | | | | 3 | - | | 2
12 | | | | | | | 1 | 77 | | | | | | | ١. | ١, | | Ę | 1 | | Ports
points / Port | | | = = = | | | Ś | | | ts
at | | | ት ች | | | മ്മ | | | * * | | | 9 6 | | | 0 0 | | | 효 호 | | | <u> </u> | | | 33 | - | | - - | Η, | | | | | | | | Number of Ports Number of points / Port | | | | | | | | | | | | Number of Ports Number of points / Port 12 | 1 | | ا | The second secon | | * | - | | 8 | | | 5 | | | | | | | | | 0.000 ft | | | | Isokinetic | % | | 98.6 | 98.4 | 100.4 | 99.5 | 1.66 | 6.96 | 100.8 | 9.99
9.99 | 100.3 | 100.2 | 98.2 | 98.0 | 7.96 | 100.4 | 100.7 | 7.66 | 98.3 | 101.4 | 99.5 | 99.5 | 7.96 | 0.96 | 97.4 | 99.2 | | 7.76 | 100.2 | 99.5 | 9.60
8.60 | |--------------|------------|------------|-------|----------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|-------|-------|----------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------------| | | Velocity | m/s | 17.75 | 17.60 | 17.34 | 17.32 | 16.80 | 17.05 | 17.05 | 17.30 | 16.93 | 16.52 | 16.33 | 16.07 | 16.88 | 16.73 | 16.72 | 16.72 | 17.62 | 16.86 | 16.98 | 16.60 | 15.19 | 15.19 | 15.19 | 15.32 | | 19.35 | 19.36 | 19.72 | 19.38 | 18.91 | | Leak | Check | Volume | 0.3 | | | | | | | | Vacuum | gH. | 7.0 | 7.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.5 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 9.0 | 9.0 | 8.5 | 8.0 | 8.0 | 8.0 | 8.0 | | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | | PΗ | "H20 | 2 | 2,05 | 2.05 | 2.05 | 1.9 | 2.05 | 2.05 | 2.05 | 1.95 | 1.9 | 1.65 | 1.6 | 1.9 | 1.9 | 1.95 | 1.9 | 2.05 | 7 | 1.95 | 1.85 | 1.4 | 1.45 | 1.5 | 1.6 | | 2.5 | 2.5 | 2.55 | 2.4 | 2.3 | | | DGM In | 9 5 | 73 | 75 | 80 | 82 | 84 | 85 | 98 | 87 | 87 | 87 | 74 | 79 | 83 | 85 | 87 | 88 | 88 | 68 | 68 | 68 | 06 | 06 | 91 | 91 | | 82 | 85 | 87 | 88 | 88 | | stures | DGM Out | 1.
o | 73 | 73 | 73 | 73 | 74 | 74 | 74 | 75 | 75 | 75 | 73 | 74 | 74 | 75 | 75 | 76 | 76 | 77 | 77 | 77 | 77 | 78 | 78 | 78 | | 78 | 78 | 78 | 78 | 78 | | Temperatures | Imp. Out | 4 | 69 | 56 | 53 | 52 | 51 | 51 | 51 | 51 | 51 | 50 | 50 | 45 | 44 | 44 | 44 | 44 | 45 | 45 | 45 | 45 | 46 | 46 | 46 | 46 | | 61 | 50 | 50 | 51 | 52 | | | Stack | 5 0 | 281 | 279 | 278 | 276 | 276 | 275 | 275 | 275 | 276 | 275 | 282 | 283 | 283 | 282 | 281 | 281 | 280 | 281 | 280 | 282 | 281 | 281 | 281 | 279 | | 284 | 285 | 286 | 286 | 286 | | | ΔP | "H20 | 0.71 | 0.7 | 0.68 | 0.68 | 0.64 | 99.0 | 99.0 | 0.68 | 0.65 | 0,62 | 9.0 | 0.58 | 0.64 | 0.63 | 0.63 | 0.63 | 0.7 | 0.64 | 0.65 | 0.62 | 0.52 | 0.52 | 0.52 | 0.53 | | 0.84 | 0.84 | 0.87 | 0.84 | 0.8 | | | DGM | Reading | 39.62 | 43.47 | 47.30 | 51.17 | 55.02 | 58.75 | 62.46 | 66.32 | 70.21 | 74.03 | 77.76 | 81.29 | 84.77 | 88.39 | 92.13 | 95.89 | 99.62 | 103.50 | 107.33 | 111.12 | 114.82 | 118.12 | 121.40 | 124.73 | 128.16 | 128.46 | 132.65 | 136.96 | 141.32 | 145.62 | | - | | Time | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 09 | 65 | 20 | 75 | 08 | 85 | 06 | 95 | 100 | 105 | 110 | 115 | 120 | 0 | ம | 10 | 15 | 20 | | | | Point | 1 | | 7 | | ĸ | | 4 | | 2 | | 9 | | 7 | | ∞ | | 6 | | 10 | | 11 | | 12 | | | Н | | 2 | | ന | Covanta DYEC 2 - SVOC Test No.: November 11, 2020 Date: Test Location: APC Outlet No. 1 Plant Location: Courtice, ON Operator: Combustion Gases 8.49 10.81 14.0 Measured H20 16.2 % 02% CO2% COppm 5 minutes 2 12 0.3 ft² 699.9 Number of points / Port Leak Check Volume Number of Ports Reading Interval CWTR (g) WCBDA (g) Filter (mg) Probe (mg) 29.55 "Hg -9.520 "H₂O 0.2651 inches 0.000 ft 0.000 ft 4.500 ft 1.004 0.849 Barometric Pressure Static Pressure Stack Diameter Pitot Factor DGMCF Length Nozzle Width |
- | | | | Temperatures | atures | | | | Leak | | | |-------|---------|------|-------|--------------|---------|--------|------|--------|--------|----------|------------| | | DGM | 90 | Stack | Imp. Out | DGM Out | DGM In | ¥ | Vacuum | Check | Velocity | Isokinetic | | Time | Reading | "H2O | 0F | r
L | T. | ±° | "H20 | "Hg | Volume | s/m | % | | 25 | 149.78 | 0.8 | 286 | 52 | 78 | 88 | 2.3 | 10.0 | | 18.91 | 6.86 | | 30 | 153.97 | 0.76 | 286 | 53 | 78 | 68 | 2.2 | 10.0 | | 18.43 | 9.66 | | 35 | 158.02 | 0.74 | 286 | 53 | 78 | 68 | 2.15 | 10.0 | | 18.19 | 98.7 | | 40 | 162.04 | 99:0 | 286 | 53 | 78 | 68 | 7 | 10.0 | | 17.17
 99.2 | | 45 | 165.86 | 0.7 | 287 | 53 | 77 | 68 | 2.1 | 10.0 | | 17.70 | 8.66 | | 50 | 169.76 | 0.62 | 287 | 53 | 77 | 68 | 1.8 | 9.0 | | 16.66 | 99.1 | | 55 | 173.44 | 9.0 | 287 | 52 | 77 | 68 | 1.8 | 9.0 | | 16.39 | 99.3 | | 09 | 177.10 | 99.0 | 287 | 52 | 77 | 68 | 1.95 | 9.5 | | 17,19 | 100.4 | | 65 | 180.89 | 0.66 | 287 | 51 | 77 | 88 | 1.95 | 9.5 | | 17,19 | 99.2 | | 70 | 184.67 | 99'0 | 287 | 51 | 77 | 88 | 1.95 | 9.5 | | 17.19 | 0.66 | | 75 | 188.45 | 0.65 | 287 | 51 | 92 | 88 | 1.95 | 9.5 | | 17.06 | 99.0 | | 80 | 192.21 | 0.65 | 286 | 51 | 92 | 87 | 1.95 | 9.5 | | 17.04 | 99.3 | | 85 | 195.98 | 0.65 | 285 | 51 | 92 | 87 | 1.95 | 9.5 | | 17.03 | 9.66 | | 06 | 199.74 | 0.64 | 284 | 51 | 92 | 87 | 1.9 | 9.5 | | 16.89 | 69.3 | | 95 | 203.45 | 0.64 | 286 | 51 | 75 | 87 | 1.9 | 9.5 | | 16.91 | 98.6 | | 100 | 207.18 | 0.58 | 281 | 51 | 75 | 98 | 1.7 | 9.5 | | 16.05 | 99.4 | | 105 | 210.74 | 0.58 | 278 | 51 | 75 | 68 | 1.7 | 0.6 | | 16.01 | 4.66 | | 110 | 214.29 | 0.54 | 278 | 51 | 75 | 98 | 1.5 | 8.5 | | 15.45 | 98.6 | | 115 | 217.65 | 0.58 | 277 | 51 | 75 | 98 | 1.7 | 9.0 | | 16.00 | 96.9 | | 120 | 221.12 | | | | | | | | | | 9.96 | Plant: Covanta DYEC Plant Location: Courtice, ON Test Location: APC Outlet No. 1 3 - SVOC Test No.: Date: November 12, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.849 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 1.004 | | NOZZLE DIAMETER | 6.73 mm | | DRY REF GAS VOLUME SAMPLED | 5.162 m ³ | | AVGERGE ISOKINETICITY | 99.6 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 138.3 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 15.9 % | | AVERAGE GAS VELOCITY | 17.02 m/s | | BAROMETRIC PRESSURE (Station) | 101.253 Kpa | | STATIC PRESSURE | -2.507 Kpa | | ABSOLUTE GAS PRESSURE | 98.746 Kpa | | OXYGEN CONCENTRATION | 8.49 % | | CARBON DIOXIDE CONCENTRATION | 10.95 % | | CARBON MONOXIDE CONCENTRATION | 15.8 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | 25.15 m³/s | |----------------------|--------------------------| | DRY REF GAS FLOWRATE | 14.93 Rm³/s | | DRY ADJ GAS FLOWRATE | 18.71 Rm ³ /s | | WET REF GAS FLOWRATE | 17.76 Rm ³ /s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 0 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0 mg | | | -TOTAL | 0 mg | | DRY REF GAS VOLUME SAMPLED | | 5.162 m ³ | | PARTICULATE CONC ACTUAL | | 0.000 mg/m ³ | | PARTICULATE CONC DRY REF | | 0.000 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.000 mg/m ³ | | PARTICULATE CONC WET REF | | 0.000 mg/m^3 | | PARTICULATE EMISSION RATE | 0 | .000000 g/s | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Covanta DYEC 3 - SVOC November 12, 2020 Plant: Test No.: Date: Plant Location: Courtice, ON Test Location: APC Outlet No. 1 Operator: TT | Pitot Factor | 0.849 | Filter (mg) | 0 | | Combustion Gases | |--------------------|---------------------------|-------------------------|-------|-----------|------------------| | DGIMCF | 1.004 | Probe (mg) | 0 | | 02% 8.49 | | Irometric Pressure | 29.9 "Hg | CWTR (g) | 9.669 | | CO2% 10.95 | | atic Pressure | -10.070 "H ₂ O | WCBDA (g) | 20 | | COppm 15.8 | |)22le | 0.2651 inches | | | | | | Stack Diameter | 4.500 ft | Leak Check Volume | | 0.38 ft | Measured H20 | | Length | 0.000 ft | Reading Interval | | 5 minutes | 15.9 % | | Width | 0.000 ft | Number of Ports | | 2 | | | | | Number of points / Port | | 12 | | | | Isokinetic | % | | 98.0 | 97.3 | 7.86 | 98.6 | 99.4 | 99.7 | 100.8 | 98.4 | 98.5 | 97.8 | 100.0 | 59.4 | 98.6 | 2.66 | 9.66 | 100.1 | 99.2 | 98.4 | 98.8 | 66.3 | 93.6 | 99.5 | 99.4 | 98.6 | | 67.6 | 124.1 | 89.3 | 105.5 | |--------------|------------|----------------|--------|--------|--------|--------|--------|--------|--------|--------| | | Velocity | s/w | 17.45 | 17.46 | 17.22 | 17.50 | 17.52 | 17.78 | 17.27 | 17.28 | 17.29 | 16.92 | 16.26 | 16.53 | 17.07 | 17.31 | 17.31 | 17.58 | 17.56 | 17.06 | 16.74 | 16.80 | 16.40 | 16.20 | 16.19 | 16.32 | | 19.57 | 19.01 | 19.00 | 18.88 | 19.00 | | Leak | Check | Volume | 0.38 | | | | | | | | Vacuum | "Hg | 7.0 | 7.0 | 7.0 | 7.5 | 7.5 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 7.5 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | | 9.5 | 9.5 | 10.0 | 12.0 | 9.5 | | | H | "H20 | 1.95 | 1.95 | 1.95 | 7 | 7 | 2.1 | 7 | 1.9 | 1.9 | 1.8 | 1.8 | 1.8 | 1.9 | 7 | 7 | 2.05 | 7 | 1.9 | 1.85 | 1.85 | 1,8 | 1.8 | 1.8 | 1.8 | | 2.4 | 2.25 | 3.3 | 3.4 | 2.3 | | | DGM In | o _F | 59 | 61 | 65 | 89 | 70 | 71 | 72 | 73 | 74 | 74 | 75 | 76 | 92 | 92 | 92 | 92 | 92 | 76 | 92 | 77 | 77 | 77 | 77 | 77 | | 99 | 70 | 73 | 74 | 74 | | atures | DGM Out | ٥Ł | 59 | 59 | 59 | 09 | 09 | 61 | 61 | 61 | 62 | 62 | 63 | 63 | 63 | 63 | 64 | 64 | 64 | 64 | 64 | 64 | 65 | 65 | 65 | 65 | | 64 | 64 | 64 | 65 | 65 | | Temperatures | Imp. Out | 4 0 | 61 | 56 | 53 | 52 | 51 | 51 | 51 | 51 | 52 | 50 | 47 | 46 | 45 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 45 | | 55 | 47 | 48 | 49 | 52 | | | Stack | J o | 275 | 276 | 277 | 279 | 281 | 282 | 281 | 282 | 283 | 284 | 285 | 285 | 286 | 285 | 285 | 286 | 284 | 285 | 280 | 285 | 285 | 279 | 278 | 278 | | 284 | 285 | 284 | 284 | 284 | | | ΔР | "H2O | 0.7 | 2.0 | 0.68 | 7.0 | 7.0 | 0.72 | 0.68 | 0.68 | 0.68 | 0.65 | 9.0 | 0.62 | 99.0 | 0.68 | 0.68 | 0.7 | 0.7 | 99:0 | 0.64 | 0.64 | 0.61 | 9.0 | 9.0 | 0.61 | | 0.87 | 0.82 | 0.82 | 0.81 | 0.82 | | | DGM | Reading | 21.42 | 25.12 | 28.80 | 32.49 | 36.24 | 40.02 | 43.87 | 47.66 | 51.36 | 55.07 | 58.67 | 62.21 | 65.79 | 69.45 | 73.19 | 76.95 | 80.78 | 84.58 | 88.24 | 91.87 | 95,51 | 80.66 | 102.63 | 106.18 | 109.73 | 110.11 | 114.25 | 119.36 | 123.04 | 127.37 | | | | Time | 0 | J | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 09 | 65 | 70 | 75 | 80 | 85 | 06 | 95 | 100 | 105 | 110 | 115 | 120 | | 2 | 10 | 15 | 20 | | | | Point | П | | 2 | | r | | 4 | | 2 | | 9 | | 7 | | ∞ | | 6 | | 10 | | 11 | | 12 | | | Н | | 2 | | m | Covanta DYEC 3 - SVOC November 12, 2020 Plant: Test No.: Date: Plant Location: Courtice, ON Test Location: APC Outlet No. 1 Operator: TT | Isokinetic
% | 100.0 | 99.1 | 97.5 | | |--------------------------|--
---|--|--| | Velocity
m/s | 18.05 | 17.52 | 16.74 | 1 | | Leak
Check
Volume | | | | | | Vacuum
"Hg | 9.0 | 9:0 | 9.0 | ((| | ΔH
"H2O | 2.05 | 17 | 1.9 | , | | DGM In | 76 | 78 | 79 | (1 | | atures
DGM Out
°F | 65 | 99 | 99 | | | Temper
Imp. Out
°F | 53 | 52 | 49 | | | Stack
°F | 284 | 281 | 280 | | | ΔP
"H2O | 0.74 | 0.7 | 0.64 | | | DGM
Reading | 131.51
135.40 | 139.21 | 142.97 | | | Тіте | 25 | 35 | 40 | | | Point | 4 | | 5 | | | | Temperatures Temperatures Temperatures Temperatures Time DGM In D | DGM ΔP Stack Imp. Out DGM Out DGM In Out AH Vacuum Vacu | DGM AP Stack Imp. Out DGM Out DGM In AH Vacuum Check Velocity Nolume <th>DGM AP Stack Imp. Out DGM Out DGM In OF AH Vacuum Check Velocity Nolume Vacuum Check Velocity Nolume Vacuum Check Velocity Nolume Vacuum Check Velocity Nolume Vacuum Check Velocity Nolume Valume Vacuum Check Velocity Nolume Vacuum Check Valume Valume</th> | DGM AP Stack Imp. Out DGM Out DGM In OF AH Vacuum Check Velocity Nolume Vacuum Check Velocity Nolume Vacuum Check Velocity Nolume Vacuum Check Velocity Nolume Vacuum Check Velocity Nolume Valume Vacuum Check Velocity Nolume Vacuum Check Valume | | | | | | ledwei | lemperatures | | | | Leak | | | |------|---------|------|-------|-------------|--------------|--------|------|--------|--------|----------|------------| | | DGM | ΔP | Stack | Imp. Out | DGM Out | DGM In | PΗ | Vacuum | Check | Velocity | Isokinetic | | Time | Reading | "H20 | ŭ. | <u> 5</u> 0 | 0F | °F | "H20 | "Hg | Volume | m/s | % | | 25 | 131.51 | 0.74 | 284 | 53 | - 65 | 92 | 2.05 | 0.6 | | 18.05 | 100.0 | | 30 | 135.40 | 0.7 | 282 | 54 | 9 | 77 | 7 | 9.0 | | 17.53 | 98.6 | | 35 | 139.21 | 0.7 | 281 | 52 | 99 | 78 | 7 | 9.0 | | 17.52 | 99.1 | | 40 | 142.97 | 0.64 | 280 | 49 | 99 | 79 | 1.9 | 9.0 | | 16.74 | 97.5 | | 45 | 146.63 | 0.64 | 280 | 48 | 99 | 79 | 1.9 | 9.0 | | 16.74 | 99.1 | | 20 | 150.32 | 9:0 | 281 | 48 | 99 | 79 | 1.7 | 8.5 | | 16.22 | 6.66 | | 55 | 153.85 | 0.59 | 282 | 47 | 99 | 79 | 1.7 | 8.5 | | 16.10 | 98.8 | | 09 | 157.35 | 0.61 | 283 | 46 | 99 | 79 | 1.8 | 8.5 | | 16.38 | 98.8 | | 9 | 160.94 | 0.61 | 283 | 47 | 29 | 79 | 1.8 | 8.5 | | 16.38 | 8.66 | | 70 | 164.56 | 0.61 | 283 | 47 | 29 | 79 | 1.8 | 8.5 | | 16.38 | 100.5 | | 75 | 168.14 | 0.61 | 282 | 46 | 29 | 79 | 1.8 | 8.5 | | 16.37 | 99.4 | | 80 | 171.71 | 0.61 | 279 | 46 | 29 | 79 | 1.8 | 8.5 | | 16.33 | 0.66 | | 85 | 175.28 | 0.64 | 279 | 45 | 29 | 79 | 1.9 | 9.0 | | 16.73 | 98.8 | | 06 | 178.95 | 9.0 | 277 | 45 | 29 | 79 | 1.8 | 8.5 | | 16,18 | 99.2 | | 95 | 182.59 | 9.0 | 277 | 46 | - 29 | 79 | 1.8 | 8.5 | | 16.18 | 101.5 | | 100 | 186.14 | 9.0 | 271 | 46 | 29 | 79 | 1.8 | 8.5 | | 16.11 | 0.66 | | 105 | 189.74 | 0.56 | 272 | 46 | 29 | 80 | 1.6 | 8.5 | | 15.57 | 100.0 | | 110 | 193.18 | 0.56 | 273 | 46 | 29 | 80 | 1.6 | 8.5 | | 15.59 | 98.8 | | 115 | 196.61 | 0.55 | 273 | 46 | 29 | 80 | 1.6 | 8.5 | | 15.45 | 98.6 | | 120 | 200.04 | | | | | | | | | | 5.66 | Plant: Covanta DYEC Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 1 - SVOC Test No.: Date: November 11, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.851 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 0.999 | | NOZZLE DIAMETER | 6.38 mm | | DRY REF GAS VOLUME SAMPLED | 4.590 m ³ | | AVGERGE ISOKINETICITY | 97.3 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 140.4 °C | |--------------------------------|------------| | AVERAGE GAS MOISTURE BY VOLUME | 15.8 % | | AVERAGE GAS VELOCITY | 17.51 m/s | | BAROMETRIC PRESSURE (Station) | 99.932 Kpa | | STATIC PRESSURE | -2.370 Kpa | | ABSOLUTE GAS PRESSURE | 97.562 Kpa | | OXYGEN CONCENTRATION | 8.42 % | | CARBON DIOXIDE CONCENTRATION | 10.78 % | | CARBON MONOXIDE CONCENTRATION | 13.2 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | 25.87 m³/s |
----------------------|--------------------------| | DRY REF GAS FLOWRATE | 15.13 Rm³/s | | DRY ADJ GAS FLOWRATE | 19.07 Rm ³ /s | | WET REF GAS FLOWRATE | 17.96 Rm ³ /s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 0 | mg | |----------------------------|---------|----------|-------------------| | | -FILTER | 0 | mg | | | -TOTAL | 0 | mg | | DRY REF GAS VOLUME SAMPLED | | 4.590 | m ³ | | PARTICULATE CONC ACTUAL | | 0.000 | mg/m³ | | PARTICULATE CONC DRY REF | | 0.000 | mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.000 | mg/m³ | | PARTICULATE CONC WET REF | | 0.000 | mg/m³ | | PARTICULATE EMISSION RATE | | 0.000000 | g/s | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Plant: November 11, 2020 Test No.: Date: Covanta DYEC 1 - SVOC Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 JB RW Operator: Combustion Gases 10.78 8.42 Measured H20 15.8 % 02% CO2% COppm 0.36 ft³ 5 minutes 2 17 617.7 Number of Ports Number of points / Port Leak Check Volume Reading Interval CWTR (g) WCBDA (g) Probe (mg) Filter (mg) 0.851 0.999 29.51 "Hg -9.520 "H₂O 0.2513 inches 4.500 ft 0.000 ft 0.000 ft Barometric Pressure Static Pressure Stack Diameter Pitot Factor DGMCF Length Nozzle Width Covanta DYEC Test No.: November 11, 2020 1 - SVOC Date: Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 JB RW Operator: Combustion Gases 10.78 8.42 Measured H20 15.8 % CO2% COppm 05% 0.36 ft² 5 minutes 2 12 617.7 13.4 Number of Ports Number of points / Port Leak Check Volume Reading Interval CWTR (g) WCBDA (g) Probe (mg) Filter (mg) 0.851 0.999 29.51 "Hg -9.520 "H₂O 0.2513 inches 4.500 ft 0.000 ft 0.000 ft Barometric Pressure Static Pressure Stack Diameter Pitot Factor DGMCF Nozzle Length Width | | | U | |-----|---------------------|--| | | | let | | | | 烹 | | | | Sc | | | | H. | | | | > | | | | 5 | | | | 9 | | | | > | | | | J | | | ă | S | | | 크 | ಕ | | | Leak | | | | | Ε | | | | 3 | | | | /ac | | | | - | | | | | | | | I | | | 200 | ◁ | | | | | | | | | | 124 | | | | | | = | | | | Ġ | | | | ۵ | | | Temperatures | Imp. Out DGM Out DGM In AH Vacuum Check Velocity Isokinetic | | | | | | | | ¥ | | | | Õ | | | S | ⋛ | | | Te | ă | | | att | | | | Ser | | | | Ē | ¥ | | | Te | ŏ | | | | ġ | | | | 드 | | | | | | | | | | | | | | | | 중 | | | | ž | <u> </u> | | | | ΔР | | | | ΔP | | | | Δp | | | | | | | | ΔΡ | | | | GM — AP | | | | DGM — AP | | | | DGM — | | | | DGM — AP | | | | DGM AP | | | | DGM | | | | DGW | | | | DGM | | | | DGM | | | | DGW AV | | | | DGM | | | | DGW NDG | | | | PGW AV | | | | MDGW | | | | DGW WAS A STATE OF THE | | | | DGW CAN CONTRACTOR | | | Paradentarium proposory de indocesso de servicio de la constanció co | | | | Tempe | Temperatures | | | | Leak | | | |---------------|--|---------|------|-------|----------|--------------|--------|------|----------------|--------|----------|------------| | | | DGM | ΔР | Stack | Imp. Out | DGM Out | DGM In | PΗ | Vacuum | Check | Velocity | Isokinetic | | Point | Time | Reading | "H20 | ٥٤ | 5 | u.
o | ë. | "H20 | 500
IL
= | Volume | m/s | % | | | 25 | 217.31 | 0.79 | 287 | 49 | 76 | 75 | 1.9 | 4.0 | | 18.85 | 97.8 | | 4 | 30 | 220.95 | 0.76 | 287 | 49 | 75 | 74 | 1.8 | 4.0 | | 18.48 | 97.0 | | | 35 | 224.56 | 0.75 | 288 | 48 | 75 | 74 | 1.8 | 4.0 | | 18.37 | 58.3 | | <u>د</u>
2 | 40 | 228.08 | 0.73 | 288 | 48 | 76 | 75 | 1.75 | 4.0 | | 18.13 | 96.5 | | | 45 | 231.61 | 0.73 | 288 | 47 | 75 | 74 | 1.75 | 4.0 | | 18.13 | 97.9 | | 9 | 50 | 235.16 | 0.68 | 289 | 48 | 75 | 75 | 1.6 | 4.5 | | 17.51 | 98.6 | | | 55 | 238.62 | 99.0 | 288 | 48 | 75 | 74 | 1.6 | 4.5 | | 17.24 | 93.6 | | 7 | 09 | 242.10 | 7.0 | 289 | 49 | 76 | 75 | 1.6 | 4.5 | | 17.76 | 101.7 | | | 92 | 245.57 | 7.0 | 289 | 48 | 76 | 75 | 1.6 | 4.5 | | 17.76 | 98.3 | | ∞ | 70 | 249.05 | 0.72 | 289 | 44 | 76 | 75 | 1.65 | 4.5 | | 18.01 | 98.6 | | | 75 | 252.51 | 0.72 | 289 | 44 | 77 | 75 | 1.65 | 4.5 | | 18.01 | 96.7 | | 6 | 80 | 255.95 | 0.71 | 289 | 44 | 77 | 75 | 1.65 | 4.5 | | 17.89 | 96.0 | | | 82 | 259.43 | 0.72 | 288 | 42 | 77 | 75 | 1.65 | 4.5 | | 18.00 | 97.8 | | 10 | 06 | 262.89 | 7.0 | 288 | 43 | 77 | 75 | 1.6 | 4.5 | | 17.75 | 96.5 | | | 95 | 266.29 | 0.71 | 287 | 43 | 77 | 75 | 1.6 | 4.5 | | 17.87 | 96.2 | | 11 | 100 | 269.70 | 0.55 | 286 | 44 | 77 | 75 | 133 | 4.0 | | 15.71 | 95.7 | | | 105 | 272.75 | 0.54 | 287 | 44 | 77 | 75 | 1.3 | 4.0 | | 15.58 | 97.1 | | 12 | 110 | 275.78 | 0.54 | 286 | 44 | 77 | 75 | 1.3 | 4.0 | | 15.57 | 97.4 | | | 115 | 278.80 | 0.53 | 286 | 44 | 77 | 75 | 1.2 | 4.0 | | 15.43 | 97.1 | | | 120 | 281.79 | | | | | | | | | | 97.0 | # **ORTECH Environmental** Plant: Covanta DYEC Plant Location: Courtice, Ontario APC Outlet No. 2 Test Location: Test No.: 2 - SVOC Date: November 11, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.851 | |----------------------------|----------------------| | DGM CORRECTION FACTOR | 0.999 | | NOZZLE DIAMETER | 6.38 mm | | DRY REF GAS VOLUME SAMPLED | 4.662 m ³ | | AVGERGE ISOKINETICITY | 97.3 % | | STACK DIAMETER | 1.37 m | | LENGTH | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | | | | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 141.8 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY VOLUME | 16.4 % | | AVERAGE GAS VELOCITY | 17.95 m/s | | BAROMETRIC PRESSURE (Station) | 100.034 Kpa | | STATIC PRESSURE | -2.370 Kpa | | ABSOLUTE GAS PRESSURE | 97.663 Kpa | | OXYGEN CONCENTRATION | 8.33 % | | CARBON DIOXIDE CONCENTRATION | 10.93 % | | CARBON MONOXIDE CONCENTRATION | 15.5 ppm | | | | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | | | 26.52 m³/s | |----------------------|--|--|--------------------------| | DRY REF GAS FLOWRATE | | | 15.35 Rm ³ /s | | DRY ADJ GAS FLOWRATE | | | 19.49 Rm ³ /s | | WET REF GAS FLOWRATE | | | 18.37
Rm ³ /s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 0 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0 mg | | | -TOTAL | 0 mg | | DRY REF GAS VOLUME SAMPLED | | 4.662 m ³ | | PARTICULATE CONC ACTUAL | | 0.000 mg/m ³ | | PARTICULATE CONC DRY REF | | 0.000 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.000 mg/m ³ | | PARTICULATE CONC WET REF | | 0.000 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.000000 g/s | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Note: Dry Adj condition refers to 25 deg C (77 deg F) and 1 atmosphere, adjusted to 11% oxygen by volume # ORTECH Environmental Covanta DYEC 2 - SVOC Plant: November 11, 2020 Test No.: Date: Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 JB RW Operator: Combustion Gases 8.33 10.93 15.5 Measured H20 16.4 % 02% CO2% COppm 5 minutes 0.38 ft² 654.6 17.1 Leak Check Volume Number of Ports Reading Interval CWTR (g) WCBDA (g) Probe (mg) Filter (mg) 0.851 0.999 29.54 "Hg -9.520 "H₂O 0.2513 inches 0.000 ft 0.000 ft 4.500 ft Barometric Pressure Stack Diameter Static Pressure Pitot Factor DGMCF Length Width Nozzle 2 12 Number of points / Port | | Isokinetic | % | | 97.9 | 97.1 | 96.0 | 97.3 | 100.9 | 97.8 | 98.2 | 98.2 | 9.66 | 99.3 | 102.4 | 100.5 | 96.3 | 96.3 | 96.1 | 93.9 | 102.3 | 98.6 | 99.2 | 99.3 | 98.5 | 97.0 | 8.96 | 97.4 | | 92.4 | 92.4 | 92.8 | 95.0 | |--------------|------------|----------------| | | Velocity | s/m | 18.97 | 18.95 | 19.55 | 19.43 | 18.71 | 18.83 | 18.24 | 18.24 | 17.75 | 17.75 | 17.11 | 17.13 | 17.77 | 17.76 | 18.01 | 17.75 | 17.76 | 17.75 | 17.10 | 17.10 | 16.44 | 16.44 | 15.01 | 15.00 | | 19.57 | 19.55 | 20.00 | 20.00 | 19.55 | | Leak | | Volume | 0.38 | | | | | | | | Vacuum | "Hg | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.0 | 4.0 | | 5.0 | 5,0 | 5.0 | 5.0 | 5.0 | | | H | "H20 | 1.9 | 1.9 | 7 | 7 | 1.9 | 1.8 | 1.7 | 1.7 | 1.6 | 1.6 | 1.5 | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.5 | 1.5 | 1:4 | 1.4 | 끆 | T | | 1.8 | 1.8 | 2 | 7 | 1.9 | | | DGM in | 9 ₆ | 78 | 76 | 75 | 75 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 75 | 75 | 75 | 75 | 75 | 75 | 92 | 75 | 92 | 76 | 92 | 76 | 76 | | 78 | 77 | 76 | 9/ | 77 | | atures | DGM Out | ц. | 79 | 76 | 92 | 92 | 74 | 74 | 75 | 75 | 75 | 75 | 9/ | 77 | 77 | 77 | 77 | 77 | 77 | 78 | 77 | 78 | 78 | 78 | 78 | 78 | | 79 | 79 | 78 | 78 | 78 | | Temperatures | Imp. Out | 님 | 48 | 50 | 50 | 50 | 52 | 52 | 45 | 51 | 52 | 52 | 51 | 51 | 53 | 53 | 52 | 53 | 53 | 54 | 54 | 54 | 55 | 56 | 55 | 55 | | 61 | 56 | 54 | 54 | 56 | | | Stack | 다 _° | 287 | 285 | 286 | 286 | 285 | 285 | 286 | 286 | 287 | 287 | 288 | 289 | 289 | 288 | 288 | 287 | 288 | 287 | 287 | 287 | 288 | 288 | 288 | 287 | | 288 | 286 | 286 | 286 | 286 | | | ΔР | "H2O | 8.0 | 8.0 | 0.85 | 0.84 | 0.78 | 0.79 | 0.74 | 0.74 | 0.7 | 0.7 | 0.65 | 0.65 | 0.7 | 0.7 | 0.72 | 0.7 | 0.7 | 0.7 | 0.65 | 0.65 | 9.0 | 9:0 | 0.5 | 0.5 | | 0.85 | 0.85 | 0.89 | 0.89 | 0.85 | | | DGM | Reading | 282.43 | 286.12 | 289.77 | 293.48 | 297.22 | 300.95 | 304.59 | 308.13 | 311.67 | 315.16 | 318.64 | 322.10 | 325.50 | 328.88 | 332.26 | 335.68 | 338.98 | 342.57 | 346.04 | 349.40 | 352.77 | 355.98 | 359.14 | 362.02 | 364.92 | 365.30 | 368.89 | 372.48 | 376.28 | 380.05 | | | | Time | 0 | Ŋ | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 09 | 65 | 70 | 75 | 80 | 85 | 06 | 95 | 100 | 105 | 110 | 115 | 120 | 0 | 2 | 10 | 15 | 20 | | - | | Point | .÷. | | 7 | | æ | | 4 | | | | 9 | | 7 | | & | | 6 | | 10 | | 11 | | 12 | | | | | 2 | | m | Covanta DYEC 2 - SVOC Test No.: Plant: November 11, 2020 Date: Plant Location: Courtice, Ontario APC Outlet No. 2 JB RW Test Location: Operator: Combustion Gases 8.33 10.93 15.5 Measured H20 16.4 % 02% C02% C0ppm 0.38 ft° 5 minutes 2 654.6 17.1 Leak Check Volume Reading Interval Number of Ports Filter (mg) Probe (mg) CWTR (g) WCBDA (g) 0.851 0.999 29.54 "Hg -9.520 "H₂O 0.2513 inches 4.500 ft 0.000 ft 0.000 ft **Barometric Pressure** Stack Diameter Static Pressure Pitot Factor DGMCF Nozzle Length Width | | 100 | |-------------------------|--------------| | | 1, 1, 1, | | | | | | | | | | | | 1A A | | | A
A | | | le. | | | 13.5 | | | | | | | | | | | | | | | 31617 | | | | | | | | | Leak | | | 1 2 | | | | | 1 10 11 | | | 12 | | | | | | | | | | | | 12 | | | 12 | | | | | | | 1 | | | S | | | ē. | | 12 | अर् | | | ē | | | 빏 | | /Port | Temperatures | | | | | 동 | | | <u>Q.</u> | | | , s | - | | ; .듯 │ | | | . ă. | | | 5 6 | | | Je. | 1 | | Ē | | | , ,, | | | : Z | | | Number | | | Number of points / Port | | | Numb | Isokinetic | % | 96.9 | 96.7 | 96.3 | 97.7 | 98.5 | 99.3 | 97.4 | 94.9 | 94.1 | 97.1 | 96.6 | 96.6 | 96.5 | 96.7 | 99.1 | 686 | 96.3 | 93.1 | 0.86 | 98.4 | |--|------------|------------| | | Velocity | s/m | 19.56 | 19.57 | 18.99 | 18.38 | 17.76 | 17.51 | 18.01 | 18.38 | 18.38 | 18.37 | 18.37 | 18.97 | 18.99 | 17.76 | 17.76 | 15.74 | 15.74 | 15.01 | 15.01 | | | Leak | Check | Volume | Vacuum | #
H | 5.5 | 5.5 | 5.5 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.5 | 5.5 | 5.5 | 5.5 | 5.0 | 5.0 | 5.0 | 5.0 | | | - | ЧΨ | "H20 | 1.9 | 1.9 | 1.8 | 1.7 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.6 | 1.6 | ټ | H | 1:1 | 1: | | | | DGM In | ٥F | 77 | 77 | 76 | 77 | 77 | 77 | 77 | 77 | 77 | 77 | 77 | 78 | 77 | 77 | 77 | 77 | 77 | 77 | 77 | | | Temperatures | DGM Out | 3 0 | 78 | 77 | 77 | 78 | 79 | 78 | 78 | 79 | 79 | 78 | 78 | 79 | 79 | 78 | 78 | 78 | 78 | 78 | 78 | | | Tempe | Imp. Out | 5 0 | 57 | 57 | 58 | 59 | 09 | 09 | 57 | 54 | 53 | 52 | 52 | 52 | 51 | 51 | 51 | 51 | 51 | 51 | 52 | | | | Stack | 4 ₀ | 287 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 287 | 287 | 287 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | | | | ФΣ | "H20 | 0.85 | 0.85 | 0.8 | 0.75 | 7.0 | 0.68 | 0.72 | 0.75 | 0.75 | 0.75 | 0.75 | 0.8 | 9.0 | 0.7 | 0.7 | 0.55 | 0.55 | 0.5 | 0.5 | | | | DGM | Reading | 383.81 | 387.56 | 391.29 | 394.96 | 398.55 | 402.05 | 405.43 | 408.82 | 412.25 | 415.79 | 419,31 | 422.83 | 426.47 | 430.11 | 433.60 | 437.08 | 440.09 | 443.00 | 445.92 | 448.85 | | elemente de la companya de la companya de la companya de la companya de la companya de la companya de la compa | | Time | 25 | 30 | 35 | 40 | 45 | | 55 | 09 | 92 | 70 | 7.5 | 80 | 85 | 06 | 95 | 100 | 105 | 110 | 115 | 120 | | | | Point | - | 4 | | 2 | | | | 7 | | 8 | | 6 | | 10 | | 11 | | 12 | | | ### **ORTECH Environmental** Plant: Covanta DYEC Plant Location: Courtice, Ontario APC Outlet No. 2 Test Location: Test No.: 3 - SVOC Date: November 12, 2020 ### STACK GAS SAMPLING PARAMETERS | PITOT TUBE COEFFICIENT | 0.851 | |--|----------------------| | DGM CORRECTION FACTOR | 0.999 | | NOZZLE DIAMETER | 6.38 mm | | DRY REF GAS VOLUME SAMPLED | 4.448 m ³ | | AVGERGE ISOKINETICITY | 96.7 % | | STACK DIAMETER | 1.37 m | | LENGTH ASSESSMENT OF THE PROPERTY PROPE | 0.00 m | | WIDTH | 0.00 m | | AREA OF STACK or DUCT | 1.48 m ³ | | | | ### STACK GAS PHYSICAL PARAMETERS | AVERAGE GAS TEMPERATURE | 141.5 °C | |--------------------------------|-------------| | AVERAGE GAS MOISTURE BY
VOLUME | 14.4 % | | AVERAGE GAS VELOCITY | 16.63 m/s | | BAROMETRIC PRESSURE (Station) | 101.253 Kpa | | STATIC PRESSURE | -2.395 Kpa | | ABSOLUTE GAS PRESSURE | 98.858 Kpa | | OXYGEN CONCENTRATION | 8.4 % | | CARBON DIOXIDE CONCENTRATION | 11.05 % | | CARBON MONOXIDE CONCENTRATION | 17.0 ppm | ### **FLOWRATE** | ACTUAL GAS FLOWRATE | 24.57 m ³ /s | |----------------------|--------------------------| | DRY REF GAS FLOWRATE | 14.74 Rm³/s | | DRY ADJ GAS FLOWRATE | 18.62 Rm ³ /s | | WET REF GAS FLOWRATE | 17.24 Rm ³ /s | ### PARTICULATE EMISSION DATA | PARTICULATE COLLECTED | -PROBE | 0 mg | |----------------------------|---------|-------------------------| | | -FILTER | 0 mg | | | -TOTAL | 0 mg | | DRY REF GAS VOLUME SAMPLED | | 4.448 m ³ | | PARTICULATE CONC ACTUAL | | 0.000 mg/m ³ | | PARTICULATE CONC DRY REF | | 0.000 mg/m ³ | | PARTICULATE CONC DRY ADJ | | 0.000 mg/m ³ | | PARTICULATE CONC WET REF | | 0.000 mg/m ³ | | PARTICULATE EMISSION RATE | | 0.000000 g/s | Note: * Reference conditions refers to 25 deg C (77 deg F) and 101.325 kPa (29.92 in. Hg) Note: Dry Adj condition refers to 25 deg C (77 deg F) and 1 atmosphere, adjusted to 11% oxygen by volume # ORTECH Environmental Plant: Test No.: Date: Covanta DYEC 3 - SVOC November 12, 2020 Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 Operator: RW | Combustion Gases | 02% 8.4 | CO2% 11.05 | | Measured H20 | 14.4 % | | | |------------------|------------|--------------------------------------|--------|-------------------|------------------|-----------------|-------------------------| | | | | | 0.37 ft° | 5 minutes | 2 | 12 | | 0 | 0 | 537.7 | | | | | | | Filter (mg) | Probe (mg) | CWTR (g)
WCBDA (g) | 100 | Leak Check Volume | Reading Interval | Number of Ports | Number of points / Port | | | | НВ
Н,О | nches | | | | | | 0.851 | 0.999 | 29.9 "Hg
-9.620 "H ₂ O | 0.2513 | 4.500 化 | 0.000 ft | 0.000 化 | | | | | ISOKINETIC
% | | 96.2 | 92.6 | 95.6 | 96.2 | 95.7 | 96.2 | 97.0 | 97.0 | 98.3 | 99.4 | 98.7 | 96.8 | 94.4 | 93.3 | 0.86 | 0.66 | 98.5 | 98.6 | 98.4 | 98.3 | 95.1 | 95.3 | 94.1 | 95.8 | | 96.3 | 96.2 | 95.7 | 96.2 | |--------------|------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | | velocity m/s | 18.19 | 18.19 | 18.77 | 18.66 | 18.18 | 18.18 | 17.82 | 17.82 | 17.59 | 17.08 | 16.42 | 16.54 | 16.80 | 16.93 | 17.57 | 17.45 | 17.27 | 17.27 | 17.29 | 17.41 | 15.56 | 15.41 | 15.55 | 15.40 | | 17.32 | 17.44 | 17.45 | 17.45 | 16.92 | | 1001 | reak | Volume | 0.37 | | | | | | | | 1/7 co | Vacuum
"Hg | 3.5 | 3.5 | 4,0 | 4.0 | | 4.0 | 4.0 | 4.5 | 4.5 | 4.5 | | | - | "H20 | 1.7 | 1.7 | 1.8 | 1.8 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.6 | 1.4 | 1.4 | 1.4 | 1.4 | 1.7 | 1.7 | 1.6 | 1,6 | 1.6 | 1.6 | 1.2 | 1.2 | 1.2 | 1.2 | | 1.6 | 1.6 | 1.6 | 1.6 | 1.5 | | | DC34 15 | ii ii ji | 62 | 61 | 09 | 09 | 09 | 09 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 62 | 62 | 62 | 62 | 63 | 63 | 63 | 63 | 64 | 63 | 64 | | 65 | 65 | 65 | 65 | 65 | | 36(1)40 | DCM Out | 20 P | 63 | 61 | 61 | 61 | 61 | 61 | 62 | 62 | 63 | 63 | 63 | 64 | 64 | 64 | 64 | 64 | 65 | 99 | 99 | 65 | 99 | 99 | 99 | 99 | | 29 | 99 | 99 | 99 | 99 | | Tamparakuras | in Carrida | 5
5
6 | 62 | 50 | 48 | 46 | 44 | 44 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 44 | 44 | 44 | 43 | 44 | 44 | 44 | | 55 | 44 | 44 | 45 | 44 | | | Crack | Jack
Fo | 288 | 288 | 287 | 287 | 287 | 287 | 288 | 288 | 289 | 289 | 289 | 288 | 288 | 288 | 288 | 288 | 284 | 284 | 285 | 285 | 286 | 286 | 285 | 285 | | 288 | 287 | 288 | 288 | 287 | | | o < | "H20 | 0.75 | 0.75 | 0.8 | 0.79 | 0.75 | 0.75 | 0.72 | 0.72 | 0.7 | 99.0 | 0.61 | 0.62 | 0.64 | 0.65 | 7.0 | 69.0 | 89.0 | 0.68 | 0.68 | 69'0 | 0.55 | 0.54 | 0.55 | 0.54 | | 0.68 | 69.0 | 69.0 | 0.69 | 0.65 | | | Den | Reading | 49.25 | 52.70 | 56.12 | 59.65 | 63.18 | 09'99 | 70.04 | 73.44 | 76.84 | 80.24 | 83.58 | 86.77 | 89.93 | 93.06 | 96.18 | 99.58 | 102.99 | 106.37 | 109.76 | 113.14 | 116.54 | 119.48 | 122.40 | 125.31 | 128.25 | 128.62 | 131.93 | 135.26 | 138.57 | 141.90 | | | | Time | 0 | 2 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 09 | 92 | 70 | 75 | 80 | 85 | 06 | 95 | 100 | 105 | 110 | 115 | 120 | 0 | 5 | 10 | 15 | 20 | | | : | Point | ٦ | | 2 | | m | | 4 | | Ŋ | | 9 | | 7 | | 8 | | 6 | | 10 | | 11 | | 12 | | | | | 2 | | m | Covanta DYEC 3 - SVOC November 12, 2020 Plant: Test No.: Date: Plant Location: Courtice, Ontario Test Location: APC Outlet No. 2 Operator: RW | etric Pressure ressure iameter | | | | | Section of the sectio | | |--|---------------------|--------------------------|-------------------------|--|--|--| | tric Pressure 29.9 "Hg CWTR(g) 537.7 ressure 29.9 "Hg CWTR(g) 537.7 9.620 "H ₂ O WCBDA(g) 14.1 0.2513 inches 4.500 ft Leak Check Volume 5.minutes 0.000 ft Reading Interval 5.minutes 0.000 ft Number of Ports Number of points / Port 12 | Pitot Factor | 0.851 | Filter (mg) | | Combustion Gases | | | ressure 29.9 "Hg CWTR (g) 537.7 ressure -9.620 "H ₂ O WCBDA (g) 14.1 0.2513 inches iameter 4.500 ft Leak Check Volume 5 minutes 0.000 ft Number of Ports 2 Number of points / Port 12 | GMCF | 0.999 | Probe (mg) | | 02% 8.4 | | | ressure -9.620 "H ₂ O WCBDA (g) 14.1 0.2513 inches 0.2513 inches 0.37 ft² iameter 4.500 ft Reading Interval 5 minutes 0.000 ft Number of Ports 2 Number of points / Port 12 | Barometric Pressure | 29.9 "Hg | CWTR (g) | 537.7 | CO2% 11.05 | | | 0.2513 inches lameter 4.500 ft Leak Check Volume 0.37 ft² 0.000 ft Reading Interval 5 minutes 2 0.000 ft
Number of Ports 2 Number of points / Port 12 | tatic Pressure | -9.620 "H ₂ O | WCBDA (g) | 14.1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | COppm 17.0 | | | iameter 4.500 ft Leak Check Volume 0.37 ft³ 0.000 ft Reading Interval 5 minutes 0.000 ft Number of Ports 2 Number of points / Port 12 | Nozzle | 0.2513 inches | | | | | | 0.000 ft Reading Interval 5 minutes 0.000 ft Number of Ports 2 Number of points / Port 12 | Stack Diameter | 4.500 ft | Leak Check Volume | 0.37 ft | Measured H20 | | | ************************************** | Length | 0.000 ft | Reading Interval | 5 minutes | 14.4 % | | | Number of points / Port and 12 miles an | Width | 0.000 ft | Number of Ports | | | | | | | | Number of points / Port | | | | | | Isokinetic | % | 95.5 | 7.76 | 97.3 | 97.5 | 99.2 | 97.4 | 95.6 | 94.3 | 92.7 | 95.0 | 98.1 | 98.6 | 97.5 | 95.1 | 97.5 | 95.6 | 97.3 | 96.7 | 101.3 | 99.6 | |--------------|------------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------------------|--------|--------| | | Velocity | , s/m | 17.05 | 16.66 | 16.53 | 16.25 | 16.26 | 15.57 | 15.70 | 15.97 | 15.99 | 15.57 | 15.42 | 15.56 | 15.84 | 15.56 | 15.69 | 15.55 | 15.55 | 13.75 | 13.76 | | | Leak | Check | Volume | Vacuum | aH. | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | | | | РΥ | "H20 | 1.5 | 1.5 | 1.5 | 1.4 | 1.4 | 1.2 | 1.2 | 1.2 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | , , , , | ंच्य | | | | DGM In | J _o | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 99 | 99 | 99 | 99 | 99 | 99 | 29 | 29 | 29 | 29 | | | tures | DGM Out | °F | | 99 | 99 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 89 | 69 | 69 | 69 | 69 | 69 | 69 | 69 | 69 | | | Temperatures | Imp. Out | 5 0 | 45 | 46 | 45 | 45 | 46 | 46 | 47 | 47 | 48 | 48 | 48 | 48 | 49 | 49 | 50 | 50 | 50 | 50 | 51 | | | | Stack | ч. | 287 | 287 | 287 | 286 | 287 | 287 | 286 | 286 | 287 | 287 | 287 | 286 | 286 | 286 | 285 | 285 | 285 | 285 | 287 | | | | ΔP | "H20 | 99'0 | 0.63 | 0.62 | 9.0 | 9.0 | 0.55 | 0.56 | 0.58 | 0.58 | 0.55 | 0.54 | 0.55 | 0.57 | 0.55 | 0.56 | 0.55 | 0.55 | 0.43 | 0.43 | | | | DGM | Reading | 145.11 | 148.32 | 151,54 | 154.74 | 157.95 | 161.10 | 164.06 | 167.01 | 169.96 | 172.98 | 176.02 | 179.05 | 182.08 | 185.09 | 188.12 | 191.12 | 194.15 | 197.16 | 199.95 | 202.69 | | | | Time | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 09 | 92 | 70 | 75 | 80 | 85 | 06 | 95 | 100 | 105 | 110 | 115 | 120 | | | | Point | | 4 | | Ŋ | | 9 | | 7 | | ∞ | | ი
ნ | | 10 | | ਜ
ਜ | | 12 | | | ### **APPENDIX 26** ORTECH Total Hydrocarbon CEM Data (26 pages) # Covanta - Durham York Energy Centre Total Hydrocarbon Sampling at the Boiler No. 1 Quench inlet Test No. 2 Test No. 3 Test No. 1 | | November 9, 2020 | | | November : | | November 9, 2020 | | | | | |----------------|------------------|------------------|----------------|------------|------------------|------------------|------------|------------------|--|--| | | THC - 1 min | THC - 10 min Avg | | | THC - 10 min Avg | | | THC - 10 min Avg | | | | Time | ppm, dry | ppm, dry | Time | ppm, dry | ppm, dry | Time | ppm, dry | ppm, dry | | | | 10:10 | 0.9 | | 11:17 | 0.0 | | 12:23 | 0.8 | | | | | 10:11 | 0.8 | | 11:18 | 0.0 | | 12:24 | 0.7 | | | | | 10:12 | 8.0 | | 11:19 | 0.0 | | 12:25 | 0.7 | | | | | 10:13 | 8.0 | | 11:20 | 0.0 | | 12:26 | 0.6 | | | | | 10:14 | 8.0 | | 11:21 | 0.0 | | 12:27 | 0.4 | | | | | 10:15 | 8.0 | | 11:22 | 0.0 | | 12:28 | 0.4 | | | | | 10:16 | 0.4 | | 11:23 | 0.0 | | 12:29 | 0.3 | | | | | 10:17 | 4.6 | | 11:24 | 0.0 | | 12:30 | 0.5 | | | | | 10:18 | 3.3 | | 11:25 | 0.0 | | 12:31 | 0.5 | | | | | 10:19 | 2.8 | 1.6 | 11:26 | 0.0 | 0.0 | 12:32 | 0.4 | 0.5 | | | | 10:20
10:21 | 2.4
2.4 | 1.8
1.9 | 11:27
11:28 | 0.0
0.0 | 0.0
0.0 | 12:33 | 0.2 | 0.5 | | | | 10:22 | 2.0 | 2.0 | 11:29 | 0.0 | 0.0 | 12:34
12:35 | 0.2
0.2 | 0.4
0.4 | | | | 10:23 | 1.4 | 2.1 | 11:30 | 0.0 | 0.0 | 12:36 | 0.2 | 0.4 | | | | 10:24 | 1.1 | 2.1 | 11:31 | 0.0 | 0.0 | 12:37 | 0.2 | 0.3 | | | | 10:25 | 1.1 | 2.2 | 11:32 | 0.0 | 0.0 | 12:38 | 0.2 | 0.3 | | | | 10:26 | 1.1 | 2.2 | 11:33 | 0.0 | 0.0 | 12:39 | 0.3 | 0.3 | | | | 10:27 | 1.1 | 1.9 | 11:34 | 0.0 | 0.0 | 12:40 | 0.3 | 0.3 | | | | 10:28 | 1.0 | 1.6 | 11:35 | 0.0 | 0.0 | 12:41 | 0.2 | 0.3 | | | | 10:29 | 1.0 | 1.5 | 11:36 | 0.0 | 0.0 | 12:42 | 0.2 | 0.2 | | | | 10:30 | 0.9 | 1.3 | 11:37 | 0.0 | 0.0 | 12:43 | 0.2 | 0.2 | | | | 10:31 | 0.9 | 1.2 | 11:38 | 0.0 | 0.0 | 12:44 | 0.3 | 0.2 | | | | 10:32 | 8.0 | 1.0 | 11:39 | 0.0 | 0.0 | 12:45 | 0.3 | 0.2 | | | | 10:33 | 0.7 | 1.0 | 11:40 | 0.0 | 0.0 | 12:46 | 0.3 | 0.3 | | | | 10:34 | 0.8 | 0.9 | 11:41 | 0.0 | 0.0 | 12:47 | 0.2 | 0.3 | | | | 10:35 | 0.8 | 0.9 | 11:42 | 0.0 | 0.0 | 12:48 | 0.3 | 0.3 | | | | 10:36 | 0.8 | 0.9 | 11:43 | 0.2 | 0.0 | 12:49 | 0.3 | 0.3 | | | | 10:37 | 0.8 | 0.8 | 11:44 | 0.2 | 0.0 | 12:50 | 0.2 | 0.2 | | | | 10:38
10:39 | 0.7
0.7 | 0.8
0.8 | 11:45 | 0.3 | 0.1 | 12:51 | 0.2 | 0.2 | | | | 10:40 | 0.7 | 0.8 | 11:46
11:47 | 0.2
0.2 | 0.1
0.1 | 12:52 | 0.2
0.2 | 0.2
0.2 | | | | 10:41 | 0.7 | 0.7 | 11:48 | 0.3 | 0.1 | 12:53
12:54 | 0.2 | 0.2 | | | | 10:42 | 0.6 | 0.7 | 11:49 | 0.3 | 0.2 | 12:55 | 0.2 | 0.2 | | | | 10:43 | 0.6 | 0.7 | 11:50 | 0.3 | 0.2 | 12:56 | 0.2 | 0.2 | | | | 10:44 | 0.5 | 0.7 | 11:51 | 0.2 | 0,2 | 12:57 | 0.2 | 0.2 | | | | 10:45 | 0.5 | 0.7 | 11:52 | 0.2 | 0.2 | 12:58 | 0.1 | 0.2 | | | | 10:46 | 0.4 | 0.6 | 11:53 | 0.2 | 0.2 | 12:59 | 0.1 | 0.2 | | | | 10:47 | 0.5 | 0.6 | 11:54 | 1.3 | 0.3 | 13:00 | 2.5 | 0.4 | | | | 10:48 | 0.4 | 0.6 | 11:55 | 0.7 | 0.4 | 13:01 | 0.7 | 0.4 | | | | 10:49 | 0.5 | 0.5 | 11:56 | 0.4 | 0.4 | 13:02 | 0.5 | 0.5 | | | | 10:50 | 0.4 | 0.5 | 11:57 | 0.4 | 0.4 | 13:03 | 0.6 | 0.5 | | | | 10:51 | 0.4 | 0.5 | 11:58 | 0.3 | 0.4 | 13:04 | 0.6 | 0.5 | | | | 10:52 | 0.4 | 0.5 | 11:59 | 0.3 | 0.4 | 13:05 | 0.3 | 0.6 | | | | 10:53
10:54 | 0.5
1.6 | 0.4
0.6 | 12:00
12:01 | 0.2
0.2 | 0.4
0.4 | 13:06
13:07 | 0.4
0.4 | 0.6
0.6 | | | | 10:55 | 1.1 | 0.6 | 12:01 | 0.2 | 0.4
0.4 | 13:07
13:08 | 0.4
0.4 | 0.6
0.6 | | | | 10:56 | 1.0 | 0.7 | 12:02 | 0.2 | 0.4 | 13:09 | 0.4 | 0.7 | | | | 10:57 | 0.9 | 0.7 | 12:04 | 0.2 | 0.3 | 13:10 | 0.4 | 0.5 | | | | 10:58 | 0.8 | 0.7 | 12:05 | 0.3 | 0.3 | 13:11 | 0.3 | 0.4 | | | | 10:59 | 0.7 | 0.8 | 12:06 | 0.3 | 0.3 | 13:12 | 0.3 | 0.4 | | | | 11:00 | 0.6 | 8.0 | 12:07 | 0.3 | 0.2 | 13:13 | 0.2 | 0.4 | | | | 11:01 | 0.5 | 0.8 | 12:08 | 0.3 | 0.2 | 13:14 | 0.2 | 0.3 | | | | 11:02 | 0.5 | 0.8 | 12:09 | 0.3 | 0.2 | 13:15 | 0.2 | 0.3 | | | | 11:03 | 0.4 | 8.0 | 12:10 | 0.3 | 0.2 | 13:16 | 0.2 | 0.3 | | | | 11:04 | 0.4 | 0.7 | 12:11 | 0.3 | 0.3 | 13:17 | 0.1 | 0.3 | | | | 11:05 | 0.4 | 0.6 | 12:12 | 0.3 | 0.3 | 13:18 | 0.1 | 0.3 | | | | 11:06 | 0.4 | 0.6 | 12:13 | 0.3 | 0.3 | 13:19 | 0.1 | 0.2 | | | | 11:07
11:08 | 0,5
0.4 | 0.5
0.5 | 12:14 | 0.3 | 0.3 | 13:20 | 0.1 | 0.2 | | | | 11:08 | 0.4 | 0.4 | 12:15
12:16 | 0.3
0.3 | 0.3
0.3 | 13:21
13:22 | 0.1
0.2 | 0.2 | | | | 11:10 | 0.3 | 0.4 | 12:16 | 0.3 | 0.3 | 13:22
13:23 | 0.2
0.1 | 0.2
0.1 | | | | | | | | | | | | I | | | | Min | 0.3 | 0.4 | Min | 0.0 | 0.0 | Min | 0.1 | 0.1 | | | | Мах | 4.6 | 2.2 | Мах | 1.3 | 0.4 | Max | 2.5 | 0.7 | | | | Avg | 0.9 | 1.0 | Avg | 0.2 | 0.2 | Avg | 0.3 | 0.3 | | | ### Covanta - Durham York Energy Centre Total Hydrocarbon Sampling at the Boiler No. 2 Quench Inlet | | November | 9, 2020 | | November | 9, 2020 | | November | 9, 2020 | |---|----------------------------------|----------------------------|---|-------------|-----------------------|---|-------------|--| | | THC - 1 min | THC - 10 min Avg | | THC - 1 min | THC - 10 min Avg | | THC - 1 min | THC - 10 min Avg | | Time | ppm, dry | ppm, dry | Time | ppm, dry | ppm, dry | Time | ppm, dry | ppm, dry | | 10:10 | 4.0 | | 11:17 | 0.0 | | 12:23 | 0.1 | | | 10:11 | 3.5 | | 11:18 | 0.1 | | 12:24 | 0.0 | | | 10:12 | 4.0 | | 11:19 | 0.0 | | 12:25 | 0.0 | | | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | 4 | | | 1.00 | | | | 10:13 | 3.9 | | 11:20 | 0.0 | | 12:26 | 0.0 | | | 10:14 | 3.5 | analysis and a second | 11:21 | 0.0 | | 12:27 | 0.0 | | | 10:15 | 3.2 | | 11:22 | 0.1 | | 12:28 | 0.0 | | | 10:16 | 2.9 | | 11:23 | 0,3 | | 12:29 | 0.0 | | | 10:17 | 2.7 | | 11:24 | 0.4 | | 12:30 | 0.0 | | | 10:18 | 2.6 | | 11:25 | 0.4 | | 12:31 | 0.0 | | | 10:19 | 2.1 | 3.2 | 11:26 | 0.3 | 0.2 | 12:32 | 0.0 | 0.0 | | 10:20 | 2.0 | 3.0 | 11:27 | 0.3 | 0.2 | 12:33 | 0.0 | 0.0 | | 10:21 | 1.8 | 2.9 | 11:28 | 0.3 | 0.2 | 12:34 | 0.2 | 0.0 | | 10:22 | 1.6 | 2.6 | 11:29 | 0.3 | 0.2 | 12:35 | 2.0 | 0.2 | | 10:23 | 1.6 | 2.4 | 11:30 | 0.4 | 0.3 | 12:36 | 0.5 | 0.3 | | 10:24 | 1.3 | 2.2 | 11:31 | 0.4 | 0.3 | 12:37 | 0.0 | 0.3 | | 10:25 | 1.2 | 2.0 | 11:32 | 1.1 | 0.4 | 1 1/4/2014 | 0.2 | 0.3 | | | | | 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 | | 8 | 12:38 | | 8 | | 10:26 | 1.1 | 1.8 | 11:33 | 1.5 | 0.5 | 12:39 | 0.7 | 0.4 | | 10:27 | 1.1 | 1.6 | 11:34 | 1.4 | 0.6 | 12:40 | 0.5 | 0.4 | | 10:28 | 1.1 | 1.5 | 11:35 | 1.9 | 0.8 | 12:41 | 0.6 | 0.5 | | 10:29 | 1.0 | 1.4 | 11:36 | 3.0 | 1.0 | 12:42 | 1.0 | 0.6 | | 10:30 | 0.8 | 1.3 | 11:37 | 1.3 | 1.1 | 12:43 | 0.4 | 0.6 | | 10:31 | 0.8 | 1.2 | 11:38 | 1.9 | 1.3 | 12:44 | 1.4 | 0.7 | | 10:32 | 0.7 | 1.1 | 11:39 | 1.5 | 1.4 | 12:45 | 0.6 | 0.6 | | 10:33 | 0.7 | 1.0 | 11:40 | 1.6 | 1.5 | 12:46 | 0.3 | 0.6 | | 10:34 | 0.6 | 0.9 | 11:41 | 2.7 | 1.8 | 12:47 | 0.4 | 0.6 | | 10:35 | 0.7 | 0.9 | 11:42 | 1.1 | 1.8 | 12:48 | 0.1 | 0.6 | | 10:36 | 0.7 | 0.8 | 11:43 | 1.6 | 1.8 | 12:49 | 0.7 | 0.6 | | 10:37 | 0.8 | 0.8 | | 1.4 | | 1. 3. 4. 5. 49 (4.54) | | \$ | | | to the control of the control of |
■ | 11:44 | | 1.8 | 12:50 | 0.4 | 0.6 | | 10:38 | 4.2 | 1.1 | 11:45 | 1.8 | 1.8 | 12:51 | 1.0 | 0.6 | | 10:39 | 3.2 | 1.3 | 11:46 | 1.5 | 1.6 | 12:52 | 0.4 | 0.6 | | 10:40 | 1.8 | 1.4 | 11:47 | 1.6 | 1.7 | 12:53 | 0.2 | 0.5 | | 10:41 | 2.9 | 1.6 | 11:48 | 1.7 | 1.6 | 12:54 | 0.1 | 0.4 | | 10:42 | 2.9 | 1.8 | 11:49 | 1.9 | 1.7 | 12:55 | 0.1 | 0.4 | | 10:43 | 2.0 | 2.0 | 11:50 | 1.0 | 1.6 | 12:56 | 1.5 | 0.5 | | 10:44 | 1.7 | 2.1 | 11:51 | 1.4 | 1.5 | 12:57 | 0.5 | 0.5 | | 10:45 | 0.9 | 2.1 | 11:52 | 1.5 | 1.5 | 12:58 | 0.1 | 0.5 | | 10:46 | 0.5 | 2.1 | 11:53 | 1.4 | 1.5 | 12:59 | 0.6 | 0.5 | | 10:47 | 0.1 | 2.0 | 11:54 | 1.3 | 1.5 | 13:00 | 0.6 | 0.5 | | 10:48 | 0.0 | 1.6 | 11:55 | 1.0 | 1.4 | 13:01 | 0.4 | 0.4 | | 10:49 | 0.9 | 1.4 | 11:56 | 0.8 | 1.4 | 13:02 | 0.4 | 0.4 | | 10:50 | 1.0 | 1.3 | 11:57 | 1.2 | 1.3 | 13:03 | 0.9 | 0.5 | | 10:51 | 5.1 | 1.5 | | 1.4 | 1.3 | 1.00 | | · 🖁 | | | | | 11:58 | | | 13:04 | 1.3 | 0.6 | | 10:52 | 1.8 | 1.4 | 11:59 | 1.0 | 1.2 | 13:05 | 0.7 | 0.7 | | 10:53 | 1.3 | 1.3 | 12:00 | 0.7 | 1.2 | 13:06 | 0.4 | 0.6 | | 10:54 | 0.4 | 1.2 | 12:01 | 1.0 | 1.1 | 13:07 | 2.3 | 0.8 | | 10:55 | 0.2 | 1.1 | 12:02 | 1.5 | 1.1 | 13:08 | 1.5 | 0.9 | | 10:56 | 0.9 | 1.2 | 12:03 | 1.1 | 1.1 | 13:09 | 1.4 | 1.0 | | 10:57 | 0.4 | 1.2 | 12:04 | 1.9 | 1.2 | 13:10 | 1.4 | 1.1 | | 10:58 | 0.9 | 1.3 | 12:05 | 1.8 | 1.2 | 13:11 | 0.9 | 1.1 | | 10:59 | 0.3 | 1.2 | 12:06 | 1.2 | 1.3 | 13:12 | 0.7 | 1.2 | | 11:00 | 1.8 | 1.3 | 12:07 | 0.5 | 1.2 | 13:13 | 0.8 | 1.2 | | 11:01 | 1.1 | 0.9 | 12:08 | 0,6 | 1.1 | 13:14 | 1.7 | 1.2 | | 11:02 | 0.1 | 0.8 | 12:09 | 1.0 | 1.1 | 13:15 | 0.4 | 1.2 | | 11:03 | 0.0 | 0.6 | 12:10 | 0.8 | 1.1 | 13:16 | 0.3 | 1.2 | | 11:04 | 0.6 | 0.6 | 12:11 | 0.5 | 1.1 | 13:17 | 1.2 | 1.0 | | 11:05 | 0.6 | 0.7 | 12:12 | 0.0 | 0.9 | 13:18 | 0.3 | 0.9 | | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 0.5 | 0.7 | 100 100 100 100 100 100 100 100 100 100 | | | 1 | | 8 | | 11:06 | | 8 | 12:13 | 0.0 | 0.8 | 13:19 | 0.9 | 0.9 | | 11:07 | 2.6 | 0.9 | 12:14 | 0.0 | 0.6 | 13:20 | 1.2 | 0.8 | | 11:08 | 0.7 | 0.8 | 12:15 | 0.0 | 0.5 | 13:21 | 0.3 | 0.8 | | 11:09 | 0.9 | 0.9 | 12:16 | 0.3 | 0.4 | 13:22 | 0.3 | 0.7 | | 11:10 | 1.4 | 8.0 | 12:17 | 0.5 | 0.4 | 13:23 | 0.6 | 0.7 | | | | gammanan mananan mananan g | | | danmanerammaneramente | | | manan erretariori sentrativament en sentratori | | Min | 0.0 | 0.6 | Min | 0.0 | 0.2 | Min | 0.0 | 0.0 | | Max | 5.1 | 3.2 | Max | 3.0 | 1.8 | Max | 2.3 | 1.2 | | Avg | 1.6 | 1.4 | Avg | 1.0 | 1.1 | Avg | 0.6 | 0.6 | # Covanta - Durham York Energy Centre Total Hydrocarbon Sampling at the Boiler No. 1 APC Outlet Test No. 2 Test No. 3 Test No. 1 | | November 9 | 2020 | | November 9 | | | November | | |----------|--|------------------|---|--|---|-------|----------|---------------------| | | | | | | 유민들은 아무리를 하는 것이 되었다. | | | 医多次性结合性 化二氯苯基甲基苯基苯基 | | <u> </u> | | THC - 10 min Avg | | | THC - 10 min Avg | | | THC - 10 min Avg | | Time | ppm, dry | ppm, dry | Time | ppm, dry | ppm, dry | Time | ppm, dry | ppm, dry | | 14:52 | 0.0 | | 15:58 | 0.0 | | 17:04 | 0.5 | | | 14:53 | 0.0 | | 15:59 | 0.0 | | 17:05 | 0.4 | | | 14:54 | 0.0 | | 16:00 | 0.0 | | 17:06 | 0.4 | | | 14:55 | 0.0 | | 16:01 | 0.0 | | 17:07 | 0.4 | | | 14:56 | 0.0 | | 16:02 | 0.0 | | 17:08 | 0.4 | | | 14:57 | 0.0 | | 16:03 | 0.0 | | 17:09 | 0.4 | | | 14:58 | 0.0 | | 16:04 | 0.0 | | 17:10 | 0.4 | | | 14:59 | 0.0 | | 16:05 | 0.0 | | 17:11 | 0.4 | | | 15:00 | 0.0 | | 16:06 | 0.1 | | 17:12 | 0.4 | | | 15:01 | 0.0 | 0.0 | 16:07 | 0.2 | 0.0 | 17:13 | 0.3 | 0.4 | | 15:02 | 0.0 | 0.0 | 16:08 | 0.2 | 0.0 | 17:14 | 0.8 | 0.4 | | 15:03 | 0.0 | 0,0 | 16:09 | 0.2 | 0.1 | 17:15 | 5.6 | 1.0 | | 15:04 | 0.0 | 0.0 | 16:10 | 0.2 | 0.1 | 17:16 | 1.1 | 1.0 | | 15:05 | 0.0 | 0.0 | 16:11 | 1.3 | 0.2 | | 0.8 | 1.1 | | 15:06 | 1.3 | 0.1 | 8 | | | 17:17 | | 4 | | | | | 16:12 | 3.2 | 0.5 | 17:18 | 0.7 | 1.1 | | 15:07 | 0.3 | 0.2 | 16:13 | 0.3 | 0.6 | 17:19 | 0.3 | 1.1 | | 15:08 | 0.0 | 0.2 | 16:14 | 0.2 | 0.6 | 17:20 | 0.0 | 1.0 | | 15:09 | 0.0 | 0.2 | 16:15 | 0.1 | 0.6 | 17:21 | 0.0 | 1.0 | | 15:10 | 0.0 | 0.2 | 16:16 | 0.0 | 0.6 | 17:22 | 0.0 | 1.0 | | 15:11 | 0.0 | 0.2 | 16:17 | 0.1 | 0.6 | 17:23 | 0.0 | 0.9 | | 15:12 | 0.0 | 0.2 | 16:18 | 0.1 | 0.5 | 17:24 | 2.5 | 1.1 | | 15:13 | 0.0 | 0.2 | 16:19 | 0.0 | 0.5 | 17:25 | 0.6 | 0.6 | | 15:14 | 0.0 | 0.2 | 16:20 | 0.0 | 0.5 | 17:26 | 0.1 | 0.5 | | 15:15 | 0.0 | 0.2 | 16:21 | 0.1 | 0.4 | 17:27 | 0.1 | 0.4 | | 15:16 | 0.0 | 0.0 | 16:22 | 0.1 | 0.1 | 17:28 | 0.0 | 0.4 | | 15:17 | 4.8 | 0.5 | 16:23 | 2.5 | 0.3 | 17:29 | 0.1 | 0.3 | | 15:18 | 0.4 | 0.5 | 16:24 | 0.2 | 0.3 | 17:30 | 0.0 | 0.3 | | 15:19 | 0.0 | 0.5 | 16:25 | 0.0 | 0.3 | 17:31 | 0.0 | 0.3 | | 15:20 | 0.0 | 0.5 | 16:26 | 0.1 | 0.3 | 17:32 | 0.0 | 0.3 | | 15:21 | 0.0 | 0.5 | 16:27 | 0.2 | 0.3 | 17:33 | 0.0 | 0.3 | | 15:22 | 0.0 | 0.5 | 16:28 | 0.1 | 0.3 | 17:34 | 0.0 | 0.1 | | 15:23 | 0.0 | 0.5 | 16:29 | 0.0 | 0.3 | 17:35 | 1.7 | 0.1 | | 15:24 | 0.0 | 0.5 | 16:29 | 0.0 | 0.3 | | 1.4 | 0.2 | | 15:25 | 0.0 | | | | | 17:36 | | | | | 8 | 0.5 | 16:31 | 0.0 | 0.3 | 17:37 | 0.3 | 0.3 | | 15:26 | 0.0 | 0.5 | 16:32 | 0.0 | 0.3 | 17:38 | 0.5 | 0.4 | | 15:27 | 0.0 | 0.0 | 16:33 | 0.0 | 0.1 | 17:39 | 0.0 | 0.4 | | 15:28 | 0.0 | 0.0 | 16:34 | 0.0 | 0.0 | 17:40 | 0.0 | 0.4 | | 15:29 | 0.0 | 0.0 | 16:35 | 0.0 | 0.0 | 17:41 | 0.0 | 0.4 | | 15:30 | 2.1 | 0.2 | 16:36 | 0.0 | 0.0 | 17:42 | 0.0 | 0.4 | | 15:31 | 0.0 | 0.2 | 16:37 | 0.0 | 0.0 | 17:43 | 0.6 | 0.4 | | 15:32 | 0.0 | 0.2 | 16:38 | 0.0 | 0.0 | 17:44 | 0.0 | 0.4 | | 15:33 | 0.0 | 0.2 | 16:39 | 0.0 | 0.0 | 17:45 | 0.0 | 0.3 | | 15:34 | 0.0 | 0.2 | 16:40 | 0.0 | 0.0 | 17:46 | 0.0 | 0.1 | | 15:35 | 0.0 | 0.2 | 16:41 | 0.0 | 0.0 | 17:47 | 0.6 | 0.2 | | 15:36 | 0.0 | 0.2 | 16:42 | 0.0 | 0.0 | 17:48 | 0.8 | 0.2 | | 15:37 | 0.0 | 0.2 | 16:43 | 0.2 | 0.0 | 17:49 | 2.5 | 0.4 | | 15:38 | 0.0 | 0.2 | 16:44 | 0.2 | 0.0 | 17:50 | 3.7 | 0.8 | | 15:39 | 2.8 | 0.5 | 16:45 | 0.3 | 0.1 | 17:51 | 4.6 | 1.3 | | 15:40 | 0.0 | 0.3 | 16:46 | 1.5 | 0.2 | 17:52 | 2.9 | 1.6 | | 15:41 | 0.0 | 0.3 | 16:47 | 2.2 | 0.4 | 17:52 | 1.7 | 1.7 | | 15:42 | 0.0 | 0.3 | 16:48 | 3.4 | 0.8 | 17:53 | 1.7 | 1.9 | | 15:43 | 0.0 | 0.3 | 16:49 | 2.8 | 1.0 | 17:54 | 1.3 | 2.0 | | 15:44 | 1.3 | 0.4 | - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 1.2 | | | | | | | | 16:50 | 2.0 | | 17:56 | 0.5 | 2.0 | | 15:45 | 2.4 | 0.7 | 16:51 | 1.4 | 1.4 | 17:57 | 0.0 | 2.0 | | 15:46 | 3.8 | 1.0 | 16:52 | 0.9 | 1.5 | 17:58 | 0.0 | 1.9 | | 15:47 | 2.1 | 1.2 | 16:53 | 0.7 | 1.5 | 17:59 | 0.0 | 1.6 | | 15:48 | 1.1 | 1.3 | 16:54 | 0.5 | 1.6 | 18:00 | 0.0 | 1.3 | | 15:49 | 0.4 | 1.1 | 16:55 | 0.4 | 1.6 | 18:01 | 0.0 | 0.8 | | 15:50 | 0.0 | 1.1 | 16:56 | 0.4 | 1.5 | 18:02 | 0.0 | 0.5 | | 15:51 | 0.0 | 1.1 | 16:57 | 0.4 | 1.3 | 18:03 | 0.0 | 0.3 | | 15:52 | 0.0 | 1.1 | 16:58 | 0.3 | 1.0 | 18:04 | 0.0 | 0.2 | | | MARKS MALANESS AND | | | CONTROL DO CONTROL CON | 000000000000000000000000000000000000000 | | | | | Min | 0.0 | 0.0 | Min | 0.0 | 0.0 | Min | 0.0 | 0.1 | | Max | 4.8 | 1.3 | Мах | 3.4 | 1.6 | Max | 5.6 | 2.0 | | Avg | | | | | 0.5 | | 0.7 | | # Covanta - Durham York Energy Centre Total Hydrocarbon Sampling at the Boiler No. 2 APC Outlet Test No. 2 Test No. 3 Test No. 1 | | November | 9, 2020 | | November | 9, 2020 | | November | 9, 2020 | |----------------|------------
--|----------------|---|------------------|----------------|---|------------------| | | | THC - 10 min Avg | | | THC - 10 min Avg | | | THC - 10 min Avg | | Time | ppm, dry | ppm, dry | Time | ppm, dry | ppm, dry | Time | ppm, dry | ppm, dry | | 14:52 | 0.1 | | 15:58 | 0.2 | | 17:04 | 0.4 | | | 14:53 | 0.1 | | 15:59 | 0.2 | | 17:05 | 0.3 | | | 14:54 | 0.1 | | 16:00 | 0.2 | | 17:06 | 0.4 | | | 14:55 | 0.1 | | 16:01 | 0.1 | | 17:07 | 0.2 | | | 14:56 | 0.1 | | 16:02 | 0.2 | | 17:08 | 0.2 | | | 14:57 | 0.1 | | 16:03 | 0.2 | | 17:09 | 0.3 | | | 14:58 | 0.0 | THE REAL PROPERTY AND ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY AND ADDRESS OF THE PERTY ADDR | 16:04 | 0.3 | | 17:10 | 0.3 | | | 14:59 | 0.0 | | 16:05 | 0.0 | | 17:11 | 0.2 | | | 15:00 | 0.0 | | 16:06 | 0.0 | | 17:12 | 0.2 | | | 15:01 | 0.0 | 0.1 | 16:07 | 0.0 | 0.1 | 17:13 | 0.1 | 0.3 | | 15:02 | 0.0 | 0.0 | 16:08 | 0.0 | 0.1 | 17:14 | 0.1 | 0.2 | | 15:03 | 0.0 | 0.0 | 16:09 | 0.0 | 0.1 | 17:15 | 0.2 | 0.2 | | 15:04 | 0.0 | 0.0 | 16:10 | 0.0 | 0.1 | 17:16 | 0.3 | 0.2 | | 15:05 | 0.0 | 0.0 | 16:11 | 0.0 | 0.1 | 17:17 | 0.2 | 0.2 | | 15:06 | 0.0 | 0.0 | 16:12 | 0.0 | 0.0 | 17:18 | 0.2 | 0.2 | | 15:07 | 0.0 | 0.0 | 16:13 | 0,0 | 0.0 | 17:19 | 0.2 | 0.2 | | 15:08 | 0.0 | 0.0 | 16:14 | 0.0 | 0.0 | 17:20 | 0.2 | 0.2 | | 15:09 | 0.0 | 0.0 | 16:15 | 0.0 | 0.0 | 17:21 | 0.2 | 0.2 | | 15:10 | 0.0 | 0.0 | 16:16 | 0.0 | 0.0 | 17:22 | 0.2 | 0.2 | | 15:11
15:12 | 0.0
0.0 | 0.0
0.0 | 16:17 | 0.0 | 0.0 | 17:23 | 0.2 | 0.2 | | 15:12
15:13 | 0.0 | 0.0 | 16:18
16:19 | 0.0
0.0 | 0.0 | 17:24
17:25 | 0.2
0.1 | 0.2
0.2 | | 15:14 | 0.0 | 0.0 | 16:19 | 0.0 | 0.0 | 17:25 | 0.1 | 0.2 | | 15:15 | 0.0 | 0.0 | 16:21 | 0.0 | 0.0 | 17:26 | 0.0 | 0.2 | | 15:16 | 0.0 | 0.0 | 16:22 | 0.0 | 0.0 | 17:28 | 0.0 | 0.1 | | 15:17 | 0.0 | 0.0 | 16:23 | 0.0 | 0.0 | 17:29 | 0.1 | 0.1 | | 15:18 | 0.0 | 0.0 | 16:24 | 0.0 | 0.0 | 17:30 | 0.0 | 0.1 | | 15:19 | 0.0 | 0.0 | 16:25 | 0.0 | 0.0 | 17:31 | 0.0 | 0.1 | | 15:20 | 0,0 | 0.0 | 16:26 | 0.0 | 0.0 | 17:32 | 0.0 | 0.1 | | 15:21 | 0.0 | 0.0 | 16:27 | 0.0 | 0.0 | 17:33 | 0.0 | 0.0 | | 15:22 | 0.0 | 0.0 | 16:28 | 0.0 | 0.0 | 17:34 | 0.0 | 0.0 | | 15:23 | 0.0 | 0.0 | 16:29 | 0.0 | 0.0 | 17:35 | 0.0 | 0.0 | | 15:24 | 0.1 | 0.0 | 16:30 | 0.0 | 0.0 | 17:36 | 0.0 | 0.0 | | 15:25 | 0.2 | 0.0 | 16:31 | 0.0 | 0.0 | 17:37 | 0.0 | 0.0 | | 15:26 | 0.2 | 0.0 | 16:32 | 0.0 | 0.0 | 17:38 | 0.0 | 0.0 | | 15:27 | 0.1 | 0.1 | 16:33 | 0.0 | 0.0 | 17:39 | 0.0 | 0.0 | | 15:28 | 0.1 | 0.1 | 16:34 | 0.0 | 0.0 | 17:40 | 0.1 | 0.0 | | 15:29 | 0.2 | 0.1 | 16:35 | 0.0 | 0.0 | 17:41 | 0.1 | 0.0 | | 15:30 | 0.1 | 0.1 | 16:36 | 0.0 | 0.0 | 17:42 | 0.0 | 0.0 | | 15:31 | 0.2 | 0.1 | 16:37 | 0.0 | 0.0 | 17:43 | 0.1 | 0.0 | | 15:32 | 0.2 | 0.1 | 16:38 | 0.0 | 0.0 | 17:44 | 0.0 | 0.0 | | 15:33 | 0.2 | 0.1 | 16:39 | 0.0 | 0.0 | 17:45 | 0.0 | 0.0 | | 15:34 | 0.2 | 0.2 | 16:40 | 0.0 | 0.0 | 17:46 | 0.0 | 0.0 | | 15:35
15:36 | 0.2
0.2 | 0.2
0.2 | 16:41
16:42 | 0.0
0.0 | 0.0 | 17:47 | 0.0 | 0.0 | | 15:35 | 0.2
0.1 | 0.2
0.2 | 16:42
16:43 | 0.0
0.3 | 0.0 | 17:48 | 0.6
2.1 | 0.1
0.3 | | 15:37 | 0.1 | 0.2
0.2 | 16:43 | 0.3
0.3 | 0.0 | 17:49
17:50 | 2.1
2.4 | 0.5 | | 15:39 | 0.1 | 0.2 | 16:45 | 0.3 | 0.1 | 17:50 | 3.8 | 0.9 | | 15:40 | 0.2 | 0.2 | 16:46 | 1.1 | 0.2 | 17:52 | 2.8 | 1.2 | | 15:41 | 0.1 | 0.2 | 16:47 | 1.6 | 0.3 | 17:53 | 1.9 | 1.4 | | 15:42 | 0.1 | 0.2 | 16:48 | 2.4 | 0.6 | 17:54 | 1.1 | 1.5 | | 15:43 | 0.7 | 0.2 | 16:49 | 2.4 | 0.8 | 17:55 | 0.7 | 1.5 | | 15:44 | 1.5 | 0.3 | 16:50 | 1.9 | 1.0 | 17:56 | 0.3 | 1.6 | | 15:45 | 2.4 | 0.6 | 16:51 | 1.2 | 1.1 | 17:57 | 0.2 | 1.6 | | 15:46 | 3.5 | 0.9 | 16:52 | 0.7 | 1.2 | 17:58 | 0.0 | 1.5 | | 15:47 | 2.7 | 1.2 | 16:53 | 0.5 | 1.2 | 17:59 | 0.0 | 1.3 | | 15:48 | 1.8 | 1.3 | 16:54 | 0.4 | 1.2 | 18:00 | 0.0 | 1.1 | | 15:49 | 1.0 | 1.4 | 16:55 | 1.0 | 1.3 | 18:01 | 0.0 | 0.7 | | 15:50 | 0.7 | 1.4 | 16:56 | 1.5 | 1.4 | 18:02 | 0.0 | 0.4 | | 15:51 | 0.3 | 1.5 | 16:57 | 1.4 | 1.3 | 18:03 | 0.2 | 0.3 | | 15:52 | 0.3 | 1.5 | 16:58 | 1.4 | 1.2 | 18:04 | 0.6 | 0.2 | | | | | | *************************************** | | | *************************************** | • | | Min | 0.0 | 0.0 | Min | 0.0 | 0.0 | Min | 0.0 | 0.0 | | Max | 3.5
0.3 | 1.5
0.2 | Max | 2.4 | 1.4 | Max | 3.8 | 1.6 | | Avg | U.3 | U.Z. | Avg | 0.3 | 0.3 | Avg | 0.4 | 0.4 | ### **APPENDIX 27** Dispersion Modelling Results for the November 2020 Testing Program (19 pages) ### **TECHNICAL MEMORANDUM** DATE February 28, 2022 Project No. 20137524 TO Lydia Kwan Covanta Durham York Renewable Energy LP CC Anthony Ciccone FROM Katherine Armstrong EMAIL ksarmstrong@golder.com # CALPUFF MODELLING FOR NOVEMBER 2020 COMPLIANCE SOURCE TESTING AT DURHAM YORK ENERGY CENTRE ### 1.0 INTRODUCTION Covanta Durham York Renewable Energy LP (Covanta) operates the Durham York Energy Centre (DYEC) under the multi-media Environmental Compliance Approval (ECA) 7306-8FDKNX, as amended. The ECA application was supported with an Emission Summary and Dispersion Modelling (ESDM) Report prepared by Golder Associates Ltd (Golder) using the CALPUFF dispersion model version 6.263, with results compared to Ministry of Environment, Conservation and Parks (MECP) Point of Impingement (POI) standards listed in Schedule 3 of Ontario Regulation (O.Reg.) 419/05 as of 2011. Condition 7, Testing, Monitoring and Auditing, of the current ECA requires annual source testing be completed at the DYEC for over 100 different contaminants. According to Schedule "E" Source Testing Procedures, of the ECA, a source testing report is required that includes the following: - 8. (7) the results of dispersion calculations in accordance with the O.Reg. 419/05, indicating the maximum concentration of the test contaminants, at the point of impingement. - 8. (8) an updated site wide emission source inventory to assess the aggregate point of impingement concentrations of the test contaminants. This memorandum summarizes the modelling results for the November 2020 compliance source testing program using the same CALPUFF model and other input data sets used in the ESDM Report and Environmental Assessment, however, the results are compared to O.Reg. 419/05 Schedule 3 limits last updated April 2018. Please note that this memorandum has been updated from the version issued in January 2021, to update the emission rates for Aldehydes, based on a unit correction made by the laboratory. ### 2.0 EMISSION RATES Voluntary source testing was completed by Ortech Environmental in November 2020 for each of the two combustion train units and results were provided to Golder on a mass per time basis. Three tests were completed for each unit and averaged. The average emission rates for each unit were then summed together to provide the total stack emission rate of each contaminant to be modelled. Where source testing results indicated that the measured concentration is below the detection limit, the full detection limit was used as the emission rate for conservatism. Emission rates for which source testing data was available were converted to grams per second (g/s) and are provided in an updated Site-wide Emission Inventory included in Appendix A. This emission inventory includes emissions from silo filling and diesel generator testing taken from the ESDM report, in addition to source test emissions from the main stack. In response to clarifications provided by the MECP of December 9, 2016, two different emission rates were calculated for Total Particulate Matter: - 1) Filterable fraction emission rate only; and - 2) Total Particulate Matter (Sum of condensable and filterable fractions). As source testing for the condensable fraction of total particulate matter is not required pursuant to Schedule "D": of the ECA, the condensable content of PM10 was used as the condensable portion in the
Total Particulate Matter emission. ### 3.0 MODELLING As part of the ECA application, the MECP approved the use of the CALPUFF modelling software and CALMET meteorological data to demonstrate compliance with Ontario Regulation 419/05 Schedule 3 standards at the DYEC. As a result, the same modelling approach has been taken for this update. The following models and preand post-processors were used in the assessment: - CALMET diagnostic meteorological model (v. 5.8, level 070623); - CALPUFF dispersion model (v. 6.263, level 080827); - CALPOST post processor (v. 6.221, Level 080724); - BPIP building downwash pre-processor (v. 04274): - POSTUTIL post processor (v.1.64, Level 101025). These model versions are consistent with those used in the original ESDM report. Dispersion Modelling inputs are described in the following subsections. # 3.1 Modelling Domain The CALPUFF Model domain used in this assessment is the same as the domain used in the previous Environmental Assessment (EA) and ESDM Report. It extends 40 km by 30 Km and is centred approximately 5 km north of the Site. This domain covers more than the air quality study area but will ensure that plumes are tracked beyond the furthest receptor locations to ensure the worst-case ground level concentrations are considered at all receptors. # 3.2 Meteorology, Land Use and Terrain Data The meteorology and terrain data used in this assessment is the same as the meteorology and terrain data used in the EA and ESDM Report. # 3.3 Receptors The receptors used in this assessment are the same as the receptors used in the ESDM Report. They include gridded ground level receptors to meet the requirements of O.Reg. 419/05 in addition to 400 discrete receptors to represent locations of interest. They include hospitals, nursing homes, schools, daycares, Senior citizen centres, the nearest residential receptors, specific watersheds and water bodies and parks. # 3.4 Building Downwash The buildings used in this assessment to represent building downwash are the same as the buildings used in the ESDM Report. Building wake effects were considered in this assessment using the U.S. EPA's Building Profile Input Program (BPIP-ISC). The inputs into this pre-processor include the coordinates and heights of the buildings and stacks. The output data from BPIP is used in the building wake effect calculations. No changes were made to the BPIP input or output file for this assessment. # 3.5 Deposition CALPUFF has the capability to account for wet and dry deposition of substances that would reduce ground level concentrations at POIs. However, the deposition algorithm has not been implemented for conservatism and to maintain consistency with the ESDM report and the previous EA for maximum POI predictions. # 3.6 Thermal Internal Boundary Layer CALPUFF contains an option to account for sub-grid coastal influences on plume dispersion such as the development of a thermal internal boundary layer (TIBL). Given the proximity of the proposed Facility to Lake Ontario (approximately 500m) and the grid size (250m), variations in coastline location within the grid cells near the proposed facility were accounted for in the dispersion modelling. To achieve this, a digitized sub-grid coastline, extending to the boundaries of the air quality study area was included as an additional input. This is consistent with the approach used in the ESDM report. # 3.7 Averaging Times and Conversions CALPUFF can predict 1-hour average values. Many of the relevant Schedule 3 standards are based on a 24-hour averaging time, which is also provided by CALPUFF. Several of the modelled contaminants have averaging periods less than 1 hour. For these contaminants, the 1 hour average concentration was converted using the conversion factors listed in Table 4-1 of Air Dispersion Modelling Guidance for Ontario (ADMGO). For example, the hourly concentrations can be converted to a 10-min average by multiplying the hour value by 1.65. This is consistent with the approach used in the ESDM report. In 2016, a number of O.Reg 419/05 standards were updated or modified to include annual average Point of Impingement (POI) limits. These standards were most recently updated in 2018. CALPUFF can predict annual average values, therefore the CALPOST input file was modified to provide this output in addition to outputs for the 1 hour, 24 hour and 30 day averaging periods already provided. # 3.8 Chemical Transformation For the purposes of assessing project contributions to Secondary Particulate Matter (SPM) formation, chemical transformation was considered in the CALPUFF modelling of particulate matter. To model the chemical transformation of emitted NO, NO2 and SO2 into HNO3, NO3 and SO4, CALPUFFs RIVAD/ARM3 mechanism was used. The flag MCHEM is set to 1 for model runs used to produce concentrations of particulate matter. This setting requires the input of monthly background ozone concentrations. The monthly background ozone data used in the modelling of secondary particulate matter is consistent with that used in the EA and is summarised below in Table 1. Table 1: Background Ozone Concentrations used for Chemical Transformation Modelling⁽¹⁾ | Month | Ozone Concentrations (ppb) | |-----------|----------------------------| | January | 13.70 | | February | 18.50 | | March | 24.22 | | April | 11.09 | | May | 32.29 | | June | 33.63 | | July | 16.32 | | August | 21.33 | | September | 12.63 | | October | 15.39 | | November | 17.10 | | December | 20.91 | Notes: 1 - Ozone levels from Courtice Road Station (2007-2008) Chemical transformations were only modelled to calculate additional concentrations of particulate matter that is created as part of secondary transformations. Reported concentrations of NO₂ and SO₂ do not include the effects of depletion due to chemical transformation. The flag MCHEM is set to 0 for model runs used to produce concentrations of all other contaminants. This is consistent with the approach used in the ESDM report. # 3.9 Dispersion Modelling Options The options used in the CALPUFF dispersion model are summarized in the Table 2. The model options used are consistent with those used in the ESDM report. In the ESDM report, Exhibit 9 indicated that Puff splitting was used, however this was a typographical error and this option was not actually used in the modelling. To maintain consistency with the ESDM report, puff splitting was not modelled for this assessment. Table 2: CALPUFF Options and Flags | Flag | Value used in ESDM Report | Value Used in this Assessment | Comments | |---------|--|--|--| | MGAUSS | 1 | 1 | Vertical distribution used in the near field | | MCTADJ | 3 | 3 | Terrain adjustment method (3 used for partial plume path adjustment) | | MCTSG | 0 | 0 | Subgrid-Scale complex terrain flag | | MSLUG | 0 | 0 | Near-field puffs modelled as elongated | | MTRANS | 1 | 1 | Transitional Plume Rise modelled | | MTIP | · · · · | | Stack-tip downwash | | MBDW | 2 | 2 | Method used to simulate building downwash 1 = ISC method; 2 = PRIME method | | MSHEAR | 0 | 0 | Vertical wind shear modelled above stack top | | MSPLIT | 0* | 0 | Puff splitting allowed 0 = No; 1 = Yes * NB: Value of "1" reported in ESDM Report but value of "0" actually used in ESDM Report modelling | | MCHEM | 1 (For SPM,
PM ₁₀ and PM _{2.5})
0 (All other
Contaminants) | 1 (For SPM, PM ₁₀ and PM _{2.5}) 0 (All other Contaminants) | Chemical Transformation Scheme 0 = chemical transformation not modeled 1 = transformation rates computed internally (MESOPUFF II scheme) | | MAQCHEM | 0 | 0 | Aqueous phase transformation flag (only used if MCHEM =1 or 3) | | MWET | 0 | 0 | Wet removal modelled 0 = NO; 1 = Yes | | MDRY | 0 | 0 | Dry deposition modelled 0 = NO; 1 = Yes | | Flag | Value used in ESDM Report | Value Used in this Assessment | Comments | |---------|---------------------------|-------------------------------|--| | MTILT | 0 | 0 | Gravitational settling (plume tilt) modelled | | MDISP | 2 | 2 | Methods used to compute dispersion coefficients 2 = (dispersion coefficients from internally calculated sigma v, sigma w using micrometeorological variables (u*, w*, L, etc.) | | MTURBVW | 3 | 3 | Sigma measurements used (Used only if MDISP = 1or 5) | | MDISP2 | 3 | 3 | Back-up method used to compute dispersion when measured turbulence data are missing (Used only if MDISP=1 or 5) | | MTAULY | 0 | 0 | Method used for Lagrangian timescale for Sigma-y (used only if MDISP=1,2 or MSIDP2=1,2) | | MTAUADV | 0 | 0 | Method used for Advective-Decay timescale for Turbulence (used only if MDISP=2 or MDISP2=2) | | MCTURB | 1 | 1 | Method used to compute turbulence sigma-v & sigma-w using micrometeorological variables (Used only if MDISP = 2 or MDISP2 = 2) | | MROUGH | 0 | 0 | PG sigma y,z adjusted for roughness | | MPARTL | 1 | 1 | Partial plume penetration of elevated inversion | | MTINV | 0 | 0 | Strength of temp inversion provided in PROFILE.DAT extended records | | MPDF | 1 | 1 | Probability Distribution Function used for dispersion under convective conditions 0 = NO; 1 = Yes | | MSGTIBL | 1 | 1 | Sub-grid TIBL module used for shore line | | MBCON | 0 | 0 | Boundary conditions (concentration) modeled | | MFOG | 0 | 0 | Configure for FOG Model output | | MREG | 0 | 0 | Test options specified to see if they conform to regulatory values | ### 3.10 Source Parameters Stack exhaust temperature and flow rate were updated to match the stack characteristics at the time of source testing. All other source
parameters are consistent with those used in the ESDM Report. The source parameters modelled are provided in Table 3, below: **Table 3: Modelled Source Parameters** | Source ID | Stack Height [m] | | | [m/s] | Exhaust
Temperature
[K] | |-----------|------------------|-----------------|--------------------|--------------------|-------------------------------| | STCK1 | 87.6 (No Change) | 1.7 (No Change) | 51.64
(UPDATED) | 22.75
(UPDATED) | 414.3
(UPDATED) | The ESDM Report includes an additional modelling scenario which include emissions from silo loading and the standby generator (Scenario H). The predominant contaminants from these sources are particulate from the silo loading and nitrogen oxides from the generator. These two contaminants were assessed and it was determined that, since the Main Stack emissions presented in this report are less than those in the ESDM Report, dispersion modelling would show a decrease in the point of impingement concentration for these two contaminants. As a result, additional dispersion modelling for Scenario H was not conducted. ### 4.0 MODELLING RESULTS Modelling was completed for emissions from the main stack only, using a unit emission rate to generate dispersion factors in µg/m³ per g/s for 10-minute, ½ - hour, 1 hour, 24 hour, 30 day and annual averaging periods. In Ontario, MECP guidance allows for the removal of meteorological anomalies to account for extreme, rare and transient conditions that may be present in the datasets and considered outliers. As such, for air quality assessments that require 24-hour average concentrations, the highest predicted 24-hr concentration in each year of meteorological data may be removed. Similarly, for assessments that use shorter 1-hour average concentrations, the eight highest predicted concentrations in each year may be removed, as per the MECP guidance listed in ADMGO. No predicted results are removed for assessment against annual averaging periods. Elimination of these anomalies is optional but both methodologies are considered acceptable for the demonstration of compliance with Ontario Regulation 419/05 standards. Previously, maximums with anomalies were presented. The resulting dispersion factors are presented in Table 4, below for both the with and without meteorological anomaly removal: **Table 4: Modelling Dispersion Factors** | Averaging Period | 10-min | ⅓- hr | 1-hr | 24-hr | 30-day | Annual | |---|--------|-------|-------|-------|--------|--------| | Dispersion Factor without meteorological anomaly removal [µg/m³ per g/s] | 31.99 | 23.27 | 19.39 | 1.02 | 0.12 | 0.03 | | Dispersion Factor with
meteorological anomaly
removal [µg/m³ per g/s] | 9.63 | 7.00 | 5.83 | 0.96 | 0.12 | 0.03 | The average emission rate for each contaminant presented in Appendix A was multiplied by the applicable dispersion factor above to calculate the maximum point of impingement concentration for emissions from the main stack. The modelled POI concentrations were compared to the current Schedule 3 standards listed in O.Reg. 419/05 and in the case of PM2.5 and PM10, the MECP AAQC. The MECP has recently updated the list of standards and guidelines for facilities to assess their emissions against, namely the Air Contaminants Benchmark (ACB) List, dated April 2018, which includes standards and guidelines (Benchmark 1) and screening levels (Benchmark 2). The ACB List is required to be used to assess point of impingement (POI) concentrations of contaminants released into the air. Contaminants released by the Facility that do not have Benchmark 1 standards or guidelines in the ACB List are considered to be 'Contaminants with No MECP POI Limits'. Where applicable, predicted POI concentrations of Contaminants with No MECP POI Limits were screened against the Benchmark 2 screening levels in the ACB List or the de minimus limit. The modelled concentrations of all compounds assessed were below their relevant MECP standards. The Emission Summary Table has been updated and is included in Appendix B. It has been modified to include reference to the new ACB List and to meet the requirements of the updated MECP guidance document "Procedure for preparing an Emission Summary and Dispersion Modelling Report" (PIBs 3614e04.1, March 2018). Results are presented both with and without meteorological anomaly removal but only the results with meteorological anomaly removal are presented as a percentage of the relevant limit. The contaminant with the highest predicted concentration relative to O.Reg. 419/05 standard is Nitrogen Oxides at 6% of the relevant limit. # 5.0 SUMMARY MODELLING UPDATES The dispersion modelling for the DYEC was updated to reflect data obtained from Voluntary November 2020 source testing. A summary of the changes made to the modelling are provided in Table 5, below. **Table 5: ECA Concordance Table** | Table 5: ECA Concordance Table | | |---------------------------------------|---| | Modelling Inputs | Changes from ESDM Report | | Emission Rates | Updated to use November 2020 Source Testing Data. List of contaminants assessed expanded to include all contaminants for which source testing data was performed. | | Model and Model Version | No Change | | Meteorology and Terrain data | No Change | | Receptors | No Change | | Building Downwash | No Change | | Deposition | No Change | | Chemical Transformations | No Change | | Thermal Internal Boundary Layer | No Change | | Averaging Times and Conversions | CALPOST input file was modified to generate annual averaging to account for new O.Reg. 419/05 standards introduced in 2016 (and most recently updated in 2018) that include annual averaging periods. | | Dispersion Modelling Options | No Change | | Background Air Quality Concentrations | Ozone background data used in secondary particulate modelling consistent with the EA. | | Emission Summary Table | Updated to include new O.Reg. 419/05 standards introduced after the ECA was approved and contaminants that were not included in the ESDM report but for which source testing data was available. | # 6.0 CONCLUSIONS This assessment was completed to document compliance with Condition 8(7) and 8(8) of Schedule E of the ECA for the DYEC. The results of this assessment demonstrate that the Facility is operating in compliance with the POI limits listed in s.20 of O. Reg. 419/05. # 7.0 CLOSURE We trust this memorandum meets your needs at this time. Should you have any questions please contact the undersigned. Golder Associates Ltd. Katherine Armstrong, M.Sc. Air Quality Specialist KSA/ADC/ng Anthony Ciccone, Ph.D., P.Eng. Principal, Vice-President Attachments: Appendix A - Site Wide Emission Inventory Appendix B - Emission Summary Table https://golderassociates.sharepoint.com/sites/121611/project files/6 deliverables/nov 2020 - reporting/feb 2022 update/20137524-tm-rev1 covanta updated modelling memo 28feb2022.docx **APPENDIX A** Site Wide Emission Inventory February 2022 # Appendix A Site-Wide Emission Inventory | | | | | | | | Site-Wide Emission inventory | | | | | | | |----------------------|---------------------------|---|---|--------------------------------|---------------------------------------|-----------------------------|--|------------|--------------------------------|-----------------------------|-------------------------------------|---------------------------|---| | | _ | the chi | Source | Source Parameters | 1,100,0 | | A THE PROPERTY OF | | Emission Data | | | | | | Source
Identifier | Source
Description | stack
Volumetric
Flow
Rate
[Am³/s] | Stack Exit Gas S
Temperature
[*C] | Stack Inner
Diameter
[m] | Stack
Height
Above
Grade [m] | Stack
Location (x,
y) | Contaminant | CAS No. | Maximum Emission Rate
[g/s] | Averaging
Period [hours] | Emission
Estimating
Technique | Emissions Data
Quality | Percentage of
Overall
Emissions [%] | | 14 | Main Stack -
Fall 2020 | 51.64 | 141.2 | 1.7 | 87.6 | (680538,
4860346) | 1 – methylnaphthalene | 90-12-0 | 1.60E-07 | 1,24, annual | ST | Above-Average | 100% | | | Source Testing | | | | | • | 1,1,2-Trichloroethane | 79-00-5 | 1.31E-05 | 1,24, annual | ST | Above-Average | 100% | | | Conditions | | | | | اسسم | 1,2,3,4-tetrachlorobenzene | 634-66-2 | 7.43E-08 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 1,2,3-trichlorobenzene | 87-61-6 | 2.23E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 1,2,4 – Trichlorobenzene | 120-82-1 | 7.37E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | • | 1,2,4,5-Tetrachiorobenzene | 95-94-3 | 1,59E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | ***************** | 1,2-Dichlorobenzene | 95-50-1 | 1.93E-06 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 1,2-Dichloroethane | 107-06-2 | 4,26E-05 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 1,2-Dichloropropane | 78-87-5 | 1.31E-05 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 1,3,5-frichlorobenzene | 108-70-3 | 2.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 1,3-Butadiene | 106-99-0 | 2.61E-05 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 1,3-Dichlorobenzene | 541-73-1 | 2.39E-06 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | أسببينا | 1,4-Dichlorobenzene | 106-46-7 | 1.57E-06 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | · | 1-Methylphenanthrene | B32-69-9 | 2.26E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 2 – methylnaphthalene | 91-57-6 | 2.92E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | • | | I | 2,3,4,5-tetrachlorophenol | 4901-51-3 | 3.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 2,3,4,6-Tetrachlorophenol | 58-90-2 | 3.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | ****** | | I | 2,3,4-trichlorophenol | 15950-66-0 | 3.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 2,3,5,6-tetrachiorophenol | 935-95-5 | 3.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 2,3,5-trichlorophenol | 933-78-8 | 3.72E-07 | 1,24, annuai | ST | Above-Average | 100% | | | | | | | | L | 2,3,6-trichlorophenol | 933-75-5 | 3.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | •••• | | L | 2,3-dichlorophenol | 576-24-9 | 3,72E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 2,4,5-trichlorophenol | 95-95-4 | 3.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 2,4,6-Trichlorophenol | 88-06-2 | 7.50E-07 | 1,24, annual | ST | Above-Average | 100% | | | | • | | | | | 2,4-Dichlorophenal | 120-83-2 | 3.93E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | 1 | 2,6-dichlorophenol | 87-65-0 | 3.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | 2-Butanone | 78-93-3 | 1.60E-03 | 1,24, annual | ST | Above-Average | 100% | | | | | | - | | | 2-Chloronaphthalene | 91-58-7 | 7.43E-08 | 1,24, annual | ST | Above-Average | 100% | | | | | , 1 | | | | 2-Methylanthracene | 613-12-7 | 2.76E-07 | 1,24, annuai | ST | Above-Average | 100% | | | | | | | | | 2-manochloraphenol | 95-57-8 | 3.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | • | | | | | l | 3,4,5-trichlorophenol | 609-19-8 | 3.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | • | | I | 3,4-dichlorophenol | 95-77-2 | 3.72E-07 | 1,24, annuat | ST | Above-Average | 100% | | | | | | | • | i | 3,5-dichlorophenol | 591-35-5 | 7.74E-07 | 1,24, annuai | ST | Above-Average | 100% | | | • | | | | | | 3-Methylcholanthrene | 56-49-5 | 3.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | • | | | | | | 3-monochlorophenol | 108-43-0 | 3,72E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | 1 | 4-monachlorophenal | 106-48-9 | 3.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | 1 | 7,12-Dimethylbenzo(a)anthracene | 57-97-6 | 7.43E-08 | 1,24, annuai | ST | Above-Average | 100% | | | | • | | | | | 9,10-Dimethylanthracene | 78143-1 | 9.86E-08 | 1,24, annual | ST | Above-Average | 100% | | | | | | ••••• | | 1 | 9-Methylphenanthrene | 883-20-5 | 2.33E-07 | 1,24, annual | ST | Above-Average | 100% | Made by: TK Checked by: KSA February 2022 | Ęş | |----| | æ | | 2 | | ۰ | | Ö | | 60 | | ⋖ | | - | | 0 | | 프 | | 75 | Made by: TK Checked by: KSA | 1,24, annual ST 1,24 | | | | Source | Source Parameters | | | | | Emission Data | | | | | _ | |--|--------|---|----------------------|-------------------------------|-------------------------|--------------------|-----------------------|---------------------------|------------|-----------------------|----------------|------------------------|----------------|---------------|---| | Part | Source | Source
Description | Stack
Volumetric | Stack Exit Gas
Temperature | Stack Inner
Diameter | Stack
Height | Stack
Location ix. | Contaminant | CAS No. | Maximum Emission Rate | Averaging | Emission
Estimating | Emissions Data | Percentage of | 1 | | 208-95-9 1,83E-97 1,24, annual ST 208-96-9 7,43E-59 1,24, annual ST 75-07-0 1,63E-93 1,24, annual ST 107-02-3 8,40E-05 1,24, annual ST 107-02-4 8,40E-05 1,24, annual ST 107-02-9 2,47E-02 1,24, annual ST 107-02-9 1,46E-08 1,24, annual ST 107-02-9 1,46E-08 1,24, annual ST 107-02-9 1,47E-08 1,24, annual ST 107-02-9 1,47E-08 1,24, annual ST 107-02-9 1,43E-08 1,24, annual ST 107-02-9 1,43E-08 1,24, annual ST 107-02-9 1,43E-08 1,24, annual ST 108-97-7 1,43E-08 1,24, annual ST 108-97-7 1,43E-08 1,24, annual ST 108-97-7 1,43E-08 1,24, annual ST 108-97-7 1,43E-08 1,24, annual ST <th></th> <th>-</th> <th>Flow Rate
[Am³/s]</th> <th>ľď</th> <th>Ξ</th> <th>Above
Grade [m]</th> <th>۱۲</th> <th></th> <th></th> <th>[8/8]</th> <th>Period [hours]</th> <th>Technique</th> <th>Quality</th> <th>Emissions [%]</th> <th></th> | | - | Flow Rate
[Am³/s] | ľď | Ξ | Above
Grade [m] | ۱۲ | | | [8/8] | Period [hours] | Technique | Quality | Emissions [%] | | | 208-96-9 1,24, annual ST 75-07-0 1,53E-03 1,24, annual ST 107-22-7 1,52E-03 1,24, annual ST 107-22-7 1,24, annual ST ST 1120-12-7 2,47E-02 1,24, annual ST 1120-12-7 1,48E-08 1,24, annual ST 1120-12-7 1,48E-08 1,24, annual ST 1120-12-7 1,48E-08 1,24, annual ST 1120-12-7 1,48E-08 1,24, annual ST 1120-12-7 1,48E-08 1,24, annual ST 1120-12-7 1,43E-08 1,24, annual ST 1120-20-2 1,24, annual ST Annual 1120-20-2 1,24, annual ST Annual 1120-20-2 1,24, annual ST Annual | | | | | | | | Acenaphthene | 83-32-9 | 1,83E-07 | 1,24, annual | ST | Above-Average | 11% | _ | | 15-07-0 153E-03 1,24, annual ST 161-02-4 1,02E-03 1,24, annual ST 161-02-4 1,02E-03 1,24, annual ST 120-12-7 1,48E-08 1,24, annual ST 140-38-2 1,57E-08 1,24, annual ST 140-38-2 1,57E-08 1,24, annual ST 140-38-3 1,43E-08 1,24, annual ST 140-38-3 1,43E-08 1,24, annual ST 140-38-3 1,43E-08 1,24, annual ST 150-32-6 1,43E-08 1,24, annual ST 150-32-6 1,43E-08 1,24, annual ST 151-24-2 2,59E-07 1,24, annual ST 191-24-2 2,59E-07 1,24, annual ST 191-24-2 2,59E-07 1,24, annual ST 191-24-2 1,31E-04 1,24, annual ST 191-24-3 1,31E-04 1,24, annual ST 175-27-4 4,30E-08 1,24, annual ST 176-28-3 1,18E-04 1,24, annual ST 176-28-3 1,18E-04 1,24, annual ST 176-28-3 1,18E-04 1,24, annual ST 176-28-3 1,18E-04 1,24, annual ST 181-07-1 1,31E-05 1,24, annual ST 191-28-4 1,39E-04 1,24, annual ST 191-28-5 1,44E-04 1,24, annual ST 191-28-5 1,44E-04 1,24, annual ST 191-28-6 1,24, annual ST 191-28-7 1,41E-04 191-28-8 1,24, annual ST 191-28-9 | | | | | | | |
Acenaphthylene | 208-96-8 | 7.43E-08 | 1,24, annual | ST | Above-Average | 5% | | | 1,24-61 1,82E-03 1,24, annual ST 10,702-6 8,40E-05 1,24, annual ST 120-12-7 7,48E-06 1,24, annual ST 1440,39-2 1,51E-06 1,24, annual ST 1440,39-2 1,43E-08 1,24, annual ST 120-28-4-6 7,43E-08 1,24, annual ST 192-37-2 7,43E-08 1,24, annual ST 192-37-2 7,43E-08 1,24, annual ST 192-37-2 7,43E-08 1,24, annual ST 192-37-2 1,43E-08 1,24, annual ST 192-37-2 1,43E-08 1,24, annual ST 192-37-3 1,43E-08 1,24, annual ST 192-37-3 1,13E-04 1,24, annual ST 192-37-3 1,13E-04 1,24, annual ST 192-37-4 1,13E-04 1,24, annual ST 192-37-5 1,13E-04 1,24, annual ST 192-37-6 1,13E-04 1,24, annual ST 192-37-7 1,13E-04 1,24, annual ST 192-37-8 1,14E-04 1,24, annual ST 192-38-4 192-38-5 1,14, annual ST 192-38-6 1,24, annual ST 192-38-4 1,14E-04 1,24, annual ST 192-38-5 1,14E-04 1,24, annual ST 192-38-7 1,14E-04 1,24, annual ST 192-38-7 1,14E-04 1,24, annual ST 192-38-7 1,14E-04 1,24, annual ST 192-38-7 1,24, annual ST 192-38-7 1,24, annual ST 192-38-8 1,24, annual ST 192-38-9 1,24, annual ST 192-38-9 1,24, annual ST 192 | | | | | | | | Acetaldehyde | 0-20-57 | 1,63E-03 | 1,24, annual | ST | Above-Average | %66 | | | 107-02-6 8,40E-05 1,24, annual ST 120-12-7 7,48E-08 1,24, annual ST 1440-36-0 2,00E-06 1,24, annual ST 1440-36-0 2,00E-06 1,24, annual ST 1440-36-0 1,00E-06 1,24, annual ST 1440-38-2 1,50E-06 1,24, annual ST 1440-38-2 1,43E-08 1,24, annual ST 143E-08 144E-04 1,24, annual ST 144E-04 1,24, annual ST 144E-08 1,24, annual ST 144E-08 1,24, annual ST 144E-08 1,24, annual ST 144E-08 1,24, annual ST 144E-08 1,24, annual ST 144E-09 142E-09 142 | | | | | | | | Acetone | 67-64-1 | 1.82E-03 | 1,24, annual | ST | Above-Average | 100% | | | 766441-7 2.47E-02 1,24, annual ST 740-38-0 1,24, annual ST 740-38-0 1,24, annual ST 740-38-2 1,57E-06 1,24, annual ST 740-38-2 1,57E-06 1,24, annual ST 740-38-3 5,51E-05 1,24, annual ST 7440-38-3 5,51E-05 1,24, annual ST 753-4-6 1,24, annual ST ST 208-90-2 7,43E-08 1,24, annual ST 208-90-2 7,43E-08 1,24, annual ST 208-90-2 7,43E-08 1,24, annual ST 208-90-2 7,43E-08 1,24, annual ST 192-97-2 7,43E-08 1,24, annual ST 192-97-3 7,43E-08 1,24, annual ST 192-57-3 7,43E-08 1,24, annual ST 192-97-3 1,18E-08 1,24, annual ST 192-57-3 1,14E-09 1,24, annual ST 198-68-3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-11-12-</td><td></td><td>Acrolein</td><td>107-02-8</td><td>8,40E-05</td><td>1,24, annual</td><td>ST</td><td>Above-Average</td><td>%26</td><td>_</td></t<> | | | | | | -11-12- | | Acrolein | 107-02-8 | 8,40E-05 | 1,24, annual | ST | Above-Average | %26 | _ | | 120-12-7 7.48E-08 1,24, annual ST 7440-8-0 1,67E-06 1,24, annual ST 7440-8-2 1,87E-06 1,24, annual ST 7440-8-3 5.81E-05 1,24, annual ST 7440-3 5.81E-05 1,24, annual ST 71-45-2 2.68E-04 1,24, annual ST 8-55-3 7.43E-08 1,24, annual ST 205-92-2 7.43E-08 1,24, annual ST 205-92-2 7.43E-08 1,24, annual ST 205-92-3 7.43E-08 1,24, annual ST 205-92-4 7.43E-08 1,24, annual ST 192-97-2 7.43E-08 1,24, annual ST 192-97-3 7.43E-08 1,24, annual ST 1740-41-7 1,61E-05 1,24, annual ST 1740-43-9 1,24E-05 1,24, annual ST 1740-43-9 1,24, annual ST 1,24, annual 1744-43-9 1,24, annual ST 1,24, an | | | | | | | | Ammonia | 7664-41-7 | 2.47E-02 | 1,24, annual | ST | Above-Average | 100% | | | 7440-36-0 2,00E-06 1,24, annual ST 7440-38-2 1,57E-06 1,24, annual ST 7440-38-3 5,51E-05 1,24, annual ST 7440-38-3 2,58E-04 1,24, annual ST 558-35-3 7,43E-08 1,24, annual ST 568-38-4 7,43E-08 1,24, annual ST 205-90-2 7,43E-08 1,24, annual ST 205-90-2 7,43E-08 1,24, annual ST 205-90-2 7,43E-08 1,24, annual ST 192-37-2 7,43E-08 1,24, annual ST 192-37-2 7,43E-08 1,24, annual ST 192-37-3 7,43E-08 1,24, annual ST 192-37-4 4,3E-05 1,24, annual ST 192-37-4 4,3E-05 1,24, annual ST 198-27-3 1,18E-04 1,24, annual ST 198-25-4 1,18E-04 1,24, annual ST 198-25-5 1,14E-04 1,24, annual ST< | | | | | | | | Anthracene | 120-12-7 | 7,48E-08 | 1,24, annuai | ST | Above-Average | 16% | _ | | 740-36-2 1,57-06 1,24, annual ST 740-36-3 5,81E-05 1,24, annual ST 71-43-2 2,86E-04 1,24, annual ST 56-35-3 7,43E-08 1,24, annual ST 50-38-4-5 7,43E-08 1,24, annual ST 50-38-4-5 7,43E-08 1,24, annual ST 50-38-24-5 7,43E-08 1,24, annual ST 192-37-2 7,43E-08 1,24, annual ST 191-24-2 2,68E-07 1,24, annual ST 191-24-2 2,68E-07 1,24, annual ST 191-24-2 2,68E-07 1,24, annual ST 191-24-2 2,68E-07 1,24, annual ST 1740-41-7 1,01E-05 1,24, annual ST 1740-41-7 1,18E-04 1,24, annual ST 1740-41-7 1,18E-04 1,24, annual ST 1740-42-9 1,24, annual ST 1740-43-9 1,14E-04 1,24, annual ST <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Antimony</td><td>7440-36-0</td><td>2.00E-08</td><td>1,24, annuai</td><td>ST</td><td>Above-Average</td><td>100%</td><td></td></tr<> | | | | | | | | Antimony | 7440-36-0 | 2.00E-08 | 1,24, annuai | ST | Above-Average | 100% | | | 740-39-3 5.81E-05 1,24, annual ST 71-43-2 2.68E-04 1,24, annual ST 56-55-3 7.43E-06 1,24, annual ST 50-32-6 7.43E-08 1,24, annual ST 205-39-2 7.43E-08 1,24, annual ST 205-39-2 7.43E-08 1,24, annual ST 205-39-2 7.43E-08 1,24, annual ST 191-24-2 2.68E-07 1,24, annual ST 191-24-2 2.68E-07 1,24, annual ST 191-24-2 2.68E-07 1,24, annual ST 191-24-2 2.68E-07 1,24, annual ST 192-51-3 7.40C-01 1,24, annual ST 1740-41-7 1.61E-06 1,24, annual ST 1740-43-9 1.18E-04 1,24, annual ST 1740-43-9 1.61E-06 1,24, annual ST 106-90-7 1.61E-04 1,24, annual ST 106-90-7 1.61E-04 1,24, annual ST <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Arsenic</td> <td>7440-38-2</td> <td>1.67E-06</td> <td>1,24, annual</td> <td>ST</td> <td>Above-Average</td> <td>100%</td> <td></td> | | | | | | | | Arsenic | 7440-38-2 | 1.67E-06 | 1,24, annual | ST | Above-Average | 100% | | | 71-43-2 2.68E-04 1,24, annual ST 56-55-3 7.43E-08 1,24, annual ST 56-55-4 7.43E-08 1,24, annual ST 50-32-8 7.43E-08 1,24, annual ST 205-99-2 7.43E-08 1,24, annual ST 205-99-2 7.43E-08 1,24, annual ST 192-417-4 7.43E-08 1,24, annual ST 207-08-9 7.43E-08 1,24, annual ST 207-08-9 7.43E-08 1,24, annual ST 207-08-9 7.43E-08 1,24, annual ST 75-27-4 1.67E-06 1,24, annual ST 75-27-4 1.67E-06 1,24, annual ST 75-27-4 1.67E-06 1,24, annual ST 7440-41-7 1.61E-05 1,24, annual ST 850-08-0 4.79E-01 1,24, annual ST 850-08-0 4.79E-01 1,24, annual ST 850-08-0 1.44, annual ST < | | | | | | | | Barium | 7440-39-3 | 5.81E-05 | 1,24, annual | ST | Above-Average | 100% | _ | | 56-55-3 7,43E-08 1,24, annual ST 238-64-6 7,43E-08 1,24, annual ST 203-24-8 7,43E-08 1,24, annual ST 205-39-2 7,43E-08 1,24, annual ST 243-174 7,43E-08 1,24, annual ST 192-37-2 7,43E-08 1,24, annual ST 192-37-2 7,43E-08 1,24, annual ST 207-08-9 7,43E-08 1,24, annual ST 207-08-9 7,21E-07 1,24, annual ST 207-08-9 7,21E-07 1,24, annual ST 7440-41-7 1,67E-06 1,24, annual ST 7440-41-7 1,67E-06 1,24, annual ST 7440-41-7 1,61E-05 1,24, annual ST 562-5-3 1,18E-05 1,24, annual ST 630-08-0 4,79E-01 1,24, annual ST 7440-48-4 1,98E-05 1,24, annual ST 748-5-3 1,44E-08 1,24, annual ST <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Вепzепе</td> <td>71-43-2</td> <td>2.68E-04</td> <td>1,24, annual</td> <td>ST</td> <td>Above-Average</td> <td>51%</td> <td>_</td> | | | | | | | | Вепzепе | 71-43-2 | 2.68E-04 | 1,24, annual | ST | Above-Average | 51% | _ | | 238.446 7.43E-08 1,24, annual ST 50-32-6 7.43E-08 1,24, annual ST 205-99-2 7.43E-08 1,24, annual ST 243-174 7.43E-08 1,24, annual ST 192-97-2 7.43E-08 1,24, annual ST 207-08-2 7.43E-08 1,24, annual ST 207-08-3 7.43E-08 1,24, annual ST 207-08-3 7.21E-07 1,24, annual ST 75-27-4 4.36E-05 1,24, annual ST 75-27-4 4.36E-05 1,24, annual ST 7440-43-9 1.3E-05 1,24, annual ST 7440-48-4 1.6E-04 1,24, annual ST 16-05-5 1.24, annual ST 1.24, annual 56-23-5 1.21E-04 1,24, annual ST 16-65-3 1.4E-04 1,24, annual ST 16-65-3 1.4E-04 1,24, annual ST 1740-48-4 1.9E-05 1,24, annual ST 1840-71 3.41E-05 1,24, annual ST | | | | | | | | Вепzо(а)апthrасепе | 56-55-3 | 7,43E-08 | 1,24, annual | ST | Above-Average | 27% | | | 50-32-9 7.43E-08 1,24, annual ST 205-99-2 7.43E-08 1,24, annual ST 243-17-4 7.43E-08 1,24, annual ST 192-37-2 2.68E-07 1,24, annual ST 207-08-3 7.43E-08 1,24, annual ST 207-08-3 7.43E-08 1,24, annual ST 740-41-7 1.67E-06 1,24, annual ST 75-27-3 7.21E-07 1,24, annual ST 75-27-4 4.36E-05 1,24, annual ST 75-27-5 1.31E-05 1,24, annual ST 75-27-7 1.16E-04 1,24, annual ST 7440-43-8 2.53E-06 1,24, annual ST 630-08-0 4.79E-01 1,24, annual ST 108-90-7 1.61E-05 1,24, annual ST 118-40-19 6.41E-08 1,24, annual ST 118-40-19 1.24, annual ST 118-40-19 1.24, annual ST 118-50-3 1.24, annual ST 118-40-19 1.24, annual S | | | | | | | | Benzo(a)fluorene | 238-84-6 | 7.43E-08 | 1,24, annual | ST | Above-Average | 100% | | | 205-99-2 7.43E-08 1,24, annual ST 243-17-4 7.43E-08 1,24, annual ST 192-37-2 7.43E-08 1,24, annual ST 191-24-2 2.68E-07 1,24, annual ST 207-08-9 7.43E-08 1,24, annual ST 740-41-7 1.67E-06 1,24, annual ST 75-27-3 7.21E-07 1,24, annual ST 75-27-4 4.36E-05 1,24, annual ST 75-27-3 1.31E-04 1,24, annual ST 75-27-4 4.36E-05 1,24, annual ST 7440-43-9 1.61E-04 1,24, annual ST 630-08-0 4.79E-01 1,24, annual ST 65-25-5 1.21E-04 1,24, annual ST 65-25-5 1.61E-05 1,24, annual ST 7440-48-4 1.99E-06 1,24, annual ST 184-01-9 6.41E-08 1,24, annual ST 184-02-9 6.41E-08 1,24, annual ST | | | | | | | | Вепzo(а)ругепе | 50-32-8 | 7,43E-08 | 1,24, annual | ST | Above-Average | 47% | 7 | | 243-174 7.43E-08 1,24, annual ST 192-37-2 7.43E-08 1,24, annual ST 191-24-2 2.68E-07 1,24, annual ST 207-08-9 7.43E-08 1,24, annual ST 740-41-7 1.67E-06 1,24, annual ST 75-27-4 4.36E-05 1,24, annual ST 75-27-5 1.31E-05 1,24, annual ST 75-25-5 1.36E-06 1,24, annual ST 7440-43-9 2.53E-06 1,24, annual ST 630-08-0 4.79E-01 1,24, annual ST 630-08-0 1.16E-05 1,24, annual ST 67-65-3 1.16E-05 1,24, annual ST 67-65-3 1.16E-05 1,24, annual ST 728-01-9 6.4E-08 1,24, annual ST 18540-29-9 3.4E-05 1,24, annual ST 181-01-9 6.4E-08 1,24, annual ST 181-01-9 6.28E-05 1,24, annual ST 182-65-7 7.43E-08 1,24, annual ST <t<
td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Benzo(b)fluoranthene</td><td>205-99-2</td><td>7.43E-08</td><td>1,24, annual</td><td>ST</td><td>Above-Average</td><td>17%</td><td></td></t<> | | | | | | | | Benzo(b)fluoranthene | 205-99-2 | 7.43E-08 | 1,24, annual | ST | Above-Average | 17% | | | 192-97-2 7.43E-08 1,24, annual ST 191-24-2 2.68E-07 1,24, annual ST 207-08-9 7.43E-08 1,34, annual ST 7440-41-7 1,67E-06 1,24, annual ST 75-21-4 4.36E-05 1,24, annual ST 75-21-4 4.36E-05 1,24, annual ST 75-21-4 4.36E-05 1,24, annual ST 75-21-4 4.36E-05 1,24, annual ST 74-433-9 2.58E-06 1,24, annual ST 630-08-0 4.79E-01 1,24, annual ST 65-23-5 1.21E-04 1,24, annual ST 67-66-3 1.16E-05 1,24, annual ST 67-66-3 1.46E-04 1,24, annual ST 718-01-9 6.41E-08 1,24, annual ST 718-01-9 6.41E-08 1,24, annual ST 718-01-9 6.28E-05 1,24, annual ST 718-01-9 6.28E-05 1,24, annual ST | | | | | | | | Вепzo(b)fluorene | 243-17-4 | 7.43E-08 | 1,24, annual | ST | Above-Average | 100% | | | 131-24-2 2.68E-07 1,24, annual ST 207-08-3 7.43E-08 1,24, annual ST 7440-41-7 1,67E-06 1,24, annual ST 75-27-4 4,36E-05 1,24, annual ST 75-27-4 4,36E-05 1,24, annual ST 75-27-4 4,36E-05 1,24, annual ST 75-27-5 1,31E-05 1,24, annual ST 74-83-9 2,58E-06 1,24, annual ST 630-08-0 4,79E-01 1,24, annual ST 56-25-5 1,21E-04 1,24, annual ST 67-66-3 1,16E-05 1,24, annual ST 108-90-7 1,61E-05 1,24, annual ST 87-86-3 1,14E-04 1,24, annual ST 18540-29-9 3,47E-05 1,24, annual ST 18540-29-9 1,38E-05 1,24, annual ST 189-06 1,24, annual ST 1,24, annual 189-28 5,28E-05 1,24, annual ST | | | | | | ***** | | Вепzo(е)ругепе | 192-97-2 | 7.43E-08 | 1,24, annual | ST | Above-Average | 100% | | | 207-08-9 7.43E-08 1,24, annual ST 7440-41-7 1.67E-06 1,24, annual ST 92-51-3 7.21E-07 1,24, annual ST 75-27-4 1,31E-05 1,24, annual ST 75-25-2 1,31E-05 1,24, annual ST 74-83-9 1,18E-04 1,24, annual ST 74-83-9 2,53E-06 1,24, annual ST 650-08-0 4.79E-01 1,24, annual ST 108-90-7 1,61E-05 1,24, annual ST 56-25-5 1,21E-04 1,24, annual ST 108-90-7 1,61E-05 1,24, annual ST 118-40-3 3,47E-05 1,24, annual ST 118-40-3 8,41E-08 1,24, annual ST 118-40-4 1,99E-04 1,24, annual ST 119-6-6 1,24, annual ST 1,24, annual 119-6-7 1,24, annual ST 1,24, annual 119-6-7 1,24, annual ST 1,24, annua | | | | | | | | Benzo(g,h,i)perylene | 191-24-2 | 2.69E-07 | 1,24, annual | ST | Above-Average | 100% | | | 7440417 1,67E-06 1,24, annual ST 92-51-3 7.21E-07 1,24, annual ST 75-24 1,31E-05 1,24, annual ST 75-25-2 1,31E-05 1,24, annual ST 74-83-9 1,18E-04 1,24, annual ST 74-83-9 1,18E-04 1,24, annual ST 650-06-0 4.79E-01 1,24, annual ST 108-90-7 1,61E-05 1,24, annual ST 67-86-3 1,14E-04 1,24, annual ST 18540-29-9 3,47E-05 1,24, annual ST 218-01-9 6,41E-08 1,24, annual ST 1440-6-8 1,24, annual ST 1,24, annual ST 1440-6-8 1,24, annual ST 1,24, annual ST 1440-6-8 1,34, annual ST 1,24, annual ST 192-6-7 7,3E-09 1,24, annual ST 1,24, annual 192-6-7 7,3E-09 1,24, annual ST 1,24, annual <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Benzo(k)fluoranthene</td> <td>207-08-9</td> <td>7.43E-08</td> <td>1,24, annual</td> <td>ST</td> <td>Above-Average</td> <td>51%</td> <td></td> | | | | | | | | Benzo(k)fluoranthene | 207-08-9 | 7.43E-08 | 1,24, annual | ST | Above-Average | 51% | | | 92-51-3 7.21E-07 1,24, annual ST 75-27-4 4.36E-05 1,24, annual ST 75-25-2 1,31E-05 1,24, annual ST 74-43-9 1,18E-34 1,24, annual ST 7440-43-9 2.53E-06 1,24, annual ST 58-20-9 4.79E-01 1,24, annual ST 108-90-7 1.61E-05 1,24, annual ST 67-68-3 1.4E-04 1,24, annual ST 18540-29-9 3.47E-05 1,24, annual ST 18540-29-9 3.47E-05 1,24, annual ST 18540-29-9 3.41E-07 1,24, annual ST 1440-50-8 1.9E-06 1,24, annual ST 189E-06 1,24, annual ST 1,24, annual 189E-07 1,24, annual ST 189E-08 1,24, annual ST 189E-04 1,24, annual ST 189E-05 1,24, annual ST 189E-07 1,24, annual ST <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Beryllium</td> <td>7440-41-7</td> <td>1.67E-06</td> <td>1,24, annual</td> <td>ST</td> <td>Above-Average</td> <td>100%</td> <td></td> | | | | | | | | Beryllium | 7440-41-7 | 1.67E-06 | 1,24, annual | ST | Above-Average | 100% | | | 75-274 4,36E-05 1,24, annual ST 75-25-2 1,3E-05 1,24, annual ST 7440-43-9 1,16E-04 1,24, annual ST 630-08-0 4,79E-01 1,24, annual ST 108-23-5 1,21E-04 1,24, annual ST 108-23-5 1,21E-04 1,24, annual ST 108-23-5 1,4E-05 1,24, annual ST 108-20-9 3,47E-05 1,24, annual ST 128-01-9 0,41E-08 1,24, annual ST 1440-50-8 1,9E-06 1,24, annual ST 18-07-1 3,81E-07 1,24, annual ST 18-07-1 3,81E-07 1,24, annual ST 18-26-4 3,72E-07 1,24, annual ST <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Biphenyl</td> <td>92-51-3</td> <td>7.21E-07</td> <td>1,24, annual</td> <td>ST</td> <td>Above-Average</td> <td>100%</td> <td>,</td> | | | | | | | | Biphenyl | 92-51-3 | 7.21E-07 | 1,24, annual | ST | Above-Average | 100% | , | | 75-25-2 1,31E-05 1,24, annual ST 7440-3-9 1,18E-04 1,24, annual ST 630-08-0 4,79E-01 1,24, annual ST 108-07-7 1,21E-04 1,24, annual ST 108-07-3 1,14E-04 1,24, annual ST 108-07-3 1,14E-04 1,24, annual ST 118-01-3 3,47E-05 1,24, annual ST 1218-01-9 6,41E-08 1,24, annual ST 1440-48-4 1,99E-06 1,24, annual ST 1440-50-8 1,99E-06 1,24, annual ST 1870-7 3,81E-07 1,24, annual ST 1870-7 3,81E-07 1,24, annual ST 1870-7 3,81E-07 1,24, annual ST 1870-8 3,73E-07 1,24, annual ST 1870-8 3,73E-07 1,24, annual ST 1870-8 1,24, annual ST 1,24, annual 1870-8 1,24, annual ST 1,24, annual 1870-8 1,24, annual ST 1,24, annual 1870-9 1,24, annual ST 1,24, annual 1870-9 1,24, annual ST 1,24, annual 1870-9< | | | | | | | | Bromodichloromethane | 75-27-4 | 4.36E-05 | 1,24, annual | ST | Above-Average | 100% | , | | 74-83-9 1.18E-04 1,24, annual ST 7440-43-9 2.53E-06 1,24, annual ST 630-08-0 4.79E-01 1,24, annual ST 108-90-7 1,61E-04 1,24, annual ST 67-68-3 1,61E-04 1,24, annual ST 18540-29-9 3,47E-05 1,24, annual ST 218-01-9 0,41E-08 1,24, annual ST 1440-60-8 1,34E-06 1,24, annual ST 1440-50-8 1,99E-04 1,24, annual ST 1440-50-8 1,99E-04 1,24, annual ST 198-26-4 1,24, annual ST 198-26-4 1,24, annual ST 198-26-4 1,24, annual ST 198-26-4 1,24, annual ST 198-26-4 1,24, annual ST 53-70-3 7,43E-08 1,24, annual 53-70-3 7,43E-08 1,24, annual 51-4-4 1,24, annual ST 53-70-3 7,43-annual | | | | | | | | Вготобогт | 75-25-2 | 1,31E-05 | 1,24, annual | ST | Above-Average | 100% | | | 7440-43-9 2.53E-06 1,24, annual ST 630-08-0 4.79E-01 1,24, annual ST 56-23-5 1,21E-04 1,24, annual ST 108-90-7 1,61E-05 1,24, annual ST 67-65-3 1,14E-04 1,24, annual ST 18540-29-9 3,47E-05 1,24, annual ST 1840-19-9 6,41E-08 1,24, annual ST 1440-50-8 1,99E-04 1,24, annual ST 1440-50-8 1,99E-04 1,24, annual ST 1440-50-8 1,24, annual ST ST 1440-50-8 1,24, annual ST ST 1440-50-8 1,24, annual ST ST 142-63-9 1,24, annual ST ST 142-65-4 7,43-60 1,24, annual ST 125-65-4 7,43-60 1,24, annual ST 125-68-7 7,43-60 1,24, annual ST 124-80-1 1,24, annual ST 124-80-1 <td></td> <td>***************************************</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Bromomethane</td> <td>74-83-9</td> <td>1.18E-04</td> <td>1,24, annual</td> <td>ST</td> <td>Above-Average</td> <td>100%</td> <td></td> | | *************************************** | | | | | | Bromomethane | 74-83-9 | 1.18E-04 | 1,24, annual | ST | Above-Average | 100% | | | 630-08-0 4,79E-01 1,24, annual ST 56-23-5 1,21E-04 1,24, annual ST 108-90-7 1,61E-05 1,24, annual ST 67-66-3 1,14E-04 1,24, annual ST 1840-29-9 3,47E-05 1,24, annual ST 740-10-3 1,39E-06 1,24, annual ST 740-20-8 1,39E-06 1,24, annual ST 1940-21 3,81E-07 1,24, annual ST 192-68-4 1,34, annual ST ST 192-68-4 3,72E-07 1,24, annual ST 53-70-3 7,43E-08 1,24, annual ST 124-48-1 1,31E-05 1,24, annual ST 53-70-3 7,43E-08 1,24, annual ST 75-14-8 1,24, annual ST 1,24, annual 55-70-3 7,43E-08 1,24, annual ST 75-14-8 1,24, annual ST 1,24, annual 57-16-8 1,24, annual ST 1,24, annual | | | | | | | | Саdmium | 7440-43-9 | 2.53E-06 | 1,24, annuai | ST | Above-Average | 100% | | | 56-23-5 1,21E-04 1,24, amusal ST 108-90-7 1,61E-05 1,24, amusal ST 67-68-3 1,14E-04 1,24, amusal ST 1840-29-9 3,47E-05 1,24, amusal ST 740-08-4 1,24, amusal ST ST 740-08-4 1,39E-06 1,24, amusal ST 1940-7-1 3,81E-07 1,24, amusal ST 192-88-4 6,28E-05 1,24, amusal ST 192-88-4 7,43E-08 1,24, amusal ST 53-70-3 7,43E-08 1,24, amusal ST 124, amusal ST 1,24, amusal ST 53-70-3 7,43E-08 1,24, amusal ST 124, amusal ST 1,24, amusal ST 53-70-3 7,43E-08 1,24, amusal ST 75-14-8 1,24, amusal ST 1,24, amusal 57-76-3 1,31E-05 1,24, amusal ST 75-44-3 1,31E-05 1,24, amusal ST </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>Carbon Monoxide</td> <td>630-08-0</td> <td>4.79E-01</td> <td>1,24, annual</td> <td>ST</td> <td>Above-Average</td> <td>65%</td> <td></td> | | | | | | • | | Carbon Monoxide | 630-08-0 | 4.79E-01 | 1,24, annual | ST | Above-Average | 65% | | | 108-90-7 1,61E-05 1,24, amusal ST 15-56-3 1,14E-04 1,24, amusal ST 18540-29-9 3,47E-05 1,24, amusal ST 7440-48-4 1,99E-06 1,24, amusal ST 7440-50-8 1,99E-06 1,24, amusal ST 1940-7-1 3,81E-07 1,24, amusal ST 192-86-4 6,28E-05 1,24, amusal ST 192-86-4 3,72E-07 1,24, amusal ST 124-48-1 1,31E-05 1,24, amusal ST 174-48-1 1,31E-05 1,24, amusal ST 175-18 2,79E-05 1,24, amusal ST 175-18 1,24, amusal ST 1,24, amusal 175-18 1,24, amusal ST 1,24, amusal 175-18 1,24, amusal ST 1,24, amusal 175-18 1,24, amusal ST 1,24, amusal 175-18 1,24, amusal ST 1,24, amusal | | | | | | | | Carbon tetrachloride | 56-23-5 | 1.21E-04 | 1,24, annual | ST | Above-Average | 100% | | | 67-66-3 1.14E-04 1.24, amusal ST 18640-29-9 3.47E-05 1.24, amusal ST 218-01-9 6.41E-08 1.24, amusal ST 7440-44 1.99E-06 1.24, amusal ST 191-07-1 3.81E-07 1,24, amusal ST 192-65-4 5.28E-05 1,24, amusal ST 192-65-4 7.43E-08 1,24, amusal ST 192-65-4 3.72E-07 1,24, amusal ST 53-70-3 7.43E-08 1,24, amusal ST 124-48-1 1.31E-05 1,24, amusal ST 15-18 2.79E-05 1,24, amusal ST 124-48-1 1.31E-05 1,24, amusal ST | | | | | | | | Сһіогорепzепе | 108-90-7 | 1.61E-05 | 1,24, annual | ST | Above-Average
 100% | | | 18540-29-9 3.47E-05 1,24, annual ST 218-01-9 6.41E-08 1,24, annual ST 7440-44 1,99E-06 1,24, annual ST 7440-50-8 1,99E-04 1,24, annual ST 191-07-1 3.81E-07 1,24, annual ST 215-58-7 7.43E-08 1,24, annual ST 192-65-4 3.72E-07 1,24, annual ST 53-70-3 7.43E-08 1,24, annual ST 124-annual ST 1,31E-05 1,24, annual ST 15-44-1 1,31E-05 1,24, annual ST 1,24, annual 55-70-3 7.43E-08 1,24, annual ST 1,24, annual ST 75-74-8 2.79E-05 1,24, annual ST 1,24, annual ST | | | | | | | | Chloroform | 67-66-3 | 1.14E-04 | 1,24, annual | ST | Above-Average | 100% | | | 218-01-9 0.41E-08 1,24, annual ST 7440-48-4 1,99E-06 1,24, annual ST 7440-58-8 1,98E-04 1,24, annual ST 191-07-1 3.81E-07 1,24, annual ST 21-58-7 7.43E-08 1,24, annual ST 192-65-4 3.72E-07 1,24, annual ST 12-48-1 1,31E-05 1,24, annual ST 15-70-3 7.43E-08 1,24, annual ST 15-71-8 2.79E-05 1,24, annual ST 15-74-8 1,31E-05 1,24, annual ST | | | | | | | | Chromium (hexavalent) | 18540-29-9 | 3.47E-05 | 1,24, annual | ST | Above-Average | 100% | | | 7440-864 1,98E-06 1,24, annual ST 7440-50-8 1,98E-04 1,24, annual ST 191-07-1 3.81E-07 1,24, annual ST 98-82-8 28.8E-05 1,24, annual ST 192-65-4 3.72E-07 1,24, annual ST 53-70-3 7.45E-07 1,24, annual ST 124-48-1 1,31E-05 1,24, annual ST 75-70-3 2.79E-05 1,24, annual ST 75-74-8 1,31E-05 1,24, annual ST 75-74-8 1,31E-05 1,24, annual ST | | | | | | | | Chrysene | 218-01-9 | 6.41E-08 | 1,24, annual | ST | Above-Average | 14% | | | 7440-50-8 1,98E-04 1,24, annual ST 191-07-1 3.81E-07 1,24, annual ST 98-82-8 6.28E-05 1,24, annual ST 215-58-7 7.43E-08 1,24, annual ST 53-70-3 7.45E-06 1,24, annual ST 124-48-1 1,31E-05 1,24, annual ST 75-71-8 2.79E-05 1,24, annual ST 75-34-3 1,31E-05 1,24, annual ST 75-34-3 1,31E-05 1,24, annual ST | | | | | | | | Cobalt | 7440-48-4 | 1.99E-06 | 1,24, annual | ST | Above-Average | 100% | , | | 191-07-1 3.81E-07 1,24, annual ST 98-82-6 6.28E-05 1,24, annual ST 215-58-7 7.43E-08 1,24, annual ST 192-65-4 3.72E-07 1,24, annual ST 124-48-1 1,31E-05 1,24, annual ST 75-71-8 2.79E-05 1,24, annual ST 75-71-8 1,31E-05 1,24, annual ST 75-34-3 75-34-34-3 75-34-34-34-3 1,31E-05 1,24, annual ST 75-34-34-34-3 1,31E-05 1,34, annual ST 75-34-34-3 1,31E-05 1,34, annual ST 75-34-34-34-3 1,31E-05 1,34, annual ST 75-34-34-34-3 1,31E-05 1,34, annual ST 75-34-34-34-34-34-34-34-34-34-34-34-34-34- | | | | | | | | Copper | 7440-50-8 | 1.99E-04 | 1,24, annual | ST | Above-Average | 100% | | | 98-82-6 6.28E-05 1,24, annual ST 215-58-7 7.43E-08 1,24, annual ST 192-65-4 3.72E-07 1,24, annual ST 124-48-1 1.31E-05 1,24, annual ST 75-71-8 2.79E-05 1,24, annual ST 75-71-8 1,31E-05 1,24, annual ST 75-34-3 75-34-34-3 75-34-34-34-3 1,31E-05 1,34, annual ST 75-34-34-3 1,31E-05 1,34, annual ST 75-34-34-3 1,31E-05 1,34, annual ST 75-34-34-34-3 1,31E-05 1,34, annual | | | | | | | | Согопепе | 191-07-1 | 3.81E-07 | 1,24, annuai | ST | Above-Average | 100% | | | 215-58-7 7.43E-08 1,24, annual ST 192-65-4 3.72E-07 1,24, annual ST 53-70-3 7.43E-08 1,24, annual ST 124-48-1 1.31E-05 1,24, annual ST 75-71-8 2.79E-05 1,24, annual ST 75-34-3 1.31E-05 1,24, annual ST | | | | | | | | Cumene (Isopropylbenzene) | 98-82-8 | 6.28E-05 | 1,24, annual | ST | Above-Average | 100% | | | 192-65-4 3,72E-07 1,24, annual ST 53-70-3 7,43E-08 1,24, annual ST 124-48-1 1,31E-05 1,24, annual ST 75-71-8 2,79E-05 1,24, annual ST 75-34-3 1,31E-05 1,24, annual ST | | | | | | | | Dibenzo(a,c)anthracene | 215-58-7 | 7.43E-08 | 1,24, annual | ST | Above-Average | 100% | | | 53-70-3 7.43E-08 1,24, annual ST 124-48-1 1,31E-05 1,24, annual ST 75-71-8 2,79E-05 1,24, annual ST 75-34-3 1,31E-05 1,24, annual ST | | ********* | • | | | | | Dibenzo(a,e)pyrene | 192-65-4 | 3.72E-07 | 1,24, annual | ST | Above-Average | 100% | | | 12448-1 1,31E.05 1,24, annual ST 75-71-8 2,79E.05 1,24, annual ST 75-34-3 1,31E.05 1,24, annual ST | | | | | | | 1 | Dibenzo(a,h)anthracene | 53-70-3 | 7.43E-08 | 1,24, annual | ST | Above-Average | 40% | , | | 75-71-8 2.79E-05 1,24, annual ST 75-34-3 1,31E-05 1,24, annual ST | | | | | | | 1 | Dibromochloromethane | 124-48-1 | 1,31E-05 | 1,24, annual | ST | Above-Average | 100% | | | 75-34-3 1.31E-05 1,24, annual ST | | | | | | | | Dichlorodifluoromethane | 75-71-8 | 2.79E-05 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | | | Dichloroethene, 1,1 - | 75-34-3 | 1.31E-05 | 1,24, annual | ST | Above-Average | 100% | | Above-Average Above Average | | 1,24, annual ST | |---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|-------------------|-----------------|-----------------|-----------------|-----------------------------------|------------------------|------------------------------------|-------------------------|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------| | ł | 1.10E-07 1,2 | 1,77E-06 1,2 | 4.63E-05 1,2 | 4.21E+00 1,2 | 4.21E+00 1,2 | 1,18E-07 1,2 | 1,02E-03 1,2 | 7.55E-08 1,2 | 3.72E-07 1,2 | 7.43E-08 1,2 | 1.04E-06 1,2 | 3.72E-07 1,2 | 1.86E-01 1,2 | 2.23E-02 1,2 | 1.76E-01 1,2 | 1.22E-02 1,2 | 6.80E-04 1,2 | 7.87E-08 1,2 | 2.40E-07 1,2 | 2.86E-05 1,2 | 1.67E-06 1,2 | 2,25E-04 1,2 | 5.76E-03 1,2 | 1 10 1 | | | 92-06-8 | 91-20-3 | 7440-02-0 | 10102-44-0 | 10102-44-0 | 84-15-1 | 95-47-6 | 608-93-5 | 87-86-5 | 198-55-0 | 85-01-8 | 213-46-7 | N/A | N/A | ΝΑ | N/A | ΝΆ | 92-94-4 | 129-00-0 | 7782-49-2 | 7440-22-4 | 100-42-5 | 7446-09-5 | A 417 10 A | | | т-Тегрhелуі | Naphthalene | Nickel | Nitrogen Oxides | Nitrogen Oxides | O-terphenyl | O-Xylene | Pentachlorobenzene | Pentachlorophenol | Perylene | Phenanthrene | Picene | PM10 (Condensable and Filterable) | PM10 (Filterable Only) | PM2.5 (Condensable and Filterable) | PM2.5 (Filterable Only) | Polychlorinated Biphenyls (PCB) | p-Terphenyl | Pyrene | Selenium | Silver | Styrene | Sulphur Dioxide | Totrachlorothone | 20137524 Percentage of Emissions [%] Overall Emissions Data Quality Emission Estimating Technique Averaging Period [hours] Maximum Emission Rate [g/s] CAS No. 100% 100% 100% ST S 0.00068 µg TEQ/s 1.23E-03 4.06E-04 100414 75-09-2 Ν Dioxins, Furans and Dioxin-like PCBs Dichloromethane Ethylbenzene Fluoranthene Contaminant Stack Location (x, y) Stack Height Above Grade [m] Stack Exit Gas Stack Inner Temperature Diameter ['C] [m] Stack Volumetric Flow Rate [Am²/s] Source Description Source Identifier February 2022 Ethylene Dibromide 1,24, annual 1,24, annual Above-Average Above-Average ST S Σ S S 1,24, annual 1,24, annual Above-Average Above-Average Above-Average Above-Average 1,24, annual 1,24, annual 1,24, annual 3.97E-03 1.26E-07 1.52E-03 7664-39-3 86-73-7 50-00-0 Fluorine Formaldehyde Fluorides 1,24, annual 2.61E-05 2.68E-07 106-93-4 206-44-0 Above-Average Above-Average 되지 1,24, annual 1,24, annual 1,24, annual Above-Average 1,24, annual 1,24, annuai 7.43E-08 1.37E-01 7.53E-08 1.37E-05 2.81E-03 7.43E-06 4.52E-04 179601-23-1 7439-97-6 108-67-8 7439-98-7 Mesitylene (1,3,5-Trimethylbenzene) Mercury Lead Molybdenum M&P-Xylene 118-74-1 7647-01-0 193-39-5 7439-92-1 Hydrogen Chloride Indeno(1,2,3 – cd)pyrene Hexachlorobenzene Above-Average Above-Average Above-Average Above-Average ST ST ST 1,24, annual 1,24, annual Above-Average Above-Average Above-Average Above Average Γ S 1,24, annual Above-Average February 2022 | | | | Source | Courre Parameters | | | | | Emission Data | | | | | |------------|-----------------------|----------------------|---------------------|-------------------|--------------------|--------------------|---|------------|--|----------------|-------------------------|----------------|--------------------------| | Source | Source | Stack | Stack Exit Gas | Stack Inner | Stack | Stack | | | Maximum Emission Bate | Averaging | Emission | Emissions Data | Percentage of | | Identifier | Description |
Flow Rate
[Am³/s] | Temperature
[*C] | Diameter
[m] | Above
Grade [m] | Location [x,
y] | Contaminant | CAS No. | [8/s] | Period [hours] | Estimating
Technique | Quality | Overall
Emissions [%] | | | | | | | | | Thallium | 7440-28-0 | 3,89E-06 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | • | Toluene | 108-88-3 | 1.61E-03 | 1,24, annual | ST | Above-Average | 95% | | | | | | | | | Total Chromium (and compounds) | 7440-47-3 | 3.47E-05 | 1,24, annual | ST | Ароче-Ачегаде | 100% | | | | | | | | • | Total Particulate Matter (Condensable and Filterable) | N/A | 2.53E-01 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | Total Particulate Matter (Filterable Only) | NA | 8.89E-02 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | • | trans,1,2-Dichloroethene | 156-60-5 | 2.88E-05 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | • | Trichloroethane, 1,1,1 - | 71-55-6 | 1,31E-05 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | • | Trichloroethene | 86-42-0 | 1.31E-05 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | • | Trichloroethylene, 1,1,2- | 79-01-6 | 1.40E-05 | 1,24, annual | ST | Above-Average | 100% | | - | | | | | | • | Trichlorofluoromethane | 75-69-4 | 8.23E-05 | 1,24, annual | ST | Above-Average | 100% | | - | | | | | | • | Trichlorotrifluoroethane | 76-13-1 | 2.61E-05 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | • | Vanadium | 7440-62-2 | 1,08E-06 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | Vinyl chloride | 75-01-4 | 2.61E-05 | 1,24, annual | ST | Above-Average | 100% | | | | | | | | | Xylenes, π-, p- and o- | 1330-20-7 | 3.83E-03 | 1,24, annual | ST | Above-Average | 98% | | | | | | | | • | Zinc | 7440-66-6 | 2.10E-04 | 1,24, annual | ST | Above-Average | 100% | | 2 | Silo Filling | 0.31 | Ambient | 0.10 | 5.4864 | (680551,4860 | Total Particulate Matter | N/A | 1.07E-02 | 1 | EC | Above-Average | 14% | | | | | | | | · · | PM ₁₀ | N/A | 1.07E-02 | 1 | 22 | Above-Average | 17% | | | | | | | | | PM _{2.5} | N/A | 1.07E-02 | 1 | EC | Above-Average | 17% | | | | 0.31 | Ambient | 0.10 | 4.8768 | (680513,4860 | Total Particulate Matter | N/A | 1.07E-02 | 1 | 23 | Above-Average | 14% | | | ******* | | | | | 1355 | PM1n | A/N | 1.07E-02 | 1 | Si Si | Above-Average | 17% | | | | | | | | 1 | PM _{2.5} | N/A | 1.07E-02 | 1 | EC | Above-Average | 17% | | | | 0.31 | Ambient | 0,10 | 3.9624 | (680517,4860 | Total Particulate Matter | N/A | 1.07E-02 | 1 | ЭÐ | Above-Average | 14% | | | | | | | | 1000 | PM: | A/N | 1.07E-02 | 1 | EC | Above-Average | 17% | | | | | | | | | PM _{2.5} | N/A | 1.07E-02 | 1 | EC | Above-Average | 17% | | | | 0.31 | Ambient | 0.10 | 12.4 | (680537,4860 | Total Particulate Matter | N/A | 1.07E-02 | Ħ | 낊 | Above-Average | 14% | | | | | | | | <u> </u> | PM ₁₀ | A/N | 1.07E-02 | 1 | EC | Above-Average | 17% | | | | | | | | | PM _{2.5} | N/A | 1.07E-02 | 1 | EC | Above-Average | 17% | | 3 | Stand-by
generator | 1.16 | 265.85 | 0.2 | 3 | (680475,4860 | Carbon Monoxide | 630-08-0 | 2,56E-01 | * | 6 | Marginal | 35% | | | | | | | | | Nitrogen Oxides | 10102-44-0 | 1.12E+00 | × | Ŧ | Marginal | 12% | | | | | | - | | 1_ | Sulphur Dioxide | 7446-09-5 | 1.88E-02 | ×× | 43 13 | Above-Average | 77% | | | 1-11 | | | | | | Lotal Particulate Matter | 4/8 | 3.23E-02
2.03F-02 | , x | 5 15 | Above-Average | 100% | | | | | | | ****** | _1 | PM10 | A/N | 1.88E-02 | × | Ш | Above-Average | 30% | | | | | | | | .L | PM _{2.5} | N/A | 1.88E-02 | × | EF | Above-Average | 30% | | | | | | | | 4, | Sulphuric Acid | 7664-93-9 | 2.88E-04 | х | £C | Above-Average | 100% | | | | | | | **** | ·I | Benzene | 71-43-2 | 2.54E-04 | × | 15 2 | Marginal | 49% | | | , | | | | | | Xvienes. m. p. and o- | 1330-20-7 | 6.32E-05 | 77 | 1 15 | Marginal | 2% | | | | | | | | 1 | Propylene | 115-07-1 | 9.14E-04 | 77 | ä | Marginal | 100% | | | | | | | | LJ. | Formaldehyde | 20-00-0 | 2.58E-05 | 7, | £ | Marginal | 2% | | | | | | | | | Acetaldehyde | 75-07-0 | 8.265-06 | ×× | ti 1 | Marginal | <1% | | | | | | | | .1_ | Naohthalene | 91-20-3 | 4.26E-05 | × × | 13 | Marginal | %96 | | - | _ | _ | - | _ | _ | J | | | The state of s | | | | | Made by: TK Checked by: KSA Percentage of Overall Emissions [%] Emissions Data Quailty Emission Estimating Technique > Averaging Period [hours] Maximum Emission Rate [g/s] CAS No. Contaminant Stack Location (x, Stack Height Above Grade [m] Stack Exit Gas Stack Inner Temperature Diameter [*C] [m] Stack Volumetric Flow Rate [Am³/s] > Source Description > Source Identifier 98% 89% 100% 93% 84% 84% 84% 84% 73% 86% 86% 66% 66% 66% Marginal 3.02E.06 1.53E.06 1.34E.05 1.34E.05 1.32E.06 2.04E.07 5.01E.07 7.14E.08 8.42E.08 1.35E.07 1.13E.07 1.13E.07 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 120-12 Acenaphthylene Acenaphthene Fluorene Phemarthrene Anthracene Fluoranthene Pyrene Pyrene Chrysene Chrysene Benzo(a)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Indeno(1,2,3, = cd)pyrene Indeno(1,2,3, = cd)pyrene Made by: TK Checked by: KSA | • | | |---|--| **APPENDIX B** **Emission Summary Table** February 2022 Made by: TK Checked by: KSA | Canting | (004-39-3 | 3.975-03 | Carpen | 4.USE-U3 | 3.825-03 | 790-P2 | 1./4 | Vegetation | ě | |-----------|-----------|----------|---------|----------|----------|---------|------|------------|--------| | Fluorides | 7664-39-3 | 3.97ξ-03 | Calpuff | 4.57E-04 | 4,576-04 | 30-day | 69'0 | Vegetation | Sch. 3 | | Fluorides | 7664-39-3 | 3,97E-03 | Calpuff | 4.05E-03 | 3.82E-03 | 24-hour | 3,44 | Vegetation | Sch. 3 | | Fluorides | 7664-39-3 | 1,976.03 | Calpuff | 4.57E-04 | 4.57E-04 | 30-day | 1.38 | Vegetation | Sch. 3 | Appendir B Emission Summary Table February 2022 20137524 | | | _ | | Od ENGINEW | Maximum PO | | | | | | | | | | |---|------------|------------------------------------|----------------|---|---|-----------|--------|---------------------------|----------|------------|-----------|---------------------------------------
--|--------------------| | *************************************** | | | Alr Dispersion | Concentration Before | ვ | Averaging | | : | | | | Percentage of MECP | | rersion of Date of | | | 3 | מינו פרווול דווויזיים ויפוב (פי ז' | Model Used | Meteorological Anomaly
Removal fue/m³1 | Meeorological Anomaly
Removal Let/m ² 1 | Perlod | | 1300 | Schedule | aconos. | Perkiller | נאלן אייט | | ACB Ust | | Fluarine | 86-73-7 | 1.266-07 | Calpuff | 1.295-07 | 1.215-07 | 24-hour | 0.1 | - | _ | De Minimus | ł | Below De Minimus | | Apr-18 | | Formaldehyde | 50-00-0 | 1.52£-03 | Calpuff | 1.55€-03 | 1.46E-03 | 24-hour | 92 | Odour & trritation | Sch. 3 | Standard | 81 | <1% | 1 | Apr-18 | | Hexachlorobenzene | 118-74-1 | 7.43E-08 | Calpuff | 7.595-08 | 7.15E-08 | 24-hour | 0.011 | Health | Sch. 3 | 151-151 | 62 | Below St-JSL | *** | Apr-18 | | Hydrogen Chforide | 7647-01-0 | 1.376-01 | Calpoff | 1.405-01 | 1.325-01 | 24-hour | 20 | Health | Sch. 3 | Standard | B1 | <1% | URT - Note 4, Table 4 | Apr-18 | | Hydragen Chloride | 7647.01-0 | 1.376.01 | ynd;e) | 1.405-01 | 1.325-01 | 24-hour | 500 | Heath | Sch. 6 | URT | - | <1% | and . | Apr-18 | | indeno[1,2,3 – cd]pyrene | 193-39-5 | 7.53£-08 | Calpuff | 7.69E-08 | 7.25E-08 | 24-hour | 0.1 | | 1 | De Minimus | 1 | Below De Minimus | _ | Apr-18 | | Lead | 7439-92-1 | 1.37E-05 | Calpuff | 1.40E-05 | 1.326-05 | 24-hour | 0.5 | Health | Sch. 3 | Standard | 91 | <1% | Note 2URT - Note 4, Table 4 | Apr-18 | | Lead | 7439-92-1 | 1.376-05 | Calpuff | 1.58E-06 | 1.58E-06 | 30-day | 0.2 | Health | Sch. 3 | Standard | 81 | <1% | Note 2URT - Note 4, Table 4 | Apr-18 | | peal | 7439-92-1 | 1.37E-05 | Calpuff | 1.40E-05 | 1.32E-05 | 24-hour | 2 | Health | Sch. 6 | URT | | <1% | Note 2URT - Mote 4, Table 4 | Apr-18 | | Mercury | 7439-97-6 | 7,43E-06 | Calpuff | 7.58E-D6 | 7.15E-06 | 24-hour | 2 | Health | Sch. 3 | Standard | 18 | 41% | _ | Apr-18 | | Malybdenum | 7439-98-7 | 1.985-04 | Calpuff | 2.03£-04 | 1,915-04 | 24-hour | 120 | Particulate | Sch. 3 | Guideline | 91 | <1% | 1 | Apr-18 | | Naphthalene | 91-20-3 | 1.77E-06 | Calpuff | 1.815-06 | 1.70£-06 | 24-hour | 22.5 | Odour | Sch. 3 | Guideling | 18 | <1% | Nate 2, 3 | Apr-18 | | Naphthalene | 91-20-3 | 1.776-06 | Calpuff | 5.66E-05 | 1,706-05 | 10-minute | 20 | Odour | Sch. 3 | Guideline | B1 | <1% | Note 2, 3 | Apr-18 | | Nickel | 7440-02-0 | 4.53E-05 | Calpuff | 1,48E-06 | 1.48E-05 | Annual | 0.04 | Health | Sch. 3 | Standard | 81 | <1% | Note 19, Table 2, 3URT - Note 4, Table 4 | Apr-18 | | Nickel | 7440-02-0 | 4.63E-05 | Calpuff | 4.73E-05 | 4.46E-05 | 24-hour | 2 | Heatth | 5ch. 6 | URT | - | <1% | | Apr-18 | | Mickel | 7440-02-0 | 4.635.05 | Calpuff | 1.48E-06 | 1.485-06 | Annual | 0.4 | Health | ı | AAV | 1 | ¢1% | _ | Apr-18 | | Mitrogen Orides | 10102-44-0 | 4.21E+00 | Calpuff | 4.30E+00 | 4,06£+00 | 24-hour | 300 | Health | Sch. 3 | Standard | 81 | 2% | Notes 2, 17 | Apr-18 | | Mitrogen Oxides | 10102-44-0 | 4,21E+00 | Calputf | 8.175+01 | 10+39\$72 | 1-bour | 400 | Health | Sch. 3 | Standard | 18 | *9 | Notes 2, 17 | Apr-18 | | O-terphenyl | B4-15-1 | 1.18E-07 | Calpuff | 1.205-07 | 1.135.07 | 24-hour | 0.1 | - | 1 | De Minimus | 1 | Below De Minimus | *** | | | PM ₁₉ (Condensable and Filterable) | N/A | 1.865-01 | Calpuff | 4.346-01 | 4,235-01 | 24-hour | 8 | - | 1 | AAQC | - | ×13/ | - | | | PMto (Filterable Only) | N/A | 2.23£-02 | Calpuff | 2.28E-02 | 2.65E-01 | 24-hour | 05 | 1 | 1 | AAGC | 1 | ×1> | | | | PM _{2.5} (Condensable and Filterable) | N/A | 1.765-01 | Calpuff | 1.805-01 | 4.135-01 | 24-hour | 30 | 1 | | AAGC | 1 | 1% | 1 | | | PM, s (Filterable Only) | N/A | 1,225-02 | Calpuff | 1.258-02 | 2.555-01 | 74-bour | 30 | | | AAOC | ı | 2/12 | | ľ | | Pentachlorobenzene | 608-93-5 | 7.55E-08 | Calpuff | 7.715-08 | 7,275-08 | 24-hour | 08 | Health | Sch. 3 | 151-15 | 69 | Below St-15! | | Apr-18 | | Pentachloraphenal | 87-86-5 | 3.72E-07 | Calpuff | 3.805-07 | 3.58E-07 | 24-hour | 30 | Health | Sch. 3 | Guideline | 18 | ×1× | | Apr-18 | | Perylene | 198-55-0 | 7.43£-08 | Calpuff | 7.59E-08 | 7.15E-08 | 24-hour | 0.1 | _ | - | De Minimus | , | Belaw De Minimus | | Apr-18 | | Phenanthrene | 85-01-8 | 1.04E-06 | Calpuff | 1.07E-06 | 1.01E-06 | 24-hour | 0.1 | 1 | , | De Minimus | | Below De Minimus | 1 | Apr-18 | | Pyrene | 129-00-0 | 2.40E-07 | Caipuff | 2.45E-07 | 2.316-07 | 24-hour | 0.1 | - | , | De Minimus | + | Below De Minimus | | Apr-18 | | Selenium | 7782-49-2 | 2.86E-05 | Calpuff | 2.92E-05 | 2.75E-05 | 24-hour | 10 | Health | Sch. 3 | Guideline | 16 | ×15 | *** | Apr-18 | | Silver | 7440-22-4 | 1.675-06 | Calpuff | 1.705-06 | 1.60E-06 | 24-hour | 1 | Health | Sch.3 | Standard | 18 | , , , , , , , , , , , , , , , , , , , | _ | Apr-18 | | Sulphur Diaxide | 7446-09-5 | 5.76E-03 | Calpuff | 5.885.03 | 5.546-03 | 24-hour | 275 | Health | Sch. 3 | Standard | 61 | | Rective unbi July 1, 2023Note 2URT - Note 4, Table 4 | Apr-18 | | Sulphur Dioxide | 7446-09-5 | 5.76E-03 | Calpuff | 1,125-01 | 3.36E-02 | 1-hour | 069 | Health | Sch. 3 | Standard | 18 | | Effective until July 1, 2023Note 2URT - Note 4, Table 4 | Apr-18 | | Tetrachbroethene | 127-18-4 | 1.40£-05 | Calpuff | 1.43E-05 | 1.356-05 | 24-hour | 360 | Health | Sch. 3 | Standard | B1 | | URT - Note 4, Table 4 | Apr-18 | | Tetrachloroethene | 127-18-4 | 1.40E-05 | Calpuff | 1.43E-05 | 1.35E-05 | 24-hour | 3600 | Health | Sch. 6 | URT | _ | <1% | | | | Tetralin | 119-64-2 | 1.855-06 | Calpuff | 1.89E-06 | 1.78E-06 | 24-hour | 151.5 | Health | Sch. 3 | 151-15 | 82 | Below SL-151 | *** | Apr-18 | | Thatlium | 7440-28-0 | 3.895-05 | Calpuff | 3.98E-06 | 3.75E-06 | 24-hour | 0.5 | Health | Sch. 3 | 51-151 | 92 | Below SL-15L | _ | Apr-18 | | Toksene | 108-88-3 | 1.61E-03 | Calpuff | 1.646:03 | 1.55£-03 | 24-hour | 2000 | Not Applicable | Sch. 3 | Guideline | 81 | <1% | To be updated - Note 5 | Apr-18 | | Total Chromium (and compounds) | 7440-47-3 | 3.47E-05 | Calpull | 3.55E.05 | 3.346-05 | 24-hour | 0.5 | Health | Sch. 3 | Standard | 18 | 41% | Note 11aURT - Note 4, Table 4 | Apr-18 | | Total Chromium (and compounds) | 7440-47-3 | 3.475-05 | Calpuff | 3.55E-05 | 3.346-05 | 24-hour | 5 | Health | Sch. 6 | UNT | - | <1% | _ | Apr-18 | | Total Particulate Matter (Condensable and Filterable) | le) N/A | 2535-01 | Calpuff | 2.58E-01 | 4.87E-01 | 24-hour | 120 | Particulate | Sch. 3 | Guideline | 10 | ×15 | 1 | Apr-16 | | Total Particulate Matter (Filterable only) | N/A | 2.53E-01 | Calouff | 2.58E-01 | 4.87E-01 | 24-hour | 021 | Particulate | 1 45 | Guideline | E | 712 | | Apr.18 | | Trichloroethane, 1,1,1- | 71-55-6 | 1.31E-05 | Calpuff | 1.335-05 | 1.26E-05 | 24-hour | 115000 | Health | Sch. 3 | Standard | 16 | <1% | | Apr-18 | | Trichloroethene | 85-42-0 | 1.316-05 | Calpuff | 1.336-05 | 1.26E-05 | 24-hour | 0.1 | | 1 | De Minimus | 1 | Below De Minimus | 1 | Apr-18 | | Trichlaraethylene, 1,1,2 - | 79-01-6 | 1.406-05 | Calpuff | 1.43E-05 | 1.35E-05 | 24-hour | 12 | Realth | Sch. 3 | Standard | B1 | ×13% | URT - Note 4, Table 4 | Apr-18 | | Trichloroethylene, 1,1,2 - | 79-01-6 | 1.40E-05 | Calpuff | 1.43E-05 | 1.35E-05 | 24-hour | 1200 | Health | 5ch. 6 | URT | J | ×1> | _ | Apr-18 | | Trichloroflapromethane | 75-69-4 | 8.23£-05 | Calpuff | 8.416.05 | 7.92E-05 | 24-hour | 0009 | Health | Sch. 3 | Guideline | 19 | <1% | Note 10 | Apr.18 | | Vanadium | 7440-52-2 | 1.08E-06 | Calpuff | 1.116.06 | 1.04E-06 | 24-hour | 7 | Health | Sch. 3 | Standard | 93 | <1% | - | Apr-18 | | Vinyl chande | 75-01-4 | 2,618-05 | Calput | 2.67E-05 | 2.528-05 | 24-hour | - | Health | Sch. 3 | Standard | 16 | ×15% | URT - Note 4, Table 4 | Apr-18 | | Volence m. n. and o. | 1230.30.7 | 3.835.03 | Calouiff | 101601 | 2.522-U3 | 24-hour | 100 | Health
Man Amelian Man | 201.0 | URT | | 41% | The state of s | Apr.18 | | Yolong m. o. and o. | 1330-20-7 | 3.835-03 | Calput | 1.916-03 | 3.06E-U3 | 24-nour | 08/ | Not Applicable | 50.5 | Guideline | i : | 41% | Note 7, 3, 22 |
Apr-18 | | Xylenes, m., D- and o- | 1330-20-7 | 3.835-03 | Calpuff | 3.916-03 | 3.68E-03 | 24-hour | 7300 | Not Applicable | Sch 5 | Guidesine | 1 | 213 | MOKE Z, 3, 42 | Apr.16 | | Zinc | 7440-66-6 | 2.106-04 | Calpuff | 2.15E-04 | 2,02E-04 | 24-hour | 120 | Particulate | Sch. 3 | Standard | 19 | ×1> | | Apr.18 | Golder Associates # **APPENDIX 28** DYEC CEMS 1-Hour Average Data (4 pages) # Covanta - Durham York Energy Centre Boiler No. 1 CEMS | | | | | | | | H Outlet | | | | Scrubber Inlet | |------------------------|----------------|-----------------------|----------------|--------------------------------------|--------------|--|--------------|---------------------------------------|---|------------------------------------|----------------| | | | 02 | | co
@ 11% o, | | SO ₂
'@ 11% O ₂ | | 10x | HCI | THC | 0, | | Date | Time | %
1-hr | mg/m i
1-hr | @ 11% U ₂
Rolling 4-hr | mg/m
1-hr | @ 11% U ₂ Rolling 24-hr | mg/m
1-hr | @ 11% O ₂
Rolling 24-hr | mg/m³ @ 11% O ₂
1-hr Rolling 24-hr | mg/m³ @ 11% O ₂
1-hr | %
1-hr | | 9-Nov-20 | 0:00 | 8.81 | 11 | noning 4 in | 0 | Noning 27-11 | 113 | Nonng 24-111 | 5 | 0 | 9 | | 9-Nov-20 | 1:00 | 8.59 | 9 | | 0 | | 111 | | 5 | 0 | 9 | | 9-Nov-20
9-Nov-20 | 2:00
3:00 | 8.55
8.42 | 7
8 | 8.8 | 0
0 | | 105
105 | | 4 | 0
0 | 9 | | 9-Nov-20 | 4:00 | 8.53 | 11 | 8.8 | 0 | | 111 | | 4
2 | ő | 9 | | 9-Nov-20 | 5:00 | 8.33 | 8 | 8.5 | 0 | | 98 | | 4 | 0 | 9 | | 9-Nov-20 | 6:00 | 8.58 | 11 | 9.5 | 0 | | 117 | | 5 | 0 | 9 | | 9-Nov-20
9-Nov-20 | 7:00
8:00 | 9. 1 7
9.51 | 15
8 | 11.3
10.5 | 0 | | 109
110 | | 6
7 | 0 | 9 | | 9-Nov-20 | 9:00 | 8.93 | 14 | 12.0 | 0 | | 112 | | | 0 | 9 | | 9-Nov-20 | 10:00 | 8.74 | 12 | 12.3 | 0 | | 112 | | 4 | 0 | 9 | | 9-Nov-20
9-Nov-20 | 11:00
12:00 | 8.85 | 12 | 11.5 | 6 | | 106 | | 5 | 0 | 9 | | 9-Nov-20 | 13:00 | 8.57
8.19 | 12
12 | 12.5
12.0 | 0
-1 | | 108
113 | | 4
(18.5) 18.3 (18.5) (18.5) (18.5) | | 9 | | 9-Nov-20 | 14:00 | 9.13 | 10 | 11.5 | 0 | | 103 | | 5 | ŏ | 9 | | 9-Nov-20 | 15:00 | 8.76 | 9 | 10.8 | 0 | | 118 | | 5 | 0 | 9 | | 9-Nov-20
9-Nov-20 | 16:00
17:00 | 8.47
8.60 | 8
9 | 9.8 | 0 | | 109
108 | | 4 | 0 | 9 | | 9-Nov-20 | 18:00 | 8.37 | 11 | 9.3 | 0 | | 112 | | valad 3 valad apagasa dala
Nas 2 | 0 | 9 | | 9-Nov-20 | 19:00 | 8.43 | 11 | 9.8 | 0 | | 114 | | 5 | Ō | 9 | | 9-Nov-20 | 20:00 | 8.36 | 8 | 9.8 | 0 | | 109 | | N 1 5 | 0 | 9 | | 9-Nov-20
9-Nov-20 | 21:00
22:00 | 8.39
8.32 | 10
12 | 10.0
10.3 | 0 | | 113
109 | | 5
4 | 0 | 9 | | 9-Nov-20 | 23:00 | 8.56 | 9 | 9.8 | 4 | 0.4 | 111 | 110 | 4 4.4 | ő | 9 | | 10-Nov-20 | 0:00 | 8.46 | 8 | 9.8 | 0 | 0.4 | 116 | 110 | 4 4.3 | 0 | 9 | | 10-Nov-20 | 1:00 | 8.33 | 9 | 9.5 | 0 | 0.4 | 108 | 110 | 4 4.3 | 0 | 8 | | 10-Nov-20
10-Nov-20 | 2:00
3:00 | 8.44
8.26 | 11
13 | 9.3
10.3 | 0 | 0.4
0.4 | 107
103 | 110
110 | 4 4.3 3 4.3 | 0 | 9
9 | | 10-Nov-20 | 4:00 | 8.16 | 12 | 11.3 | 0 | 0.4 | 112 | 110 | 3 4.3 | 0 | 8 | | 10-Nov-20 | 5:00 | 7 .97 | 12 | 1 2.0 | 0 | 0.4 | 100 | 110 | 3 4.3 | 0 | 8 | | 10-Nov-20 | 6:00 | 8.74 | 10
12 | 11.8 | 1 | 0.5 | 112 | 110 | 6 4.3 | 0 | 9 | | 10-Nov-20
10-Nov-20 | 7:00
8:00 | 8.49
8.52 | 12
17 | 11.5
12.8 | 0 | 0.5
0.5 | 109
108 | 110
110 | 4 4.2
4 4.1 | 0 | 9 | | 10-Nov-20 | 9:00 | 8.31 | 10 | 12.3 | Ö | 0.5 | 110 | 110 | 3 4.0 | 0 | 9 | | 10-Nov-20 | 10:00 | 8.45 | 13 | 13.0 | 0 | 0.5 | 107 | 109 | 4 4.0 | 0 | 9 | | 10-Nov-20
10-Nov-20 | 11:00
12:00 | 8.58
8.37 | 14
13 | 13.5
12.5 | 0
0 | 0.2
0.2 | 112
113 | 110
110 | 5 4.0
5 4.0 | 0 | 9 | | 10-Nov-20 | 13:00 | 8.26 | 15
15 | 13.8 | 0 | 0.2 | 107 | 110
110 | 5 4.0
4 4.1 | 0 | 9
8 | | 10-Nov-20 | 14:00 | 8.50 | 13 | 13.8 | 0 | 0.2 | 109 | 110 | 4 4.0 | 0 | 9 | | 10-Nov-20 | 15:00 | 8.61 | 11 | 13.0 | 0 | 0.2 | 115 | 110 | 4 4.0 | 0 | 9 | | 10-Nov-20
10-Nov-20 | 16:00
17:00 | 8.35
8.27 | 11
11 | 12.5
11.5 | 0
0 | 0.2
0.2 | 108
112 | 110
110 | 4 4.0
4 4.0 | 0 | 9 | | 10-Nov-20 | 18:00 | 8.34 | 10 | 10.8 | 0 | 0.2 | 113 | 110 | 4 4.1 | Ö | 9 | | 10-Nov-20 | 19:00 | 8.49 | 8 | 10.0 | 0 | 0.2 | 108 | 110 | 2 4.0 | 0 | 9 | | 10-Nov-20
10-Nov-20 | 20:00
21:00 | 8.55
8.28 | 7
10 | 9.0
8.8 | 0
0 | 0.2
0.2 | 110
113 | 110
110 | 4 4.0
5 4.0 | 0 | 8 | | 10-Nov-20 | 22:00 | 8.46 | 18 | 10.8 | 0 | 0.2 | 113 | 110 | 5 4.0 | 0 | 8
9 | | 10-Nov-20 | 23:00 | 8.56 | 8 | 10.8 | 0 | 0.0 | 100 | 110 | 4 4.0 | 0 | 9 | | 11-Nov-20
11-Nov-20 | 0:00
1:00 | 8.23
8.00 | 7
9 | 10.8
10.5 | 0 | 0.0 | 108 | 109 | 4 4.0 | 0 | 9 | | 11-Nov-20 | 2:00 | 8.00
8.07 | 8 | 8.0 | 0 | 0.0
0.0 | 110
107 | 109
109 | 4 4.0
4 4.0 | 0 | 8
8 | | 11-Nov-20 | 3:00 | 8.55 | 7 | 7.8 | 0 | 0.0 | 108 | 110 | 5 4.1 | ŏ | 9 | | 11-Nov-20 | 4:00 | 8.43 | 8 | 8.0 | 0 | 0.0 | 115 | 110 | 3 4.1 | 0 | 9 | | 11-Nov-20
11-Nov-20 | 5:00
6:00 | 8.04
8.50 | 12
13 | 8.8
10.0 | 0
0 | 0.0
0.0 | 105
110 | 110
110 | 3 4.1
4 4.0 | 0
0 | 8
9 | | 11-Nov-20 | 7:00 | 8.51 | 9 | 10.5 | 0 | 0.0 | 110 | 110 | 4 4.0 | 0 | 9 | | 11-Nov-20 | 8:00 | 8.53 | 6 | 10,0 | 0 | 0.0 | 112 | 110 | 4 4.0 | 0 | 9 | | 11-Nov-20
11-Nov-20 | 9:00
10:00 | 8.37
8.27 | 11
9 | 9.8 | 0 | 0.0 | 107 | 110 | 3 4.0 | 0 | 9 | | 11-Nov-20 | 11:00 | 8.45 | 11 | 8.8
9.3 | 0
0 | 0.0
0.0 | 112
106 | 110
110 | 3 4.0
4 3.9 | 0
0 | 9
9 | | 11-Nov-20 | 12:00 | 8.26 | 12 | 10.8 | 0 | 0.0 | 108 | 110 | 4 3.9 | Ŏ | 8 | | 11-Nov-20 | 13:00 | 8.44 | 9 | 10.3 | 0 | 0.0 | 112 | 110 | 5 3.9 | 0 | 9 | | 11-Nov-20
11-Nov-20 | 14:00
15:00 | 9.22
8.59 | 14
13 | 11.5
12.0 | 0 | 0.0
0.0 | 106 | 110
110 | 4 3.9 | 0 | 9 | | 11-Nov-20 | 16:00 | 8.21 | 15
17 | 13.3 | 0 | 0.0 | 116
109 | 110
110 | 4 3.9
3 3.9 | 0 | 9 8 | | 11-Nov-20 | 17:00 | 8.40 | 11 | 13.8 | 0 | 0.0 | 110 | 110 | 3 3.8 | ő | 9 | | 11-Nov-20 | 18:00 | 8.16 | 9 | 12.5 | 0 | 0.0 | 109 | 110 | 3 3.8 | 0 | 8 | | 11-Nov-20
11-Nov-20 | 19:00
20:00 | 8.27
8.53 | 9
9 | 11.5
9.5 | 0
0 | 0.0
0.0 | 110
110 | 110
110 | 1 3.8
3 3.7 | 0 | 9 | | 11-Nov-20 | 21:00 | 8.28 | 9 | 9.0 | 0 | 0.0 | 106 | 109 | 3 3.6 | 0 | 9 | | 11-Nov-20 | 22:00 | 8.67 | 15 | 10.5 | 0 | 0.0 | 107 | 109 | 5 3.6 | 0 | 9 | | 11-Nov-20 | 23:00 | 8.33 | 7 | 10.0 | 0 | 0.0 | 113 | 109 | 5 3.7 | 0 | 8 | # Covanta - Durham York Energy Centre Boiler No. 1 CEMS | | | | | | | B | H Outlet | | | | | Scrubber Inlet | |-----------|---------|------|------|------------------------|------|---------------|----------|------------------------|------|---------------|----------------------------|----------------| | | | 02 | | co | | SOz | | XON | | HCI | THC | 0, | | | | % | mg/m | ³ @ 11% O ₂ | mg/n | າ³ @ 11% O₂ | mg/m | ³ @ 11% O ₂ | mg/n | ³ @ 11% O₂ | mg/m³ @ 11% O ₂ | % | | Date | Time | 1-hr | 1-hr | Rolling 4-hr | 1-hr | Rolling 24-hr | 1-hr | Rolling 24-hr | 1-hr | Rolling 24-hr | 1-hr | 1-hr | | 12-Nov-20 | 0:00 | 8.03 | 7 | 9.5 | 0 | 0.0 | 108 | 109 | 3 | 3.6 | 0 | 8 | | 12-Nov-20 | 1:00 | 8.29 | 20 | 12.3 | 0 | 0.0 | 113 | 110 | 3 | 3.6 | 0 | 8 | | 12-Nov-20 | 2:00 | 8.56 | 16 | 12.5 | 0 | 0.0 | 110 | 110 | 3 | 3.5 | 0 | 9 | | 12-Nov-20 | 3:00 | 8.48 | 10 | 13.3 | 0 | 0.0 | 109 | 110 | 3 | 3.5 | 0 | 9 | | 12-Nov-20 | 4:00 | 8.38 | 11 | 14.3 | 0 | 0.0 | 114 | 110 | 2 | 3.4 | 0 | 9 | | 12-Nov-20 | 5:00 | 8.41 | 16 | 13.3 | 0 | 0.0 | 100 | 109 | 3 | 3.4 | 0 | 9 | | 12-Nov-20 | 6:00 | 8.30 | 11 | 12.0 | 0 | 0.0 | 110 | 109 | 3 | 3.4 | 0 | 9 | | 12-Nov-20 | 7:00 | 9.22 | 26 | 16.0 | 0 | 0.0 | 113 | 110 | 6 | 3.5 | 0 | 9 | | 12-Nov-20 | 8:00 | 8.63 | 10 | 15.8 | 0 | 0.0 | 108 | 109 | 4 | 3.5 | 0 | 9 | | 12-Nov-20 | 9:00 | 8.39 | 18 | 16.3 | 0 | 0.0 | 113 | 110 | 3 | 3.5 | 0 | 9 | | 12-Nov-20 | 10:00 | 8.41 | 13 | 16.8 | 0 | 0.0 | 108 | 110 | 3 | 3.5 | 0 | 9 | | 12-Nov-20 | 11:00 | 8.96 | 15 | 14.0 | 0 | 0.0 | 112 | 110 | 5 | 3.5 | 0 | 9 | | 12-Nov-20 | 12:00 | 8.62 | 13 | 14.8 | 0 | 0.0 | 109 | 110 | 4 | 3.5 | 0 | 9 | | 12-Nov-20 | 13:00 | 8.67 | 11 | 13.0 | 0 | 0.0 | 111 | 110 | 3 | 3.4 | 0 | 9 | | 12-Nov-20 | 14:00 | 8.77 | 17 | 14.0 | 0 | 0.0 | 113 | 110 | 4 | 3.4 | 0 | 9 | | 12-Nov-20 | 15:00 | 8.28 | 12 | 13.3 | 0 | 0.0 | 111 | 110 | 4 | 3.4 | 0 | 9 | | 12-Nov-20 | 16:00 | 8.42 | 14 | 13.5 | 0 | 0.0 | 112 | 110 | - 5 | 3.5 | 0 | 9 | | 12-Nov-20 | 17:00 | 8.51 | 14 | 14.3 | 0 | 0.0 | 108 | 110 | 4 | 3.5 | 0 | 9 | | 12-Nov-20 | 18:00 | 8.00 | 15 | 13.8 | 0 | 0.0 | 112 | 110 | 3 | 3.5 | 0 | 8 | | 12-Nov-20 | 19:00 | 9.04 | 10 | 13.3 | 0 | 0.0 | 109 | 110 | 2 | 3.6 | 0 | 9 | | 12-Nov-20 | 20:00 | 8.36 | 10 | 12.3 | 0 | 0.0 | 105 | 110 | 3 | 3.6 | 0 | 9 | | 12-Nov-20 | 21:00 | 8.54 | 11 | 11.5 | 0 | 0.0 | 115 | 110 | 4 | 3.6 | 0 | 9 | | 12-Nov-20 | 22:00 | 8.41 | 16 | 11.8 | 0 | 0.0 | 112 | 110 | 5 | 3.6 | 0 | 8 | | 12-Nov-20 | 23:00 | 8.53 | 12 | 12.3 | 0 | 0.0 | 108 | 110 | 4 | 3.6 | 0 | 9 | | | Min | 7.97 | 6 | 7.8 | 0 | 0.0 | 98 | 109 | 1 | 3.4 | 0 | 8 | | | Мак | 9.51 | 26 | 16.8 | 6 | 0.5 | 118 | 110 | 7 | 4,4 | 0 | 9 | | | Avg | 8.48 | 11 | 11.4 | 0.1 | 0.1 | 110 | 110 | 4 | 3.8 | 0 | 9 | | | Std Dev | 0.27 | 3.3 | 2.0 | 0.7 | 0.2 | 3.75 | 0.2 | 1.0 | 0.3 | | 0.4 | # Covanta - Durham York Energy Centre Boiler No. 2 CEMS | | | | | | | Bl | H Outlet | | | | | Scrubber Inlet | |------------------------|----------------|--------------|-----------------|--------------
---|---------------|------------|---------------|--------|------------------------|----------------------------|----------------| | | | 02 | СО | | SO ₂ | | NOx | | HCI | | THC | 02 | | | | % | | @ 11% O₂ | | D 11% O₂ | | ³ @ 11% O₂ | | ³ @ 11% O ₂ | mg/m³ @ 11% O ₂ | % | | Date
9-Nov-20 | Time
0:00 | 1-hr
8.54 | 1-hr | Rolling 4-hr | SELECTION CONTRACTOR AND | Rolling 24-hr | 1-hr | Rolling 24-hr | 1-hr | Rolling 24-hr | 1-hr | 1-hr | | 9-Nov-20 | 1:00 | 8.25 | 19
19 | | 0 | | 114
106 | | 4 | | 0 | 8 | | 9-Nov-20 | 2:00 | 8.27 | 21 | | 0 | | 107 | | 3 | | Ö | 8 | | 9-Nov-20 | 3:00 | 8.21 | 24 | 20.8 | 0 | | 110 | | 3 | | 0 | 8 | | 9-Nov-20
9-Nov-20 | 4:00
5:00 | 8.18
8.45 | 11
10 | 18.8
16.5 | 0 | | 115
111 | | 3
4 | | 0
1 | 8 | | 9-Nov-20 | 6:00 | 8.31 | 12 | 16.3
14.3 | 0 | | 121 | | 4 | | | 8 | | 9-Nov-20 | 7:00 | 8.51 | 11 | 11.0 | 0 | | 112 | | 4 | | ō | 8 | | 9-Nov-20 | 8:00 | 8.48 | 21 | 13.5 | 0 | | 103 | | 4 | | 0 | 8 | | 9-Nov-20
9-Nov-20 | 9:00
10:00 | 8.52
8.44 | 17
20 | 15.3
17.3 | 0 | | 115
108 | | 4 | | 0 | 8 | | 9-Nov-20 | 11:00 | 8.24 | 13 | 17.8 | 0 | | 105 | | 4 | | 0 | 8 | | 9-Nov-20 | 12:00 | 8.30 | 17 | 16.8 | 0 | | 111 | | 4 | | 0 | 8 | | 9-Nov-20 | 13:00 | 7.97 | 9 | 14.8 | 0 | | 113 | | 4 | | Mark 1984 (0 1994) | 8 040 | | 9-Nov-20
9-Nov-20 | 14:00
15:00 | 8.45
8.35 | 16
14 | 13.8
14.0 | 0
1 | | 108
108 | | 4 | | 0 | 8 | | 9-Nov-20 | 16:00 | 8.17 | 11 | 12.5 | 0 | | 110 | | 4 | | 0 | 8 | | 9-Nov-20 | 17:00 | 8.34 | 11 | 13.0 | 0 | | 105 | | 4 | | | 8 | | 9-Nov-20 | 18:00 | 8.43 | 12 | 12.0 | 0 | | 113 | | 4 | | 0 | 8 | | 9-Nov-20
9-Nov-20 | 19:00
20:00 | 8.21
8.50 | 17
14 | 12.8
13.5 | 0 | | 109
105 | | 4 | | 0 | 8 | | 9-Nov-20 | 21:00 | 8.77 | 14 | 14.3 | 0 | | 116 | | 3 | | 0 | 9 | | 9-Nov-20 | 22:00 | 8.62 | 11 | 14.0 | 0 | | 102 | | 3 | | 0 | 8 | | 9-Nov-20 | 23:00 | 8.26 | 12 | 12.8 | 0 | 0.0 | 104 | 110 | 3 | 3.7 | Ó | 8 | | 10-Nov-20
10-Nov-20 | 0:00
1:00 | 8.25
8.68 | 9
1 4 | 11,5
11,5 | 0 | 0.0
0.0 | 117
110 | 110
110 | 3
3 | 3.7
3.7 | 0 | 8
8 | | 10-Nov-20 | 2:00 | 8.66 | 11 | 11.5 | Ö | 0.0 | 110 | 110 | 3 | 3.7 | ŏ | 8 | | 10-Nov-20 | 3:00 | 8.58 | 11 | 11.3 | 0 | 0.0 | 119 | 110 | 3 | 3.7 | 0 | 8 | | 10-Nov-20 | 4:00
5:00 | 8.23
7.97 | 8 | 11.0 | 0 | 0.0 | 113 | 110 | 3 | 3.7 | 0 | 8 | | 10-Nov-20
10-Nov-20 | 6:00 | 8.20 | 13
13 | 10.8
11.3 | 2
2 | 0.1
0.2 | 107
121 | 110
110 | 4
4 | 3.7
3.7 | 1 | 8 | | 10-Nov-20 | 7:00 | 8.25 | 17 | 12.8 | 3 | 0.3 | 111 | 110 | 3 | 3.6 | ō | 8 | | 10-Nov-20 | 8:00 | 7.88 | 15 | 14.5 | 0 | 0.3 | 100 | 110 | 3 | 3.6 | 0 | 8 | | 10-Nov-20
10-Nov-20 | 9:00
10:00 | 8.48
8.15 | 13
13 | 14.5
14.5 | 0 | 0.3
0.3 | 117 | 110 | 4 | 3.6 | 0 | 8 | | 10-Nov-20 | 11:00 | 8.70 | 15
17 | 14.5
14.5 | 0 | 0.3 | 110
102 | 110
110 | 3
4 | 3.5
3.5 | 0 | 8 9 | | 10-Nov-20 | 12:00 | 8.39 | 13 | 14.0 | 0 | 0.3 | 112 | 110 | 4 | 3.5 | Ŏ | 8 | | 10-Nov-20 | 13:00 | 8.22 | 16 | 14.8 | 0 | 0.3 | 109 | 110 | 4 | 3.5 | 0 | 8 | | 10-Nov-20
10-Nov-20 | 14:00
15:00 | 8.44
8.29 | 11
12 | 14.3
13.0 | 0
0 | 0.3
0.3 | 110
111 | 110
110 | 4 3 | 3.5
3.5 | 0
0 | 8 | | 10-Nov-20 | 16:00 | 8.68 | 15 | 13.5 | 0 | 0.3 | 108 | 110 | 3 | 3.5
3.5 | Ö | 8 | | 10-Nov-20 | 17:00 | 8.53 | 11 | 12.3 | 0 | 0.3 | 108 | 110 | 3 | 3.4 | 0 | 8 | | 10-Nov-20 | 18:00 | 8.43 | 15 | 13.3 | 0 | 0.3 | 117 | 110 | 4 | 3.4 | 0 | 8 | | 10-Nov-20
10-Nov-20 | 19:00
20:00 | 8.64
8.90 | 18
21 | 14.8
16.3 | 0 | 0.3
0.3 | 102
107 | 110
110 | 4
4 | 3.4
3.4 | 0
0 | 9 8 | | 10-Nov-20 | 21:00 | 8.30 | 18 | 18.0 | Ö | 0.3 | 112 | 110 | 3 | 3.4 | ŏ | 8 | | 10-Nov-20 | 22:00 | 8.47 | 11 | 17.0 | 0 | 0.3 | 108 | 110 | 3 | 3.4 | 0 | 8 | | 10-Nov-20
11-Nov-20 | 23:00
0:00 | 8.26
8.15 | 12
12 | 15.5
13.3 | 0 | 0.3 | 104 | 110 | 3
3 | 3.4 | 0 | 8 | | 11-Nov-20
11-Nov-20 | 1:00 | 8.36 | 16 | 13.3
12.8 | 0 | 0.3
0.3 | 113
106 | 110
110 | 3
4 | 3.4
3.5 | 0 | 8
8 | | 11-Nov-20 | 2:00 | 8.28 | 13 | 13.3 | 0 | 0.3 | 108 | 110 | 4 | 3.5 | 0 | 8 | | 11-Nov-20 | 3:00 | 8.47 | 9 | 12.5 | 0 | 0.3 | 116 | 110 | 3 | 3.5 | 0 | 8 | | 11-Nov-20
11-Nov-20 | 4:00
5:00 | 8.43
8.21 | 12
11 | 12.5
11.3 | 0 | 0.3
0.2 | 113
120 | 110
110 | 3
4 | 3.5
3.5 | 0 | 8 8 | | 11-Nov-20 | 6:00 | 8.56 | 12 | 11.0 | 0 | 0.1 | 119 | 110 | 3 | 3.5 | \mathbf{i} | 8 | | 11-Nov-20 | 7:00 | 8.43 | 11 | 11.5 | 0 | 0.0 | 108 | 110 | 3 | 3 .5 | 0 | 8 | | 11-Nov-20 | 8:00 | 8.35 | 10 | 11.0 | 0 | 0.0 | 107 | 110 | 3 | 3.5 | Ō | 8 | | 11-Nov-20
11-Nov-20 | 9:00
10:00 | 8.40
8.31 | 12
11 | 11.3
11.0 | 0 | 0.0
0.0 | 109
107 | 110
110 | 3 | 3.4
3.4 | 0
0 | 8 | | 11-Nov-20 | 11:00 | 8.45 | 12 | 11.3 | Ō | 0.0 | 113 | 110 | 3 | 3.4 | Ŏ | 8 | | 11-Nov-20 | 12:00 | 8.72 | 14 | 12.3 | 0 | 0.0 | 112 | 110 | 3 | 3.3 | 0 | 8 | | 11-Nov-20 | 13:00 | 8.50
8.14 | 15
15 | 13.0 | 0 | 0.0 | 106 | 110 | 3 | 3.3 | 0 | 8 | | 11-Nov-20
11-Nov-20 | 14:00
15:00 | 8.14
8.45 | 15
15 | 14.0
14.8 | 0 | 0.0
0.0 | 106
109 | 110
110 | 3
3 | 3.3
3.3 | 0 | 8
8 | | 11-Nov-20 | 16:00 | 8.25 | 11 | 14.0 | 0 | 0.0 | 116 | 110 | 3 | 3.3 | 0 | 8 | | 11-Nov-20 | 17:00 | 8.51 | 17 | 14.5 | 0 | 0.0 | 109 | 110 | 3 | 3.3 | 0 | 8 | | 11-Nov-20
11-Nov-20 | 18:00
19:00 | 8.73
8.22 | 21 | 16.0 | 0 | 0.0 | 108 | 110
110 | 3 | 3.2 | 0 | 8 | | 11-Nov-20
11-Nov-20 | 20:00 | 8.22
8.26 | 12
12 | 15.3
15.5 | 0 | 0.0
0.0 | 112
104 | 110
110 | 2
2 | 3.1
3.0 | 0
0 | 8
8 | | 11-Nov-20 | 21:00 | 8.08 | 11 | 14.0 | 0 | 0.0 | 108 | 110 | 2 | 3.0 | 0 | 8 | | 11-Nov-20 | 22:00 | 8.18 | 25 | 15.0 | 0 | 0.0 | 106 | 110 | 2 | 3.0 | 0 | 8 | | 11-Nov-20 | 23:00 | 8.51 | 15 | 15.8 | 0 | 0.0 | 112 | 110 | 2 | 2.9 | 0 | 8 | ## Covanta - Durham York Energy Centre Boiler No. 2 CEMS | | | | | | | В | H Outlet | | | | | Scrubber inlet | |-----------|---------|------|----------------------------|--------------|----------------------------|---------------|----------------------------|---------------|----------------------------|---------------|----------------------------|----------------| | | | | со | | SO ₂ | | NOx | | HCI | | THC | 02 | | | | % | mg/m³ @ 11% O ₂ | | mg/m³ @ 11% O ₂ | | mg/m³ @ 11% O ₂ | | mg/m³ @ 11% O ₂ | | mg/m³ @ 11% O ₂ | % | | Date | Time | 1-hr | 1-hr | Rolling 4-hr | 1-hr | Rolling 24-hr | 1-hr | Rolling 24-hr | 1-hr | Rolling 24-hr | 1-hr | 1-hr | | 12-Nov-20 | 0:00 | 8.02 | 11 | 15.5 | 0 | 0.0 | 111 | 110 | 3 | 2.9 | 0 | 8 | | 12-Nov-20 | 1:00 | 8.21 | 13 | 16.0 | 0 | 0.0 | 111 | 110 | 3 | 2.9 | 0 | 8 | | 12-Nov-20 | 2:00 | 8.24 | 10 | 1 2.3 | 0 | 0.0 | 102 | 110 | 3 | 2.8 | 0 | 8 | | 12-Nov-20 | 3:00 | 8.88 | 14 | 12.0 | 0 | 0.0 | 122 | 110 | 3 | 2.8 | 0 | 9 | | 12-Nov-20 | 4:00 | 8.33 | 24 | 1 5.3 | 0 | 0.0 | 115 | 111 | 3 | 2.8 | 0 | 8 | | 12-Nov-20 | 5:00 | 8.20 | 12 | 15.0 | 0 | 0.0 | 115 | 110 | 4 | 2.8 | 1 | 8 | | 12-Nov-20 | 6:00 | 8.44 | 13 | 1 5.8 | 0 | 0.0 | 120 | 110 | 3 | 2.8 | 1 | 8 | | 12-Nov-20 | 7:00 | 8.60 | 15 | 16.0 | 0 | 0.0 | 109 | 110 | 3 | 2.8 | Ō | 9 | | 12-Nov-20 | 8:00 | 8.33 | 14 | 13.5 | 0 | 0.0 | 102 | 110 | 3 | 2.8 | 0 | 8 | | 12-Nov-20 | 9:00 | 8.19 | 18 | 15.0 | 0 | 0.0 | 111 | 110 | 2 | 2.8 | 0 | 8 | | 2-Nov-20 | 10:00 | 8.19 | 16 | 15.8 | 0 | 0.0 | 110 | 110 | 3 | 2.8 | 0 | 8 | | L2-Nov-20 | 11:00 | 8.78 | 11 | 14.8 | 0 | 0.0 | 111 | 110 | 3 | 2.8 | 0 | 9 | | 12-Nov-20 | 12:00 | 8.56 | 15 | 15.0 | 0 | 0.0 | 108 | 110 | 3 | 2.8 | 0 | 8 | | 12-Nov-20 | 13:00 | 8.82 | 14 | 14.0 | 0 | 0.0 | 112 | 110 | 3 | 2.8 | | 9 | | 12-Nov-20 | 14:00 | 8.54 | 18 | 14.5 | 0 | 0.0 | 103 | 110 | 3 | 2.8 | 0 | 8 | | 12-Nov-20 | 15:00 | 8.28 | 18 | 16.3 | 0 | 0.0 | 1 16 | 111 | 3 | 2.8 | Ö | 8 | |
12-Nov-20 | 16:00 | 8.30 | 17 | 16.8 | 6 | 0.3 | 111 | 110 | 3 | 2.8 | 0 | 8 | | 12-Nov-20 | 17:00 | 8.59 | 21 | 18.5 | 1 | 0.3 | 109 | 110 | 3 | 2.8 | Ŏ | 8 | | 12-Nov-20 | 18:00 | 7.93 | 17 | 18.3 | 1 | 0.3 | 107 | 110 | 3 | 2.8 | 0 | 8 | | 12-Nov-20 | 19:00 | 8.51 | 12 | 16.8 | 0 | 0.3 | 107 | 110 | 2 | 2.8 | 0 | 8 | | 12-Nov-20 | 20:00 | 8.45 | 11 | 15.3 | 0 | 0.3 | 111 | 110 | 2 | 2.8 | Ŏ | 8 | | 12-Nov-20 | 21:00 | 8.63 | 13 | 13.3 | 0 | 0.3 | 113 | 111 | 3 | 2.8 | 0 | 8 | | 12-Nov-20 | 22:00 | 8.41 | 14 | 12.5 | 0 | 0.3 | 112 | 111 | 3 | 2.9 | 0 | 8 | | 12-Nov-20 | 23:00 | 8.60 | 21 | 14.8 | 3 | 0.5 | 107 | 111 | 3 | 2.9 | 0 | 8 | | | Min | 7.88 | 8 | 10.8 | 0 | 0 | 100 | 110 | 2 | 2.8 | 0 | 8 | | | Max | 8.90 | 25 | 20.8 | 6 | 0.5 | 122 | 111 | 4 | 3.7 | 1 | 9 | | | Avg | 8.39 | 14 | 14.1 | 0.2 | 0.1 | 110 | 1 1 0 | 3 | 3.2 | 0.1 | 8 | | | Std Dev | 0.21 | 3.6 | 2.1 | 0.8 | 0.2 | 4.77 | 0.2 | 0.6 | 0.3 | 0.3 | 0.3 |